JPS6369950A - Nonmagnetic austenitic stainless steel having high hardness - Google Patents

Nonmagnetic austenitic stainless steel having high hardness

Info

Publication number
JPS6369950A
JPS6369950A JP61212432A JP21243286A JPS6369950A JP S6369950 A JPS6369950 A JP S6369950A JP 61212432 A JP61212432 A JP 61212432A JP 21243286 A JP21243286 A JP 21243286A JP S6369950 A JPS6369950 A JP S6369950A
Authority
JP
Japan
Prior art keywords
steel
magnetic
hardness
austenitic stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61212432A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
寛 清水
Sadao Hasuno
貞夫 蓮野
Shinji Sato
信二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61212432A priority Critical patent/JPS6369950A/en
Publication of JPS6369950A publication Critical patent/JPS6369950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain reduction in the amounts of expensive components and to improve the nonmagnetism and hardness, by adding no Mo unlike SUS 316 steel and specifying the amounts of Mn, Cr, Cu and N in a balanced state. CONSTITUTION:The compsn. of an austenitic stainless steel is composed of, by weight, <=0.15% C, <=1.5% Si, 0.5-6.0% Mn, 17-23% Cr, 10-15% Ni, 0.1-3.0% Cu, <0.20-0.35% N and the balance Fe. In the steel, the solid soln. hardening action of N is effectively utilized, so high strength and hardness are obtd. by intense working. In order to improve the hot workability without deteriorating various characteristics such as high nonmagnetism, high strength and hardness, 0.001-0.020% in total of Ca and rare earth metals and/or 0.0005-0.015% B may be added to the above-mentioned compsn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷間加工を施し、あるいは更に時効処理を行
うことにより高硬度を得、しかも十分低い透磁率を維持
することができる熱間加工性を改善した非磁性オーステ
ナイト系ステンレス鋼に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a hot working method that can obtain high hardness by cold working or further aging treatment and maintain sufficiently low magnetic permeability. This invention relates to non-magnetic austenitic stainless steel with improved workability.

〔従来の技術〕[Conventional technology]

近年、磁気記録装置や電子機器の急速な発展と普及に伴
い、磁気的雑音の極めて少ない非磁性鋼に対する要望が
高まっている。この種の機器の構成材料として非磁性鋼
の具備すべき条件は次の如くである。
In recent years, with the rapid development and spread of magnetic recording devices and electronic equipment, there has been an increasing demand for non-magnetic steel with extremely low magnetic noise. The conditions that non-magnetic steel must meet as a constituent material for this type of equipment are as follows.

(A)  厳しい冷間加工下でも十分な非磁性能を有す
ること。
(A) Must have sufficient non-magnetic performance even under severe cold working.

(B)  十分な強度を有すること。(B) Must have sufficient strength.

(C)  価格が安価であること。(C) The price is low.

(D)  溶接した場合、溶接部の透磁率が低いこと。(D) When welded, the magnetic permeability of the welded part is low.

特に最近では、回転系のシャフトやテープのガイドポス
トに薄肉パイプを使用する例が多くなっており、それら
の部材に使用される材料も、上記に示す条件の他に、#
4摩耗性に優れていることが必須条件となって来ている
Particularly recently, thin-walled pipes are increasingly being used for rotating shafts and tape guide posts, and the materials used for these parts are also subject to the conditions listed above.
4. Excellent abrasion resistance has become an essential condition.

現在非磁性鋼としては、5US304W4および加工に
対するオーステナイトが安定な5US305fi、5U
S316鋼などのオーステナイト系ステンレス鋼がその
主流となっている。
Currently, non-magnetic steels include 5US304W4, 5US305fi, and 5U, which have stable austenite properties against processing.
Austenitic stainless steels such as S316 steel are the mainstream.

しかし、5US304錆は準安定化オーステナイト系ス
テンレス鋼であり、わずかな冷間加工に対してもマルテ
ンサイト変態を起こし、透磁率の増大を招くので、非磁
性鋼として問題がある。
However, 5US304 Rust is a meta-stabilized austenitic stainless steel and undergoes martensitic transformation even with slight cold working, leading to an increase in magnetic permeability, which poses a problem as a non-magnetic steel.

まi、SUS 305mオヨヒSUS 316ff4ハ
、加工に対するオーステナイト安定性に関しては20%
程度の冷間加工率では良好であるがNi量が高く、また
SUS 316鋼ではMOを含有するため、非磁性鋼と
して優れた特性を有するが非常に高価となる欠点がある
。またこれらの鉤は冷間加工によっても高い硬度が得ら
れないため耐摩耗性も劣っている。
Well, SUS 305m, SUS 316ff4, austenite stability against processing is 20%.
SUS 316 steel has excellent properties as a non-magnetic steel, but has the disadvantage of being very expensive, since it has a high Ni content, and contains MO, although it has excellent properties as a non-magnetic steel. Furthermore, these hooks have poor wear resistance because high hardness cannot be obtained even by cold working.

一方、従来技術の一例として特開昭54−8’1916
が開示されているが、この鋼は5US304fiをベー
スとしているため、NlおよびCrが低(、Cu、Nを
積極的に添加していないためSUS 316錆よ呻も非
磁性能が劣っている。
On the other hand, as an example of the prior art, JP-A-54-8'1916
However, since this steel is based on 5US304fi, it has low Nl and Cr (Cu and N are not actively added, so SUS 316 has poor non-magnetic performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く、従来非磁性鋼は冷間における強加工を施し
た場合、オーステナイトの安定度が不十分なため透磁率
が高くなる上に高い硬度が得られないため耐摩耗性にも
劣り、しかもSUS 316鋼に関してはMoを含有し
ているため非常に高価となるという問題点がある。
As mentioned above, when conventional non-magnetic steels are subjected to severe cold working, their magnetic permeability increases due to insufficient austenite stability, and high hardness cannot be obtained, resulting in poor wear resistance. SUS 316 steel has a problem in that it is very expensive because it contains Mo.

本発明の目的は、上記従来技術の問題点を解決し、5U
S316鋼に対比してMoを添加せず、Mn、Cr、C
uおよびNを最適条件でバランスさせることにより従来
の非磁性鋼に勝る非磁性能を有し、冷間加工性を施すこ
とにより、あるいは更に適正条件で時効を行うことによ
り高強度及び高硬度を得、浸れた耐摩耗性を付与するこ
とができる非磁性オーステナイト系ステンレス鋼と、更
に熱間加工性を改善して生産性を高め、製造コストも含
めた全体としてSUS 305ff4あるいはSUS 
316Mに比して安価とした非磁性オーステナイト系ス
テンレス鋼を提供するにある。
The purpose of the present invention is to solve the problems of the above-mentioned prior art, and to
In contrast to S316 steel, no Mo is added, and Mn, Cr, and C
By balancing u and N under optimal conditions, it has non-magnetic performance superior to conventional non-magnetic steel, and by applying cold workability or aging under appropriate conditions, it has high strength and high hardness. Non-magnetic austenitic stainless steel that can provide high wear resistance and improved hot workability to increase productivity and manufacturing cost.
To provide a non-magnetic austenitic stainless steel that is cheaper than 316M.

〔問題点を解決するための手段および作用〕本発明の上
記の目的は次の2発明によって達成される。第1発明の
要旨とするところは次の如(である。すなわち、重量比
にて C: 0,15%息下 Si:1.5%以下 Mn=  0 、 5〜6 、 0% Cr: 17〜23% Ni:10〜15% Cu: 0.1〜3.0% N:0.207.を越、to、35%以下を含有し、残
部がFeおよび不可避的不純物rり成ることを特徴とす
る高硬度非磁性オースナナ1′ト系ステンレス鋼である
[Means and effects for solving the problems] The above objects of the present invention are achieved by the following two inventions. The gist of the first invention is as follows (that is, in terms of weight ratio, C: 0.15% Si: 1.5% or less Mn = 0, 5-6, 0% Cr: 17 -23% Ni: 10-15% Cu: 0.1-3.0% N: Contains more than 0.207. to 35% or less, and the remainder consists of Fe and inevitable impurities. It is a high-hardness non-magnetic austenite stainless steel.

第2発明の要旨とするところは次の如くである。The gist of the second invention is as follows.

すなわち、第1発明と同一基本成分の他に更にCa、希
土類金R(以下REMと称する):合計で0.001〜
0.20%、B:  0.0005〜0.015%うち
から選ばれた1種または2種以上を含み、残部がFsお
よび不可避的不純物より成ることを特徴とする高硬度非
磁性オーステナイト系ステンレス鋼である。
That is, in addition to the same basic components as the first invention, Ca and rare earth metal R (hereinafter referred to as REM): 0.001~
0.20%, B: 0.0005 to 0.015% High hardness non-magnetic austenitic stainless steel characterized by containing one or more selected from among them, with the remainder consisting of Fs and inevitable impurities. It is steel.

本発明は、上記成分の鋳塊を通常の製造工程、すなわち
、熱間圧延−焼純酸洗→冷間圧延→焼鈍酸洗によって得
られた鋼板および鋼帯を素材とし、必要に応じた加工や
溶接などの処理を施した後【こ、更に冷間加工を施して
高強度と高硬度を得、これに更に450〜600℃、1
0分間以上の時効を行うことにより、冷間加工のみでは
得られなし1強度と硬度を得ることも可能な非磁性オー
ステナイト系ステンレス鋼である。
The present invention uses steel plates and steel strips obtained by the normal manufacturing process of ingots having the above components, that is, hot rolling - sintering pure pickling → cold rolling → annealing pickling, and processes them as necessary. After processing such as welding and welding, cold working is performed to obtain high strength and high hardness, and then further cold working is performed at 450 to 600°C for 1
It is a non-magnetic austenitic stainless steel that can be aged for 0 minutes or more to achieve strength and hardness that cannot be obtained by cold working alone.

非磁性材料は、各種8i器の部品および構成材料として
使用されるに当って、切断、切削、強度を得るための加
工(例えば引抜き加工)、溶接等力(行われる。
When non-magnetic materials are used as parts and constituent materials of various 8i devices, they are subjected to cutting, machining, processing to obtain strength (for example, drawing), welding, etc.

一方、一般にオーステナイト系ステンレス鋼;よ加工に
よってマルテンサイト変態を生起し磁性を有するように
なることは周知のとおりである。
On the other hand, it is generally known that austenitic stainless steel undergoes martensitic transformation through hard working and becomes magnetic.

通常、この種の用途に多用されている5US316鋼を
例に挙げると、焼鈍状態ではCGS単位で約1.005
 (5000e磁化)の透磁率を有するが、これに20
%以上の冷間圧延を施すと、透磁率は冷間加工率10%
に対しCG3単位で0.01以上の割合で急増する傾向
を示すようになる。
For example, 5US316 steel, which is commonly used in this type of application, has a CGS of approximately 1.005 in the annealed state.
(5000e magnetization), but this has a magnetic permeability of 20
% or more, the magnetic permeability is 10% cold rolling.
CG3 units tend to rapidly increase at a rate of 0.01 or more.

本発明者らはこれらの点に着目し、高強度化や#4摩耗
性向上のための高強度化の目的で厳しい冷間加工を与え
ても優れた非磁性能を維持できる材料を得ることを目標
に、各種成分のオーステナイト系ステンレス鋼を溶製し
、焼鈍状態の鋼板に、冷間圧延を施した時の透磁率につ
いて種々検討した。
The present inventors focused on these points and aimed to obtain a material that can maintain excellent non-magnetic performance even when subjected to severe cold working for the purpose of increasing strength and #4 abrasion resistance. With this goal in mind, various studies were conducted on the magnetic permeability of austenitic stainless steels made of various components and cold rolled into annealed steel plates.

本発明では、その結果を基礎として非磁性能の加工安定
性を考慮し、更に高非磁性能と高強度、高硬度を同時に
得る目的でNを積極的に添加し、その固溶硬化作用を有
効に活用しているため、厳しい加工を施すことにより、
高い強度、硬度が得られる。
In the present invention, based on the results, we considered the processing stability of non-magnetic performance, and in order to obtain high non-magnetic performance, high strength, and high hardness at the same time, we actively added N to enhance its solid solution hardening effect. Because it is effectively utilized, by undergoing severe processing,
High strength and hardness can be obtained.

しかも、研究の結果、これに更に450〜600℃の温
度で10分間以上の時効を施すことにより、冷間加工の
みでは得られない高い強度、硬度が得られることが分か
った。
Moreover, as a result of research, it has been found that by further aging this at a temperature of 450 to 600°C for 10 minutes or more, high strength and hardness that cannot be obtained by cold working alone can be obtained.

本発明者らは、更に後述するように非磁性特性および高
強度、高硬度を重視した成分系では、熱間加工性が劣る
点に着目し、この点に関する研究を重ねた結果、第1発
明に示した成分系では固溶硬化作用により鋳片の結晶粒
内の強度が粒界に対して相対的に高くなるため、S、P
等の不純物が粒界に偏析することによる熱間脆化作用が
顕著に現れるためであることが分かった。そこで高非磁
性能、高強度、高硬度等の諸特性を損わずに熱間加工性
を改善する方法について研究を重ねた結果、Ca、RE
M、B等の添加が最も効果的であることを見出した。
As will be described later, the present inventors focused on the fact that hot workability is poor in component systems that emphasize non-magnetic properties, high strength, and high hardness, and as a result of repeated research on this point, the first invention In the component system shown in , the strength within the crystal grains of the slab becomes higher relative to the grain boundaries due to the solid solution hardening effect, so S, P
It was found that this is due to the remarkable hot embrittlement effect caused by the segregation of impurities such as in the grain boundaries. Therefore, as a result of repeated research on methods to improve hot workability without impairing properties such as high non-magnetic performance, high strength, and high hardness, we found that Ca, RE
It has been found that addition of M, B, etc. is most effective.

次に、本発明における各成分元素の限定理由を説明する
Next, the reason for limiting each component element in the present invention will be explained.

C: Cは加工に対するオーステナイト安定化する作用を有す
る有効元素の1つであり、また、固溶硬化作用が大きい
上に、炭化物としての析出硬化作用も有するため多量の
添加が望ましい。しかし、015%を越えて含有させる
と、加工性の劣化を招く上に耐食性が悪化するので上限
を015%とした。
C: C is one of the effective elements that has the effect of stabilizing austenite against processing, and also has a large solid solution hardening effect as well as a precipitation hardening effect as a carbide, so it is desirable to add a large amount. However, if the content exceeds 0.015%, the processability and corrosion resistance deteriorate, so the upper limit was set at 0.15%.

Sl: Siは脱酸材として作用するが、一方フエライト形成元
素であり、15%を越える含有はδ−フェライトやσ相
の生成を促進し透磁率の上昇を招くので15%以下に限
定した。
Sl: Si acts as a deoxidizer, but is also a ferrite-forming element, and its content exceeding 15% promotes the formation of δ-ferrite and σ phase, leading to an increase in magnetic permeability, so it was limited to 15% or less.

M n : Mnは、Ni、Cu、Nと同様にオーステナイトを安定
化する作用が太き(、本発明の非磁性鋼には不可欠な元
素である。更に、本発明では耐食性を考慮してCrを1
7〜23%と高くしているので、δフエライト生成を抑
制する上からも少くとも05%以上を含有させる添加が
必要である。一方、60%を越えて含有させると溶製時
のMnの歩留りが低くなり価格が上昇し、また材質的に
は延性が低下して製造性および加工性を損い、また、オ
ーステナイト安定化効果も飽和するので、上限を60%
とし、05〜60%の範囲に限定した。
Mn: Like Ni, Cu, and N, Mn has a strong effect of stabilizing austenite (and is an essential element for the nonmagnetic steel of the present invention. Furthermore, in the present invention, considering corrosion resistance, Cr 1
Since the content is as high as 7 to 23%, it is necessary to add at least 0.5% or more in order to suppress the production of δ ferrite. On the other hand, if the Mn content exceeds 60%, the yield of Mn during melting will decrease and the price will increase, and the ductility of the material will decrease, impairing manufacturability and workability, and the austenite stabilizing effect will decrease. is also saturated, so set the upper limit to 60%.
and was limited to a range of 0.05 to 60%.

Cr : Crは加工に対するオーステナイトを安定化する効果を
有するばかりでなく、ステンレス鋼の重要な構成元素で
あり、耐食性を維持するため17%す上の含有が好まし
い。一方、CrはSiと同じくフェライト形成元素であ
り、多量の含有はフェライト相の生成を促進し、透磁率
の急上昇を招きオーステナイト安定化元素であるMn1
CuおよびNの添加量にも限界があるので上限を23%
とし、17〜23%の範囲に限定した。
Cr: Cr not only has the effect of stabilizing austenite against processing, but is also an important constituent element of stainless steel, and in order to maintain corrosion resistance, the content is preferably 17% or more. On the other hand, Cr is a ferrite-forming element like Si, and its presence in large amounts promotes the formation of ferrite phase, leading to a sudden increase in magnetic permeability and Mn1, an austenite stabilizing element.
There is also a limit to the amount of Cu and N added, so the upper limit is set at 23%.
and was limited to a range of 17% to 23%.

N i : Niは強力なオーステナイト安定化元素であり、安定し
て非磁性を得るに当って最も重要な元素であり、かつ耐
食性、冷間加工性を向上させる作用を有している。しか
し、MOと共に高価な元素であり、製造コスト低減のた
め非磁性能を低下させない程度に下げて下限を10%と
し、同じオーステナイト安定化元素であるMn、CrX
CuおよびNを添加することを考えて上限を15%とし
た。
Ni: Ni is a strong austenite stabilizing element, the most important element in stably obtaining non-magnetism, and has the effect of improving corrosion resistance and cold workability. However, along with MO, it is an expensive element, and in order to reduce manufacturing costs, the lower limit was set at 10% without deteriorating the non-magnetic performance.
Considering the addition of Cu and N, the upper limit was set at 15%.

Cu : CuはMnXNi、Cr5Nと同じくオーステナイトを
安定化する元素であり、冷鍛性を改善する作用を有し、
本発明においては主要な元素の−っであり、その効果を
十分発揮させるため下限を01%とした。しかし、30
%を越えて含有させても効果が飽和し、むしろ溶接部の
割れの原因となるほか、高温における粒界脆化を招いて
熱間加工性を悪化させるので上限を30%とし、01〜
30%の範囲に限定した。
Cu: Cu is an element that stabilizes austenite like MnXNi and Cr5N, and has the effect of improving cold forgeability.
In the present invention, - is the main element, and in order to fully exhibit its effect, the lower limit is set to 0.1%. However, 30
Even if the content exceeds 0.1%, the effect will be saturated and it will cause cracking of the weld, and will also cause grain boundary embrittlement at high temperatures and deteriorate hot workability, so the upper limit is set at 30%.
It was limited to a range of 30%.

N: NはMn、Ni 、Cr、Cuと同様にオーステナイト
の安定化効果を有する上に固溶硬化作用が大きく、非磁
性能を向上させると同時に高強度、高硬度が得られる点
で本発明では極めて重要な元素であり、その効果を十分
に発揮させるためには少なくとも0.20%を越える添
加が必要である。しかし、035%を越えて含有させる
と、溶製時にブローホールを発生し鋼塊の健全性を損な
うため上限を0.35%とし、範囲を020%を越え0
.35%以下に限定した。
N: Similar to Mn, Ni, Cr, and Cu, N has a stabilizing effect on austenite and has a large solid solution hardening effect, and is an advantage of the present invention because it improves non-magnetic performance and at the same time provides high strength and hardness. It is an extremely important element, and in order to fully exhibit its effects, it must be added in an amount exceeding at least 0.20%. However, if the content exceeds 0.035%, blowholes will occur during melting and the integrity of the steel ingot will be impaired.
.. It was limited to 35% or less.

上記C,Si 、Mn、Cr、Ni1Cu、Nの各限定
量をもって本発明による高硬度非磁性鋼の基本成分とす
るが、Nの固溶硬化作用を有効に活用しているため、鋳
片の結晶粒内強度が高くそれに伴って粒界の相対強度が
低下し熱間加工時に割れを発生しやすい組成となってい
るので、非磁性能や強度、硬度を損なうことなく熱間加
工性を改善するため、更にCa、REM、Bを添加する
ことがある。その限定理由は次の如くである。
The above-mentioned limited amounts of C, Si, Mn, Cr, Ni1Cu, and N are the basic components of the high hardness nonmagnetic steel according to the present invention, and since the solid solution hardening effect of N is effectively utilized, The composition has a high intracrystalline strength, which reduces the relative strength of the grain boundaries, making cracks more likely to occur during hot working, improving hot workability without compromising nonmagnetic performance, strength, or hardness. Therefore, Ca, REM, and B may be further added. The reason for this limitation is as follows.

CaSREM: 上記の熱間加工性改善効果を十分に発揮させるためには
Ca、REMは合計で0.001%以上の添加が必要で
ある。しかし合計で0.020%を越えて添加すると、
酸化物系の介在物が多く形成され清浄度を悪化させるほ
か、耐食性が悪くなり、また、溶製も困難となるため上
限を合計で0.020%とし、0001〜0.020%
の範囲に限定した。
CaSREM: In order to fully exhibit the above hot workability improving effect, Ca and REM must be added in a total amount of 0.001% or more. However, if the total amount exceeds 0.020%,
Many oxide inclusions are formed, which deteriorates cleanliness, deteriorates corrosion resistance, and makes melting difficult, so the upper limit is set at 0.020% in total, and 0001 to 0.020%.
limited to the range of

B: Bも熱間加工性改善効果を有するが0.0005%未満
では十分な効果がなく、0.015%を越えて添加する
と溶接性が悪くなるほか熱間加工性改善効果が飽和する
ので上限を0.015%とし、範囲を0.0005〜0
.015%に限定した。
B: B also has the effect of improving hot workability, but if it is less than 0.0005%, it will not have a sufficient effect, and if it is added in excess of 0.015%, weldability will deteriorate and the hot workability improvement effect will be saturated. Upper limit is 0.015%, range is 0.0005-0
.. It was limited to 0.015%.

なお、Ca、REMを添加する場合には、その効果を十
分に発揮させるために、固溶酸素を十分に低く抑えるこ
とが望ましい。
Note that when Ca and REM are added, it is desirable to suppress the solid solution oxygen to a sufficiently low level in order to fully exhibit their effects.

〔実施例〕〔Example〕

第1表に本発明における第1、第2発明鋼および比較鋼
の化学組成を示した。第1発可調A1は19Cr−12
Nifiを基本としてCu量、N量を増量添加した鋼で
ある。A2はC量、Cu量、N量を高めると同時にMn
量を最大限の56%にまで高め、Mnの非磁性能の安定
効果を十分に発揮させた鋼である。A3は更にNi量を
104%まで削減し、安価とした鋼である。第2発明の
B1、B3およびB4は、A1〜A3に比して熱間加工
性を改善すべ(、Ca、REM、Bの添加を行った鋼で
あり、また、B2はMn量を33%に、Cr量を22%
に高め、非磁性の安定化を図り、熱間加工性を改善する
ためにBを0.0034%含有させた鋼である。一方、
比較鋼C1〜C3はそれぞれJIS規格鋼のSUS 3
04鍔、0.0027%のBを含有したSUS 305
鋼およびSUS 316鋼である。
Table 1 shows the chemical compositions of the first and second invention steels of the present invention and comparative steels. The first adjustable A1 is 19Cr-12
This is a steel based on Nifi with increased amounts of Cu and N added. A2 increases the amount of C, Cu, and N, and at the same time
This steel has increased the amount of Mn to the maximum of 56%, fully demonstrating the stabilizing effect of non-magnetic performance of Mn. A3 is a steel that further reduces the Ni content to 104%, making it cheaper. B1, B3, and B4 of the second invention are steels with improved hot workability (addition of Ca, REM, and B) compared to A1 to A3, and B2 has a Mn content of 33%. In addition, the amount of Cr was increased to 22%.
This steel contains 0.0034% B in order to increase the B content, stabilize non-magnetism, and improve hot workability. on the other hand,
Comparative steels C1 to C3 are each JIS standard steel SUS 3
04 Tsuba, SUS 305 containing 0.0027% B
steel and SUS 316 steel.

これらの本発明鋼および比較鋼は、高周波真空溶解によ
)150 kgの鋼塊に鋳込み、熱間圧延、冷間圧延を
経て、板厚071111Iの鋼板とし1100℃、5分
間保持の溶体化処理を施した。
These inventive steels and comparative steels were cast into a 150 kg steel ingot (by high-frequency vacuum melting), hot-rolled, cold-rolled, and then made into steel plates with a thickness of 071111I and solution-treated at 1100°C for 5 minutes. was applied.

非磁性能の評価は、供試材に冷間圧延を施して500(
Os)磁化時の透磁率を測定し、冷間圧延率−透磁率曲
線を描いて比較した。
The non-magnetic performance was evaluated by cold rolling the sample material to 500 (
Os) The magnetic permeability during magnetization was measured, and a cold rolling ratio-magnetic permeability curve was drawn and compared.

引張試験はJISZ−2241に準じて行った。The tensile test was conducted according to JISZ-2241.

冷間加工状態の硬度特性および時効による硬化特性の評
価は、溶体化処理鋼板に圧延率60%の冷間圧延を施し
た板の板面ビッカース硬度および60%冷間圧延板を5
00℃、1時間保持の時効を行った板の板面ビッカース
硬度の比較により行った。また、熱間加工性の評価は、
厚さ50m、幅1501III11の鋳塊を1250℃
に加熱し厚さ4關に熱間圧延した時の耳割れの有無、お
よび丸棒の熱間引張試験における破断試験片の断面収縮
率で行った。
The hardness characteristics in the cold-worked state and the hardening characteristics due to aging were evaluated based on the Vickers hardness of the plate surface of a solution-treated steel plate cold-rolled at a rolling rate of 60% and the hardness of a 60% cold-rolled plate.
This was done by comparing the Vickers hardness of the plate surface of plates that were aged at 00°C for 1 hour. In addition, the evaluation of hot workability is
An ingot with a thickness of 50m and a width of 1501III11 was heated to 1250℃.
The tests were conducted to determine the presence or absence of edge cracks when hot-rolled to a thickness of 4 mm, and the cross-sectional shrinkage rate of a fracture test piece in a hot tensile test of a round bar.

第1図に供試材の冷間圧延率に対する透磁率(CG3単
位)の変化を示した。比較fic1は準安定オーステナ
イト系ステンレス鋼であり、透磁率の上昇は冷間加工に
対して敏感で、第1図に示されていないが、冷間加工率
が10%でも透磁率はすでに14に達しており、非磁性
特性が極めて悪い。これは、オーステナイトが不安定な
ため、僅かな冷間加工でもマルテンサイトが生成し、透
磁率の上昇を招くためである。
FIG. 1 shows the change in magnetic permeability (in CG3 units) of the sample material with respect to the cold rolling rate. Comparison fic 1 is a metastable austenitic stainless steel, and the increase in magnetic permeability is sensitive to cold working, and although it is not shown in Figure 1, even at a cold working rate of 10%, the magnetic permeability is already 14. The non-magnetic properties are extremely poor. This is because austenite is unstable, so even a slight amount of cold working produces martensite, leading to an increase in magnetic permeability.

比較鋼C2およびC3は冷間圧延率約20%までは溶体
化状態の低い透磁率を維持してはいるものの、それを越
えると透磁率は急増し、C2,C3共に圧延率60%で
透磁率は1015を越えている。
Comparative steels C2 and C3 maintain low magnetic permeability in the solution state up to a cold rolling reduction of about 20%, but beyond this point, the magnetic permeability rapidly increases, and both C2 and C3 reach a low permeability at a rolling reduction of 60%. The magnetic coefficient exceeds 1015.

これに対して本発明鋼は、溶体化状態の低透磁率を35
%以上の圧延率まで維持しており、しかも圧延率60%
における透磁率も101す下と低く、非磁性鋼として極
めて優秀であることが分かる。
In contrast, the steel of the present invention has a low magnetic permeability of 35
% or more, and moreover, the rolling ratio is 60%.
It can be seen that the magnetic permeability of this steel is as low as 101 or less, making it extremely excellent as a non-magnetic steel.

待にA2、A3、B2〜B4は圧延率53%以上まで溶
体化状態の透磁率を維持しており、中でもA2、B3は
圧延率60%でも透磁率の上昇はまったく見られず著し
く優れている。これらはMnの増量に加え、CrやCu
の増量と、更に高非磁性能と高強度、高硬度とを同時に
得る目的で添加しているNの増量によって成されたもの
である。
Finally, A2, A3, B2 to B4 maintain their magnetic permeability in the solution state up to a rolling reduction of 53% or higher, and among them, A2 and B3 are extremely excellent, with no increase in magnetic permeability observed at all even at a rolling reduction of 60%. There is. In addition to increasing the amount of Mn, these include Cr and Cu.
This was achieved by increasing the amount of N added in order to simultaneously obtain high non-magnetic performance, high strength, and high hardness.

その中でA3、B4はNi量を節減しているにもかかわ
らず、図に示す如く高特性を得ているため、より安価に
高非磁性を得ることができる点で極めて有効な鋼である
Among them, A3 and B4 have high properties as shown in the figure despite reducing the amount of Ni, so they are extremely effective steels in that they can obtain high nonmagnetism at a lower cost. .

次に、第2表に供試材の機械的特性、60%冷延材の板
面ビッカース硬度と時効後の硬度および熱延時の耳割れ
の有無を示した。
Next, Table 2 shows the mechanical properties of the test materials, the Vickers hardness of the plate surface of the 60% cold rolled material, the hardness after aging, and the presence or absence of edge cracking during hot rolling.

本発明tr4A1〜A3、B 1〜B 4 (7)引張
強度1.t、比較W4C1〜C3の約60 kg/mm
2を上まわって73 kg/m+w2以上となっており
、特にN量を030%としたB4では86.5 kg/
+n+*2の強度を得ている。
Present invention tr4A1-A3, B1-B4 (7) Tensile strength 1. t, about 60 kg/mm for comparison W4C1 to C3
2, it is 73 kg/m+w2 or more, and especially in B4 with N amount of 0.30%, it is 86.5 kg/m
+n+*2 strength is obtained.

60%冷延材の冷延状態での板面ビッカース硬度を見る
と、比較tr4C2、C3が370以下であるのに対し
、本発明鋼は400以上の高硬度を得ている。C1は4
42の高硬度となっているが、これはオーステナイトが
不安定で60%の冷間圧延により、多量のマルテンサイ
トが生成しているために硬化しているものであり、従っ
て高硬度非磁性鋼としては、非磁性特性の面で不適当で
ある。
Looking at the plate surface Vickers hardness of the 60% cold-rolled material in the cold-rolled state, comparative tr4C2 and C3 have a hardness of 370 or less, whereas the steel of the present invention has a high hardness of 400 or more. C1 is 4
It has a high hardness of 42, but this is because austenite is unstable and is hardened because a large amount of martensite is generated by 60% cold rolling. Therefore, it is a high hardness non-magnetic steel. However, it is unsuitable in terms of non-magnetic properties.

第   2   表 これに対して、本発明鋼は、非磁性と高硬度を同時に得
ているものであり、従来のステンレス鋼では得難い特性
を有している。
Table 2 In contrast, the steel of the present invention has both nonmagnetism and high hardness, characteristics that are difficult to obtain with conventional stainless steel.

また、60%冷延材を500℃で1時間保持の時効を行
った場合板面ビッカース硬度を見ると、本発明鋼および
比較鋼共に冷延状態に比較して板面硬度の上昇が見られ
ろ。しかし、値を比較すると、比較@C2、C3の値が
それぞれ392.429であるのに対し本発明鋼は47
3以上であり、特にB4は500息上の高硬度を得てい
る。
In addition, when looking at the Vickers hardness of a 60% cold-rolled material at 500°C for 1 hour, an increase in surface hardness was observed for both the inventive steel and the comparative steel compared to the cold-rolled state. reactor. However, when comparing the values, the values of comparison@C2 and C3 are 392.429, respectively, whereas the values of the invention steel are 47.
3 or more, and B4 in particular has a high hardness of 500 breaths.

次に、熱間圧延の耳割れの有無を見ると、比較jjlc
1はNi、Nが低く、またC2はBを含有しているため
耳割れが観察されていないが、Ca。
Next, if we look at the presence or absence of edge cracks due to hot rolling, comparison jjlc
1 is low in Ni and N, and C2 contains B, so no edge cracking is observed, but Ca.

REM、Bの添加を行ってない第1発明鋼と比較tMC
3では耳割れが発生しており、熱間加工性の悪さを示し
ている。これに対して第2発明鋼は耳割れがまったく観
察されず、Ca、REV、Bの添加により良好な熱間加
工性を得ている。
Comparison tMC with the first invention steel without the addition of REM and B
In No. 3, edge cracking occurred, indicating poor hot workability. On the other hand, in the second invention steel, no edge cracking was observed at all, and good hot workability was obtained due to the addition of Ca, REV, and B.

更に、上記の熱間加工性の改善効果をより詳しく見るた
めに、第2図に示すヒートパターンで熱間引張試験を行
い、その結果を第3図に示した。
Furthermore, in order to examine the above-mentioned hot workability improvement effect in more detail, a hot tensile test was conducted using the heat pattern shown in FIG. 2, and the results are shown in FIG.

第3図において、斜線部は第2発可調81〜B4の結果
の範囲を示している。この試験方法では、本発明者らの
知見によると、断面収縮率が約60%以上で熱延時の耳
割れが発生せず良好な熱間加工性を示すことが分かつて
いる。
In FIG. 3, the shaded area indicates the range of the results of the second adjustable range 81 to B4. According to the findings of the present inventors, in this test method, it has been found that when the cross-sectional shrinkage rate is about 60% or more, no edge cracking occurs during hot rolling and good hot workability is exhibited.

第1発切消A1、A3は上記の熱間加工性の改善を図っ
ていないために、A1では引張温度1100℃以下で、
またA3では1150℃以下で断面収縮率60%を割っ
ており、熱間加工性が悪いことを示している。特に、引
張温度1000℃付近での熱間収縮率が悪くなっている
が、これはS、P等の不純物起因による熱間脆化を示し
ているものであり、これらの鋼が高強度化を図ったため
相対的に粒界の強度が低下し、熱間脆性がより顕著に現
われたものであると考えられる。
Since the first shot cutting A1 and A3 do not aim to improve the hot workability described above, A1 has a tensile temperature of 1100°C or lower,
Further, in A3, the cross-sectional shrinkage rate was less than 60% at 1150° C. or lower, indicating poor hot workability. In particular, the hot shrinkage rate is poor at tensile temperatures around 1000°C, which indicates hot embrittlement due to impurities such as S and P, and these steels are not suitable for high strength. As a result, the strength of the grain boundaries was relatively reduced, and hot embrittlement appeared more prominently.

これに対して、非磁性特性および硬度特性を損なうこと
なく熱間加工性を改善した81〜B4については、第3
図の斜線範囲に示したように、1000℃付近の脆化も
見られず、引張温度800℃付近まで断面収縮率がほぼ
60%以上となっており、良好な熱間加工性を示してい
る。比較のため、第3図にBl、B4およびC3のデー
タを示したが、C3は若干ではあるが、やはり1000
℃付近に脆化域が現われており、断面収縮率も60%を
下まわっている。
On the other hand, 81 to B4, which had improved hot workability without impairing nonmagnetic properties and hardness properties,
As shown in the shaded area in the figure, no embrittlement was observed near 1000°C, and the cross-sectional shrinkage was approximately 60% or more up to the tensile temperature of 800°C, indicating good hot workability. . For comparison, the data for Bl, B4 and C3 are shown in Figure 3, but C3 is still slightly higher than 1000.
A brittle region appears around ℃, and the cross-sectional shrinkage rate is also less than 60%.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如く、非磁性鋼の成
分を限定し、特にMn、Cr、CuおよびNを最適条件
でバランスさせることにより、非磁性の安定性を高める
と同時に高強度、高硬度を図り、更にこれらの特性を損
なうことなく熱間加工性を向上させた従来にはない新し
いオーステナイト系ステンレス鋼に関するものであり、
特性の向上に加え、熱間加工性の改善による製造コスト
の低減をも図ることにより安価に高特性を得ることがで
きた。
As is clear from the above examples, the present invention limits the components of the nonmagnetic steel, particularly by balancing Mn, Cr, Cu, and N under optimal conditions, thereby increasing the stability of nonmagnetic properties and at the same time achieving high strength. This relates to an unprecedented new austenitic stainless steel that has high hardness and improved hot workability without sacrificing these properties.
In addition to improving the properties, we were able to obtain high properties at a low cost by reducing manufacturing costs by improving hot workability.

本発明鋼は冷間加工を施し、更に適正条件で時効を行う
ことにより、高磁性特性と高強度高硬度を同時に得るこ
とができた。
By subjecting the steel of the present invention to cold working and further aging under appropriate conditions, it was possible to simultaneously obtain high magnetic properties and high strength and high hardness.

従って本発明鋼は、非磁性特性と高強度、あるいは耐摩
耗性を必要とする部材、例えば磁気記録装置や電子機器
の構成材料あるいは大型磁気装置の構成材料などに広く
利用することができる。
Therefore, the steel of the present invention can be widely used in members that require non-magnetic properties, high strength, or wear resistance, such as constituent materials for magnetic recording devices and electronic equipment, and constituent materials for large-scale magnetic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷間圧延率と透磁率との関係を示す線図、第2
図は熱間引張試験のヒートパタンを示す線図、第3図は
熱間引張試験の引張温度と断面収縮率との関係を示す線
図である。
Figure 1 is a diagram showing the relationship between cold rolling reduction and magnetic permeability.
The figure is a diagram showing the heat pattern of the hot tensile test, and FIG. 3 is a diagram showing the relationship between the tensile temperature and cross-sectional shrinkage rate of the hot tensile test.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にて C:0.15%以下 Si:1.5%以下 Mn:0.5〜6.0% Cr:17〜23% Ni:10〜15% Cu:0.1〜3.0% N:0、20%を越え0.35%以下 を含有し、残部がFeおよび不可避的不純物より成るこ
とを特徴とする高硬度非磁性オーステナイト系ステンレ
ス鋼。
(1) Weight ratio C: 0.15% or less Si: 1.5% or less Mn: 0.5-6.0% Cr: 17-23% Ni: 10-15% Cu: 0.1-3 .0% N: A high hardness nonmagnetic austenitic stainless steel characterized by containing more than 0.20% and 0.35% or less, with the remainder consisting of Fe and inevitable impurities.
(2)重量比にて C:0.15%以下 Si:1.5%以下 Mn:0.5〜6.0% Cr:17〜23% Ni:10〜15% Cu:0.1〜3.0% N:0.20%を越え0.35%以下 を含有し、更に Ca、希土類金属:合計で0.001〜0.020%B
:0.0005〜0.015% のうちから選ばれた1種または2種以上を含み、残部が
Feおよび不可避的不純物より成ることを特徴とする高
硬度非磁性オーステナイト系ステンレス鋼。
(2) Weight ratio: C: 0.15% or less Si: 1.5% or less Mn: 0.5-6.0% Cr: 17-23% Ni: 10-15% Cu: 0.1-3 .0% N: Contains more than 0.20% and 0.35% or less, and further includes Ca and rare earth metals: 0.001 to 0.020% B in total.
: 0.0005 to 0.015% of one or more selected from the group consisting of: 0.0005 to 0.015%, and the remainder being Fe and inevitable impurities.
JP61212432A 1986-09-09 1986-09-09 Nonmagnetic austenitic stainless steel having high hardness Pending JPS6369950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212432A JPS6369950A (en) 1986-09-09 1986-09-09 Nonmagnetic austenitic stainless steel having high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212432A JPS6369950A (en) 1986-09-09 1986-09-09 Nonmagnetic austenitic stainless steel having high hardness

Publications (1)

Publication Number Publication Date
JPS6369950A true JPS6369950A (en) 1988-03-30

Family

ID=16622500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212432A Pending JPS6369950A (en) 1986-09-09 1986-09-09 Nonmagnetic austenitic stainless steel having high hardness

Country Status (1)

Country Link
JP (1) JPS6369950A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426740A (en) * 1990-05-21 1992-01-29 Nippon Stainless Steel Co Ltd High strength non-magnetic steel
JPH07171045A (en) * 1993-12-16 1995-07-11 Maruemu Seisakusho:Kk Metallic parts of hanger for clothing
KR100598575B1 (en) * 1999-06-08 2006-07-13 주식회사 포스코 Method for producing 316 stainless steel for chemical equipments
JP2006317060A (en) * 2005-05-12 2006-11-24 Kyuhen Co Ltd Outdoor installed equipment
JP2008063597A (en) * 2006-09-05 2008-03-21 Nippon Steel & Sumikin Stainless Steel Corp HIGH Ni-Cr-CONTAINING AUSTENITIC STAINLESS STEEL WIRE ROD
CN108220822A (en) * 2018-01-15 2018-06-29 宿州博斯特精密铸造有限公司 A kind of HIGH STRENGTH NON-MAGNETIC STAINLESS STEEL
CN110923575A (en) * 2019-12-13 2020-03-27 山东腾达紧固科技股份有限公司 Cold-deformation low-permeability high-strength austenitic stainless steel
CN114393032A (en) * 2022-02-20 2022-04-26 山西太钢不锈钢股份有限公司 Hot rolling method of high-chromium-nickel austenitic stainless steel wire rod

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426740A (en) * 1990-05-21 1992-01-29 Nippon Stainless Steel Co Ltd High strength non-magnetic steel
JPH07171045A (en) * 1993-12-16 1995-07-11 Maruemu Seisakusho:Kk Metallic parts of hanger for clothing
JPH0817733B2 (en) * 1993-12-16 1996-02-28 株式会社丸エム製作所 Metal parts for clothes hangers
KR100598575B1 (en) * 1999-06-08 2006-07-13 주식회사 포스코 Method for producing 316 stainless steel for chemical equipments
JP2006317060A (en) * 2005-05-12 2006-11-24 Kyuhen Co Ltd Outdoor installed equipment
JP2008063597A (en) * 2006-09-05 2008-03-21 Nippon Steel & Sumikin Stainless Steel Corp HIGH Ni-Cr-CONTAINING AUSTENITIC STAINLESS STEEL WIRE ROD
CN108220822A (en) * 2018-01-15 2018-06-29 宿州博斯特精密铸造有限公司 A kind of HIGH STRENGTH NON-MAGNETIC STAINLESS STEEL
CN110923575A (en) * 2019-12-13 2020-03-27 山东腾达紧固科技股份有限公司 Cold-deformation low-permeability high-strength austenitic stainless steel
CN110923575B (en) * 2019-12-13 2021-05-28 山东腾达紧固科技股份有限公司 Cold-deformation low-permeability high-strength austenitic stainless steel
CN114393032A (en) * 2022-02-20 2022-04-26 山西太钢不锈钢股份有限公司 Hot rolling method of high-chromium-nickel austenitic stainless steel wire rod

Similar Documents

Publication Publication Date Title
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
WO2010074347A1 (en) Steel with excellent anti-ductile crack generation characteristics in weld heat-affected zone and base material and manufacturing method therefor
JP2978427B2 (en) High Mn nonmagnetic steel for cryogenic use and manufacturing method
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
JPH0571647B2 (en)
JPS6369950A (en) Nonmagnetic austenitic stainless steel having high hardness
JPWO2018061101A1 (en) steel
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
US2799602A (en) Process for producing stainless steel
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
JPS6369951A (en) Nonmagnetic austenitic stainless steel having high hardness
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP3503959B2 (en) High-strength stainless steel excellent in toughness and method for producing the same
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JPH08269639A (en) High strength non-magnetic stainless steel sheet for fastener and its production
JPH0121845B2 (en)
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability