KR100325537B1 - Method for manufacturing hot rolled mild steel sheet for press forming - Google Patents

Method for manufacturing hot rolled mild steel sheet for press forming Download PDF

Info

Publication number
KR100325537B1
KR100325537B1 KR1019970072735A KR19970072735A KR100325537B1 KR 100325537 B1 KR100325537 B1 KR 100325537B1 KR 1019970072735 A KR1019970072735 A KR 1019970072735A KR 19970072735 A KR19970072735 A KR 19970072735A KR 100325537 B1 KR100325537 B1 KR 100325537B1
Authority
KR
South Korea
Prior art keywords
steel sheet
hot
hot rolled
steel
rolling
Prior art date
Application number
KR1019970072735A
Other languages
Korean (ko)
Other versions
KR19990053144A (en
Inventor
조열래
노계호
이상로
Original Assignee
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사 filed Critical 포항종합제철 주식회사
Priority to KR1019970072735A priority Critical patent/KR100325537B1/en
Publication of KR19990053144A publication Critical patent/KR19990053144A/en
Application granted granted Critical
Publication of KR100325537B1 publication Critical patent/KR100325537B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing a hot rolled mild steel sheet that exhibits superior grain structure homogeneity in width profile by addition of a trace amount of boron and then properly controlling coiling temperature after hot rolling is provided. CONSTITUTION: The method includes the steps of hot rolling a slab comprising C 0.02 to 0.05 wt.%, trace Si, Mn 0.10 to 0.30 wt.%, B 10 to 30 ppm, 0.015 wt.% or less of P, 0.010 wt.% or less S, Al 0.01 to 0.04 wt.% and 40 ppm or less of N to the thickness of 1.3 to 2.3 mm, wherein finish hot rolling temperature is higher than Ar3 transformation temperature; coiling the hot rolled steel sheet at higher than 620 deg.C; pickling the hot coil to remove surface scale; and applying oil on the surface of the pickled steel sheet.

Description

가공용 박물 열간압연 연강판의 제조방법Process for manufacturing hot rolled mild steel sheet for processing

조직 균일성이 우수한 가공용 박물 열간압연 연강판의 제조방법에 관한 것으로서, 특히 열간압연 공정 특성상 불가피하게 발생되는 불균일 혼립조직의 생성을 억제함과 동시에 프레스 성형에 적합한 결정입도 및 기계적 성질을 보유한 두께 1.3-2.3mm 범위의 가공용 박물 열간압연 연강판의 제조방법에 관한 것이며, 본 발명의 열간압연 연강판 또는 산세강판은 냉장고 압축기 용기, 드럼마게 등의 드로잉 부품 및 장출성형 부품의 제조에 사용가능한 것이다.The present invention relates to a method for manufacturing hot rolled mild steel sheet having excellent uniformity in structure. In particular, it has a thickness and mechanical property suitable for press molding while suppressing the formation of uneven mixed structure inevitably generated due to the characteristics of hot rolling process. The present invention relates to a method for manufacturing a thin hot rolled mild steel sheet for processing in the range of -2.3 mm, wherein the hot rolled mild steel sheet or pickling steel sheet of the present invention is usable for the manufacture of drawing parts and elongated molded parts such as refrigerator compressor containers and drums.

종래에 열간압연 연강판을 제조하는 방법에 있어 재질을 결정하는 주요 제조인자는 강의 성분, 열간압연 마무리 온도 및 권취온도로 알려져 있다. 가공용 열연강판의 제조에 이용되는 성분계는 제조사 마다 다소의 차이는 있으나, 대부분 0.03∼0.05%C, 0.10∼30%Mn의 성분계를 이용하여 통상 Ar3이상의 온도에서 열간압연을 마무리한 후 550∼650℃온도 범위에서 권취하게 된다. 이때 얻어지는 열연강판의 기계적 성질로서는 심가공용이 45%이상, 일반가공용은 40% 이상의 연신율을 나타내는 것이 일반적이다. 또한 동일 성분계일지라도 최종 제품의 두께가 얇아질수록 재질은 경화되는 특징이있다. 예컨데 0.04%-0.15%Mn강을 이용하여 600∼650℃에서 권취를 행하여 제조된 두께 3.5mm의 심가공용 열연강판의 연신율은 45% 이상이나, 1.6mm두께의 경우 42%전후의 연신율이 얻어지는 것으로 확인되고 있다.Conventionally, the main manufacturing factors for determining the material in the method of manufacturing hot rolled mild steel sheet are known as steel components, hot rolled finishing temperature and winding temperature. The component system used for manufacturing the hot rolled steel sheet for processing is somewhat different from manufacturer to manufacturer, but most of the components are usually 550 to 650 after finishing hot rolling at a temperature of Ar 3 or higher using a component system of 0.03 to 0.05% C and 0.10 to 30% Mn. It is wound up in the temperature range of ℃. The mechanical properties of the hot rolled steel sheet obtained at this time are generally 45% or more for deep processing and 40% or more for general processing. In addition, even in the same component system, as the thickness of the final product becomes thinner, the material is hardened. For example, the elongation of a 3.5mm thick hot rolled steel sheet manufactured by winding at 600 to 650 ° C using 0.04% -0.15% Mn steel is 45% or more, but at 1.6mm thickness, elongation of 42% is obtained. It is confirmed.

한편, 가공용 열간압연 연강판의 경우 두께 박물화에 따른 재질의 경화외에 용도특성상 문제가 되는 것은 열연강판 특유의 폭방향 온도편차에 기인된 불균일조직의 생성을 들 수 있다. 열간압연강판의 두께가 얇아지면서 압연온도가 저하되기 때문에 마무리압연이 오스테나이트와 페라이트가 공존하는 2상역에서 이루어질 가능성이 증대되며, 특히 단위부피에 대한 표면적이 큰 스트립 에지부에서 현저하기 때문에 이 부위에서는 조대 페라이트 결정립과 미세 페라이트 결정립이 혼재된 혼립조직 혹은 연신 페라이트 결정립의 생성 가능성은 중심부에 비하여 훨씬 높아지게 된다. 이와 같은 혼립조직이 존재하는 부위의 연신율은 정상 조직을 갖는 부위에 비하여 연신율이 저하되며 앞서 언급한 바의 폭방향 재질편차를 증대시키게 된다. 또한 후공정의 냉간압연 혹은 프레스 성형 단계에서 불균일 변형을 초래하여 심한 경우 가공크랙 발생의 요인으로 작용하게 된다.On the other hand, in the case of hot rolled mild steel sheet for processing, in addition to the hardening of the material due to thickness thinning, a problem in application characteristics is the generation of non-uniform structure caused by the widthwise temperature variation peculiar to the hot rolled steel sheet. As the thickness of the hot rolled steel sheet decreases as the rolling temperature decreases, the possibility of finish rolling in the two phases where austenite and ferrite coexist is increased, especially in the strip edge part having a large surface area for the unit volume. In the case of coarse ferrite grains and fine ferrite grains, the possibility of formation of a mixed structure or stretched ferrite grains is much higher than that of the center portion. The elongation of such a mixed tissue is present in the elongation is lower than in the region having a normal tissue and increases the material deviation in the width direction as described above. In addition, in the cold rolling or press forming step of the post-process, it causes a non-uniform deformation, and in severe cases, it acts as a factor of processing crack generation.

그래서 이와 같은 열간압연 연강판의 혼립조직 저감을 위하여 대부분의 열간압연공정에서는 열간 마무리 압연기 전방에 바 에지히터를 설치하여 에지부를 국부적으로 가열하는 방법을 채택하고 있다. 그러나 에지히터에 의한 가열에 있어서도 판 형상이나 압연두께에 따라 승온할수 있는 온도가 한정되어 있다. 또 다른 방법으로서는 열간압연 마무리 온도를 상향하여 압연을 행하는 경우가 있을 수 있다.Therefore, in order to reduce the mixed structure of the hot rolled mild steel sheet, most hot rolling processes adopt a method of locally heating the edge part by installing a bar edge heater in front of the hot finishing mill. However, even in heating by an edge heater, the temperature which can raise a temperature is limited according to plate shape and rolling thickness. As another method, rolling may be performed by raising the hot rolling finish temperature.

그러나 이 경우 압연롤의 마모 및 열피로에 이한 롤거침, 강판의 산화스케일층의 두께 증가에 의하여 강판표면에 또 다른 결함이 생길 가능성이 높아지는 것으로 알려져 있다. 한편, 최종 사용자측면에서 열연강판의 양 에지부 혼립조직 발생부를 제거하여 사용할 경우 폭방향 조직 및 재질편차를 극소화하는 장점이 있으나, 강판의 실수율이 저하되는 문제점이 있기 때문에 혼립조직의 저감에 대한 보다 근본적인 접근이 필요함을 알수 있다.However, in this case, it is known that the possibility of further defects on the surface of the steel sheet increases due to the wear of the rolling roll, the roll roughness following the thermal fatigue, and the increase in the thickness of the oxide scale layer of the steel sheet. On the other hand, the use of both edges of the hot-rolled steel sheet in the end user side by removing the generation of the mixed tissue generation portion of the hot rolled steel sheet has the advantage of minimizing the width-wise structure and material deviation, but there is a problem that the error rate of the steel sheet is lowered than the reduction of the mixed structure It can be seen that a fundamental approach is necessary.

최근에는 강의 오스테나이트 압연역 확대, 다시 말해서 Ar3온도를 저하시키기 위한 성분계를 이용하여 가공용 열간압연 연강판의 혼립조직을 저감하는 방법이 제안되고 있다. 일본 케이사의 경우 강판의 연성을 향상시키고 혼립조직에 의한 재질열화를 방지하기 위하여 Ar3변태점의 저하에 유효한 것으로 알려진 Cr을 다량 첨가함으로서 심가공용 박물 열연강판을 제조할수 있다고 하였다. 즉 0.04%-0.1%Mn의 기본 성분계에 0.5%Cr 및 0.001% B첨가, 저P, 저 Al(0.013%)-저N(22ppm)으로 조정된 성분계를 이용하여 1.2-2.3mm의 열연강판을 제조할 결과, 인장강도 33kg/㎟, 연신율 48%정도의 재질 특성을 갖는 것이 가능함을 보고하고 있는데, 이 경우 다량의 Cr 첨가로 인한 강판의 제조비용이 상승된다는 문제점이 있다.Recently, a method of reducing the mixed structure of a hot rolled mild steel sheet for processing by using a component system for expanding the austenite rolling zone of steel, that is, lowering the Ar 3 temperature has been proposed. In the case of Japan Keisai, the hot rolled steel sheet for deep processing can be manufactured by adding a large amount of Cr, which is known to be effective in reducing the Ar 3 transformation point, in order to improve the ductility of steel sheet and prevent material degradation due to the mixed structure. In other words, a hot rolled steel sheet of 1.2-2.3mm was prepared using a component system adjusted to 0.54Cr and 0.001% B, low P, and low Al (0.013%) and low N (22 ppm) in a basic component system of 0.04% -0.1% Mn. As a result of manufacturing, it is reported that it is possible to have the material properties of the tensile strength 33kg / ㎜, elongation of about 48%, in this case there is a problem that the manufacturing cost of the steel sheet is increased due to the addition of a large amount of Cr.

본 발명은 드로잉 및 장출성형에 이용되는 열간압연 연강판 제조에 있어서 저탄소 성분계에 극미량의 보론을 첨가하고 열간압연후의 권취온도를 적절히 제어함으로서 종래의 열연강판에 비하여 폭방향 조직 균일성이 우수한 가공용 박물 열연강판을 제조하기 위한 것이며, 기계적 성질에 있어서는 항복강도 25kg/㎟ 이하, 인장강도 34kg/㎟ 이하, 연신율 45% 이상의 재질특성을 가짐과 동시에 ASTM 입도 No. 8.0 - 9.0 범위의 균일 페라이트 조직을 갖는 가공용 박물 열간압연 연강판 또는 산세강판을 제공하는 것을 그 목적으로 한다.The present invention is to add a very small amount of boron to the low carbon component system in the production of hot rolled mild steel sheet used for drawing and elongation molding, and to control the winding temperature after hot rolling appropriately, the processing thin article having excellent width uniformity in structure in comparison with the conventional hot rolled steel sheet For producing hot rolled steel sheet, yield strength 25kg / mm2 in mechanical properties Tensile Strength 34kg / ㎡ Below, it has a material property of more than 45% elongation and ASTM particle size No. It is an object of the present invention to provide a processing hot-rolled mild steel sheet or pickled steel sheet having a uniform ferrite structure in the range of 8.0-9.0.

도 1은 Ar3변태점에 대한 보론첨가의 영향을 도시한 도면.1 shows the effect of boron addition on an Ar 3 transformation point.

도 2는 본 발명강과 비교강의 기계적 성질에 대한 권취온도의 영향을 나타낸 도면이다.2 is a view showing the effect of the winding temperature on the mechanical properties of the inventive steel and comparative steel.

상술한 목적을 달성하기 위한 본 발명은 조직 균일성이 우수한 가공용 박물 열간압연 연강판 제조방법에 있어서, 중량 %로 탄소:0.02 ∼ 0.05%, 규소: trace, 망간: 0.10 ∼ 0.30%, 보론:10∼ 30ppm, 인< max.0.015%, 황< max.0.010, 알루미늄: 0.01∼ 0.04% 및 질소< 40ppm을 함유하는 슬라브를 이용하되, 두께 1.3∼2.3mm의 열간압연강판으로 압연을 행함에 있어 사상압연온도를 Ar3변태점 이상으로 하고 열간압연후 권취온도를 600 ℃이상이 되도록 제어함은 물론, 상기 성분계 및 열간압연조건을 만족하는 방법으로 제조된 두께 1.3∼2.3mm의 심가공용 박물 열간압연강판의 표면 스케일을 산세 처리한 후 도유를 행하는 것을 특징으로 하는 가공용 박물 열간압연 연강판의 제조방법에 의하여 달성된다.In order to achieve the above object, the present invention provides a method for producing a hot thin rolled steel sheet for processing thin metal having excellent structure uniformity, wherein the weight% is carbon: 0.02 to 0.05%, silicon: trace, manganese: 0.10 to 0.30%, boron: 10 Slabs containing ~ 30ppm, phosphorus <max.0.015%, sulfur <max.0.010, aluminum: 0.01 to 0.04% and nitrogen <40ppm, but in the rolling of hot rolled steel with a thickness of 1.3 to 2.3mm Hot rolling steel sheet for deep processing of 1.3 ~ 2.3mm thickness manufactured by the method of satisfying the above component type and hot rolling conditions as well as controlling the rolling temperature to be above Ar 3 transformation point and hot rolling after hot rolling. It is achieved by a method for producing a hot thin rolled mild steel sheet for processing, characterized in that oiling is performed after the surface scale is pickled.

이하, 본 발명에 대하여 보다 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 폭방향 조직 균일성이 우수한 가공용 박물 열간압연 연강판 또는 산세 열간압연 연강판을 제조하는 방법에 있어서, 중량 %로 탄소:0.02 ∼ 0.05%, 규소: trace, 망간: 0.10 ∼ 0.30%, 보론:10∼ 30ppm, 인< max.0.015%, 황< max.0.010, 알루미니움: 0.01∼ 0.04% 및 질소< 40ppm을 함유하는 슬라브를 이용하여 두께 1.3∼2.3mm의 열간압연강판으로 압연을 행함에 있어 사상압연온도를 Ar3변태점 이상으로 하고 열간압연후 권취온도를 620 ℃ 이상이 되도록 제어함으로서 보론 첨가에 의한 강의 Ar3온도저하 및 바 양단부를 에지히터로 가열하여 혼립조직의 생성을 보다 더 억제함으로서 항복강도 25kg/mm2이하, 인장강도 34kg/mm2이하, 연신율 45% 이상의 재질특성과 ASTM 입도 No. 8.0∼9.0 범위의 균일페라이트 결정입도를 가지는 가공용 박물 열간압연 연강판의 제조방법을 제안한다.In the present invention, in the method for manufacturing a hot thin rolled steel sheet or pickling hot rolled mild steel sheet for processing excellent in the widthwise structure uniformity, carbon: 0.02 to 0.05%, silicon: trace, manganese: 0.10 to 0.30%, Rolling was performed on hot rolled steel sheets 1.3 to 2.3 mm thick using slabs containing boron: 10 to 30 ppm, phosphorus <max.0.015%, sulfur <max.0.010, aluminium: 0.01 to 0.04%, and nitrogen <40 ppm In operation, by controlling the filament rolling temperature to be above Ar 3 transformation point and controlling the coiling temperature to be above 620 ° C after hot rolling, the reduction of Ar 3 temperature of boron-added steel and the heating of both ends of the bar by the edge heater to generate the composite structure. By further suppressing, the material properties of yield strength 25kg / mm 2 or less, tensile strength 34kg / mm 2 or less, elongation of 45% or more and ASTM particle size No. A method for producing a thin hot rolled mild steel sheet for processing having a uniform ferrite grain size in the range of 8.0 to 9.0 is proposed.

또한 상기 성분계 및 열간압연조건을 만족하는 방법으로 제조된 두께 1.3∼2.3mm의 심가공용 박물 열간압연강판의 표면 스케일을 산세 처리한 후 도유를 행함으로서 항복강도 25kg/mm2이하, 인장강도 34kg/mm2이하, 연신율 45% 이상의 재질특성과 ASTM 입도 No. 8.0∼9.0 범위의 균일페라이트 결정입도를 가지는 가공용 박물 산세 열간압연 연강판의 제조방법을 제안한다.In addition, yield strength of 25kg / mm 2 or less, tensile strength of 34kg /, by pickling after the surface scale of the hot-rolled steel sheet for deep processing of 1.3 ~ 2.3mm thickness manufactured by the method of satisfying the component system and hot rolling conditions. mm 2 or less, elongation 45% or more, material properties and ASTM particle size No. We propose a method for manufacturing a processing thin pickling hot rolled mild steel sheet having a uniform ferrite grain size in the range of 8.0 to 9.0.

이하 상기 수치한정 이유에 대하여 설명한다.The reason for the numerical limitation will be described below.

상기 탄소량은 가공용 열간압연강판 제조에 있어 적정 강도 및 연성을 얻음과 동시에 Ar3변태점의 관리범위를 준수하기 위하여 제안한 것으로서 0.05%를 초과하면 본 발명강의 강도 범위를 초과되고 연신율이 저하되기 때문이며, 0.02% 이하이면 Ar3변태점이 상승하여 박물 열간압연강판의 혼립조직 발생 가능성이 높아지기 때문에 제한한 것이다.The amount of carbon is proposed in order to obtain the appropriate strength and ductility in manufacturing the hot rolled steel sheet for processing, and to comply with the management range of Ar 3 transformation point, when the carbon amount exceeds 0.05% because the strength of the present invention exceeds the strength range and the elongation is lowered. If it is 0.02% or less, the Ar 3 transformation point is increased and the possibility of the formation of the mixed structure of the hot rolled steel sheet increases.

상기 망간량은 고용강화원소로서 탄소와 더불어 강도를 확보하는데 유효할 뿐만아니라 Ar3변태점을 저하시키기 때문에 혼립조직 방지에 유효하나 역시 기지의 연질화를 위하여 0.1∼0.3% 범위로 제한 하였다.The amount of manganese is effective to secure strength with carbon as a solid solution element and to lower the Ar 3 transformation point, but it is also effective for preventing hybrid structure, but also limited to 0.1 to 0.3% in order to soften the matrix.

상기 보론은 강의 Ar3변태점을 저하시키는 원소로서 혼립조직의 생성을 억제하는데 대단히 유효한 원소이다. 아울러 열간압연 동안 보라이드로 석출되면서 고용질소량을 감소시켜 페라이트 결정립을 조대화시키기 때문에 항복강도의 저하에도 유효하다. 그러나 과량으로 첨가되면 첨가량에 비례하여 Ar3변태점은 저하하나, 오스테나이트의 소입성 증가 및 강의 취화에 기여하기 때문에 10∼30ppm 범위로 제한하였다.Boron is an element which lowers the Ar 3 transformation point of steel and is very effective in suppressing the formation of the mixed structure. In addition, it is effective in lowering the yield strength because the precipitated boride during hot rolling reduces the amount of solid solution to coarsen ferrite grains. However, when added in excess, the Ar 3 transformation point decreases in proportion to the added amount, but it was limited to 10 to 30 ppm because it contributes to the increase in the hardenability of austenite and the embrittlement of the steel.

상기 인, 황은 강중 불순물로서 불가피하게 존재하나 통상의 규제치를 초과하면 연성에 악영향을 미치기 때문에 각각 0.02%, 0.015% 이하로 규제하였다.Phosphorus and sulfur are inevitably present as impurities in the steel, but they exceed 0.02% and 0.015%, respectively.

상기 알루미늄은 강의 탈산에 필요한 원소로서 통상의 경우 알루미늄량이 0.03%이면 충분히 탈산되기 때문에 0.02∼0.04%로 규제하였다.The aluminum is an element necessary for deoxidation of steel, and in general, it is regulated to 0.02 to 0.04% because the amount of aluminum is sufficiently deoxidized if the amount of aluminum is 0.03%.

상기 질소량은 강중에 고용되어 있으면 탄소와 마찬가지로 연성을 저하시키는데, 본 발명강에서는 가공용 저탄소 열연강판에서의 규제범위 즉 40ppm 이하로 규제하였다.The amount of nitrogen decreases the ductility similarly to carbon when it is dissolved in steel. In the present invention steel, the nitrogen content is regulated to be within a regulatory range of 40 ppm or less in a low carbon hot rolled steel sheet for processing.

한편, 마무리압연기 전방에 고주파유도 방식의 바 에지히터를 사용하는 것은 종래법과 동일하다. 즉, 가열에 의하여 바 에지 25mm 지점의 평균온도를 20℃ 이상보상함으로서 본 발명법의 조성에 의한 Ar3변태점 이하 외에 스트립의 에지부 온도가 용이하게 Ar3변태점 이상이 되도록 하여 혼립조직이 생성되는 오스테나이트와 페라이트 공존역에서의 압연을 회피하였다.On the other hand, using the high frequency induction bar edge heater in front of the finishing mill is the same as the conventional method. In other words, by compensating the average temperature of the bar edge 25mm by 20 ℃ or more by heating, the mixed structure is formed by making the temperature of the edge of the strip easily above the Ar 3 transformation point in addition to below the Ar 3 transformation point according to the composition of the present invention. Rolling was avoided in the austenite and ferrite coexistence zone.

또한 권취온도는 저탄소 열연강판의 연질화, 입계세멘타이트의 조대화 및 강중의 질소를 용이하게 알루미늄질화물(AlN)으로 석출시키기 위하여 620℃ 이상으로 제한하였다.In addition, the coiling temperature was limited to 620 ° C. or higher in order to soften the low carbon hot rolled steel sheet, coarse grain boundary cementite, and to easily precipitate nitrogen in the steel as aluminum nitride (AlN).

이하 실시예를 통하여 상세히 설명한다.It will be described in detail through the following examples.

본 발명에 이용한 강의 화학성분 및 Ar3변태점을 정리하여 하기 표 1에 나타내었다.강 A는 본 발명에 있어 강중 탄소량의 저하에 따른 강의 Ar3변화를 비교 하기 위한 것이며, 강 B는 종래의 저탄소 성분계이다. 강 C,D,E 및 F 는 보론을 첨가한 경우로서 각각 8,11,20,39ppm을 첨가한 강이다. 혼립조직의 생성은 강의 Ar3온도와 대단히 밀접한 관계에 있으며, 이 Ar3온도의 저하는 혼립조직의 생성억제에 유효하다.The chemical composition and the Ar 3 transformation point of the steel used in the present invention are summarized in Table 1 below. Steel A is for comparing the Ar 3 change of the steel according to the decrease in the amount of carbon in the steel according to the present invention. It is a low carbon component system. Steels C, D, E, and F are steels in which 8, 11, 20, and 39 ppm are added, respectively, when boron is added. The formation of the mixed structure is very closely related to the Ar 3 temperature of the steel, and the reduction of the Ar 3 temperature is effective for suppressing the formation of the mixed structure.

[표 1]TABLE 1

River 화학성분Chemical composition Ar3(℃)Ar 3 (℃) 비고Remarks CC SiSi MnMn PP SS AlAl B(ppm)B (ppm) N2(ppm)N2 (ppm) AA 0.0200.020 0.050.05 0.140.14 0.0120.012 0.0080.008 0.0360.036 -- 2525 883883 비교강,C하한Comparative Steel, C Lower Limit BB 0.0380.038 0.030.03 0.270.27 0.0110.011 0.0070.007 0.0380.038 -- 3232 872872 종래강Conventional Steel CC 0.0400.040 0.040.04 0.270.27 0.0100.010 0.0060.006 0.0330.033 88 3636 856856 비교강Comparative steel DD 0.0390.039 0.050.05 0.270.27 0.0110.011 0.0060.006 0.0310.031 1111 3535 853853 발명강Invention steel EE 0.0400.040 0.040.04 0.260.26 0.0120.012 0.0070.007 0.0320.032 2020 3333 849849 발명강Invention steel FF 0.0400.040 0.040.04 0.250.25 0.0110.011 0.0060.006 0.0320.032 3939 3232 840840 비교강,B상한Comparative Steel, B Upper

도 1은 Ar3변태점에 대한 보론첨가의 영향을 도시한 도면으로서, Ar3변태점은 보론 첨가량에 비례하여 연속적으로 저하되어 20ppm의 첨가로 20℃정도 저하됨을 보여주고 있다.A view Figure 1 shows the effect of adding boron to the transformation point Ar 3, Ar 3 transformation point is lowered in proportion to the added amount of boron in a row shows the 20 ℃ degree degraded by the addition of 20ppm.

상기 성분계를 함유한 강 슬라브를 1200℃에서 3시간 재가열한 후 열간압연을 행하여 두께 1.6mm의 열연강판을 제조하였으며, 이때 열간압연 마무리 목표온도는 870℃ 이었으며, 권취온도는 500∼680℃ 범위로 하였다. 제조된 열연강판의 기계적 성질은 JIS5호 인장시편을 이용하여 10mm/min의 인장속도로 인장하여 평가하였다. 강판의 2차가공 취성은 드로잉비가 2.16인 용기를 제작한후 -10℃에서 충격하중(하중 4.44kg, 자유낙하 높이 1.0mm)을 가하였을 때 취성크랙의 생성 여부로 평가하였다. 아울러 혼합조직 생성정도는 최종 압연 강판의 에지부 25mm 지점의 조직을 관찰하여 혼립조직 점유율이 두께의 1/20 이상일 경우 ×, 혼립조직이 전혀 발생되지 않은 경우를 ○, 그 사이의 점유율을 보인 경우 △으로 표시하여 하기의 표 2에 나타내었다.After reheating the steel slab containing the component system at 1200 ° C. for 3 hours, hot rolling was performed to produce a hot rolled steel sheet having a thickness of 1.6 mm. At this time, the hot rolling finish target temperature was 870 ° C., and the winding temperature was in the range of 500˜680 ° C. It was. Mechanical properties of the prepared hot-rolled steel sheet was evaluated by pulling at a tensile speed of 10mm / min using a JIS No. 5 tensile test specimen. Secondary brittleness of the steel sheet was evaluated by the formation of brittle cracks when a container with a drawing ratio of 2.16 was applied and an impact load (load 4.44kg, free fall height 1.0mm) was applied at -10 ° C. In addition, the degree of formation of the mixed structure was observed by observing the structure at the edge portion of the final rolled steel sheet when the mixed tissue occupancy was 1/20 or more of the thickness. It is shown by (triangle | delta) and is shown in following Table 2.

[표 2]TABLE 2

River 권취온도(℃)Winding temperature (℃) 기계적 성질Mechanical properties 정립방생정도Establishment degree 2차가공 취성2nd processing brittleness 범례Legend 비고Remarks 항복강도( kg/mm2)Yield strength (kg / mm 2 ) 인장강도( kg/mm2)Tensile Strength (kg / mm 2 ) 연신율(%)Elongation (%) ASTMNo.ASTM No. BB 600600 26.426.4 34.434.4 42.242.2 9.99.9 비교법Comparative method 6262 25.925.9 33.433.4 44.744.7 9.89.8 ×× 종래법Conventional Law 680680 25.725.7 31.131.1 47.247.2 9.79.7 ×× CC 500500 28.228.2 34.834.8 41.441.4 9.29.2 항복강도초과연신율부족Yield strength excess elongation lacking 비교법Comparative method 620620 25.025.0 32.832.8 45.245.2 8.78.7 혼립발생Mixed occurrence 비교법Comparative method 680680 24.724.7 30.730.7 46.346.3 8.48.4 혼립발생Mixed occurrence 비교법Comparative method DD 500500 28.528.5 3434 42.142.1 8.68.6 ×× 항복강도초과연신율 불량Yield strength over elongation failure 비교법Comparative method 620620 23.923.9 32.232.2 46.746.7 8.58.5 발명강Invention steel 680680 23.523.5 30.230.2 47.447.4 8.58.5 발명강Invention steel EE 500500 28.528.5 34.834.8 41.441.4 8.68.6 ×× 항복강도초과연신율 불량Yield strength over elongation failure 비교법Comparative method 620620 24.124.1 32.232.2 44.444.4 8.68.6 발명강Invention steel 680680 24.024.0 30.430.4 45.5345.53 8.58.5 발명강Invention steel FF 500500 27.727.7 33.933.9 42.442.4 8.78.7 ×× 항복강도초과연신율 불량Yield strength over elongation failure 비교법Comparative method 620620 24.224.2 31.531.5 46.746.7 8.68.6 ×× 내2차가공취성불량Secondary processing brittleness 비교법Comparative method 680680 24.624.6 30.430.4 47.047.0 8.78.7 ×× 비교법Comparative method

종래강의 강 B의 경우, 620℃ 이상에서 권취하면 인장강도 33kg/mm2, 연신율은 45%정도의 재질이 얻어지나, 강판 에지부에 혼립조직이 발생하는 반면, 보론 첨가량이 증가하면 혼립조직은 감소하기 시작하여 10ppm 이상에서는 전혀 관찰되지 않았다. 또한 극 미량의 보론 첨가강에서 권취온도가 620℃ 이상이 되면 페라이트 결정립도는 ASTM 입도 No. 8.0∼9.0 범위이며, 종래강의 강 B에 비하여 조대화되었음을 확인할수 있다. 권취온도에 따른 기계적성질의 변화를 도 2에 나타내었다. 권취온도가 620℃ 이상인 범위에서 보론첨가에 의하여 항복강도가 평균 2kg/㎟, 인장강도는 1kg/㎟ 정도 저하하며, 연신율의 경우 45% 이상임을 알수 있다. 이 구간에서 강도 특히 항복강도의 저하는 보론이 질소와 결합하여 열간압연 동안 일부 석출되면서 강중의 고용질소를 감소시킬 뿐 만아니라 이 석출과정이 페라이트 입도 미세화에 기여하는 알루미늄질화물(AlN)의 석출에 선행하여 진행되기 때문에 페라이트 결정립이 조대화되는데 기인한다. 그러나 도 2에서 알수 있듯이 보론 첨가강에 있어서도 권취온도가 500℃로 저하되면 입계 세멘타이트가 미세해지고 그 량이 증가되기 때문에 항복강도는 급격히 상승하여 종래강 보다 더 큰 값을 가지게 된다. 한편, 내 2차 가공취성의 경우 표 2에서 알수 있듯이 보론량이 증가되면 미첨가강에 대비하여 열화되는 경향이 있으며, 이는 앞에 언급한 입계세멘타이트의 미세화 및 수의 증가에 기인한 것으로 판단되었다. 한편, 비교강의 강 A의 경우 표 1에 나타낸 바와 같이 탄소함량이 감소되면서 Ar3변태점이 상승되고 이로 인한 혼립조직 발생 정도는 종래강의 강 B와 유사한 정도의 혼립조직이 생성되었다. 이 결과와 보론 첨가강의 결과를 고려하면 강 A의 성분계에 20ppm정도의 보론이 첨가되면 종래강의 강 C에 비하여 Ar3변태점은 약 10℃ 정도 저하되는 효과가 있음을 알수 있다.In case of steel B of the conventional steel, a material having a tensile strength of 33 kg / mm 2 and an elongation of about 45% is obtained when the steel B is wound at 620 ° C. or higher, but a mixed structure occurs at the edge of the steel sheet. It started to decrease and was not observed at all above 10 ppm. In addition, when the coiling temperature is higher than 620 ℃ in the extremely small amount of boron-added steel, the ferrite grain size is ASTM particle size No. It is in the range of 8.0 to 9.0, and it can be confirmed that it is larger than steel B of the conventional steel. The change in mechanical properties according to the coiling temperature is shown in FIG. 2. By adding boron in the coiling temperature range of 620 ℃ or higher, the yield strength is reduced by 2kg / mm2, and the tensile strength is about 1kg / mm2, and the elongation is 45% or more. In this section, the decrease in strength, especially yield strength, not only decreases the solid solution nitrogen in the steel as boron is partially precipitated during hot rolling in combination with nitrogen, but also contributes to the precipitation of aluminum nitride (AlN), which contributes to the refinement of ferrite grain size. It is due to coarsening of the ferrite grains because it proceeds earlier. However, as can be seen in FIG. 2, even in boron-added steel, when the coiling temperature is lowered to 500 ° C., the grain boundary cementite becomes fine and its amount is increased so that the yield strength rapidly increases to have a larger value than the conventional steel. On the other hand, as shown in Table 2, the secondary work brittle resistance tends to deteriorate compared to the unadded steel when the amount of boron is increased, which was determined to be due to the refinement of the grain boundary cementite and the increase in number. On the other hand, in the case of steel A of the comparative steel, as shown in Table 1, as the carbon content decreases, the Ar 3 transformation point is increased, and thus, the degree of hybrid structure generation is similar to that of the steel B of the conventional steel. Considering this result and the result of boron-added steel, it can be seen that the addition of about 20 ppm of boron to the component system of steel A has an effect of reducing the Ar 3 transformation point by about 10 ° C. compared with steel C of the conventional steel.

따라서 상술한 바와 같이 가공용 박물 열연강판을 제조함에 있어 중량 %로 있어 탄소:0.02 ∼ 0.05%, 규소: trace, 망간: 0.10 ∼ 0.30%, 보론:10∼ 30ppm, 인< max.0.015%, 황< max.0.010, 알루미니움: 0.01∼ 0.04% 및 질소 < 40ppm을 함 유하는 슬라브를 이용하여 두께 1.3∼2.3mm의 열간압연강판으로 압연을 행함에 있어 사상압연온도를 Ar3변태점 이상으로 하고 열간압연후 권취온도를 620 ℃ 이상이 되도록 제어함으로서 항복강도 25kg/mm2이하, 인장강도 34kg/mm2이하, 연신율 45%이상의 재질특성과 ASTM 입도 No. 8.0∼9.0 범위의 균일 페라이트 조직을 갖는 가공용 박물 열간압연 연강판이 제조됨을 알수 있다.Therefore, as described above, in manufacturing the hot-rolled steel sheet for processing, it is weight%, carbon: 0.02 to 0.05%, silicon: trace, manganese: 0.10 to 0.30%, boron: 10 to 30 ppm, phosphorus <max.0.015%, sulfur < max.0.010, aluminium: using a slab containing 0.01 to 0.04% and nitrogen <40 ppm, when rolling on a hot rolled steel sheet with a thickness of 1.3 to 2.3 mm, the filament rolling temperature should be at least Ar 3 transformation point. By controlling the winding temperature after rolling to be above 620 ℃, the material properties of yield strength 25kg / mm 2 or less, tensile strength 34kg / mm 2 or less, elongation 45% or more and ASTM particle size No. It can be seen that the processing hot rolled mild steel sheet having a uniform ferrite structure in the range of 8.0 to 9.0 is produced.

본 발명에 의하여 드로잉 및 장출성형에 이용되는 열간압연 연강판 제조에 있어 저탄소 성분계에 극미량의 보론을 첨가하고 열간압연후의 권취온도를 적절히 제어함으로서 종래의 열연강판에 비하여 폭방향 조직 균일성이 우수한 가공용 박물 열강압연 연강판을 제조할 수 있음은 물론, 기계적 성질에 있어서는 항복강도 25kg/㎟ 이하, 인장강도 34kg/㎟ 이하, 연신율 45% 이상의 재질특성을 가짐과 동시에 ASTM 입도 No. 8.0 - 9.0 범위의 균일 페라이트 조직을 갖는 가공용 박물 열간압연 연강판 또는 산세강판을 제공하는 우수한 효과가 있다.In the manufacture of hot rolled mild steel sheet used for drawing and elongation molding according to the present invention, by adding a very small amount of boron to a low carbon component system and controlling the winding temperature after hot rolling appropriately, it has excellent widthwise uniformity compared to conventional hot rolled steel sheet. The hot rolled mild steel sheet can be manufactured as well as yield strength of 25kg / mm2 in mechanical properties. Tensile Strength 34kg / ㎡ Below, it has a material property of more than 45% elongation and ASTM particle size No. There is an excellent effect of providing a processing hot-rolled mild steel sheet or pickled steel sheet having a uniform ferrite structure in the range of 8.0-9.0.

Claims (2)

조직 균일성이 우수한 가공용 박물 열연강판의 제조방법에 있어서, 중량 %로 탄소:0.02 ∼ 0.05%, 규소: trace, 망간: 0.10 ∼ 0.30%, 보론:10∼ 30ppm, 인< max.0.015%, 황< max.0.010, 알루미늄: 0.01∼ 0.04% 및 질소< 40ppm을 함유하는 슬라브를 이용하되, 두께 1.3∼2.3mm의 열간압연강판으로 압연을 행함에 있어 사상압연온도를 Ar3변태점 이상으로 하고 열간압연후 권취온도를 620 ℃ 이상이 되도록 제어하는 것을 특징으로 하는 가공용 박물 열간압연 연강판의 제조방법.In the manufacturing method of the processing thin hot rolled steel sheet excellent in the uniformity of structure, carbon: 0.02 to 0.05%, silicon: trace, manganese: 0.10 to 0.30%, boron: 10 to 30 ppm, phosphorus <max.0.015%, sulfur Using a slab containing <max.0.010, aluminum: 0.01 to 0.04% and nitrogen <40 ppm, in rolling with a hot rolled steel sheet with a thickness of 1.3 to 2.3 mm, the filament rolling temperature should be at least Ar 3 transformation point and hot rolling. After the winding temperature is controlled to be 620 ℃ or more method for manufacturing a hot thin rolled steel sheet for processing. 제 1항에 있어서,The method of claim 1, 상기 성분계 및 열간압연조건을 만족하는 방법으로 제조된 두께 1.3∼2.3mm의 심가공용 박물 열간압연강판의 표면 스케일을 산세 처리한 후, 도유를 행하는 것을 특징으로 하는 가공용 박물 산세 열간압연 연강판의 제조방법.Preparation of a processing thin powder pickling hot rolled steel sheet, characterized in that oiling is performed after pickling the surface scale of the thin-film hot rolled steel sheet for deep processing manufactured by a method satisfying the above components and hot rolling conditions. Way.
KR1019970072735A 1997-12-23 1997-12-23 Method for manufacturing hot rolled mild steel sheet for press forming KR100325537B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970072735A KR100325537B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled mild steel sheet for press forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970072735A KR100325537B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled mild steel sheet for press forming

Publications (2)

Publication Number Publication Date
KR19990053144A KR19990053144A (en) 1999-07-15
KR100325537B1 true KR100325537B1 (en) 2002-08-09

Family

ID=37478233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970072735A KR100325537B1 (en) 1997-12-23 1997-12-23 Method for manufacturing hot rolled mild steel sheet for press forming

Country Status (1)

Country Link
KR (1) KR100325537B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431802B1 (en) * 1999-12-15 2004-05-17 주식회사 포스코 Method for Manufacturing Hot Rolled Steel Sheet with Good Formability
CN109425319A (en) * 2017-08-25 2019-03-05 宝山钢铁股份有限公司 A method of detection acid cleaning process is to lateral section influence degree

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829943B1 (en) * 2002-07-02 2008-05-16 주식회사 포스코 Hot rolled law carbon steel plate manufacturing method for surface scale and workability excellent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431802B1 (en) * 1999-12-15 2004-05-17 주식회사 포스코 Method for Manufacturing Hot Rolled Steel Sheet with Good Formability
CN109425319A (en) * 2017-08-25 2019-03-05 宝山钢铁股份有限公司 A method of detection acid cleaning process is to lateral section influence degree

Also Published As

Publication number Publication date
KR19990053144A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
EP3696292B1 (en) A high tensile strength galvanized steel sheet with excellent formability and anti-crush properties and method of manufacturing the same
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
KR101458039B1 (en) Method for manufacturing flat steel products from a steel forming a complex phase structure
KR101560944B1 (en) High strength hot rolled steel sheet having excellent surface property and method for manufacturing the same
CN110662854B (en) Steel sheet having excellent liquid metal embrittlement cracking resistance and method for producing same
KR20120074807A (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR102336757B1 (en) Hot stamping product and method of manufacturing the same
KR102020404B1 (en) Steel sheet having ultra high strength and superior ductility and method of manufacturing the same
KR102164108B1 (en) Ultra high strength hot rolled steel sheet having excellent shape and bendability properties and method of manufacturing the same
KR100325537B1 (en) Method for manufacturing hot rolled mild steel sheet for press forming
KR20190049294A (en) Ultra high strength steel sheet having good cold workability and its manufacturing method
JPH055887B2 (en)
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JPH06104862B2 (en) Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature
KR100711474B1 (en) Method for manufacturing hot-rolled steel sheet with superior bake hardenability
KR100328023B1 (en) The method of manufacturing of high strength hot-rolled steel sheet
KR20200066087A (en) Hot press formed part, and manufacturing method thereof
KR970007029B1 (en) Method of manufacturing hot-rolling steel sheet
KR100992317B1 (en) High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof
KR20120060970A (en) Extremely low carbon hot-rolled steel for cold rolling with excelent acid-cleaning characteristic and compactibility and method of manufacturing the same
KR102098478B1 (en) Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same
JPH0776381B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH10330844A (en) Manufacture of cold rolled steel sheet excellent in formability
KR100285649B1 (en) Method of manufacturing thin hot coil for deep drawing
JP3060860B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with different anisotropy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee