KR100992317B1 - High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof - Google Patents

High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof Download PDF

Info

Publication number
KR100992317B1
KR100992317B1 KR1020080045192A KR20080045192A KR100992317B1 KR 100992317 B1 KR100992317 B1 KR 100992317B1 KR 1020080045192 A KR1020080045192 A KR 1020080045192A KR 20080045192 A KR20080045192 A KR 20080045192A KR 100992317 B1 KR100992317 B1 KR 100992317B1
Authority
KR
South Korea
Prior art keywords
steel sheet
steel
less
rolled steel
hot
Prior art date
Application number
KR1020080045192A
Other languages
Korean (ko)
Other versions
KR20090119265A (en
Inventor
김성일
이규영
손일령
신동석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080045192A priority Critical patent/KR100992317B1/en
Publication of KR20090119265A publication Critical patent/KR20090119265A/en
Application granted granted Critical
Publication of KR100992317B1 publication Critical patent/KR100992317B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하, P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하는 것을 특징으로 하는 열연강판 및 상기 열연강판을 50~100℃의 온도로 유지되는 10~20% HCl 수용액으로 산세처리하는 것을 특징으로 하는 열연산세강판을 제공한다. 이 경우, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립할 수 있으며, 상기 강판의 제조시 표면품질 향상에 효율적인 온도 범위에서 권취하는 단계를 포함한다.In the present invention, by weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less, P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 to 0.10%, N: Hot rolled steel sheet and the hot rolled steel sheet comprising at least one of 0.002 ~ 0.008%, Sb: 0.005 ~ 0.04% and Ti: 0.01 ~ 0.06%, Nb: 0.01 ~ 0.06%, V: 0.01 ~ 0.1% It provides a hot-rolled steel sheet, characterized in that the pickling treatment with a 10-20% HCl aqueous solution maintained at a temperature of 50 ~ 100 ℃. In this case, a relationship of 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15 may be established between Ti, Nb, and V, and may be wound in a temperature range that is effective for improving surface quality during manufacturing of the steel sheet. Taking steps.

본 발명에 의하면, 우수한 기계적 특성을 구비하면서 아울러 표면품질이 우수한 열연강판, 열연산세강판 및 이들의 제조방법을 경제적이고 효율적으로 제공할 수 있다.According to the present invention, it is possible to economically and efficiently provide a hot rolled steel sheet, a hot-rolled steel sheet, and a manufacturing method thereof having excellent mechanical properties and excellent surface quality.

열연강판, 열연산세강판, 표면스케일, Sb, 고항복비 Hot Rolled Steel Sheet, Hot Calculated Steel Sheet, Surface Scale, Sb, High Yield Ratio

Description

스케일 박리특성이 우수한 고항복비 열연강판, 열연산세강판 및 그 제조방법{High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof}High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof}

본 발명은 주로 자동차 휠, 림, 프레임 및 기타 자동차용 부품으로 사용되는 항복비가 0.8 이상인 고강도 열연강판 및 산세강판의 제조방법에 관한 것으로, 보다 상세하게는 항복강도 270~600MPa의 강도를 가지면서 항복비가 0.8 이상인 동시에 종래의 고강도강보다 훨씬 우수한 스케일 박리특성을 나타내는 고항복비형 열연강판 및 열연산세강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high strength hot rolled steel sheet and pickled steel sheet having a yield ratio of 0.8 or more, which is mainly used for automobile wheels, rims, frames, and other automotive parts, and more particularly, yielding a yield strength of 270 to 600 MPa. The present invention relates to a method of producing a high yield ratio hot rolled steel sheet and a hot-rolled steel sheet having a ratio of 0.8 or more and exhibiting a scale peeling characteristic much better than that of a conventional high strength steel.

최근 자동차용 강판은 자동차 성형품의 경량화를 위해 더욱 더 높은 수준의 강도가 필요하며, 또한 표면조도가 균일하여 미려한 표면을 갖는 강판이 요구되고 있다. 하지만, 일반적으로 강판의 강도를 올리기 위해서는 Mn, P, Si 등의 고용강화원소 또는 Nb, Ti, V 등의 석출강화원소를 첨가한다. 하지만, 과도한 합금원소의 증가는 제조 시 설비의 부하를 일으켜 열간압연 중 판파단이나 형상불량을 가져올 수 있고 고합금으로 인해 각종 산화물들이 표층부에 불균일하게 형성될 수 있으므로 열간압연 중 스케일 제거가 균일하게 실시되기 어렵고 산세특성이 악화되며 표면조도 편차를 심화시킬 수 있다.Recently, steel sheets for automobiles require a higher level of strength in order to reduce the weight of automobile molded articles, and also require steel sheets having a beautiful surface with uniform surface roughness. In general, however, solid solution strengthening elements such as Mn, P, and Si or precipitation strengthening elements such as Nb, Ti, and V are added to increase the strength of the steel sheet. However, excessive increase of alloying elements causes load of equipment during manufacturing, which can lead to plate breakage or shape defects during hot rolling, and high-alloy can cause various oxides to be formed non-uniformly on the surface layer. It is difficult to carry out, the pickling characteristics are deteriorated and the surface roughness deviation can be deepened.

이러한 요구를 만족시키기 위하여 종래에는 Si과 Mn이 일정 함량 첨가된 강 슬라브의 표면온도를 관리하여 Si과 관련된 스케일의 제거를 용이하게 하여 표면품질을 확보하는 기술, Si의 함량을 일정량 이상으로 하여 표면품질을 확보하는 기술, Sn, Ti 및 B을 첨가시켜 표면품질을 확보하는 기술, Cu와 P의 함량을 제어하여 표면품질을 확보하는 기술 등이 나타난 바 있다. In order to satisfy these requirements, the technology of conventionally controlling the surface temperature of steel slabs to which a certain amount of Si and Mn is added to facilitate the removal of scales related to Si, and to secure the surface quality, the surface of Si by a certain amount or more Technology to secure the quality, technology to secure the surface quality by adding Sn, Ti and B, technology to secure the surface quality by controlling the content of Cu and P has been shown.

하지만 상술한 종래 기술들이 활용하고 있는 성분들은 모두 표면품질 이외에 강판의 기계적 성질에도 영향을 줄 수 있어, 열연조업조건에 따라 그 표면품질과 기계적 성질이 동시에 영향을 받을 수 있으며 특히, Si의 함량을 제어하는 기술은 변태현상에 변화를 가져올 수 있다. 따라서 강판의 제조 시 냉각관련 공정의 제어가 필수적이어서 생산 과정에서 어려움이 예상된다. 또한 상술한 종래 기술들은 모두 값비싼 원소들을 활용하고 있어서 경제적으로 활용성이 적다고 할 수 있다.However, all the components utilized by the above-mentioned prior arts may affect the mechanical properties of the steel sheet in addition to the surface quality, so that the surface quality and the mechanical properties may be simultaneously affected by the hot rolling operation conditions. Controlling techniques can bring about changes in metamorphosis. Therefore, it is necessary to control the cooling-related processes in the manufacture of the steel sheet, so difficulties in the production process are expected. In addition, the above-described conventional techniques all utilize expensive elements, and thus can be said to be economically inefficient.

본 발명은 상술한 종래 기술들의 문제점을 해결하기 위하여 열간압연 중에 강 표층부와 표면에 존재하여 표면에 발생하는 산화물의 생성을 억제하고 철산화막의 박리특성을 개선하는 Sb를 첨가함으로써, 270~600MPa의 고강도 특성을 가지면서 항복비가 0.8 이상인 동시에 종래의 고강도강보다 훨씬 우수한 스케일 박리특성을 나타내는 고항복비형 열연강판, 열연산세강판 및 이들의 제조방법을 제공하고자 한다.The present invention is to solve the problems of the prior art described above by adding Sb to suppress the formation of oxides on the surface and the surface of the steel during hot rolling and to improve the peeling characteristics of the iron oxide film, The present invention provides a high yield ratio hot rolled steel sheet, a hot-rolled steel sheet, and a method of manufacturing the same, having a high-strength property and a yield ratio of 0.8 or more and exhibiting a scale peeling property much better than that of a conventional high-strength steel.

본 발명은 이러한 목적을 달성하기 위하여 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하, P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하는 것을 특징으로 하는 열연강판 및 상기 열연강판을 50~100℃의 온도로 유지되는 10~20% HCl 수용액으로 산세처리하는 것을 특징으로 하는 열연산세강판을 제공한다. 이 경우, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립할 수 있다.In order to achieve this object, the present invention provides a weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less, P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 ~ 0.10%, N: 0.002 ~ 0.008%, Sb: 0.005 ~ 0.04% and Ti: 0.01 ~ 0.06%, Nb: 0.01 ~ 0.06%, V: 0.01 ~ 0.1% Steel sheet and the hot rolled steel sheet provides a hot-rolled steel sheet, characterized in that the pickling treatment with a 10-20% HCl aqueous solution maintained at a temperature of 50 ~ 100 ℃. In this case, a relationship of 0.01 ≦ {[Ti] + [Nb] + [V]} ≦ 0.15 may be established between the Ti, Nb, and V.

나아가, 본 발명은 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하, P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하는 강 슬라브에 대하여, 1200~1300℃로 재가열하는 재가열 단계, Ar3+30~Ar3+100℃에서 마무리압연하는 마무리압연 단계 및 500~650℃에서 권취하는 권취 단계를 포함하는 것을 특징으로 하는 열연강판의 제조방법 및 상기 제조방법에 50~100℃의 온도로 유지되는 HCl 수용액으로 산세처리하는 산세단계를 추가적으로 포함하는 열연산세강판의 제조방법을 제공한다.Furthermore, the present invention is in weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less, P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 to 0.10%, 1200 to 1300 ° C for steel slabs containing at least one of N: 0.002 to 0.008%, Sb: 0.005 to 0.04%, Ti: 0.01 to 0.06%, Nb: 0.01 to 0.06%, V: 0.01 to 0.1% Reheating step of reheating, Ar 3 +30 ~ Ar 3 + 100 ℃ manufacturing method of the hot rolled steel sheet and the manufacturing method comprising a finish rolling step of finishing rolling at + 100 ℃ and winding step at 500 ~ 650 ℃ It provides a method for producing a hot-rolled steel sheet further comprising a pickling step of pickling treatment with an aqueous HCl solution maintained at a temperature of 50 ~ 100 ℃.

(단, Ar3 = 910 - 310*C - 80*Mn - 20*Cu - 15*Cr - 55*Ni - 80*Mo - 0.35*(thick-8))(Where Ar 3 = 910-310 * C-80 * Mn-20 * Cu-15 * Cr-55 * Ni-80 * Mo-0.35 * (thick-8))

상기 열연강판의 제조방법 및 열연산세강판의 제조방법에서 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립할 수 있으며, 상기 열연산세강판의 제조방법에서 사용되는 HCl 수용액은 10~20%의 농도를 가질 수 있다. In the method of manufacturing the hot rolled steel sheet and the method of manufacturing the hot-rolled fine steel sheet, a relation of 0.01 ≦ {[Ti] + [Nb] + [V]} ≤ 0.15 may be established between Ti, Nb, and V. HCl aqueous solution used in the steel sheet manufacturing method may have a concentration of 10 to 20%.

본 발명에 의하면, 항복강도 270~600MPa의 강도를 가지면서 항복비가 0.8 이상인 우수한 기계적 특성을 구비하면서 아울러 표면품질이 우수한 열연강판, 열연산세강판 및 이들의 제조방법을 경제적이고 효율적으로 제공할 수 있다.According to the present invention, it is possible to economically and efficiently provide a hot rolled steel sheet, a hot-rolled steel sheet, and a manufacturing method thereof having excellent mechanical properties having a yield ratio of 0.8 or more and a yield ratio of 0.8 or more and having a strength of yield strength of 270 to 600 MPa. .

본 발명의 열연강판은 중량%로 C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하, P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하고 나머지 Fe 및 기타 불가피한 불순물로 조성된다. 이때 강에 첨가되는 합금원소의 중량%의 합계가 다음의 수식을 만족하는 것을 특징으로 한다.Hot rolled steel sheet of the present invention by weight% C: 0.04 ~ 0.13%, Mn: 0.4 ~ 1.3%, Si: 0.3% or less, P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 ~ 0.10%, It contains one or more of N: 0.002 ~ 0.008%, Sb: 0.005 ~ 0.04%, Ti: 0.01 ~ 0.06%, Nb: 0.01 ~ 0.06%, V: 0.01 ~ 0.1% and is composed of the remaining Fe and other unavoidable impurities . At this time, the sum of the weight percent of the alloying elements added to the steel is characterized by satisfying the following formula.

[식 1][Equation 1]

0.01 ≤ {[0.01 ≤ {[ TiTi ] + [] + [ NbNb ] + [V]} ≤ 0.15] + [V]} ≤ 0.15

이하 본 발명의 성분계에 관하여 상세히 설명한다(이하 중량%).Hereinafter, the component system of the present invention will be described in detail (hereinafter by weight).

C: 0.04~0.13%C: 0.04-0.13%

C는 강을 강화시키는데 가장 경제적이며 효과적인 원소로서, 그 함량이 0.04% 미만이면 동일한 강도를 확보하기 위하여 다른 합금원소를 다량으로 첨가하여야 하며, 0.13%를 초과하면 용접성, 성형성 및 인성이 저하되는 문제점이 있다. 따라서, 상기 C의 함량은 0.04~0.13%로 제한한다.C is the most economical and effective element for reinforcing steel. If the content is less than 0.04%, other alloying elements should be added in order to secure the same strength, and if it exceeds 0.13%, weldability, formability and toughness will be reduced. There is a problem. Therefore, the content of C is limited to 0.04 to 0.13%.

Si: 0.3% 이하Si: 0.3% or less

Si는 용강을 탈산시키고 고용강화효과를 발휘하는데 유효한 성분으로, 그 함량이 0.3%를 초과하면 열간압연시 강판표면에 Si에 의한 붉은색 스케일이 형성되어 강판표면 품질이 매우 나빠질 뿐만 아니라 연성도 저하되는 문제점이 있으므로, 그 함량을 0.3% 이하로 제한한다.Si is effective for deoxidizing molten steel and exerting a solid solution effect. If the content exceeds 0.3%, the red scale by Si is formed on the surface of the steel sheet during hot rolling. Since there is a problem, the content is limited to 0.3% or less.

Mn: 0.4~1.3%Mn: 0.4-1.3%

Mn은 강을 고용 강화시키는데 효과적인 원소로 작용한다. Mn의 함량이 0.4% 미만이면 첨가에 따른 고용강화 효과가 미미하며, 반면 1.3%를 초과하면 제강공정에서 슬라브 주조 시 두께중심부에서 편석부가 크게 발달되고 최종제품의 용접성을 해치는 문제점이 있다. 따라서, 상기 Mn의 함량은 0.4~1.3%로 제한한다.Mn acts as an effective element to solidify the steel. If the Mn content is less than 0.4%, the solid solution strengthening effect of the addition is insignificant, whereas if it exceeds 1.3%, the segregation part is greatly developed at the center of thickness during slab casting in the steelmaking process, and there is a problem that the weldability of the final product is damaged. Therefore, the content of Mn is limited to 0.4 ~ 1.3%.

P: 0.03% 이하P: 0.03% or less

P는 강중에 존재하는 불순물로써, 그 함량이 0.03%를 초과하면 Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성 및 강도를 크게 떨어뜨리게 된다. 따라서, 상기 P는 0.03% 이하로 제한한다.P is an impurity present in the steel. When the content exceeds 0.03%, P is combined with Mn to form a non-metallic inclusion, thereby greatly reducing the toughness and strength of the steel. Therefore, P is limited to 0.03% or less.

S: 0.010% 이하S: 0.010% or less

S는 강중에 존재하는 불순물로써, 그 함량이 0.010%를 초과하면 Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성 및 강도를 크게 떨어뜨리는 문제점이 있으므로, 그 함량을 0.010% 이하로 제한한다.S is an impurity present in the steel. When the content exceeds 0.010%, S is combined with Mn to form a non-metallic inclusion, and thus, the toughness and strength of the steel are greatly reduced. Therefore, the content is limited to 0.010% or less.

Sol.Al: 0.005~0.10%Sol.Al: 0.005 ~ 0.10%

Sol.Al은 탈산을 위하여 첨가하는 성분으로, 그 함량이 0.005% 미만이면 그 탈산 효과가 부족하고, 반면 0.10%를 초과하면 그 효과가 포화되어 오히려 제조비용의 상승을 초래하는 문제점이 있으므로, 그 함량을 0.005~0.10%로 제한한다.Sol.Al is a component added for deoxidation. If the content is less than 0.005%, the deoxidation effect is insufficient, whereas if it exceeds 0.10%, the effect is saturated, resulting in an increase in manufacturing cost. The content is limited to 0.005 to 0.10%.

N: 0.002~0.008%N: 0.002-0.008%

N의 성분함량은 Ti의 함량에 기인한 것이다. 일반적으로, N은 강 중에 고용되었다가 석출되어 강의 강도를 증가시키는 역할을 하며, 이러한 효과는 탄소보다 우수하다. 그러나, 한편으로는 강 중에 질소의 양이 증가될수록 인성이 크게 떨어지는 문제점을 갖는다. 따라서, 본 발명에서는 적정량의 질소를 강 중에 함유하도록 함으로써, TiN을 형성시키고 재가열 과정에서의 결정립 성장을 억제하는 역할을 하게 된다. 상기 N의 함량이 0.002% 미만이면 TiN 형성에 부족하고 제강시 제조비용이 상승할 수 있으며, 반면 0.008%를 초과하면 인성이 크게 떨어져 가공성이 나빠질 수 있다. 따라서, 그 함량을 0.0020~0.0080%로 제한한다.The content of N is due to the content of Ti. In general, N is dissolved in steel and precipitated to increase the strength of the steel, which is superior to carbon. On the other hand, however, the toughness decreases significantly as the amount of nitrogen in the steel increases. Therefore, in the present invention, by containing an appropriate amount of nitrogen in the steel, it forms a TiN and serves to suppress grain growth during the reheating process. If the content of N is less than 0.002%, TiN formation may be insufficient and manufacturing costs may increase during steelmaking. On the other hand, if the content of N exceeds 0.008%, toughness may be greatly reduced, leading to poor workability. Therefore, the content is limited to 0.0020 to 0.0080%.

Sb: 0.005~0.04%Sb: 0.005-0.04%

Sb는 본 발명에서 중요한 원소로 그 0.005~0.04%를 첨가한다. Sb가 0.005% 미만이면 표면층에 농화되는 Sb가 부족하여 효과적으로 산화물 형성을 억제하지 못하며 이미 형성된 철산화막을 쉽게 제거하는데 기여하기도 어렵다. 반면, Sb의 함량이 0.04%를 초과하면 Sb가 표면층에 과도하게 농화되어 표면특성을 저하시키며 강의 재질변화를 가져와 연성이 저하되고 구멍확장능(HER, Hole Expanding Ratio) 이 저하되는 문제점이 있다. 따라서, 그 함량을 0.005~0.04%로 제한한다. Sb is an important element in the present invention, the 0.005 ~ 0.04% is added. If Sb is less than 0.005%, the concentration of Sb in the surface layer is insufficient, so that it is difficult to effectively suppress the formation of oxides, and it is difficult to contribute to the easy removal of the already formed iron oxide film. On the other hand, if the content of Sb exceeds 0.04%, Sb is excessively concentrated in the surface layer, thereby deteriorating the surface properties, bringing about the material change of the steel, the ductility is lowered and the hole expanding ability (HER, Hole Expanding Ratio) is lowered. Therefore, the content is limited to 0.005 to 0.04%.

본 발명에서는 상기한 조성에 Ti, Nb 및 V중 선택된 1종 이상의 원소를 첨가함이 바람직하다.In the present invention, it is preferable to add at least one element selected from Ti, Nb and V to the above composition.

Ti: 0.01~0.06%Ti: 0.01 ~ 0.06%

Ti는 결정립을 미세화시키는데 유효한 성분으로, 강 중에 TiN으로 존재하여 열간압연을 위한 가열과정에서 결정립이 성장되는 것을 억제하는 효과가 있다. 또한, 질소와 반응하고 남은 Ti이 강중에 고용되어 탄소와 결합함으로써 TiC 석출물이 형성되어 강의 강도를 대폭적으로 향상시키는데 유용한 성분이다. 상기 Ti의 함량이 0.01% 미만이면 상기와 같은 오스테나이트 결정립 성장 억제효과 및 TiC 형성에 의한 강도증가 효과를 얻을 수 없고, 반면 0.06%를 초과하면 강판을 용접하여 강관으로 제조 시 용융점까지 급열됨에 의하여 TiN이 재고용되어 용접 열영향부의 인성이 저하되는 문제점이 있으므로, 그 함량을 0.01~0.06%로 제한하는 것이 바람직하다.Ti is an effective component for refining grains, and is present as TiN in steel, thereby suppressing the growth of grains during heating for hot rolling. In addition, Ti remaining after reacting with nitrogen is dissolved in the steel and bonded with carbon to form TiC precipitates, which is a useful component for greatly improving the strength of the steel. When the content of Ti is less than 0.01%, the austenite grain growth inhibition effect and the strength increase effect by TiC formation cannot be obtained. On the other hand, when the content of Ti exceeds 0.06%, the steel sheet is welded to the melting point when the steel pipe is manufactured, thereby rapidly melting. Since TiN is re-used and the toughness of the weld heat affected zone is deteriorated, it is preferable to limit the content to 0.01 to 0.06%.

Nb: 0.01~0.06%Nb: 0.01 ~ 0.06%

Nb는 결정립을 미세화시키는데 유효할 뿐만 아니라 강의 강도를 크게 향상시키는데 유효한 성분이다. 상기 Nb의 함량이 0.01% 미만이면 첨가에 따른 효과를 얻기 어렵고, 반면 0.06%를 초과하면 과도한 Nb 탄질화물의 석출에 기인하여 오스테 나이트 미재결정 온도가 지나치게 높아져서 재질 이방성을 증가시키는 문제점이 있다. 따라서, 상기 Nb의 함량은 0.01~0.06%로 제한한다. Nb is not only effective for refining grains, but is also an effective component for greatly improving the strength of steel. If the content of Nb is less than 0.01%, it is difficult to obtain the effect of addition, while if it exceeds 0.06%, the austenite microcrystallization temperature is excessively high due to excessive precipitation of Nb carbonitride, thereby increasing material anisotropy. Therefore, the content of Nb is limited to 0.01 ~ 0.06%.

V: 0.01~0.1%V: 0.01 ~ 0.1%

V는 강을 고용 강화시키는데 효과적인 원소일 뿐만 아니라 탄화물을 형성하여 석출강화 효과를 증가시킬 수 있는 원소이다. 하지만, 0.01% 미만에서는 첨가에 따른 상기 효과를 얻을 수 없고, 0.1%를 초과하면 용접성을 악화시키며 경제적으로도 불리하다. 따라서, 상기 V의 함량은 0.01~0.1%로 제한한다.V is not only an effective element for solidifying steel, but also an element that can form carbide to increase the precipitation strengthening effect. However, if the amount is less than 0.01%, the above effects due to the addition cannot be obtained. If the amount exceeds 0.1%, the weldability is deteriorated and it is economically disadvantageous. Therefore, the content of V is limited to 0.01 ~ 0.1%.

Ti, Nb 및 V의 관계: 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15Relationship between Ti, Nb and V: 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15

강중 첨가되는 합금원소의 중량%의 합계가 다음의 수식 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15을 만족하도록 첨가되어야 한다. 이는 강 중에 합금원소가 과도하게 첨가되면 열간압연 중 불균일하게 석출되는 Ti, Nb, V계 탄질화물의 형성을 촉진시킬 수 있으며 열간압연 중 변형유기석출에 의해 변형저항 편차가 발생하여 형상불량 및 설비의 부하를 가져온다. 또한, 불균일 석출물의 형성은 표면층의 산화물 형성의 불균일을 초래한다. 따라서, 합금원소의 첨가량을 상기 수식에 의해 제한한다.The sum of the weight percentages of the alloying elements added in the steel should be added so as to satisfy the following formula 0.01? {[Ti] + [Nb] + [V]}? 0.15. This can promote the formation of Ti, Nb, V-based carbonitride which is unevenly precipitated during hot rolling when excessive alloying elements are added in steel, and deformation resistance variation occurs due to deformation organic precipitation during hot rolling, resulting in poor shape and equipment. Bring a load of In addition, the formation of nonuniform precipitates leads to nonuniformity of oxide formation in the surface layer. Therefore, the addition amount of the alloying element is limited by the above formula.

이하, 본 발명의 제조공정을 단계별로 나누어 보다 상세히 설명한다.Hereinafter, the manufacturing process of the present invention will be described in detail by dividing step by step.

본 발명에서는 상술한 조성의 강 슬라브를 재가열, 열간압연 및 권취하는 공정을 거치게 되는데, 이때 열연코일의 항복강도는 열간압연 중에 생성된 미세조직 및 석출물에 의하여 결정된다는 점과 표면층에 형성되는 각종 산화물은 온도에 대한 의존성이 크다는 점을 고려하여, 슬라브의 열간압연이 종료되는 온도를 제어함으로써 열연코일의 목표로 하는 항복강도를 얻을 수 있으며 열연코일의 스케일 박리특성이 우수한 열연강판 및 표면이 미려한 열연산세강판을 얻을 수 있다.In the present invention, a process of reheating, hot rolling and winding the steel slab having the above-described composition is performed, wherein the yield strength of the hot rolled coil is determined by the microstructures and precipitates generated during hot rolling and various oxides formed on the surface layer. Considering the high dependence on the silver temperature, the target yield strength of the hot rolled coil can be obtained by controlling the temperature at which the hot rolling of the slab is finished, and the hot rolled steel having excellent scale peeling characteristics of the hot rolled coil and the hot rolled steel having a beautiful surface Pickling steel sheet can be obtained.

재가열 온도: 1200~1300℃Reheating Temperature: 1200 ~ 1300 ℃

상술한 조성의 강 슬라브를 1200~1300℃의 온도에서 재가열한다. 재가열 온도가 1200℃ 미만에서는 석출물이 충분히 재고용되지 않아 열간압연 이후의 공정에서 NbC, TiC 등의 석출물이 감소하게 되며, 반면 1300℃를 초과하면 오스테나이트 결정립의 이상입 성장에 의하여 강도가 저하될 수 있으므로, 본 발명의 재가열 온도는 1200~1300℃로 제한한다.The steel slab of the composition mentioned above is reheated at the temperature of 1200-1300 degreeC. If the reheating temperature is less than 1200 ℃, precipitates are not sufficiently reused, and precipitates such as NbC and TiC are reduced in the process after hot rolling. On the other hand, when the reheating temperature is higher than 1300 ℃, the strength may decrease due to abnormal grain growth of austenite grains. Therefore, the reheating temperature of the present invention is limited to 1200 to 1300 ° C.

마무리 압연 온도: Ar3+30~Ar3+100℃Finish rolling temperature: Ar 3 + 30 ~ Ar3 + 100 ℃

재가열된 강 슬라브는 조압연 및 마무리압연 과정에 의하여 압연 처리된다. 이때 마무리압연은 수학식 1로 계산된 변태온도(Ar3)를 기준으로 Ar3+30℃보다 높고 Ar3+100℃보다는 낮은 온도역에서 압연을 종료한다. 이는 열연코일의 항복강도가 열간압연 중에 생성된 미세조직 및 석출물에 의하여 결정되며 표면층에 형성되는 각종 산화물도 열간압연 온도에 대한 의존성이 크기 때문에 열간압연 온도범위를 제한하여 균일한 항복강도와 표면산화물을 얻기 위함이다. Reheated steel slabs are rolled by rough and finish rolling. At this time, the finish rolling is finished in the temperature range higher than Ar 3 +30 ℃ and lower than Ar3 + 100 ℃ based on the transformation temperature (Ar 3 ) calculated by the equation (1). The yield strength of the hot rolled coil is determined by the microstructures and precipitates formed during hot rolling, and since the various oxides formed on the surface layer have a large dependence on the hot rolling temperature, the uniform yield strength and surface oxide are limited by limiting the hot rolling temperature range. To get

[식 2][Equation 2]

Ar3 = 910 - 310*C - 80*Mn - 20*Cu - 15*Cr - 55*Ni - 80*Mo - 0.35*(thick-8)Ar 3 = 910-310 * C-80 * Mn-20 * Cu-15 * Cr-55 * Ni-80 * Mo-0.35 * (thick-8)

(단, thick는 열간압연 후 압연판의 두께(mm)) (However, thick is the thickness of the rolled plate after hot rolling (mm))

권취 온도: 500~650℃Coiling temperature: 500 ~ 650 ℃

압연된 강판은 500~650℃의 온도에서 권취된다. 이때, 상기 권취온도가 500℃ 미만이면 석출물이 미쳐 형성되지 못하며 저온조직인 베이나이트 변태가 일어나 강도는 증가하게 되나 연성이 저하되고, 반면 650℃를 초과하면 미세조직이 조대한 페라이트와 펄라이트로 형성되고 석출물이 조대화되고 불균일하게 형성되어 강도가 떨어지며 불균일한 산화물층이 형성되어 스케일 박리특성이 저하되는 문제점이 있다. The rolled steel sheet is wound at a temperature of 500 to 650 ° C. At this time, if the winding temperature is less than 500 ℃ precipitates do not form crazy, the low temperature structure bainite transformation occurs to increase the strength, but the ductility is lowered, whereas if it exceeds 650 ℃ microstructure is formed of coarse ferrite and pearlite Precipitates are coarsened and formed non-uniformly, so that the strength is decreased, and a non-uniform oxide layer is formed, thereby degrading scale peeling characteristics.

본 발명에서는 상술한 방법으로 제조한 열연강판에 대하여, 50~100℃의 온도로 유지되는 10~20% HCl 수용액을 활용하여 산세하는 단계를 추가적으로 포함하는 열연산세강판 및 그 제조방법을 제공한다. 상기 HCl 수용액은 50~100℃ 및 10~20% 농도에서 산세효율이 가장 좋은 것으로 실험적으로 나타났으므로, 본 발명에서는 이러한 조건을 사용하여 산세처리한다.The present invention provides a hot-rolled steel sheet and a method for manufacturing the hot-rolled steel sheet prepared by the above method, further comprising the step of pickling using a 10-20% HCl aqueous solution maintained at a temperature of 50 ~ 100 ℃. The aqueous HCl solution was experimentally found to have the best pickling efficiency at a concentration of 50 to 100 ° C. and 10 to 20%. In the present invention, pickling treatment is performed using these conditions.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 다만, 본 실시예는 본 발명을 보다 상세히 설명하기 위한 것일 뿐, 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, this embodiment is only for illustrating the present invention in more detail, the present invention is not limited by the description of these embodiments.

(실시예 1)(Example 1)

하기 표1에 본 발명의 성분 조성을 갖는 슬라브와 비교재의 슬라브를 표1에 나타내었다. Table 1 shows the slabs having the component composition of the present invention and the slabs of the comparative material in Table 1.

구분division [C][C] [Mn][Mn] [Si][Si] [P][P] [S][S] [Nb][Nb] [Ti][Ti] [V][V] [Sb][Sb] 비교재 1Comparative material 1 0.0380.038 0.480.48 0.030.03 0.0120.012 0.0030.003 0.010.01 00 00 00 비교재 2Comparative material 2 0.0420.042 0.520.52 0.040.04 0.0140.014 0.0040.004 0.0030.003 00 00 0.030.03 발명재 1Invention 1 0.0510.051 0.680.68 0.0450.045 0.0140.014 0.0040.004 0.0150.015 00 00 0.010.01 비교재 3Comparative material 3 0.0480.048 0.670.67 0.030.03 0.010.01 0.0040.004 0.0180.018 00 00 0.080.08 발명재 2Invention Material 2 0.0570.057 0.820.82 0.040.04 0.0140.014 0.0040.004 0.0150.015 00 00 0.020.02 발명재 3Invention 3 0.0620.062 0.80.8 0.0280.028 0.010.01 0.0050.005 0.020.02 00 00 0.10.1 비교재 4Comparative material 4 0.0680.068 0.770.77 0.0350.035 0.0120.012 0.0030.003 0.0270.027 00 00 0.060.06 비교재 5Comparative material 5 0.0710.071 0.780.78 0.040.04 0.010.01 0.0040.004 0.0430.043 00 0.020.02 00 발명재 4Invention 4 0.0690.069 0.810.81 0.0380.038 0.0140.014 0.0030.003 0.0450.045 00 0.020.02 0.020.02 비교재 6Comparative Material 6 0.070.07 0.780.78 0.040.04 0.0140.014 0.0040.004 0.0450.045 00 0.020.02 0.080.08 비교재 7Comparative material 7 0.0710.071 0.820.82 0.0420.042 0.0130.013 0.0030.003 0.0250.025 00 0.040.04 0.080.08 발명재 5Invention 5 0.0730.073 1.181.18 0.0390.039 0.0140.014 0.0040.004 0.060.06 0.020.02 0.0350.035 0.020.02 비교재 8Comparative Material 8 0.0770.077 1.221.22 0.040.04 0.0120.012 0.0040.004 0.0490.049 0.020.02 0.0350.035 00 발명재 6Invention Material 6 0.0720.072 1.21.2 0.0410.041 0.010.01 0.0040.004 0.060.06 0.020.02 0.060.06 0.080.08 발명재 7Invention Material 7 0.0690.069 1.241.24 0.040.04 0.0140.014 0.0030.003 0.0580.058 0.040.04 0.040.04 0.020.02 비교재 9Comparative material 9 0.070.07 1.191.19 0.0330.033 0.010.01 0.0040.004 0.060.06 0.060.06 0.040.04 0.040.04 비교재 10Comparative Material 10 0.0720.072 1.171.17 0.0430.043 0.0130.013 0.0040.004 0.0450.045 0.040.04 0.040.04 0.060.06 비교재 11Comparative Material 11 0.0810.081 1.211.21 0.040.04 0.0160.016 0.0040.004 0.060.06 0.040.04 0.040.04 0.080.08 비교재 12Comparative Material 12 0.0710.071 1.21.2 0.040.04 0.0130.013 0.0050.005 0.060.06 0.040.04 0.040.04 0.10.1 발명재 8Invention Material 8 0.0780.078 1.211.21 0.030.03 0.0140.014 0.0040.004 0.0580.058 0.040.04 0.040.04 0.020.02 발명재 9Invention Material 9 0.0510.051 0.680.68 0.0450.045 0.0140.014 0.0040.004 0.0150.015 00 00 0.010.01 발명재 10Invention Material 10 0.0490.049 0.710.71 0.050.05 0.0130.013 0.0030.003 0.020.02 00 00 0.040.04 발명재 11Invention Material 11 0.0570.057 0.820.82 0.040.04 0.0140.014 0.0040.004 0.0150.015 00 00 0.020.02 발명재 12Invention Material 12 0.0690.069 0.780.78 0.040.04 0.0140.014 0.0040.004 0.0250.025 00 00 0.020.02 발명재 13Invention Material 13 0.0690.069 0.80.8 0.040.04 0.0140.014 0.0040.004 0.0350.035 00 00 0.020.02 발명재 14Invention Material 14 0.0690.069 0.810.81 0.0380.038 0.0140.014 0.0030.003 0.0450.045 00 0.020.02 0.020.02 발명재 15Invention Material 15 0.0720.072 0.830.83 0.040.04 0.0150.015 0.0040.004 0.0470.047 00 0.020.02 0.040.04 발명재 16Invention 16 0.0660.066 0.790.79 0.0410.041 0.0110.011 0.0040.004 0.0460.046 00 0.060.06 0.040.04 발명재 17Invention Material 17 0.0730.073 1.181.18 0.0390.039 0.0140.014 0.0040.004 0.060.06 0.020.02 0.0350.035 0.020.02 발명재 18Invention Material 18 0.0690.069 1.241.24 0.040.04 0.0140.014 0.0030.003 0.0580.058 0.040.04 0.040.04 0.020.02 발명재 19Invention 19 0.0780.078 1.211.21 0.030.03 0.0140.014 0.0040.004 0.0580.058 0.040.04 0.040.04 0.020.02

(단위는 중량%)(Unit is weight%)

상기 표 1에 나타난 각 실시예에 대하여 하기 표 2에 나타난 바와 같이 조업조건을 달리 하여 강판을 제조하였다. 참고로 하기 표 2에서 비교강 3, 5, 8, 11, 13, 18 및 19는 성분계는 본 발명의 범위에 만족하여 표 1에서는 발명재료 표기되었으나 제조조건이 다른 경우에 해당된다.Steel sheet was prepared by varying the operating conditions as shown in Table 2 for each Example shown in Table 1. For reference, Comparative Tables 3, 5, 8, 11, 13, 18, and 19 in Table 2 are component systems satisfying the scope of the present invention.

구분division {[Nb]+[Ti]+[V]} (%){[Nb] + [Ti] + [V]} (%) Ar3
(℃)
Ar 3
(℃)
Ar3+30
(℃)
Ar 3 +30
(℃)
Ar3+100
(℃)
Ar 3 +100
(℃)
FDT
(℃)
FDT
(℃)
CT
(℃)
CT
(℃)
비교강 1Comparative Steel 1 0.010.01 860.52860.52 890.52890.52 960.52960.52 910910 600600 비교강 2Comparative Steel 2 0.0030.003 856.08856.08 886.08886.08 956.08956.08 895895 550550 비교강 3Comparative Steel 3 0.0150.015 840.49840.49 870.49870.49 940.49940.49 890890 700700 비교강 4Comparative Steel 4 0.0180.018 842.22842.22 872.22872.22 942.22942.22 890890 550550 비교강 5Comparative Steel 5 0.0150.015 827.43827.43 857.43857.43 927.43927.43 880880 700700 발명강 1Inventive Steel 1 0.020.02 827.48827.48 857.48857.48 927.48927.48 905905 500500 비교강 6Comparative Steel 6 0.0270.027 828.02828.02 858.02858.02 928.02928.02 890890 650650 비교강 7Comparative Steel 7 0.0630.063 826.29826.29 856.29856.29 926.29926.29 880880 550550 비교강 8Comparative Steel 8 0.0650.065 824.51824.51 854.51854.51 924.51924.51 840840 600600 비교강 9Comparative Steel 9 0.0650.065 826.6826.6 856.6856.6 926.6926.6 885885 600600 비교강 10Comparative Steel 10 0.0650.065 823.09823.09 853.09853.09 923.09923.09 900900 600600 비교강 11Comparative Steel 11 0.1150.115 793.67793.67 823.67823.67 893.67893.67 875875 750750 비교강 12Comparative Steel 12 0.1040.104 789.23789.23 819.23819.23 889.23889.23 885885 600600 발명강 2Inventive Steel 2 0.140.14 792.38792.38 822.38822.38 892.38892.38 870870 650650 비교강 13Comparative Steel 13 0.1380.138 790.11790.11 820.11820.11 890.11890.11 910910 600600 비교강 14Comparative Steel 14 0.160.16 793.8793.8 823.8823.8 893.8893.8 870870 550550 비교강 15Comparative Steel 15 0.1250.125 794.78794.78 824.78824.78 894.78894.78 880880 600600 비교강 16Comparative Steel 16 0.140.14 788.79788.79 818.79818.79 888.79888.79 870870 650650 비교강 17Comparative Steel 17 0.140.14 792.69792.69 822.69822.69 892.69892.69 865865 650650 비교강 18Comparative Steel 18 0.1380.138 789.72789.72 819.72819.72 889.72889.72 860860 700700 발명강 3Inventive Steel 3 0.0150.015 840.49840.49 870.49870.49 940.49940.49 890890 600600 발명강 4Inventive Steel 4 0.020.02 838.71838.71 868.71868.71 938.71938.71 887887 650650 발명강 5Inventive Steel 5 0.0150.015 827.43827.43 857.43857.43 927.43927.43 880880 650650 발명강 6Inventive Steel 6 0.0250.025 826.91826.91 856.91856.91 926.91926.91 875875 600600 비교강 19Comparative Steel 19 0.0350.035 825.31825.31 855.31855.31 925.31925.31 890890 450450 발명강 7Inventive Steel 7 0.0650.065 824.51824.51 854.51854.51 924.51924.51 900900 550550 발명강 8Inventive Steel 8 0.0670.067 821.98821.98 851.98851.98 921.98921.98 890890 600600 발명강 9Inventive Steel 9 0.1060.106 827.04827.04 857.04857.04 927.04927.04 880880 650650 발명강 10Inventive Steel 10 0.1150.115 793.67793.67 823.67823.67 893.67893.67 875875 550550 발명강 11Inventive Steel 11 0.1380.138 790.11790.11 820.11820.11 890.11890.11 865865 600600 발명강 12Inventive Steel 12 0.1380.138 789.72789.72 819.72819.72 889.72889.72 860860 600600

상기 표 1의 성분계 및 표 2의 제조조건에 의하여 실험하여 각 강판의 기계적 성질 및 산세 후 표면부 잔존 scale 면적분율 결과를 하기 표 3에 나타내었다. Experimental results based on the component system of Table 1 and the manufacturing conditions of Table 2 are shown in Table 3 below the mechanical properties of each steel sheet and the results of the surface area residual scale after pickling.

구분division YS(MPa)YS (MPa) TS(MPa)TS (MPa) TS/YSTS / YS T-El.(%)T-El. (%) YSxT-El.YSxT-El. HER(%)HER (%) 잔존Scale(%)Remaining Scale (%) 비교강 1Comparative Steel 1 308308 380380 0.810.81 38.338.3 11796.411796.4 93.293.2 6.26.2 비교강 2Comparative Steel 2 285285 370370 0.770.77 3636 1026010260 96.796.7 1.81.8 비교강 3Comparative Steel 3 330330 400400 0.820.82 38.738.7 1277112771 72.472.4 4.24.2 비교강 4Comparative Steel 4 380380 460460 0.830.83 36.136.1 1371813718 55.755.7 6.36.3 비교강 5Comparative Steel 5 378378 465465 0.810.81 37.537.5 1417514175 75.375.3 2.22.2 발명강 1Inventive Steel 1 420420 480480 0.870.87 3636 1512015120 75.175.1 1.61.6 비교강 6Comparative Steel 6 420420 480480 0.870.87 3535 1470014700 65.565.5 3.33.3 비교강 7Comparative Steel 7 460460 520520 0.880.88 3232 1472014720 70.470.4 3.13.1 비교강 8Comparative Steel 8 485485 500500 0.970.97 2626 1261012610 67.267.2 3.73.7 비교강 9Comparative Steel 9 520520 620620 0.840.84 2929 1508015080 50.450.4 5.45.4 비교강 10Comparative Steel 10 510510 615615 0.830.83 3030 1530015300 50.850.8 4.14.1 비교강 11Comparative Steel 11 534534 627627 0.850.85 2929 1548615486 50.150.1 2.82.8 비교강 12Comparative Steel 12 556556 634634 0.880.88 2727 1501215012 58.258.2 4.34.3 발명강 2Inventive Steel 2 560560 635635 0.880.88 2626 1456014560 45.645.6 4.44.4 비교강 13Comparative Steel 13 575575 648648 0.880.88 2222 1265012650 50.550.5 1.31.3 비교강 14Comparative Steel 14 578578 655655 0.880.88 2121 1213812138 45.345.3 2.92.9 비교강 15Comparative Steel 15 570570 645645 0.880.88 2323 1311013110 45.545.5 5.25.2 비교강 16Comparative Steel 16 565565 640640 0.880.88 2323 1299512995 40.140.1 6.36.3 비교강 17Comparative Steel 17 570570 635635 0.900.90 2323 1311013110 41.941.9 6.26.2 비교강 18Comparative Steel 18 550550 630630 0.870.87 2525 1375013750 40.640.6 3.83.8 발명강 3Inventive Steel 3 345345 400400 0.860.86 37.537.5 12937.512937.5 89.889.8 0.50.5 발명강 4Inventive Steel 4 350350 410410 0.850.85 3737 1295012950 80.680.6 1.11.1 발명강 5Inventive Steel 5 400400 450450 0.890.89 36.636.6 1464014640 75.875.8 0.30.3 발명강 6Inventive Steel 6 410410 470470 0.870.87 3636 1476014760 72.272.2 0.20.2 비교강 19Comparative Steel 19 440440 565565 0.780.78 3333 1452014520 70.370.3 0.50.5 발명강 7Inventive Steel 7 475475 530530 0.900.90 3131 1472514725 68.568.5 0.40.4 발명강 8Inventive Steel 8 510510 590590 0.860.86 3030 1530015300 65.465.4 0.20.2 발명강 9Inventive Steel 9 490490 575575 0.850.85 2828 1372013720 55.655.6 1.01.0 발명강 10Inventive Steel 10 557557 650650 0.860.86 2727 1503915039 55.855.8 0.70.7 발명강 11Inventive Steel 11 563563 660660 0.850.85 2525 1407514075 54.454.4 0.80.8 발명강 12Inventive Steel 12 563563 665665 0.850.85 2323 1294912949 45.445.4 1.11.1

상기 표 3에서 YS는 항복강도, TS는 인장강도, T-El.는 연신율을 의미한다. 또한, HER은 구멍확장능으로 직경 10mm의 펀칭 가공된 구멍을 확장 가공하였을 때 균열이 발생하기 시작한 때의 구멍의 직경까지의 구멍확장비율(Hole Expanding Ratio = {(D0-Df)x100}/D0)을 의미한다. 그리고, 잔존 Scale은 열연판의 80℃의 온도로 유지되는 15% HCl 수용액에서 60초 동안 산세작업 후 표면부의 단위면적당 제거되지 않고 남아있는 scale의 면적분율을 의미한다. In Table 3, YS represents yield strength, TS represents tensile strength, and T-El. Represents elongation. In addition, HER is the hole expanding ability of the hole expanding ratio up to the diameter of the hole when the crack began to occur when the punched hole of 10mm diameter is expanded (Hole Expanding Ratio = {(D 0 -D f ) x100} / D 0 ). The remaining scale means the area fraction of the scale remaining unremoved per unit area of the surface part after pickling for 60 seconds in a 15% HCl aqueous solution maintained at a temperature of 80 ° C. of the hot rolled sheet.

본 실시예의 결과를 참고하면, 본 발명에서 제안한 Sb의 함량범위를 벗어난 강들은 모두 산세 후 표면에 잔존 scale이 과도하게 남아 있는데, 이는 ① 본 발명에서 제안한 Sb의 함량범위를 초과하여 첨가된 경우 표면층의 Sb의 분포가 매우 높아지며 특히 결정립계에서의 편석이 발생하여 열간압연 중 산화물이 불균일하게 박리되거나 산세작업이 불균일하게 발생하여 오히려 결함을 유발할 수 있기 때문이며, 반면 ② 본 발명에서 제안한 함량범위보다 Sb를 적게 함유하면 Sb의 유용한 효과가 발휘되지 못하기 때문인 것으로 판단된다. Referring to the results of this embodiment, all the steels out of the Sb content range proposed in the present invention remain on the surface after pickling excessively, which is ① the surface layer when added in excess of the Sb content range proposed in the present invention The distribution of Sb is very high. Particularly, segregation occurs at grain boundaries, causing uneven peeling of the oxide during hot rolling or uneven pickling, which may cause defects. It is believed that this is due to the lack of the effective effect of Sb.

반면, Sb를 본 발명에서 제안한 함량범위에 맞게 첨가된 발명강들을 살펴보면, Sb가 주로 강판 표면부에 형성되는 산화물과 강판 기지조직 사이에 주로 존재하여 산화물의 박리 및 산세 제거에 효과적으로 작용할 수 있어, 표면품질이 우수해짐을 알 수 있다. 나아가 항복강도 270~600MPa의 강도를 가지면서 항복비가 0.8 이상을 구비하는 우수한 기계적 특성을 유지하고 있음을 알 수 있다.On the other hand, when looking at the invention steels added Sb to the content range proposed in the present invention, Sb is mainly present between the oxide formed on the surface of the steel sheet and the steel sheet matrix structure can effectively act to remove the oxide and remove pickling, It can be seen that the surface quality is excellent. Furthermore, it can be seen that the yield strength of 270 ~ 600MPa while maintaining the excellent mechanical properties having a yield ratio of 0.8 or more.

반면 Sb가 제안된 함량범위만큼 적정량 첨가된 경우라도 열간압연 후 열간압연 강판의 권취온도가 지나치게 높으면 Sb가 고온에서 원활하게 확산하여 표면부에 농화되는 양이 필요 이상으로 증가하므로 표면부에 불균일한 산화물 형성 및 불균일 산세가 이루어지게 되고 표면 품질이 저하되고, 조대 탄화물의 형성과 펄라이트 조직의 조대화로 인해 HER값이 감소하는 문제점을 나타낸다는 것을 표 2 및 표 3의 결과를 통해 확인할 수 있다. 그리고 권취온도가 너무 낮은 경우에도 미세조직 중 베이나이트 변태 분율이 너무 증가하여 강도는 증가하지만 연신율이 감소하기 때문에 자동차용 강판으로 사용하기에는 무리가 있다.On the other hand, even when Sb is added in an appropriate amount of the proposed content range, if the coiling temperature of the hot rolled steel sheet is too high after hot rolling, the amount of Sb diffuses smoothly at high temperature and the amount of concentration on the surface increases more than necessary, resulting in uneven surface area. It can be seen from the results of Table 2 and Table 3 that the oxide formation and non-uniform pickling is performed, the surface quality is deteriorated, and the HER value is decreased due to the formation of coarse carbide and coarsening of the pearlite structure. In addition, even when the coiling temperature is too low, the bainite transformation fraction in the microstructure is too high to increase the strength, but elongation is reduced, so it is unreasonable to use it as a steel sheet for automobiles.

(실시예 2)(Example 2)

상기 실시예 1의 결과로부터 본 발명의 강을 얻기 위해 필요한 권취 온도 및 Sb함량 범위를 도 1 내지 3에 나타내었다. 도 1, 2 및 3에서 표기한 "○", "△" 및 "×"는 해당 특성의 상대적인 정도를 의미하며 각각 "우수", "보통" 및 "불량"을 의미한다. The winding temperature and Sb content range required to obtain the steel of the present invention from the results of Example 1 are shown in Figs. 1, 2, and 3, "○", "△" and "x" mean the relative degree of the characteristic and mean "good", "normal" and "bad", respectively.

도 1은 본 발명에서 제안한 성분범위를 만족하는 강의 권취온도 및 Sb함량 변화에 따른 구멍확장능(HER, Hole Expanding Ratio)의 상대적인 비교 결과를, 도 2는 본 발명에서 제안한 성분범위를 만족하는 강의 권취 온도 및 Sb함량 변화에 따른 연신율 비교 결과를, 그리고 도 3은 본 발명에서 제안한 성분 범위를 만족하는 강의 권취온도 및 Sb함량 변화에 따른 잔존 Scale비율을 표현한 스케일 박리특성을 각각 비교하고 있다. 1 is a comparative comparison results of the hole expansion capacity (HER, Hole Expanding Ratio) according to the winding temperature and the Sb content of the steel satisfying the component range proposed in the present invention, Figure 2 is a steel satisfying the component range proposed in the present invention The comparison results of the elongation according to the change in the coiling temperature and the Sb content, and FIG. 3 compares the scale peeling characteristics representing the coiling temperature of the steel satisfying the component range proposed in the present invention and the remaining scale ratio according to the Sb content.

또한, 상기 도 1 내지 3에서 나타난 결과를 토대로 각 특성이 모두 양호한 공통범위를 도출하여 하기 도 4에 나타내었다. 도 4에 나타난 범위를 만족하는 권취 온도 및 Sb 함량을 가지는 강재는 물리적 특성뿐만 아니라 표면품질도 우수하여 그 효용성이 우수할 것으로 기대된다.In addition, based on the results shown in FIGS. 1 to 3, each characteristic is shown in FIG. 4 to obtain a good common range. Steel having a winding temperature and Sb content satisfying the range shown in Figure 4 is expected to be excellent in its utility as well as the physical properties as well as the surface quality.

도 1은 권취온도와 Sb함량에 따른 구멍확장능 변화를 나타내는 그래프.1 is a graph showing the hole expansion capacity change according to the coiling temperature and the Sb content.

도 2. 권취온도와 Sb함량에 따른 연신율의 변화를 나타내는 그래프.2 is a graph showing the change in elongation according to the coiling temperature and the Sb content.

도 3. 권취온도와 Sb함량에 따른 스케일 박리특성 변화를 나타내는 그래프.Figure 3 is a graph showing the change in scale peeling characteristics according to the coiling temperature and Sb content.

도 4. 본 발명에 부합하는 권취온도와 Sb의 함량 사이의 영역울 나타내는 그래프4. Graph showing the area between the coiling temperature and the content of Sb in accordance with the present invention

Claims (9)

중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하(0은 제외), P:0.03%이하(0은 제외), S:0.01%이하(0은 제외), sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하며 항복비가 0.8 이상인 것을 특징으로 하는 열연강판.In weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less (excluding 0), P: 0.03% or less (excluding 0), S: 0.01% or less (excluding 0) , sol.Al: 0.005 ~ 0.10%, N: 0.002 ~ 0.008%, Sb: 0.005 ~ 0.04% and Ti: 0.01 ~ 0.06%, Nb: 0.01 ~ 0.06%, V: 0.01 ~ 0.1% Hot rolled steel sheet characterized in that the yield ratio is 0.8 or more. 제1항에 있어서, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립하는 것을 특징으로 하는 열연강판.The hot rolled steel sheet according to claim 1, wherein a relationship of 0.01? {[Ti] + [Nb] + [V]}? 0.15 is established between the Ti, Nb, and V. 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하(0은 제외), P:0.03%이하(0은 제외), S:0.01%이하(0은 제외), sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하며,In weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less (excluding 0), P: 0.03% or less (excluding 0), S: 0.01% or less (excluding 0) , sol.Al: 0.005 ~ 0.10%, N: 0.002 ~ 0.008%, Sb: 0.005 ~ 0.04% and Ti: 0.01 ~ 0.06%, Nb: 0.01 ~ 0.06%, V: 0.01 ~ 0.1% , 50~100℃의 온도로 유지되는 10~20% HCl 수용액으로 산세처리되고, 항복비가 0.8 이상인 것을 특징으로 하는 열연산세강판.Hot-rolled steel sheet, characterized in that the pickling treatment with 10-20% HCl aqueous solution maintained at a temperature of 50 ~ 100 ℃, yield ratio is 0.8 or more. 제3항에 있어서, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립하는 것을 특징으로 하는 열연산세강판.The hot-rolled steel sheet according to claim 3, wherein a relation of 0.01? {[Ti] + [Nb] + [V]}? 0.15 is established between the Ti, Nb, and V. 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하(0을 제외), P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하는 강 슬라브에 대하여,By weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less (excluding 0), P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 to 0.10%, For steel slabs containing at least one of N: 0.002 to 0.008%, Sb: 0.005 to 0.04% and Ti: 0.01 to 0.06%, Nb: 0.01 to 0.06%, V: 0.01 to 0.1%, 1200~1300℃로 재가열하는 재가열 단계;Reheating step to reheat to 1200 ~ 1300 ℃; Ar3+30~Ar3+100℃에서 마무리압연하는 마무리압연 단계; 및Ar 3 + 30 ~ finish rolling step of rolling, finishing Ar 3 + 100 ℃; And 500~650℃에서 권취하는 권취 단계;Winding step of winding at 500 ~ 650 ° C; 를 포함하며 항복비가 0.8 이상인 열연강판을 제조하는 것을 특징으로 하는 열연강판의 제조방법.The method of manufacturing a hot rolled steel sheet comprising a hot rolled steel sheet having a yield ratio of 0.8 or more. 단, Ar3 = 910 - 310*C - 80*Mn - 20*Cu - 15*Cr - 55*Ni - 80*Mo - 0.35*(thick-8)However, Ar 3 = 910-310 * C-80 * Mn-20 * Cu-15 * Cr-55 * Ni-80 * Mo-0.35 * (thick-8) 제5항에 있어서, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립하는 것을 특징으로 하는 열연강판의 제조방법.The method of manufacturing a hot rolled steel sheet according to claim 5, wherein a relation of 0.01? {[Ti] + [Nb] + [V]}? 0.15 is established between the Ti, Nb, and V. 중량%로, C:0.04~0.13%, Mn:0.4~1.3%, Si:0.3%이하(0을 제외), P:0.03%이하, S:0.01%이하, sol.Al: 0.005~0.10%, N:0.002~0.008%, Sb:0.005~0.04% 및 Ti:0.01~0.06%, Nb:0.01~0.06%, V:0.01~0.1% 중 1종 이상을 포함하는 강 슬라브에 대하여,By weight%, C: 0.04 to 0.13%, Mn: 0.4 to 1.3%, Si: 0.3% or less (excluding 0), P: 0.03% or less, S: 0.01% or less, sol.Al: 0.005 to 0.10%, For steel slabs containing at least one of N: 0.002 to 0.008%, Sb: 0.005 to 0.04% and Ti: 0.01 to 0.06%, Nb: 0.01 to 0.06%, V: 0.01 to 0.1%, 1200~1300℃로 재가열하는 재가열 단계;Reheating step to reheat to 1200 ~ 1300 ℃; Ar3+30~Ar3+100℃에서 마무리압연하는 마무리압연 단계;Ar 3 + 30 ~ finish rolling step of rolling, finishing Ar 3 + 100 ℃; 500~650℃에서 권취하는 권취 단계; 및Winding step of winding at 500 ~ 650 ° C; And 50~100℃의 온도로 유지되는 HCl 수용액으로 산세처리하는 산세단계;Pickling step of pickling treatment with aqueous HCl solution maintained at a temperature of 50 ~ 100 ℃; 를 포함하며 항복비가 0.8 이상인 열연산세강판을 제조하는 것을 특징으로 하는 열연산세강판의 제조방법.The method of manufacturing a hot-rolled steel sheet comprising a hot-rolled steel sheet having a yield ratio of 0.8 or more. 단, Ar3 = 910 - 310*C - 80*Mn - 20*Cu - 15*Cr - 55*Ni - 80*Mo - 0.35*(thick-8)However, Ar 3 = 910-310 * C-80 * Mn-20 * Cu-15 * Cr-55 * Ni-80 * Mo-0.35 * (thick-8) 제7항에 있어서, 상기 Ti, Nb 및 V 사이에는 0.01 ≤ {[Ti] + [Nb] + [V]} ≤ 0.15의 관계가 성립하는 것을 특징으로 하는 열연산세강판의 제조방법.The method for manufacturing a hot-rolled steel sheet according to claim 7, wherein a relationship of 0.01? {[Ti] + [Nb] + [V]}? 0.15 is established between the Ti, Nb, and V. 제7항에 있어서, 상기 HCl 수용액의 농도는 10~20%임을 특징으로 하는 열연산세강판의 제조방법.8. The method of claim 7, wherein the concentration of the HCl aqueous solution is 10-20%.
KR1020080045192A 2008-05-15 2008-05-15 High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof KR100992317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080045192A KR100992317B1 (en) 2008-05-15 2008-05-15 High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080045192A KR100992317B1 (en) 2008-05-15 2008-05-15 High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20090119265A KR20090119265A (en) 2009-11-19
KR100992317B1 true KR100992317B1 (en) 2010-11-05

Family

ID=41602982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080045192A KR100992317B1 (en) 2008-05-15 2008-05-15 High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100992317B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205565B (en) * 2019-06-01 2021-08-24 东莞市东莞理工科技创新研究院 Dispersion nanometer strengthened 690 steel and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711358B1 (en) * 2005-12-09 2007-04-27 주식회사 포스코 High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability, bake hardenability and plating property, and the method for manufacturing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711358B1 (en) * 2005-12-09 2007-04-27 주식회사 포스코 High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability, bake hardenability and plating property, and the method for manufacturing thereof

Also Published As

Publication number Publication date
KR20090119265A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
KR100711361B1 (en) High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same
KR101069968B1 (en) High strength hot-rolled steel sheet having exceelent impact resistance and paintability and method for manufacturing the same
KR101560944B1 (en) High strength hot rolled steel sheet having excellent surface property and method for manufacturing the same
KR101256523B1 (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR102336757B1 (en) Hot stamping product and method of manufacturing the same
KR20110119285A (en) Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR101245699B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 590MPa CLASS HOT ROLLED TRIP STEEL WITH EXCELLENT VARIATION OF MECHANICAL PROPERTY
KR100957944B1 (en) Hot-Rolled Steel Sheet, Hot-Rolled Pickling Steel Sheet having Excellent Stretch Flange Ability and Weldability and Manufacturing Method Thereof
KR20160089316A (en) High strength hot rolled steel sheet having excellent bake hardenability and low yield ratio and method for manufacturing thereof
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
KR100992317B1 (en) High Yield Ratio Hot Rolled Steel Sheet and Hot Rolled Pickled Steel Sheet with Excellent Descalability and Manufacturing Method Thereof
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR101449137B1 (en) High strength hot-rolled steel having excellent weldability and hydroforming workability and method for manufacturing thereof
KR100711474B1 (en) Method for manufacturing hot-rolled steel sheet with superior bake hardenability
KR101568495B1 (en) High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR20130036752A (en) Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof
KR20110076431A (en) Hot rolled high strength steel sheet having excellent workability and method for manufacturing the same
KR101330286B1 (en) High strength hot-rolled sheet steel having execellent surface properties and manufacturing method thereof
KR101330284B1 (en) Method for manufacturing formable hot-rolled steel having excellent surface quality and the hot-rolled steel by the same method
KR20120063196A (en) Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof
KR101081098B1 (en) Hot rolled steel sheet having high yield ratio strength and used for fabricating galvanized steel sheet
KR101344565B1 (en) Method for manufacturing steel sheet
KR101569357B1 (en) Low yield ratio high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR101433445B1 (en) Method for manufacturing formable hot-rolled steel having excellent surface quality and the hot-rolled steel by the same method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141029

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171026

Year of fee payment: 8