KR100294057B1 - Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer - Google Patents

Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer Download PDF

Info

Publication number
KR100294057B1
KR100294057B1 KR1019960034876A KR19960034876A KR100294057B1 KR 100294057 B1 KR100294057 B1 KR 100294057B1 KR 1019960034876 A KR1019960034876 A KR 1019960034876A KR 19960034876 A KR19960034876 A KR 19960034876A KR 100294057 B1 KR100294057 B1 KR 100294057B1
Authority
KR
South Korea
Prior art keywords
silicon
structure layer
substrate
solar cell
silicon structure
Prior art date
Application number
KR1019960034876A
Other languages
Korean (ko)
Other versions
KR970013435A (en
Inventor
무네히로 시부야
마사토시 기타가와
유우지 무카이
아키히사 요시다
Original Assignee
모리시타 요이찌
마쯔시다덴기산교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모리시타 요이찌, 마쯔시다덴기산교 가부시키가이샤 filed Critical 모리시타 요이찌
Publication of KR970013435A publication Critical patent/KR970013435A/en
Application granted granted Critical
Publication of KR100294057B1 publication Critical patent/KR100294057B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

본 발명은, 실리콘 구조체층을 포함하는 반도체장치, 그 층의 제조방법 및 제조장치와 그 층을 이용한 태양전지를 제공하기 위한 것이다. 이를 위해, 본 발명에 있어서는 석영기판(42)의 전면에 두께가 약 1㎛인 Mo를 퇴적하여 하부전극(41)을 형성한다. 하부전극(41)의 전면에 BCl3을 첨가한 Si2Cl6을 사용하여 실리콘을 주성분으로 하는 막(47)을 매개해서 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘(48)의 집합으로 이루어지는 두께가 30∼40㎛인 p형 실리콘 구조체층(43)을 형성한다. p형 실리콘 구조체층(43)의 표면에 POCl3을 이용한 열확산법에 의해 P(인)를 확산시켜서 원기둥형상 실리콘(48)의 외주부분에 n형 영역(44)을 형성한다. p형 실리콘 구조체층(43)의 전면에 두께가 30∼40㎛인 인듐-주석 산화물로 이루어지는 투명전극(45)을 형성하고, 투명전극(45)상에 두께가 약 1㎛인 Al로 이루어지는 상부전극(46)을 형성한다.The present invention is to provide a semiconductor device comprising a silicon structure layer, a method for manufacturing the layer and a manufacturing apparatus, and a solar cell using the layer. To this end, in the present invention, Mo having a thickness of about 1 μm is deposited on the entire surface of the quartz substrate 42 to form the lower electrode 41. A plurality of cylindrical silicon 48 containing silicon as a main component, which is directed in an irregular direction via a film 47 containing silicon as a main component, using Si 2 Cl 6 with BCl 3 added to the front surface of the lower electrode 41. A p-type silicon structure layer 43 having a thickness of 30 to 40 µm is formed. P (phosphorus) is diffused on the surface of the p-type silicon structure layer 43 by the thermal diffusion method using POCl 3 to form the n-type region 44 in the outer circumferential portion of the cylindrical silicon 48. A transparent electrode 45 made of indium-tin oxide having a thickness of 30 to 40 µm is formed on the entire surface of the p-type silicon structure layer 43, and an upper portion of Al having a thickness of about 1 µm is formed on the transparent electrode 45. An electrode 46 is formed.

Description

실리콘 구조체층을 포함하는 반도체장치, 그 층의 제조방법 및 제조장치와 그 층을 이용한 태양전지A semiconductor device comprising a silicon structure layer, a method for manufacturing the layer, and a manufacturing apparatus and a solar cell using the layer

본 발명은 발광소자나 태양전지 등에 유효하게 이용할 수 있는 실리콘 구조체층을 포함하는 반도체장치, 그 층의 제조방법 및 제조장치와 그 층을 이용한 태양전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device including a silicon structure layer that can be effectively used for a light emitting element, a solar cell, or the like, a method for manufacturing the layer, and a manufacturing apparatus and a solar cell using the layer.

종래, 실리콘을 이용한 태양전지는 그 표면에 있어서의 태양광선의 반사를 저감하기 위해, 표면에 무반사 코팅이 실시되거나 표면에 요철이 형성되어 있다.Conventionally, in the solar cell using silicon, in order to reduce reflection of the sunlight on the surface, antireflective coating is given to the surface or the unevenness | corrugation is formed in the surface.

이하 도면을 참조하면서 종래의 태양전지의 구조에 대해서 설명한다. 도7은 종래의 실리콘 태양전지의 구조[텍스쳐(textured)구조]를 도시한 개략 단면도이다. 도7에 도시한 바와 같이 p형 실리콘 기판(31)의 수광면측에는 태양광선의 반사율을 낮추기 위해 요철이 형성되어 있다. 요철의 형성방법으로서는, 포토리소그래피와 광학 에칭을 이용하여 광학적으로 형성하는 방법이나, 다이싱머신을 이용하여 기계적으로 형성하는 방법이 주로 이용된다. 또, 실리콘기판으로서는 회선인상법에 의해 형성되는 단결정 실리콘기판이나, 전자주조법에 의해 형성되는 다결정 실리콘기판 등이 이용된다. p형 실리콘기판(31)의 요철면상에는 n형 실리콘층(32)이 형성되어 있다. 이 n형 실리콘층(32)은 p형 실리콘기판(31)의 요철부에 POCl3등의 가스를 이용하여 P(인)를 확산시켜 p형 실리콘기판(31)의 일부를 n형화함으로써 형성된다. n형 실리콘층(32)의 위에는 SiN, MgF2등으로 이루어지는 반사방지막(33)이 형성되어 있다. 또, p형 실리콘기판(31)의 수광면 측에는 n++실리콘층(35)을 매개해서 표면전극(34)이 형성되어 있고, 표면전극(34)은 반사방지막(33)의 표면에 노출되어 있다. 한편, p형 실리콘기판(31)의 이면에는 p+실리콘층(37)을 매개해서 이면전극(36)이 형성되어 있다. 이와같이, 이면전극(36)과 p형 실리콘기판(31) 사이에 p+실리콘층(37)을 형성하면 변환비율이 향상된다(제3회 『고효율 태양전지』워크숍 예고집, 전기학회 반도체 전력변환 기술위원회 주최, 후쿠야마, A5∼A6, 28-35쪽, 1992년 10월 5일).Hereinafter, a structure of a conventional solar cell will be described with reference to the drawings. 7 is a schematic cross-sectional view showing the structure (textured structure) of a conventional silicon solar cell. As shown in FIG. 7, unevenness is formed on the light-receiving surface side of the p-type silicon substrate 31 to lower the reflectance of the sunlight. As the method of forming the unevenness, a method of optically forming using photolithography and optical etching or a method of mechanically forming using a dicing machine is mainly used. As the silicon substrate, a single crystal silicon substrate formed by the line impression method, a polycrystalline silicon substrate formed by the electron casting method, or the like is used. An n-type silicon layer 32 is formed on the uneven surface of the p-type silicon substrate 31. The n-type silicon layer 32 is formed by diffusing P (phosphorus) with a gas such as POCl 3 in the uneven portion of the p-type silicon substrate 31 to n-type a portion of the p-type silicon substrate 31. . An antireflection film 33 made of SiN, MgF 2, or the like is formed on the n-type silicon layer 32. The surface electrode 34 is formed on the light-receiving surface side of the p-type silicon substrate 31 via the n ++ silicon layer 35, and the surface electrode 34 is exposed on the surface of the antireflection film 33. On the other hand, the back electrode 36 is formed on the back surface of the p-type silicon substrate 31 via the p + silicon layer 37. As such, the formation of the p + silicon layer 37 between the back electrode 36 and the p-type silicon substrate 31 improves the conversion ratio (3rd "High Efficiency Solar Cell" Workshop Preliminary Proceedings, The Institute of Electrical Engineering Semiconductor Power Conversion Technology). Host Committee, Fukuyama, A5-A6, pp. 28-35, 5 October 1992).

그러나, 상기 종래기술에 있어서의 실리콘 태양전지의 구성에서는 태양광선을 효율적으로 수집할 수는 있으나, 요철을 형성할 때의 복잡한 공정이 많기 때문에, 코스트가 증가하여 실용화가 곤란하였다.However, in the structure of the silicon solar cell according to the prior art, it is possible to efficiently collect sunlight, but since there are many complicated processes for forming the unevenness, the cost is increased and it is difficult to put into practical use.

본 발명은 종래 기술에 있어서의 상기 과제를 해결하기 위해 이루어진 것으로서, 태양광선의 반사가 적은 실리콘 구조체층을 포함하는 반도체장치, 그 층의 제조방법 및 제조장치와 그 층을 이용한 태양전지틀 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems in the prior art, and provides a semiconductor device comprising a silicon structure layer having less reflection of sunlight, a method for manufacturing the layer and a manufacturing apparatus, and a solar cell frame using the layer. For the purpose of

도1은 본 발명의 제1 실시형태에서 사용한 실리콘막 형성장치를 도시한 개략단면도이다.1 is a schematic cross-sectional view showing a silicon film forming apparatus used in the first embodiment of the present invention.

도2는 본 발명의 제1 실시형태에서 형성한 실리콘 구조체층의 전자현미경 (SEM) 사진의 트레이스도이다.Fig. 2 is a trace diagram of an electron microscope (SEM) photograph of the silicon structure layer formed in the first embodiment of the present invention.

도3은 본 발명의 제1 실시형태에 있어서의 산소첨가량을 변화시켰을 경우의 실리콘막 표면형상의 레이저 현미경 사진의 트레이스도이다.Fig. 3 is a trace diagram of a laser micrograph of a silicon film surface shape when the amount of oxygen addition in the first embodiment of the present invention is changed.

도4는 본 발명의 제1 실시형태에 의해서 석영기판상에 형성된 실리콘 구조체층의 가시광 투과 스펙트럼이다.4 is a visible light transmission spectrum of a silicon structure layer formed on a quartz substrate according to the first embodiment of the present invention.

도5는 본 발명의 제2 실시형태에 있어서의 실리콘 구조체층을 이용한 태양전지의 제조공정도이다.5 is a manufacturing process diagram of a solar cell using the silicon structure layer in the second embodiment of the present invention.

도6은 본 발명의 제2 실시형태에 있어서의 태양전지의 구조를 도시한 단면도이다.6 is a cross-sectional view showing the structure of a solar cell according to a second embodiment of the present invention.

도7은 종래의 실리콘 태양전지의 구조[텍스쳐(textured) 구조]를 도시한 개략단면도이다.7 is a schematic sectional view showing the structure (textured structure) of a conventional silicon solar cell.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

11 : 성막실 12 : 기판홀더11 film deposition chamber 12 substrate holder

13 : 기판 14 : 기화실13 substrate 14 vaporization chamber

15 : 액체원료 17 : 배기구15: liquid raw material 17: exhaust port

18 : 원료가스 공급구 21 : 기판가열용 히터18: source gas supply port 21: substrate heating heater

22 : 액체유량 제어장치 23 : 기화기22: liquid flow rate control device 23: vaporizer

24 : 산소가스 25 : 환원성 가스24: oxygen gas 25: reducing gas

26 : 필터 27 : 기화보조용 히터26: filter 27: vaporization auxiliary heater

41 : 하부전극 42 : 석영기판41: lower electrode 42: quartz substrate

43 : p형 실리콘 구조체층 44 : n형 영역43: p-type silicon structure layer 44: n-type region

45 : 투명전극 46 : 상부전극45 transparent electrode 46 upper electrode

47 : 실리콘을 주성분으로 하는 막 48 : 원기둥형상 실리콘47 Membrane based on silicon 48 Cylindrical silicon

상기 목적을 달성하기 위해, 본 발명에 관한 실리콘 구조체층을 포함하는 반도체장치는, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 포함하여 구성된다. 이 실리콘 구조체층을 포함하는 반도체장치의 구성에 의하면, 어느 원기둥형상 실리콘에 입사하여 반사된 광이 다시 다른 원기둥형상 실리콘에 입사하기 때문에, 효율좋게 태양광선을 흡수할 수 있다. 즉;본 발명의 실리콘 구조체층을 포함하는 반도체장치의 구성에 의하면 태양광선의 반사가 적은 실리콘 구조체층을 얻을 수 있다. 여기에서, 원기둥형상 실리콘의 실리콘 함유량은 95중량% 이상인 것이 바람직하고, 실리콘 이외에 염소 약 1중량%, 산소 수(數) 중량%를 함유하고 있어도 된다.In order to achieve the above object, the semiconductor device including the silicon structure layer according to the present invention comprises a silicon structure layer composed of a collection of a plurality of cylindrical silicon containing silicon as a main component facing in an irregular direction. According to the structure of the semiconductor device including the silicon structure layer, since the light incident on and reflected on the cylindrical silicon is incident on the other cylindrical silicon again, the sunlight can be absorbed efficiently. That is, according to the structure of the semiconductor device containing the silicon structure layer of this invention, the silicon structure layer with little reflection of sunlight can be obtained. Here, it is preferable that the silicon content of columnar silicon is 95 weight% or more, and may contain about 1 weight% of chlorine and the weight of oxygen water in addition to silicone.

또, 상기 본 발명의 실리콘 구조체층을 포함하는 반도체장치의 구성에 있어서는, 기판이 더 구비되고 상기 기판에 실리콘을 주성분으로 하는 막을 매개해서 상기 실리콘 구조체층이 형성되어 있는 것이 바람직하다. 이 바람직한 예에 의하면, 실리콘 구조체층을 이용하여 태양전지를 제조할 경우에 투명전극이 하부전극에 접촉해 버리는 일이 없다.Moreover, in the structure of the semiconductor device containing the silicon structure layer of the said invention, it is preferable that the said silicon structure layer is further provided through the board | substrate and the film | membrane which has a silicon as a main component in the said board | substrate is formed. According to this preferred example, when the solar cell is manufactured using the silicon structure layer, the transparent electrode does not come into contact with the lower electrode.

또, 상기 본 발명의 실리콘 구조체층을 포함하는 반도체장치의 구성에 있어서는, 원기둥형상 실리콘의 직경이 0.1∼10㎛인 것이 바람직하다. 이 바람직한 예에 의하면, 원기둥형상 실리콘을 적당한 강도로 유지할 수 있음과 동시에, 확산 등에 의해 실리콘의 표면을 n형화 또는 p형화할 때의 접합의 깊이가 제한되는 일은 없다. 또, 광의 흡수가 악화되는 일은 없다.Moreover, in the structure of the semiconductor device containing the silicon structure layer of the said invention, it is preferable that the diameter of cylindrical silicon is 0.1-10 micrometers. According to this preferred example, the cylindrical silicon can be maintained at an appropriate strength and the depth of bonding when n-type or p-type the silicon surface is diffused by diffusion or the like is not limited. In addition, absorption of light does not deteriorate.

또, 상기 본 발명의 실리콘 구조체층을 포함하는 반도체 장치의 구성에 있어서는, 원기둥 형상 실리콘의 외주부분이 비정질이고 중심부분이 다결정질인 것이 바람직하다.Moreover, in the structure of the semiconductor device containing the silicon structure layer of the said invention, it is preferable that the outer peripheral part of cylindrical silicon is amorphous, and the central part is polycrystalline.

또, 본 발명에 관한 실리콘 구조체층의 제조방법은, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층의 제조방법에 있어서, 염소를 함유하는 무화(霧化) 또는 기화한 실리콘 원료를 산소가스와 함께 가열된 기판상에 도입하는 것을 특징으로 한다. 이 실리콘 구조체층의 제조방법에 의하면, 실란가스(SiH4) 등에 비해서 위험성이 적은 실리콘 원료를 사용할 수 있기 때문에, 실리콘 원료를 대량으로 공급할 수 있다. 그 결과, 실리콘의 형성속도가 향상되기 때문에, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 얻을 수 있다. 이 경우, 염소를 함유하는 실리콘 원료를 반송하기 위해, 불활성가스를 동시에 기판상에 도입해도 된다. 또, 불활성가스중에 수소를 첨가하거나, 또는 불활성가스를 사용하지 않고 수소만으로 실리콘 원료를 반송하면, 실리콘 구조체층 중에 함유되는 염소의 양을 감소시킬 수도 있다. 또, 종래의 텍스쳐 textured) 구조와 같이 요철을 형성할 때의 복잡한 공정을 필요로 하지 않기 때문에, 코스트의 저감을 도모할 수 있다.Moreover, the manufacturing method of the silicon structure layer which concerns on this invention is a manufacturing method of the silicon structure layer which consists of a collection of many cylindrical silicon which has silicon as a main component which goes to an irregular direction, and contains chlorine-containing atomization. Or vaporized silicon raw material is introduced onto the heated substrate with oxygen gas. According to the production process of a silicon layer structure, it is possible to use a silicon raw material or the like with less risk than silane gas (SiH 4), it is possible to supply a large amount of the silicon raw material. As a result, since the formation speed of silicon improves, the silicon structure layer which consists of a collection of many cylindrical silicon which has silicon as a main component facing an irregular direction can be obtained. In this case, in order to convey the silicon raw material containing chlorine, you may introduce an inert gas on a board | substrate simultaneously. In addition, by adding hydrogen to the inert gas or conveying the silicon raw material only with hydrogen without using the inert gas, the amount of chlorine contained in the silicon structure layer can be reduced. Moreover, since the complicated process at the time of forming an unevenness | corrugation like a conventional textured textured structure is not required, cost reduction can be aimed at.

또, 상기 본 발명의 실리콘 구조체층의 제조장치에 있어서는, 염소를 함유하는 실리콘재료가 Si2Cl6인 것이 바람직하다. 이 바람직한 예에 의하면, 분해 온도가 약 350℃로 낮아서 자외선(188nm)의 조사에 의해 분해되기 때문에, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 용이하게 얻을 수 있다. 또, 이 경우에는 Si2Cl6으로 이루어지는 실리콘 재료에 PCl3또는 BCl3을 혼합한 액체원료를 이용하여, n형 또는 p형의 실리콘 구조체층을 형성하는 것이 바람직하다.Further, in the manufacturing apparatus of the present invention of a silicon layer structure, a silicon material containing chlorine is preferably a Si 2 Cl 6. According to this preferred example, since the decomposition temperature is lowered to about 350 ° C. and decomposed by irradiation with ultraviolet rays (188 nm), a silicon structure layer composed of a plurality of silicon-based cylindrical silicon-based components directed in an irregular direction is easily provided. You can get it. In this case, it is preferable to form an n-type or p-type silicon structure layer using a liquid raw material in which PCl 3 or BCl 3 is mixed with a silicon material composed of Si 2 Cl 6 .

또, 상기 본 발명의 실리콘 구조체층의 제조방법에 있어서는, 원기둥형상 실리콘의 중심부근의 산소함유량이 3%이하가 되도록 산소가스를 도입하는 것이 바람직하다. 이 바람직한 예에 의하면, 실리콘 구조체층의 저항이 낮게 억제되어 전자디바이스에 사용하는 것이 가능해진다.In the method for producing a silicon structure layer of the present invention, it is preferable to introduce oxygen gas so that the oxygen content of the central portion of the cylindrical silicon is 3% or less. According to this preferred example, the resistance of the silicon structure layer is suppressed to be low, which makes it possible to use the electronic device.

또, 본 발명에 관한 실리콘 구조체층의 제조장치의 구성은, 기판상에, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 형성하는 제조장치에 있어서, 챔버와, 무화 또는 기화한 액체원료를 산소가스와 함께 챔버내에 공급하는 수단과, 상기 기판을 지지하기 위한 기판홀터 지지부와, 상기 기판을 가열하기 위한 기판가열용 히터와, 적어도 기판과 같은 면적을 가지고, 상기 무화 또는 기화된 액체원료 및 상기 산소가스를 통과시켜서 상기 가열된 기판상에 도입하는 필터를 구비한 것을 특징으로 한다. 이 실리콘 구조체층의 제조장치의 구성에 의하면, 무화 또는 기화한 액체원료는 필터를 통과할 때에 당해 필터와 거의 같은 크기로 균일하게 분산되어서 기판표면에 도입되기 때문에, 기판상에 균일하게 실리콘 구조체층을 형성할 수 있다.Moreover, the structure of the manufacturing apparatus of the silicon structure layer which concerns on this invention is a manufacturing apparatus which forms on the board | substrate the silicon structure layer which consists of a collection of many cylindrical silicon which has silicon as a main component, and orients in an irregular direction, Means for supplying the chamber, the atomized or vaporized liquid raw material together with oxygen gas, a substrate holder support for supporting the substrate, a substrate heating heater for heating the substrate, and at least the same area as the substrate. And a filter which passes the atomized or vaporized liquid raw material and the oxygen gas and introduces it onto the heated substrate. According to the structure of the apparatus for producing a silicon structure layer, the atomized or vaporized liquid raw material is uniformly dispersed in the same size as that of the filter when passing through the filter and is introduced to the substrate surface, so that the silicon structure layer is uniformly formed on the substrate. Can be formed.

또, 상기 본 발명의 실리콘 구조체층의 제조장치에 있어서는, 필터가 스테인레스강 섬유로 이루어지는 것이 바람직하다. 이 바람직한 예에 의하면, 면적이 크면서 또한 공극률이 70∼90%로 매우 큰 필터를 낮은 코스트로 형성할 수 있다. 그리고, 이 필터를 이용하여 기화실과 성막실을 간막이하면, 기화실과 성막실의 압력차가 발생하기 어려워져서, 단열팽창에 의한 원료의 재액화가 일어나기 어려워진다.Moreover, in the manufacturing apparatus of the silicon structure layer of the said invention, it is preferable that a filter consists of stainless steel fibers. According to this preferred example, a filter having a large area and a very large porosity of 70 to 90% can be formed at low cost. When the vaporization chamber and the deposition chamber are partitioned using this filter, the pressure difference between the vaporization chamber and the deposition chamber is less likely to occur, and the liquefaction of the raw materials due to the adiabatic expansion is less likely to occur.

또, 상기 본 발명의 실리콘 구조체층의 제조장치에 있어서는, 필터의 구멍 직경이 1∼30㎛인 것이 바람직하다. 이 바람직한 예에 의하면, 원료가스, 산소가스 등을 기판에 균일하게 뿜을 수 있다.Moreover, in the manufacturing apparatus of the silicon structure layer of the said invention, it is preferable that the hole diameter of a filter is 1-30 micrometers. According to this preferable example, source gas, oxygen gas, etc. can be sprayed uniformly on a board | substrate.

또, 본 발명에 관한 태양전지의 구성은 광 조사에 의해 전자-정공쌍을 생성하는 반도체층을 구비한 태양전지에 있어서, 상기 반도체층이 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 포함하는 것을 특징으로 한다. 이 태양전지의 구성에 의하면, 태양전지의 반사가 적어지기 때문에 효율좋게 발전에 기여할 수 있다.Moreover, the structure of the solar cell which concerns on this invention is a solar cell provided with the semiconductor layer which produces | generates an electron-hole pair by light irradiation, WHEREIN: The many cylinder shape which has a silicon as a main component in which the said semiconductor layer faces an irregular direction And a silicon structure layer made of a collection of silicon. According to the structure of this solar cell, since the reflection of a solar cell becomes small, it can contribute to power generation efficiently.

또, 상기 본 발명의 태양전지의 구성에 있어서는 실리콘 구조체층을 형성하는 기판이 더 구비되고 상기 기판에 실리콘을 주성분으로 하는 막을 매개해서 상기 실리콘 구조체층이 형성되어 있는 것이 바람직하다.Moreover, in the structure of the solar cell of the said invention, it is preferable that the board | substrate which forms a silicon structure layer is further provided, and the said silicon structure layer is formed through the film | membrane which has a silicon as a main component in the said board | substrate.

또, 상기 본 발명의 태양전지의 구성에 있어서는, 원기둥형상 실리콘의 직경이 0.1∼10㎛인 것이 바람직하다.Moreover, in the structure of the solar cell of the said invention, it is preferable that the diameter of cylindrical silicon is 0.1-10 micrometers.

또, 상기 본 발명의 태양전지의 구성에 있어서는, 원기둥형상 실리콘의 외주부분이 비정질이고 중심부분이 다결정질인 것이 바람직하다.Moreover, in the structure of the solar cell of this invention, it is preferable that the outer peripheral part of cylindrical silicon is amorphous, and the center part is polycrystalline.

또, 상기 본 발명의 태양전지의 구성에 있어서는, 반도체층중 광이 입사하는 측의 표면에 실리콘 구조체층이 형성되어 있는 것이 바람직하다.Moreover, in the structure of the solar cell of the said invention, it is preferable that the silicon structure layer is formed in the surface of the side in which light injects in a semiconductor layer.

또, 상기 본 발명의 태양전지의 구성에 있어서는, 원기둥형상 실리콘 내부에 pn접합을 가지는 것이 바람직하다. 이 바람직한 예에 의하면, 이하와 같은 작용을 거둘 수 있다. 즉, 다수의 원기둥형상 실리콘으로 이루어지는 실리콘 구조체층의 경우에는 종래의 평탄한 막에 비해서 pn접합부분의 면적이 증대하기 때문에 효율좋게 발전을 행할 수 있다.Moreover, in the structure of the solar cell of this invention, it is preferable to have a pn junction in cylindrical silicon. According to this preferred example, the following effects can be obtained. That is, in the case of a silicon structure layer made of a large number of cylindrical silicon, the area of the pn junction portion is increased compared to the conventional flat film, so that power generation can be efficiently performed.

이하, 실시형태를 이용하여 본 발명을 더욱 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated further more concretely using embodiment.

[제1 실시형태][First Embodiment]

도1은 본 발명의 제1 실시형태에서 사용한 실리콘막 형성장치를 도시한 개략 구성도이다. 도1에 도시한 바와 같이, 공기 등이 들어가지 않는 구조를 가지는 성막실(11)의 내부는 수평한 필터(26)에 의해 간막이 되어 있다. 여기에서, 필터(26)는 직경이 수㎛인 다수의 스테인레스강 섬유를 소결함으로써 만들어져 있고, 그 구멍의 직경은 약 10㎛이다. 성막실(11)에는 필터(26)의 하부측[기화실 14)]의 측벽에 원료가스 공급구(18)가 설치되어, 유량제어장치(22)에 의해 적정한 양으로 유량제어되고 또한 기화기(23)에 의해 무화 또는 기화된 액체원료(15)를 성막실(11)에 공급할 수 있도록 되어 있다. 여기에서, 기화기(23)에는 산소가스(24)를 공급할 수 있도록 되어 있고, 산소가스(24)가 혼합된 상태의 액체원료(15)가 성막실(11)내에 공급된다. 또, 성막실(11)에는 필터(26) 상측의 상벽(上壁)에 배기구(17)가 설치되어 있다. 또, 성막실(11)에는 필터(26)의 상측에 기판가열용 히터(21)를 내장한 기판홀더(12)가 수평상태로 설치되어 기판홀터(12)의 하부면에 기판(13)을 유지할 수 있도록 되어 있다. 또, 성막실(11)의 하부측에는 기화보조용 히터(27)가 설치되어 있다.Fig. 1 is a schematic configuration diagram showing a silicon film forming apparatus used in the first embodiment of the present invention. As shown in FIG. 1, the inside of the film-forming chamber 11 which has a structure which does not enter air etc. is partitioned by the horizontal filter 26. As shown in FIG. Here, the filter 26 is made by sintering many stainless steel fibers of several micrometers in diameter, and the diameter of the hole is about 10 micrometers. The film formation chamber 11 is provided with a source gas supply port 18 on the side wall of the lower side (vaporization chamber 14) of the filter 26, and the flow rate control device 22 controls the flow rate to an appropriate amount and also the vaporizer ( 23, the atomized or vaporized liquid raw material 15 can be supplied to the film forming chamber 11. Here, the vaporizer 23 is capable of supplying the oxygen gas 24, and the liquid raw material 15 in the state in which the oxygen gas 24 is mixed is supplied into the film formation chamber 11. Moreover, the exhaust port 17 is provided in the film-forming chamber 11 in the upper wall above the filter 26. As shown in FIG. In the film formation chamber 11, a substrate holder 12 having a substrate heating heater 21 therein is installed in a horizontal state above the filter 26 so that the substrate 13 is placed on the lower surface of the substrate holder 12. It is to be maintained. In addition, a vaporization assist heater 27 is provided at the lower side of the film formation chamber 11.

다음에, 상기와 같은 구성을 가지는 실리콘막 형성장치를 이용항, 본 발명의 실리콘 구조체층을 형성하는 방법에 대해서 설명한다.Next, a method for forming the silicon structure layer of the present invention using the silicon film forming apparatus having the above configuration will be described.

본 실시형태에서는 기판(13)으로서 석영을 사용하고, 기판가열용 히터(21)에 의해 기판(13)을 약 680℃로 가열했다. 또, 액체원료(15)로서 (Si2Cl6+BCl3)을 이용했다. 또, 성막실(11)내는 상압(常壓)(1기압)으로 유지되어 있다.In this embodiment, quartz was used as the substrate 13, and the substrate 13 was heated to about 680 ° C. by the substrate heating heater 21. (Si 2 Cl 6 + BCl 3 ) was used as the liquid raw material 15. In addition, the film formation chamber 11 is maintained at normal pressure (1 atmosphere).

우선, 액체원료(15)는 Ar 등의 불활성가스 등에 의해 가압되고, 또한 유량제어장치(22)에 의해 적정한 양으로 유량제어된다. 다음에, 액체원료(15)는 기화기(23)내에서 무화 또는 기화된 후에 불활성가스 및 산소가스(24)와 혼합되고, 그 후 원료가스 공급구(18)를 통해 기화실(14)내에 공급된다. 또, H2등의 환원성가스(25)도 동시에 기화실(14)내에 공급된다. 산소가스(24)의 유량은 Si2Cl6의 유량이 10g/시(時)(H2O 환산)일 때에 1∼10cc/분 정도인 것이 바람직하다. 기화실 (14)내에 공급된 모든 가스는 기화보조용 히터(27)에 의해 가열보온된 후, 필터(26)를 통과함과 동시에 균일하게 분산되어 기판(13)에 뿜어진다. 그리고, 무화 또는 기화된 상태의 Si2Cl6은 열분해반응을 일으키고, 기판(13)상에 p형 실리콘 구조체층이 형성된다. 액체원료(15)를 무화하는 방법으로서는 초음파진동을 이용하는 방법이 있다.First, the liquid raw material 15 is pressurized by an inert gas such as Ar or the like and further controlled by the flow rate controller 22 in an appropriate amount. Next, the liquid raw material 15 is atomized or vaporized in the vaporizer 23, and then mixed with the inert gas and the oxygen gas 24, and then supplied into the vaporization chamber 14 through the source gas supply port 18. do. In addition, reducing gas 25 such as H 2 is also supplied into the vaporization chamber 14 at the same time. The flow rate of the oxygen gas 24 is preferably about 1 to 10 cc / min when the flow rate of Si 2 Cl 6 is 10 g / hour (equivalent to H 2 O). All of the gas supplied into the vaporization chamber 14 is heated and kept warm by the vaporization assist heater 27, passes through the filter 26 and is uniformly dispersed and is blown out onto the substrate 13. Then, Si 2 Cl 6 in an atomized or vaporized state causes a thermal decomposition reaction, and a p-type silicon structure layer is formed on the substrate 13. As a method of atomizing the liquid raw material 15, there is a method using ultrasonic vibration.

이상의 실리콘 구조체층의 제조방법에 의하면, 실란가스(SiH4) 등에 비해서 위험성이 적은 Si2Cl6등의 실리콘원료를 사용할 수 있기 때문에, 실리콘원료를 성막실(11)내에 대량으로 공급할 수 있다. 그 결과, 실리콘의 형성속도가 향상되기 때문에, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층이 얻어진다. 이 경우 원기둥형상 실리콘의 중심부근의 산소함유량은 3%이하인 것이 바람직하다. 산소가스(24)의 유량을 상기와 같이 설정함으로써, 원기둥형상 실리콘의 중심부근의 산소함유량을 3%이하로 할 수 있다. 이와 같이 원기둥형상 실리콘의 중심부근의 산소함유량이 3%이하이면, 실리콘 구조체층의 저항이 낮게 억게되어 전자디바이스에 사용하는 것이 가능해진다. 여기에서, 원기둥형상 실리콘의 중심부근이란, 원기둥형상 실리콘의 표면으로부터 깊이 약 50nm인 영역을 제외한 영역을 말한다.According to the above-described method for producing a silicon structure layer, since silicon raw materials such as Si 2 Cl 6 , which are less dangerous than silane gas (SiH 4 ) or the like, can be used, a large amount of silicon raw materials can be supplied into the film formation chamber 11. As a result, since the formation speed of silicon improves, the silicon structure layer which consists of a collection of the many cylindrical silicon which has silicon as a main component toward an irregular direction is obtained. In this case, it is preferable that the oxygen content of the center muscle of cylindrical silicon is 3% or less. By setting the flow rate of the oxygen gas 24 as described above, the oxygen content of the central portion of the cylindrical silicon can be 3% or less. As described above, when the oxygen content of the central portion of the cylindrical silicon is 3% or less, the resistance of the silicon structure layer is lowered, which makes it possible to use the electronic device. Here, the center root of cylindrical silicon means the area | region except the area | region which is about 50 nm in depth from the surface of cylindrical silicon.

또한, 본 실시형태에 있어서는, 염소를 함유하는 실리콘원료로서 Si2C16을 사용했으나, 반드시 이것에 한정되는 것은 아니고, 예를 들면 SiC14, SiH2C12, SiHC13, Si3Cl8, Si4Cl10등을 사용할 수도 있다. SiH2C12, SiHC13 등과 같이 증기압이 비교적 높은 실리콘원료를 사용할 경우에는, 원료 자체를 가압 또는 냉각하여 액화할 필요가 있다. 특히, 본 실시형태와 같이 염소를 함유하는 실리콘원료로서 Si2C16을 사용하면, Si2C16의 분해온도가 약 350℃로 낮아서 자외선(188nm)의 조사에 의해 분해되기 때문에 실리콘 구조체층을 용이하게 형성할 수 있다.Furthermore, in, a silicon raw material containing chlorine, but using Si 2 C1 6, not necessarily limited to this, for example, SiC1 4, SiH 2 C1 2, SiHC13, Si 3 Cl 8, Si in this embodiment 4 Cl 10 may be used. When using a silicon raw material having a relatively high vapor pressure, such as SiH 2 C1 2 , SiHC13, etc., it is necessary to pressurize or cool the raw material itself to liquefy it. In particular, when Si 2 C 1 6 is used as the silicon raw material containing chlorine as in the present embodiment, since the decomposition temperature of Si 2 C 1 6 is lowered to about 350 ° C., the silicon structure layer is decomposed by irradiation with ultraviolet (188 nm). It can be formed easily.

또, 본 실시형태에 있어서는 분무용 불활성가스로서 Ar을 사용했으나, 반드시 이것에 한정되지는 않고, 예를 들면 He, N2등을 사용할 수도 있다. 불활성가스를 성막실(11)내에 도입하는데는, 액체원료(15)중에 기포로서 통과하여 성막실(11내에 도입하는 소위 버블링법을 이용할 수 있다.In addition, but using Ar as the inert gas atomization In the present embodiments it can be not is not limited to this, for example the like He, N 2. In order to introduce an inert gas into the film forming chamber 11, a so-called bubbling method may be used, which is introduced into the film forming chamber 11 by passing it as bubbles in the liquid raw material 15.

또, 본 실시형태에 있어서는 환원성가스(25)로서 H2가스를 사용했으나 반드시 이것에 한정되는 것은 아니고 예를 들면 CO 등을 사용할 수도 있다. 또, 특히 환윈성가스를 도입하지 않더라도 실리콘 구조체층을 형성할 수는 있다. 또, 불활성가스를 사용하지 않고 H2가스만으로 실리콘 원료를 반송하도록 하면, 실리콘 구조체층 중에 함유되는 염소의 양을 감소시킬 수 있다.It is noted that in the embodiment using the H 2 gas as the reducing gas 25 may be, but not limited to this, for example, to use the CO or the like. In addition, a silicon structure layer can be formed even without introducing an annular gas. In addition, when the silicon raw material is conveyed by only H 2 gas without using an inert gas, the amount of chlorine contained in the silicon structure layer can be reduced.

또, 본 실시형태에 있어서는 기판(13)으로서 석영을 사용했으나, 반드시 이것에 한정되는 것이 아니며, 세라믹재료나 스테인레스 등의 금속재료를 사용할 수도 있다.In addition, although quartz was used as the board | substrate 13 in this embodiment, it is not necessarily limited to this, Metal materials, such as a ceramic material and stainless steel, can also be used.

또, 본 실시형태에 있어서는 성막실(11)내를 상압(1기압)으로 유지하고 성막을 행했으나, 반드시 상압에 한정되는 것은 아니며, 감압상태(0.1∼760Torr) 또는 가압상태(1∼10기압)에서 성막을 행하는 것도 가능하다. 특히, 가압상태에서 성막을 행하면 퇴적속도를 더 증가시킬 수 있다.In the present embodiment, the film formation was carried out while maintaining the inside of the film formation chamber 11 at normal pressure (1 atm). However, the film formation is not necessarily limited to the normal pressure, but it is not limited to the reduced pressure (0.1 to 760 Torr) or the pressurized condition (1 to 10 atmospheres). It is also possible to perform the film formation at). In particular, the film formation under pressure can further increase the deposition rate.

또, 본 실시형태에 있어서는, Si2Cl6와 BCl3의 혼합액을 사용하여 p형 실리콘 구조체층을 형성했으나, Si2Cl6만을 사용하면 거의 진성인 실리콘 구조체층을 형성할 수 있고, BCl3대신에 PCl3을 첨가하면 n형 실리콘 구조체층을 형성할 수 있다. 이 경우, 원료액체를 혼합하지 않고 Si2Cl6와 BCl3또는 PCl3을 따로따로 공급해도 실리콘 구조체층을 형성할 수 있다.Further, in this embodiment, but a p-type silicon structure layer using a mixture of Si 2 Cl 6 and BCl 3, using only a Si 2 Cl 6 can form a layer substantially intrinsic silicon structure, BCl 3 Instead, PCl 3 can be added to form an n-type silicon structure layer. In this case, the silicon structure layer can be formed by supplying Si 2 Cl 6 and BCl 3 or PCl 3 separately without mixing the raw material liquid.

또, 본 실시형태에 있어서는, 스테인레스강 섬유로 이루어지는 필터(26)를 사용하고 있으나, 반드시 이것에 한정되는 것은 아니며, 예를 들면 석영을 이용하여 필터(26)를 구성해도 된다. 특히, 다수의 스테인레스강 섬유를 소결함으로써 필터(26)를 형성하면, 면적이 크고 또한 공극률이 70∼90%로 매우 큰 필터를 낮은 코스트로 형성할 수 있다. 그리고, 이 필터를 사용하여 기화실(14)과 성막실(11)을 간막이하면, 기화실(14)과 성막실(11)의 압력차가 발생하기 어려워져서 단열팽창에 의한 원료의 재액화가 일어나기 어려워진다. 또, 필터(26)의 구멍 직경을 10㎛로 설정하고 있으나, 반드시 이 구멍 직경에 한정되는 것은 아니며, 구멍 직경이 1∼30㎛인 필터(26)이면 원료가스, 산소가스 등을 기판(13)에 균일하게 뿜을 수 있다.In addition, in this embodiment, although the filter 26 which consists of stainless steel fibers is used, it is not necessarily limited to this, For example, you may comprise the filter 26 using quartz. In particular, when the filter 26 is formed by sintering a large number of stainless steel fibers, a filter having a large area and a very large porosity of 70 to 90% can be formed at low cost. When the vaporization chamber 14 and the deposition chamber 11 are partitioned using this filter, the pressure difference between the vaporization chamber 14 and the deposition chamber 11 is less likely to occur, which makes it difficult to reliquefy the raw material due to adiabatic expansion. Lose. In addition, although the pore diameter of the filter 26 is set to 10 micrometers, it is not necessarily limited to this pore diameter, If it is the filter 26 with a pore diameter of 1-30 micrometers, raw material gas, oxygen gas, etc. may be used as the board | substrate 13 ) Can be evenly sprayed.

도2A 및 도 2B에 본 실시형태에서 형성한 실리콘 구조체층의 전자현미경(SEM) 사진의 트레이스도를 도시한다. 도2A와 도2B는 비율이 다를 뿐이며 동일한 시료를 나타내고 있다. 도2에 도시한 바와 같이, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘(직경 약 0.5㎛)의 집합으로 이루어지는 실리콘 구조체층이 형성되어 있다. 이 실리콘 구조체층을 이용하면, 어떤원기둥형상 실리콘에 입사하여 반사된 광이 다시 다른 원기둥형상 실리콘으로 입사하기 때문에, 효율좋게 태양광선을 흡수할 수 있다. 즉, 태양광선의 반사가 적은 실리콘 구조체층이 얻어진다.2A and 2B show trace diagrams of electron microscope (SEM) photographs of the silicon structure layer formed in this embodiment. 2A and 2B show only the same sample with only different ratios. As shown in Fig. 2, there is formed a silicon structure layer composed of a collection of a plurality of cylindrical silicon (about 0.5 mu m in diameter) mainly composed of silicon, which faces in an irregular direction. By using this silicon structure layer, since the light incident on and reflected from a certain cylindrical silicon enters another cylindrical silicon again, it can absorb sunlight efficiently. That is, the silicon structure layer with little reflection of sunlight is obtained.

도3A∼C에 산소첨가량을 변화시킨 경우의 실리콘막 표면형상의 레이저현미경 사진의 트레이스도를 도시한다. 또한, 도3은 실제의 레이저현미경 사진을 흑백 반사시킨 상태로 묘사되어 있고 배율은 1000배이다. 성막조건은 하기(표1)에 도시한 바와 같다.3A to C show trace diagrams of laser micrographs of the silicon film surface shape when the amount of oxygen addition is changed. In addition, Fig. 3 is depicted in a state where the actual laser microscope photograph is reflected in black and white and the magnification is 1000 times. Film formation conditions are as shown in the following (Table 1).

[표 1]TABLE 1

도3A에 도시한 바와 같이, 산소유량이 Occ/min인 경우에는 거의 평탄한 막(검은 부분)이 된다. 도3B에 도시한 바와 같이, 산소유량이 1cc/min인 경우에는 일부에 실리콘 구조체층(흰 부분)이 형성되어 있으나, 평탄한 부분(검은 부분)도 남아 있다. 도3C에 도시한 바와 같이 산소유량이 3cc/min인 경우에는 거의 완전히 실리콘 구조체층(흰 부분)이 형성되어 있다. 이에 따라 실리콘 구조체층의 형성에 산소가 중요한 역할을 하고 있다는 것을 알 수 있다.As shown in Fig. 3A, when the oxygen flow rate is Occ / min, the film becomes an almost flat film (black portion). As shown in Fig. 3B, when the oxygen flow rate is 1 cc / min, a part of the silicon structure layer (white part) is formed, but the flat part (black part) also remains. As shown in Fig. 3C, when the oxygen flow rate is 3 cc / min, the silicon structure layer (white portion) is almost completely formed. Accordingly, it can be seen that oxygen plays an important role in the formation of the silicon structure layer.

도4에 본 실시형태에 의해 석영기판상에 형성된 실리콘 구조체층의 가시광 투과스펙트럼을 도시한다. 도4에 도시한 바와 같이, 본 실시형태에 의해 형성된 실리콘 구조체층은 파장 200∼800nm의 광을 거의 투과하지 못한다는 것을 알 수 있다.4 shows the visible light transmission spectrum of the silicon structure layer formed on the quartz substrate by this embodiment. As shown in Fig. 4, it can be seen that the silicon structure layer formed by this embodiment hardly transmits light having a wavelength of 200 to 800 nm.

또한, 본 실시형태에 있어서는, 실리콘 구조체층이 직경 약 0.5㎛인 원기둥형상 실리콘에 의해 구성되어 있으나, 원기둥형상 실리콘의 직경은 0.1∼10㎛이면 된다. 원기둥형상 실리콘의 직경이 이 범위에 있으면, 원기둥형상 실리콘을 적당한 강도로 유지할 수 있음과 동시에, 확산 등에 의해 실리콘의 표면을 n형화 또는 p형화할 때의 접합의 깊이가 제한되는 일은 없다. 또, 원기둥형상 실리콘의 직경이 이 범위에 있으면, 광의 흡수가 나빠지는 일도 없다.In addition, in this embodiment, although a silicon structure layer is comprised by cylindrical silicon of about 0.5 micrometer in diameter, the diameter of cylindrical silicon should just be 0.1-10 micrometers. When the diameter of the cylindrical silicon is within this range, the cylindrical silicon can be maintained at an appropriate strength, and the depth of bonding when n-type or p-type the surface of the silicon is not limited by diffusion or the like. In addition, when the diameter of the cylindrical silicon is in this range, absorption of light does not deteriorate.

[제2 실시형태]Second Embodiment

도5A∼C에 본 발명의 제2 실시형태에 있어서의 실리콘 구조체층을 이용한 태양전지의 제조공정을 도시한다. 또, 도6에 본 실시형태에 있어서의 태양전지의 구조를 도시한다.5A to C show a manufacturing process of a solar cell using the silicon structure layer in the second embodiment of the present invention. 6 shows the structure of the solar cell in this embodiment.

우선, 도5A에 도시한 바와 같이, 두께가 0.5mm인 석영기판(42)의 전면에 두께가 약 1㎛인 Mo를 퇴적하여 하부전극(41)을 형성했다. 다음에, 하부전극(41)의 전면에 BC13을 첨가한 Si2Cl6을 이용하여 두께가 30∼40㎛인 p형 실리콘 구조체층 (43)을 형성했다. 이 경우, 도6에 도시한 바와 같이, 하부전극(41)상에 실리콘을 주성분으로 하는 막(47)을 매개해서 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘(48)의 집합으로 이루어지는 p형 실리콘 구조체층(43)이 형성되었다(이상, 도5A). 이와 같이 다수의 원기둥형상 실리콘 (48)의 집합으로 이루어지는 p형 실리콘 구조체층(43)이 실리콘을 주성분으로 하는 막(47)을 매개해서 하부전극(41)상에 형성되어 있으면, 후술하는 바와 같이 투명전극(45)을 형성할 경우에 투명전극(45)이 하부전극(41)에 접촉해 버리는 일은 없다.First, as shown in FIG. 5A, Mo having a thickness of about 1 mu m was deposited on the entire surface of the quartz substrate 42 having a thickness of 0.5 mm to form a lower electrode 41. As shown in FIG. Next, a p-type silicon structure layer 43 having a thickness of 30 to 40 µm was formed using Si 2 Cl 6 to which BC1 3 was added to the entire surface of the lower electrode 41. In this case, as shown in FIG. 6, a plurality of cylindrical silicon 48 containing silicon as a main component, which is directed in an irregular direction via a film 47 containing silicon as a main component, is formed on the lower electrode 41. A p-type silicon structure layer 43 was formed (above, Fig. 5A). As described above, if the p-type silicon structure layer 43 composed of a plurality of cylindrical silicon 48 is formed on the lower electrode 41 via the film 47 containing silicon as a main component, as will be described later. When the transparent electrode 45 is formed, the transparent electrode 45 does not come into contact with the lower electrode 41.

다음에, 도5B에 도시한 바와 같이, p형 실리콘 구조체층(43)의 표면에 POCl3을 이용한 열확산법에 의해 P를 확산시켜서, 원기둥형상 실리콘(48)의 외주부분에 n형 영역(44)(도6 참조)을 형성했다. 이에 따라, 원기둥형상 실리콘(48)의 내부에 pn접합이 형성되는데, 다수의 원기둥형상 실리콘(48)으로 이루어지는 본 실리콘 구조체층(43)의 경우에는 종래의 평탄한 막에 비해서 pn접합부분의 면적이 증대하기 때문에, 효율좋게 발전을 행할 수 있다. 이 경우, 원기둥형상 실리콘(48)의 중심부분은 다결정질인 채로 있지만, 원기둥형상 실리콘(48)의 외주 부분은 비정질로 된다. 비정질 실리콘은 다결정 실리콘에 비해서 저항이 높아지기 때문에, 다결정질의 영역을 크게 하는 것이 바람직하다. 구체적 수치로 나타내면, 원기둥형 실리콘(48)의 직경이 0.5㎛인 경우, n형 영역(비정질)(44)의 바람직한 두께는 약 0.1㎛이다.Next, as shown in FIG. 5B, P is diffused on the surface of the p-type silicon structure layer 43 by thermal diffusion using POCl 3 , and the n-type region 44 is formed on the outer circumferential portion of the cylindrical silicon 48. ) (See Fig. 6). As a result, a pn junction is formed inside the cylindrical silicon 48. In the case of the present silicon structure layer 43 composed of a plurality of cylindrical silicon 48, the area of the pn junction is larger than that of the conventional flat film. Since it increases, power generation can be performed efficiently. In this case, the central portion of the cylindrical silicon 48 remains polycrystalline, but the outer peripheral portion of the cylindrical silicon 48 becomes amorphous. Since amorphous silicon has a higher resistance than polycrystalline silicon, it is preferable to enlarge the polycrystalline region. Specifically, when the diameter of the cylindrical silicon 48 is 0.5 탆, the preferred thickness of the n-type region (amorphous) 44 is about 0.1 탆.

마지막으로, 도5C에 도시한 바와 같이, p형 실리콘 구조체층(43)의 전면에 두게가 30∼40㎛인 인듐-주석 산화물로 이루어지는 투명전극(45)을 형성한 후, 투명전극(45)상에 두께가 약 1㎛인 A1로 이루어지는 상부전극(46)을 형성했다. 이 경우, 투명전극(45)은 p형 실리콘 구조체층(43)의 다수의 원기둥형상 실리콘(48)의 간극을 메우는 상태로 형성되어 있다. 이상의 공정에 의해 태양전지가 얻어진다.Finally, as shown in FIG. 5C, a transparent electrode 45 made of indium-tin oxide having a thickness of 30 to 40 µm is formed on the entire surface of the p-type silicon structure layer 43, and then the transparent electrode 45 is formed. The upper electrode 46 which consists of A1 of about 1 micrometer in thickness was formed on the phase. In this case, the transparent electrode 45 is formed in such a state as to fill the gaps between the plurality of cylindrical silicon 48 of the p-type silicon structure layer 43. The solar cell is obtained by the above process.

이상과 같이 하여 제조된 태양전지는 반도체층에 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘(48)의 집합으로 이루어지는 실리콘 구조체층을 포함하기 때문에, 태양광선의 반사가 적어져서 효율좋게 발전에 기여할 수 있다.Since the solar cell manufactured as described above includes a silicon structure layer composed of a plurality of cylindrical silicon 48 containing silicon as the main component, which is directed in an irregular direction to the semiconductor layer, the reflection of sunlight is reduced and the efficiency is reduced. It can contribute to good development.

하기(표2)에 본 실시형태 구조의 태양전지의 여러 특성을 종래기술의 태양전지와 비교하여 나타낸다.In the following (Table 2), various characteristics of the solar cell of this embodiment structure are compared with the conventional solar cell.

[표 2]TABLE 2

상기(표2)에서 알 수 있는 바와 같이, 개방단 전압은 거의 변화하지 않으나, 단락 전류는 증가하고 있다.As can be seen from the above (Table 2), the open end voltage hardly changes, but the short circuit current is increasing.

이상 설명한 바와 같이, 본 발명에 의하면 복잡한 공정을 필요로 하는 텍스쳐(texture)의 형성이 불필요해지는 한편, 텍스쳐와 같은 효과가 얻어지는 실리콘 구조체층을 포함하는 반도체장치를 실현할 수 있다. 따라서, 이 실리콘 구조체층을 태양전지에 이용하면, 태양광선의 반사가 적은(즉, 변환효율이 높은) 태양전지를 낮은 코스트로 제공할 수 있다.As described above, according to the present invention, it is possible to realize a semiconductor device including a silicon structure layer in which the formation of a texture requiring a complicated process is unnecessary, and an effect such as a texture can be obtained. Therefore, when this silicon structure layer is used for a solar cell, it is possible to provide a solar cell having low reflection of sunlight (that is, high conversion efficiency) at a low cost.

Claims (17)

불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 포함하는 반도체장치.A semiconductor device comprising a silicon structure layer composed of a collection of a plurality of cylindrical silicon mainly composed of silicon oriented in an irregular direction. 제l항에 있어서, 기판이 더 구비되고, 상기 기판에 실리콘을 주성분으로 하는 막을 매개해서 상기 실리콘 구조체층이 형성되어 있는 반도체장치.The semiconductor device according to claim 1, further comprising a substrate, wherein said silicon structure layer is formed on said substrate via a film containing silicon as a main component. 제1항에 있어서, 원기둥형상 실리콘의 직경이 0.1∼10㎛인 반도체장치.The semiconductor device according to claim 1, wherein the diameter of the cylindrical silicon is 0.1 to 10 mu m. 제1항에 있어서, 원기둥형상 실리콘의 외주부분이 비정질이고, 중심부분이 다결정질인 반도체장치.The semiconductor device according to claim 1, wherein the outer peripheral portion of the cylindrical silicon is amorphous and the central portion is polycrystalline. 불규칙한 방향으르 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층의 제조방법에 있어서, 염소를 함유하는 무화 또는 기화된 실리콘 원료를 산소가스와 함께 가열된 기판상에 도입하는 것을 특징으로 하는 실리콘 구조체층의 제조방법.In a method for producing a silicon structure layer consisting of a plurality of silicon-based cylindrical silicon oriented in an irregular direction, a method of introducing a chlorine-containing atomized or vaporized silicon raw material onto a heated substrate with oxygen gas Method for producing a silicon structure layer, characterized in that. 제5항에 있어서, 염소를 함유하는 실리콘 재료가 Si2Cl6인 실리콘 구조체층의 제조방법.The method for producing a silicon structure layer according to claim 5, wherein the silicon material containing chlorine is Si 2 Cl 6 . 제6항에 있어서, Si2Cl6으로 이루어지는 실리콘 재료에 PCl3또는 BCl3을 혼합한 액체원료를 사용하여, n형 또는 p형의 실리콘 구조체층을 형성하는 실리콘 구조체층의 제조방법.The method for producing a silicon structure layer according to claim 6, wherein an n-type or p-type silicon structure layer is formed by using a liquid material in which PCl 3 or BCl 3 is mixed with a silicon material made of Si 2 Cl 6 . 제5항에 있어서, 원기둥형상 실리콘의 중심부근의 산소함유량이 3%이하가 되도록 산소가스틀 도입하는 실리콘 구조체층의 제조방법.The method for producing a silicon structure layer according to claim 5, wherein an oxygen gas frame is introduced so that the oxygen content of the central portion of the cylindrical silicon is 3% or less. 기판상에, 불규칙한 방향으로 향하는, 실리콘을 주성분으로 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 형성하는 제조장치에 있어서, 챔버와, 무화 또는 기화된 액체원료를 산소가스와 함께 챔버내에 공급하는 수단과, 상기 기판을 지지하기 위한 기판홀더 지지부와, 상기 기판을 가열하기 위한 기판 가열용 히터와, 적어도 기판과 같은 면적을 가기고, 상기 무화 또는 기화한 액체원료 및 상기 산소가스를 통과시겨서 상기 가열된 기판상에 도입하는 필터를 구비한 것을 특징으르 하는 실리콘 구조체층의 제조장치.A manufacturing apparatus for forming a silicon structure layer composed of a plurality of silicon-based cylindrical silicon aggregates directed on a substrate in an irregular direction, wherein the chamber and the atomized or vaporized liquid raw material together with oxygen gas are provided in the chamber. A means for supplying, a substrate holder support for supporting the substrate, a heater for heating the substrate for heating the substrate, at least the same area as the substrate, and passing through the atomized or vaporized liquid raw material and the oxygen gas; And a filter which is soaked and introduced onto the heated substrate. 제9항에 있어서, 필터가 스테인레스강 섬유로 이루어지는 실리콘 구조체층의 제조장치.The apparatus for producing a silicon structure layer according to claim 9, wherein the filter is made of stainless steel fibers. 제9항에 있어서, 필터의 구멍 직경이 l∼30㎛인 실리콘 구조체층의 제조장치.10. The apparatus for producing a silicon structure layer according to claim 9, wherein the pore diameter of the filter is l to 30 m. 광 조사에 의해 전자-정공쌍을 생성하는 반도체층을 구비한 태양전지에 있어서, 상기 반도체층이 불규칙한 방향으로 향하는, 실리콘을 주성분으르 하는 다수의 원기둥형상 실리콘의 집합으로 이루어지는 실리콘 구조체층을 포함하는 것을 특징으로 하는 태양전지.A solar cell having a semiconductor layer for generating electron-hole pairs by light irradiation, the solar cell comprising a silicon structure layer composed of a plurality of cylindrical silicon-containing silicon mainly composed of silicon oriented in an irregular direction. Solar cell, characterized in that. 제12항에 있어서, 실리콘 구조체층을 형성하는 기판이 더 구비되고, 상기 기판에 실리콘을 주성분으로 하는 막을 매개해서 상기 실리콘 구조체층이 형성되어 있는 태양전지.The solar cell according to claim 12, further comprising a substrate forming a silicon structure layer, wherein the silicon structure layer is formed on the substrate via a film containing silicon as a main component. 제12항에 있어서, 원기둥형상 실리콘의 직경이 0.1∼10㎛인 것을 특징으로 하는 태양전기.The solar cell according to claim 12, wherein the diameter of the cylindrical silicon is 0.1 to 10 mu m. 제12항에 있어서, 원기둥형상 실리콘의 외주부분이 비정질이고, 중심부분이 다결정질인 것을 특징으로 하는 태양전지.The solar cell according to claim 12, wherein the outer peripheral portion of the cylindrical silicon is amorphous and the central portion is polycrystalline. 제12항에 있어서, 반도체층중 광이 입사하는 측의 표면에 실리콘 구조체층이 형성된 것을 특징으로 하는 태양전지.The solar cell according to claim 12, wherein a silicon structure layer is formed on a surface of the semiconductor layer on which light enters. 제l2항에 있어서, 원기둥형상 실리콘 내부에 pn접합을 가지는 것을 특징으로 하는 태양전지.The solar cell according to claim 1, wherein the solar cell has a pn junction inside the cylindrical silicon.
KR1019960034876A 1995-08-22 1996-08-22 Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer KR100294057B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21330495 1995-08-22
JP95-213304 1995-08-22

Publications (2)

Publication Number Publication Date
KR970013435A KR970013435A (en) 1997-03-29
KR100294057B1 true KR100294057B1 (en) 2001-09-17

Family

ID=16636919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960034876A KR100294057B1 (en) 1995-08-22 1996-08-22 Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer

Country Status (3)

Country Link
US (2) US6518494B1 (en)
KR (1) KR100294057B1 (en)
CN (1) CN1082254C (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518494B1 (en) * 1995-08-22 2003-02-11 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
TWI273642B (en) * 2002-04-19 2007-02-11 Ulvac Inc Film-forming apparatus and film-forming method
JP4297677B2 (en) * 2002-10-29 2009-07-15 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
US20070240757A1 (en) * 2004-10-15 2007-10-18 The Trustees Of Boston College Solar cells using arrays of optical rectennas
JP4740795B2 (en) * 2005-05-24 2011-08-03 エルジー エレクトロニクス インコーポレイティド Rod type light emitting device and manufacturing method thereof
DE102005029162B4 (en) * 2005-06-23 2012-12-27 Wilfried von Ammon Solar cell with a whisker structure and method for its production
EP1938391A4 (en) * 2005-08-22 2016-06-29 Q1 Nanosystems Inc Nanostructure and photovoltaic cell implementing same
WO2007086903A2 (en) * 2005-08-24 2007-08-02 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanocoax structures
US7943847B2 (en) 2005-08-24 2011-05-17 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
US7635600B2 (en) * 2005-11-16 2009-12-22 Sharp Laboratories Of America, Inc. Photovoltaic structure with a conductive nanowire array electrode
WO2008057629A2 (en) * 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US20080008844A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
JP2010517299A (en) * 2007-01-30 2010-05-20 ソーラスタ インコーポレイテッド Photocell and method for producing the same
WO2008143721A2 (en) * 2007-02-12 2008-11-27 Solasta, Inc. Photovoltaic cell with reduced hot-carrier cooling
JP2010532574A (en) * 2007-07-03 2010-10-07 ソーラスタ インコーポレイテッド Distributed coax photovoltaic device
US8461451B2 (en) * 2009-06-11 2013-06-11 Sharp Kabushiki Kaisha Vertical junction tandem/multi-junction PV device
DE102009044052A1 (en) * 2009-09-18 2011-03-24 Schott Solar Ag Crystalline solar cell, process for producing the same and process for producing a solar cell module
WO2011066570A2 (en) * 2009-11-30 2011-06-03 California Institute Of Technology Semiconductor wire array structures, and solar cells and photodetectors based on such structures
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
US9263612B2 (en) 2010-03-23 2016-02-16 California Institute Of Technology Heterojunction wire array solar cells
SG185123A1 (en) 2010-05-05 2012-11-29 Spawnt Private Sarl Nano-wires made of novel precursors and method for the production thereof
JP2012023343A (en) * 2010-06-18 2012-02-02 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and method of producing the same
US9076909B2 (en) * 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
WO2011158722A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
TWI514599B (en) 2010-06-18 2015-12-21 Semiconductor Energy Lab Photoelectric conversion device and manufacturing method thereof
CN102134753B (en) * 2010-12-14 2012-10-03 浙江宝利特新能源股份有限公司 Automatic liquid-replenishing device for diffusion furnace in solar battery production
US10090425B2 (en) 2012-02-21 2018-10-02 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
US20150027518A1 (en) * 2012-02-22 2015-01-29 Solar3D, Inc. Wide angle three-dimensional solar cells
US9947816B2 (en) 2012-04-03 2018-04-17 California Institute Of Technology Semiconductor structures for fuel generation
US20140161990A1 (en) * 2012-12-12 2014-06-12 Intermolecular, Inc. Anti-Glare Glass/Substrate Via Novel Specific Combinations of Dry and Wet Processes
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283741A (en) * 1992-03-02 1993-10-29 Hitachi Ltd Semiconductor device and manufacture thereof
JPH07135332A (en) * 1993-11-09 1995-05-23 Sanyo Electric Co Ltd Fabrication of photovoltaic power element

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603284A (en) * 1970-01-02 1971-09-07 Ibm Vapor deposition apparatus
US3805736A (en) * 1971-12-27 1974-04-23 Ibm Apparatus for diffusion limited mass transport
DE2639841C3 (en) * 1976-09-03 1980-10-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Solar cell and process for its manufacture
JPS57160174A (en) * 1981-03-30 1982-10-02 Hitachi Ltd Thin film solar battery
US4536608A (en) * 1983-04-25 1985-08-20 Exxon Research And Engineering Co. Solar cell with two-dimensional hexagonal reflecting diffraction grating
JPS61189626A (en) * 1985-02-18 1986-08-23 Canon Inc Formation of deposited film
JPS6445176A (en) * 1987-08-14 1989-02-17 Hitachi Ltd Manufacture of solar cell element
JPH02295116A (en) * 1989-05-10 1990-12-06 Mitsubishi Electric Corp Semiconductor manufacturing apparatus
US5013691A (en) * 1989-07-31 1991-05-07 At&T Bell Laboratories Anisotropic deposition of silicon dioxide
JPH03151672A (en) * 1989-11-08 1991-06-27 Sharp Corp Amorphous silicon solar cell
JP3151672B2 (en) 1991-05-22 2001-04-03 株式会社日立製作所 Optical DC current transformer
JP2699695B2 (en) * 1991-06-07 1998-01-19 日本電気株式会社 Chemical vapor deposition
US5258077A (en) * 1991-09-13 1993-11-02 Solec International, Inc. High efficiency silicon solar cells and method of fabrication
US5908662A (en) * 1992-04-27 1999-06-01 Texas Instruments Incorporated Method and apparatus for reducing particle contamination
JP2000252269A (en) * 1992-09-21 2000-09-14 Mitsubishi Electric Corp Equipment and method for liquid vaporization
US5336335A (en) * 1992-10-09 1994-08-09 Astropower, Inc. Columnar-grained polycrystalline solar cell and process of manufacture
JP2684942B2 (en) * 1992-11-30 1997-12-03 日本電気株式会社 Chemical vapor deposition method, chemical vapor deposition apparatus, and method for manufacturing multilayer wiring
US5529634A (en) * 1992-12-28 1996-06-25 Kabushiki Kaisha Toshiba Apparatus and method of manufacturing semiconductor device
US6518494B1 (en) * 1995-08-22 2003-02-11 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US5536322A (en) * 1995-10-27 1996-07-16 Specialty Coating Systems, Inc. Parylene deposition apparatus including a heated and cooled support platen and an electrostatic clamping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283741A (en) * 1992-03-02 1993-10-29 Hitachi Ltd Semiconductor device and manufacture thereof
JPH07135332A (en) * 1993-11-09 1995-05-23 Sanyo Electric Co Ltd Fabrication of photovoltaic power element

Also Published As

Publication number Publication date
US20030106581A1 (en) 2003-06-12
CN1082254C (en) 2002-04-03
CN1147156A (en) 1997-04-09
US6518494B1 (en) 2003-02-11
KR970013435A (en) 1997-03-29

Similar Documents

Publication Publication Date Title
KR100294057B1 (en) Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer
JP3876021B2 (en) Silicon structure, manufacturing method and manufacturing apparatus thereof, and solar cell using silicon structure
US6518087B1 (en) Method for manufacturing solar battery
RU2438211C2 (en) Method of producing silicon film on substrate surface by vapour deposition
US20110272020A1 (en) Solar cell and method for producing a solar cell from a silicon substrate
KR20090029494A (en) Solar cell using amorphous and nano-crystaline silicon composite thin film and fabrication method thereof
CN102598311A (en) Solar cell and method for manufacturing such a solar cell
EP2087529A2 (en) A method of fabricating a densified nanoparticle thin film with a set of occluded pores
CN110546768B (en) Solar cell element and method for manufacturing solar cell element
JP6807433B2 (en) Solar cell element
JPH01145350A (en) Method for agglutinating tin oxide of aggregated construction form
CN107690709B (en) Solar cell device and its manufacturing method
US20120325284A1 (en) Thin-film silicon tandem solar cell and method for manufacturing the same
CN110416355A (en) A kind of technique that solwution method prepares crystal silicon solar energy battery
KR101368808B1 (en) Crystalline silicon solar cell comprising CNT layer and manufacturing method thereof
CN115020539A (en) PERC battery back structure, preparation process and PERC battery
CN109041583A (en) Solar cell device and solar cell module
WO2009152854A1 (en) Method for large-scale manufacturing of photovoltaic cells for a converter panel and photovoltaic converter panel
TW201407795A (en) Passivation of silicon dielectric interface
CN108987490B (en) Surface cleaning treatment method for solar cell after wet etching oxidation
CN102549776A (en) Photovoltaic cell with a selective emitter and method for making the same
TW201409567A (en) Silicon wafer coated with passivation layer
CN116949429A (en) Method for improving uniformity of ALD film thickness
Nakamura et al. Room-temperature formation of low refractive index silicon oxide films using atmospheric-pressure plasma
Jain The exploration and optimization of nc-SiOxCy-based materials for energy downshifting and their possible application to solar cells= Exploración y optimización de materiales nc-SiOxCy para desplazamiento de energía descendente y su posible aplicación a celdas solares

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 19991028

Effective date: 20010131

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090326

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee