KR100289536B1 - Solid polymer electrolyte and lithium secondary battery employing the same - Google Patents

Solid polymer electrolyte and lithium secondary battery employing the same Download PDF

Info

Publication number
KR100289536B1
KR100289536B1 KR1019990006729A KR19990006729A KR100289536B1 KR 100289536 B1 KR100289536 B1 KR 100289536B1 KR 1019990006729 A KR1019990006729 A KR 1019990006729A KR 19990006729 A KR19990006729 A KR 19990006729A KR 100289536 B1 KR100289536 B1 KR 100289536B1
Authority
KR
South Korea
Prior art keywords
solid electrolyte
lithium
polymer
polymer solid
ethylene
Prior art date
Application number
KR1019990006729A
Other languages
Korean (ko)
Other versions
KR20000059282A (en
Inventor
노환진
Original Assignee
김순택
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이주식회사 filed Critical 김순택
Priority to KR1019990006729A priority Critical patent/KR100289536B1/en
Publication of KR20000059282A publication Critical patent/KR20000059282A/en
Application granted granted Critical
Publication of KR100289536B1 publication Critical patent/KR100289536B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명에서는 고분자 매트릭스, 이온성 무기염 및 용매를 포함하는 고분자 고체 전해질로서, 상기 고분자 매트릭스가 폴리비닐리덴플루오라이드 및 폴리(에틸렌-코-알킬아크릴레이트) 또는 폴리(에틸렌-코-알킬아세테이트) (여기서, 알킬은 메틸, 에틸, 프로필, 부틸, 이소프로필 또는 비닐이다)를 포함하는 고분자 고체 전해질 및 이를 채용하는 리튬 2차전지가 제공된다. 본 발명에 따른 고분자 고체 전해질은 용매에 대한 용해성이 우수하며 전지 조립시 가소제가 첨가되더라도 고분자 고체 전해질 필름의 접착력이 떨어지는 일이 없으므로 전극판과의 탈리현상이 나타나지 않는다. 따라서, 이러한 고분자 고체 전해질을 채용하는 전지는 성능 및 수명특성이 향상된다.In the present invention, a polymer solid electrolyte comprising a polymer matrix, an ionic inorganic salt and a solvent, wherein the polymer matrix is polyvinylidene fluoride and poly (ethylene-co-alkylacrylate) or poly (ethylene-co-alkylacetate). There is provided a polymer solid electrolyte comprising lithium, wherein alkyl is methyl, ethyl, propyl, butyl, isopropyl or vinyl, and a lithium secondary battery employing the same. The polymer solid electrolyte according to the present invention is excellent in solubility in a solvent and does not appear to detach from the electrode plate since the adhesive strength of the polymer solid electrolyte film does not drop even when a plasticizer is added during battery assembly. Therefore, the battery employing such a polymer solid electrolyte has improved performance and lifespan characteristics.

Description

고분자 고체 전해질 및 이를 채용하는 리튬 2차전지{Solid polymer electrolyte and lithium secondary battery employing the same}Solid polymer electrolyte and lithium secondary battery employing the same

본 발명은 고분자 고체 전해질 및 이를 채용하고 있는 리튬 2차전지에 관한 것으로서, 상세하기로는 콘덴서, 리튬 2차전지 등의 전기화학장치에 널리 이용되는 겔형 고분자 고체 전해질에 있어서, 기계적 특성과 집전체에 대한 접착력이 매우 우수한 고분자 고체 전해질 및 이를 채용하고 있는 리튬 2차전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte and a lithium secondary battery employing the same, and more particularly, to a gel polymer solid electrolyte widely used in an electrochemical device such as a capacitor and a lithium secondary battery. The present invention relates to a polymer solid electrolyte having excellent adhesion to a lithium secondary battery and the same.

노트북 컴퓨터, 캠코더 등의 휴대용 전자정보기기와 이동전화, PCS, TRS, GPS 등의 무선통신기기의 보급이 활발해짐에 따라, 이에 필수적인 충방전 가능한 2차전지의 소형화 및 경량화에 대한 요구가 점점 증대되고 있는 실정이다. 지금까지 개발된 2차전지는 그 종류가 10여개에 달하지만, 가장 많이 사용되고 있는 것으로는 니켈카드뮴 전지, 니켈수소전지, 리튬이온전지 등이 있다. 이중에서도 리튬이온전지는 장수명, 고용량 등과 같은 우수한 특성으로 인하여 차세대 동력원으로서 가장 주목받고 있는 전지중의 하나이다.As portable electronic information devices such as notebook computers and camcorders, and wireless communication devices such as mobile phones, PCS, TRS, and GPS become more popular, the demand for miniaturization and weight reduction of rechargeable rechargeable batteries is increasing. It's happening. The secondary batteries that have been developed so far are about 10 kinds, but the most used ones are nickel cadmium batteries, nickel hydrogen batteries, and lithium ion batteries. Among them, lithium ion batteries are one of the most attracting attention as next generation power sources due to their excellent characteristics such as long life and high capacity.

리튬 2차전지의 전해질로는 액체 전해질이나 고체 전해질이 사용된다. 그런데 액체 전해질은 사용중에 전해액이 누출될 우려가 있다. 이러한 문제점을 해결하기 위하여 액체 전해질 대신 고체 전해질을 사용하는 방법이 제안되었다. 고체 전해질은 일반적으로 전해액이 누출될 염려가 없으며 유연한 형상을 가지고 있어서 원하는 모양으로 가공하기가 용이하다는 장점이 있어서 이에 대한 연구가 많은 관심속에 진행되고 있으며, 그중에서도 특히 고분자 고체 전해질에 대한 연구가 활발하게 진행되고 있다. 현재 알려진 고분자 고체 전해질은 유기전해액이 전혀 함유되어 있지 않은 완전고체형과 유기전해액을 함유하고 있는 겔형으로 구분할 수 있다.As the electrolyte of the lithium secondary battery, a liquid electrolyte or a solid electrolyte is used. However, the liquid electrolyte may leak during use. In order to solve this problem, a method of using a solid electrolyte instead of a liquid electrolyte has been proposed. Solid electrolytes generally have no concern about leaking electrolytes and have a flexible shape, which makes them easy to process into desired shapes. It's going on. Currently known polymer solid electrolytes can be classified into a complete solid type containing no organic electrolyte and a gel type containing an organic electrolyte.

미국 특허 제5,422,203호에는 PVDF-HFP(폴리비닐리덴플루오라이드-헥사플루오로프로필렌) 공중합체를 매트릭스로서 사용한 고분자 고체 전해질이 개시되어 있다. 그러나, 상기 PVDF-HFP는 가소제가 첨가되면 접착력이 떨어지기 때문에 폴리에스테르 필름 상에 캐스팅하여 전극필름을 제조할 때 쉽게 탈리되며 단시간 내에 전해액에 함침되지 않기 때문에 대량 생산시 어려움이 있다는 단점이 있다.U. S. Patent No. 5,422, 203 discloses a polymer solid electrolyte using PVDF-HFP (polyvinylidene fluoride-hexafluoropropylene) copolymer as a matrix. However, the PVDF-HFP has a disadvantage in that it is difficult to mass-produce because it is easily detached when cast on a polyester film to prepare an electrode film by the addition of a plasticizer and is not immersed in the electrolyte in a short time.

또한, 미국 특허 제5,756,230호에는 PVDF와 같은 플루오로-함유 고분자 수지와 폴리에틸렌과 같은 올레핀계 고분자 수지를 포함하는 혼합 고분자 수지를 매트릭스로서 사용한 고분자 고체 전해질이 개시되어 있다. 그러나, 이 경우에는 전술한 바와 같은 혼합 고분자 수지를 용해시킬 수 있는 적당한 용매를 선택하기가 어렵고 각각의 고분자 수지로서 상분리되므로 고분자 고체 전해질용으로 적합하지 않다.U. S. Patent No. 5,756, 230 also discloses a polymer solid electrolyte using a mixed polymer resin including a fluoro-containing polymer resin such as PVDF and an olefinic polymer resin such as polyethylene as a matrix. In this case, however, it is difficult to select a suitable solvent capable of dissolving the mixed polymer resin as described above and is not suitable for the polymer solid electrolyte because it is phase separated as each polymer resin.

본 발명이 이루고자 하는 기술적 과제는 접착력과 용해성이 우수하며 가공이 용이한 고분자 고체 전해질을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a polymer solid electrolyte excellent in adhesion and solubility and easy processing.

본 발명이 이루고자 하는 다른 기술적 과제는 전술한 바와 같은 고분자 고체 전해질을 채용하는 리튬 2차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery employing the polymer solid electrolyte as described above.

본 발명의 기술적 과제는 고분자 매트릭스, 이온성 무기염 및 용매를 포함하는 고분자 고체 전해질에 있어서, 상기 고분자 매트릭스가 폴리비닐리덴플루오라이드 및 폴리(에틸렌-코-알킬아크릴레이트) 또는 폴리(에틸렌-코-알킬아세테이트) (여기서, 알킬은 메틸, 에틸, 프로필, 부틸, 이소프로필 또는 비닐이다)를 포함하는 것을 특징으로 하는 고분자 고체 전해질에 의하여 이루어질 수 있다.The technical problem of the present invention is a polymer solid electrolyte comprising a polymer matrix, an ionic inorganic salt and a solvent, wherein the polymer matrix is polyvinylidene fluoride and poly (ethylene-co-alkylacrylate) or poly (ethylene-co -Alkylacetates), wherein alkyl is methyl, ethyl, propyl, butyl, isopropyl or vinyl.

본 발명의 다른 기술적 과제는 전술한 바와 같은 고분자 고체 전해질을 채용하는 리튬 2차전지에 의하여 이루어질 수 있다.Another technical problem of the present invention may be achieved by a lithium secondary battery employing a polymer solid electrolyte as described above.

본 발명에 따른 고분자 고체 전해질에 있어서, 폴리비닐리덴플루오라이드 및 폴리(에틸렌-코-알킬아크릴레이트) 또는 폴리(에틸렌-코-알킬아세테이트)의 혼합중량비가 60∼98:40∼2인 것이 바람직한데, 폴리비닐리덴플루오라이드의 함량이 60중량% 미만이면 화학적 안정성이 떨어지므로 바람직하지 않은 반면, 98중량%를 초과하게 되면 전해액의 함침이 용이하지 않으므로 바람직하지 않다.In the polymer solid electrolyte according to the present invention, it is preferable that the mixed weight ratio of polyvinylidene fluoride and poly (ethylene-co-alkylacrylate) or poly (ethylene-co-alkylacetate) is 60 to 98:40 to 2. However, if the content of polyvinylidene fluoride is less than 60% by weight, the chemical stability is not preferable, whereas if it exceeds 98% by weight, it is not preferable because the impregnation of the electrolyte is not easy.

또한, 이온성 무기염으로는 용매에 용해되어 이온으로 쉽게 해리되는 염이라면 모두 사용할 수 있다. 그 중에서도 과염소산 리튬(LiClO4), 사불화붕산 리튬(LiBF4), 육불화인산 리튬(LiPF6), 삼불화메탄술폰산 리튬(LiCF3SO3) 및 리튬 비스트리플루오로메탄술포닐 아미드(LiN(CF3SO2)2)로 이루어진 군으로부터 선택된 적어도 하나의 이온성 리튬염을 사용하는 것이 바람직하며, 상기 용매로는 본 발명의 분야에서 사용되는 것이라면 특별하게 제한되지는 않으나 본 발명에 따른 고분자 매트릭스에 대한 함침성이 양호하고 고분자 매트릭스를 용해시키지 않으며 혼합시 상분리특성이 나타나지 않는 것을 선택하는 것이 바람직하며, 예를 들면 프로필렌 카보네이트, 에틸렌 카보네이트, γ-부티로락톤, 디메톡시에탄, 디메틸카보네이트 및 디에틸카보네이트중에서 선택된 적어도 하나를 사용할 수 있다.As the ionic inorganic salt, any salt that is dissolved in a solvent and easily dissociated into ions can be used. Among them, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethanesulfonyl amide (LiN It is preferable to use at least one ionic lithium salt selected from the group consisting of (CF 3 SO 2 ) 2 ), and the solvent is not particularly limited as long as it is used in the field of the present invention. It is preferable to select those which have good impregnation to the matrix, do not dissolve the polymer matrix, and do not exhibit phase separation properties when mixed, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, dimethyl carbonate and At least one selected from diethyl carbonate can be used.

이하, 본 발명을 실시예를 들어 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited only to the following Examples.

본 발명에 따라 제조된 고분자 고체 전해질의 집전체에 대한 접착력 및 제조된 리튬 2차전지에 대한 수명특성을 하기의 방법에 따라 실시하였다.The adhesion of the polymer solid electrolyte prepared according to the present invention to the current collector and the life characteristics of the manufactured lithium secondary battery were performed according to the following method.

<실시예 1><Example 1>

음극판의 제조Preparation of Negative Plate

음극 활물질로서 50g의 흑연을 준비한 다음, 이를 1g의 카본블랙과 분말상태로 혼합하여 분말상 혼합물을 수득하였다. 이어서, 4.5g의 폴리비닐리덴플루오라이드와 0.5g의 폴리에틸렌-코-비닐아세테이트를 50g의 N-메틸피롤리돈에 용해시키고 여기에 10g의 디부틸프탈레이트를 첨가하였다. 이 용액을 분말상 혼합물에 가하여 음극판 형성용 슬러리 조성물을 제조하였다. 이 슬러리 조성물을 음극 집전체인 18㎛ 두께의 다공질 구리 호일의 양면에 각각 도포 및 건조하여 음극판을 제조하였다.After preparing 50 g of graphite as a negative electrode active material, it was mixed with 1 g of carbon black in powder form to obtain a powdery mixture. Next, 4.5 g of polyvinylidene fluoride and 0.5 g of polyethylene-co-vinylacetate were dissolved in 50 g of N-methylpyrrolidone and 10 g of dibutylphthalate was added thereto. This solution was added to the powdery mixture to prepare a slurry composition for forming a negative electrode plate. This slurry composition was applied and dried on both sides of a porous copper foil having a thickness of 18 μm, which is a negative electrode current collector, to prepare a negative electrode plate.

양극판의 제조Manufacture of Bipolar Plates

양극 활물질로서 50g의 이산화리튬코발트(LiCoO2)를 준비한 다음, 이를 3g의 카본블랙과 분말상태로 혼합하여 분말상 혼합물을 수득하였다. 이어서, 4g의 폴리비닐리덴플루오라이드와 1g의 폴리에틸렌-코-비닐아세테이트를 100g의 N-메틸피롤리돈에 용해시키고 여기에 10g의 디부틸프탈레이트를 첨가하였다. 이 용액을 분말상 혼합물에 가하여 양극판 형성용 슬러리 조성물을 제조하였다. 이 슬러리 조성물을 양극 집전체인 20㎛ 두께의 다공질 알루미늄 호일의 양면에 각각 도포 및 건조하여 양극판을 제조하였다.50 g of lithium cobalt dioxide (LiCoO 2 ) was prepared as a cathode active material, and then mixed with 3 g of carbon black in powder form to obtain a powdery mixture. Then, 4 g of polyvinylidene fluoride and 1 g of polyethylene-co-vinylacetate were dissolved in 100 g of N-methylpyrrolidone and 10 g of dibutylphthalate was added thereto. This solution was added to the powdery mixture to prepare a slurry composition for forming a positive plate. The slurry composition was applied and dried on both sides of a 20 탆 -thick porous aluminum foil, which is a positive electrode current collector, to prepare a positive electrode plate.

고분자 고체 전해질 필름의 제조Preparation of Polymer Solid Electrolyte Film

30g의 폴리비닐리덴플루오라이드와 10g의 폴리(에틸렌-코-비닐아세테이트)를 300㎖의 테트라하이드로퓨란에 용해시키고 여기에 30g의 디부틸프탈레이트와 20g의 실리카 분말을 첨가한 다음, 균일한 상태가 될 때까지 혼합하였다. 닥터 블레이드를 이용하여 상기 혼합물을 폴리에스테르 필름 상에 캐스팅하여 두께 50㎛의 전해질 필름을 제조하였다.30 g of polyvinylidene fluoride and 10 g of poly (ethylene-co-vinylacetate) are dissolved in 300 ml of tetrahydrofuran and 30 g of dibutylphthalate and 20 g of silica powder are added to the mixture, followed by Mix until The mixture was cast on a polyester film using a doctor blade to produce an electrolyte film with a thickness of 50 μm.

전지의 조립Assembly of battery

상기에서 제조된 음극판, 양극판, 고분자 고체 전해질 필름을 양극판/필름/음극판의 순서, 또는 양극판/필름/음극판/필름/양극판의 순서대로 적층하고 140도 롤러 속에서 라미네이트하였다. 이 결과물을 메탄올 용액에 침지시켜서 디부틸프탈레이트를 추출한 다음, 전해액 (에틸렌카보네이트와 디메틸카보네이트의 혼합용매에 용해시킨 1M의 LiPF6용액)을 함침시켜 리튬이온폴리머전지를 제조하였다.The negative electrode plate, the positive electrode plate, and the polymer solid electrolyte film prepared above were laminated in the order of the positive plate / film / negative plate, or the positive plate / film / negative plate / film / anode plate and laminated in a 140 degree roller. Dibutyl phthalate was extracted by immersing the resultant in a methanol solution, and then a lithium ion polymer battery was prepared by impregnating an electrolyte solution (1M LiPF 6 solution dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate).

<비교예 1>Comparative Example 1

폴리비닐리덴플루오라이드와 폴리(에틸렌-코-비닐아세테이트)의 혼합물 대신에 동량의 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체를 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법에 따라서 음극판, 양극판 및 고분자 고체 전해질 필름을 제조한 다음, 이를 이용하여 실시예 1에서와 동일한 방법에 따라서 리튬이온폴리머전지를 제조하였다.Cathode plate according to the same method as in Example 1 except for using the same amount of polyvinylidene fluoride-hexafluoropropylene copolymer instead of a mixture of polyvinylidene fluoride and poly (ethylene-co-vinylacetate) After preparing a positive electrode plate and a polymer solid electrolyte film, a lithium ion polymer battery was prepared using the same method as in Example 1.

상기 실시예에 따르면 폴리비닐리덴플루오라이드와 폴리(에틸렌-코-비닐아세테이트)를 용매에 용해시킬 때 각각의 고분자로서 상분리되는 일이 없이 신속하게 용이하게 용해되었으며, 가소제 첨가후에도 고분자 고체 전해질 필름의 접착력이 저하되지 않았다.According to the above embodiment, when polyvinylidene fluoride and poly (ethylene-co-vinylacetate) were dissolved in a solvent, they were readily dissolved without phase separation as respective polymers, and even after the addition of the plasticizer, Adhesive strength did not fall.

따라서, 실시예에 따른 리튬이온폴리머전지는 비교예에 따른 리튬이온폴리머 전지에 비하여 전지 조립시 전해질 필름과 전극판과의 탈리가 거의 일어나지 않는다.Therefore, in the lithium ion polymer battery according to the embodiment, desorption between the electrolyte film and the electrode plate hardly occurs when the battery is assembled, as compared to the lithium ion polymer battery according to the comparative example.

본 발명에 따른 고분자 고체 전해질은 용매에 대한 용해성이 우수하며 전지 조립시 가소제가 첨가되더라도 고분자 고체 전해질 필름의 접착력이 떨어지는 일이 없으므로 전극판과의 탈리현상이 나타나지 않는다. 따라서, 이러한 고분자 고체 전해질을 채용하는 전지는 성능 및 수명특성이 향상된다.The polymer solid electrolyte according to the present invention is excellent in solubility in a solvent and does not appear to detach from the electrode plate since the adhesive strength of the polymer solid electrolyte film does not drop even when a plasticizer is added during battery assembly. Therefore, the battery employing such a polymer solid electrolyte has improved performance and lifespan characteristics.

Claims (5)

고분자 매트릭스, 이온성 무기염 및 용매를 포함하는 고분자 고체 전해질에 있어서,In the polymer solid electrolyte comprising a polymer matrix, an ionic inorganic salt and a solvent, 상기 고분자 매트릭스가 폴리비닐리덴플루오라이드 및 폴리(에틸렌-코-알킬아크릴레이트) 또는 폴리(에틸렌-코-알킬아세테이트) (여기서, 알킬은 메틸, 에틸, 프로필, 부틸, 이소프로필 또는 비닐이다)를 포함하는 것을 특징으로 하는 고분자 고체 전해질.The polymer matrix comprises polyvinylidene fluoride and poly (ethylene-co-alkylacrylate) or poly (ethylene-co-alkylacetate), wherein alkyl is methyl, ethyl, propyl, butyl, isopropyl or vinyl. Polymer solid electrolyte comprising a. 제1항에 있어서, 폴리비닐리덴플루오라이드와 폴리((에틸렌-코-알킬아크릴레이트) 또는 폴리(에틸렌-코-알킬아세테이트)의 혼합중량비가 60∼98:40∼2인 것을 특징으로 하는 고분자 고체 전해질.The polymer according to claim 1, wherein the mixed weight ratio of polyvinylidene fluoride and poly ((ethylene-co-alkylacrylate) or poly (ethylene-co-alkylacetate) is 60 to 98:40 to 2. Solid electrolyte. 제1항에 있어서, 상기 이온성 무기염이 과염소산 리튬(LiClO4), 사불화붕산 리튬(LiBF4), 육불화인산 리튬(LiPF6), 삼불화메탄술폰산 리튬(LiCF3SO3) 및 리튬 비스트리플루오로메탄술포닐 아미드(LiN(CF3SO2)2)로 이루어진 군으로부터 선택된 적어도 하나의 이온성 리튬염인 것을 특징으로 하는 고분자 고체 전해질.The method of claim 1, wherein the ionic inorganic salts are lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethane sulfonate (LiCF 3 SO 3 ) and lithium At least one ionic lithium salt selected from the group consisting of bistrifluoromethanesulfonyl amide (LiN (CF 3 SO 2 ) 2 ). 제1항에 있어서, 상기 용매가 프로필렌 카보네이트, 에틸렌 카보네이트, γ-부티로락톤, 디메톡시에탄, 디메틸카보네이트 및 디에틸카보네이트로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 고분자 고체 전해질.The polymer solid electrolyte of claim 1, wherein the solvent is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, dimethyl carbonate, and diethyl carbonate. 제1항 내지 제4항중 어느 한항 기재의 고분자 고체 전해질을 채용하고 있는 리튬 2차전지.A lithium secondary battery employing the polymer solid electrolyte according to any one of claims 1 to 4.
KR1019990006729A 1999-03-02 1999-03-02 Solid polymer electrolyte and lithium secondary battery employing the same KR100289536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990006729A KR100289536B1 (en) 1999-03-02 1999-03-02 Solid polymer electrolyte and lithium secondary battery employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990006729A KR100289536B1 (en) 1999-03-02 1999-03-02 Solid polymer electrolyte and lithium secondary battery employing the same

Publications (2)

Publication Number Publication Date
KR20000059282A KR20000059282A (en) 2000-10-05
KR100289536B1 true KR100289536B1 (en) 2001-05-02

Family

ID=19575304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990006729A KR100289536B1 (en) 1999-03-02 1999-03-02 Solid polymer electrolyte and lithium secondary battery employing the same

Country Status (1)

Country Link
KR (1) KR100289536B1 (en)

Also Published As

Publication number Publication date
KR20000059282A (en) 2000-10-05

Similar Documents

Publication Publication Date Title
US6610109B2 (en) Method of manufacturing lithium secondary cell
KR101297257B1 (en) Organic electrolytic solution and lithium battery employing the same
KR100528933B1 (en) Organic electrolytic solution and lithium battery employing the same
KR20040108217A (en) Organic electrolytic solution and lithium battery employing the same
CN1303135A (en) Polymer electrolyte film for lithium battery
KR100683666B1 (en) Organic electrolytic solution and lithium battery employing the same
JPH1050345A (en) Polymer electrolyte and lithium polymer battery using the same
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
US6669860B1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery, and electric double-layer capacitor
KR100327915B1 (en) Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same
KR100627331B1 (en) Lithium secondary battery and method of preparing same
KR100289536B1 (en) Solid polymer electrolyte and lithium secondary battery employing the same
CN1142612C (en) Polymer electrolyte film and lithium battery prepared with it
KR20000055681A (en) Polymer blend electrolyte and electrochemical cell using the same
US20020172859A1 (en) Polymer electrolyte precursor having improved impedence
KR100393042B1 (en) Polymer electrolyte for lithium ion polymer battery
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
KR20020002858A (en) Method for manufacturing lithium polymer battery
US11728547B2 (en) Polymer electrolyte lamination layer for lithium metal battery
KR20050024921A (en) Process for preparing micro-porous solid polymer electrolytes and lithium/sulfur secondary batteries using the same
KR100329569B1 (en) Lithium secondary battery
JP3775022B2 (en) Gel electrolyte and gel electrolyte battery
KR100647571B1 (en) Polymer electrolyte for lithium secondary battery
KR100450752B1 (en) Polymer electrolytes using polymer blend based on cationic polymer and method for preparing the same
KR19990079419A (en) Method for producing a cathode plate for a lithium-based secondary battery using an active material composition for a lithium-based secondary battery and a secondary composition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee