KR20020002858A - Method for manufacturing lithium polymer battery - Google Patents

Method for manufacturing lithium polymer battery Download PDF

Info

Publication number
KR20020002858A
KR20020002858A KR1020000037183A KR20000037183A KR20020002858A KR 20020002858 A KR20020002858 A KR 20020002858A KR 1020000037183 A KR1020000037183 A KR 1020000037183A KR 20000037183 A KR20000037183 A KR 20000037183A KR 20020002858 A KR20020002858 A KR 20020002858A
Authority
KR
South Korea
Prior art keywords
polymer
lithium
polymer electrolyte
lithium ion
positive electrode
Prior art date
Application number
KR1020000037183A
Other languages
Korean (ko)
Inventor
김순식
한승우
박규태
김영재
이주학
김종천
김응균
이은숙
Original Assignee
한승우
새한에너테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한승우, 새한에너테크 주식회사 filed Critical 한승우
Priority to KR1020000037183A priority Critical patent/KR20020002858A/en
Publication of KR20020002858A publication Critical patent/KR20020002858A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: Provided is a simple process for producing a lithium ion polymer battery, which can increase mechanical properties of a polymer electrolyte and give a low interfacial resistance between electrode plates and the polymer electrolyte and make the lithium ion polymer battery light. CONSTITUTION: The process comprises the steps of: preparing a cathode by spreading cathode slurry comprising a cathode active material such as meso phase carbon microbead(MCMB), a polymer binder such as polyvinylidene fluoride(PVDF), and a solvent on a current collector such as an expanded or punched metal; preparing an anode by spreading anode slurry comprising an anode active material such as a lithium cobalt oxide, a conductive agent, a polymer binder such as the PVDF, and a solvent on a current collector such as the expanded or punched metal; preparing the polymer electrolyte by spreading a gel obtained from a polymer matrix such as the PVDF, a lithium salt such as lithium hexafluoro phosphate, and a plasticizer of the polymer electrolyte, such as ethylene carbonate, on a film; winding or laminating the cathode, the anode, and the polymer electrolyte to make an end-cell; putting the end-cell into a plastic bag.

Description

리튬이온 고분자 전지 제조방법{METHOD FOR MANUFACTURING LITHIUM POLYMER BATTERY}Lithium ion polymer battery manufacturing method {METHOD FOR MANUFACTURING LITHIUM POLYMER BATTERY}

본 발명은 리튬이온 고분자 전지 제조방법에 관한 것으로서, 특히 리튬이온 전지용 슬러리를 집전체에 직접 도포하여 극판을 형성하고, 이 극판과 절연성 다공질막과 일체화된 고분자 전해질을 이용하여 리튬이온 고분자 전지를 만들 수 있도록 함으로써, 고분자 전해질의 기계적 강도 증가, 극판과 고분자 전해질간의 낮은 계면저항, 리튬이온 고분자 전지의 경량화 및 리튬이온 고분자 전지의 제조공정의 단순화를 도모할 수 있는 리튬이온 고분자 전지 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a lithium ion polymer battery, and in particular, a slurry for a lithium ion battery is applied directly to a current collector to form a pole plate, and a lithium ion polymer battery is made by using a polymer electrolyte integrated with the pole plate and an insulating porous membrane. By increasing the mechanical strength of the polymer electrolyte, low interface resistance between the electrode plate and the polymer electrolyte, the weight of the lithium ion polymer battery, and the manufacturing process of the lithium ion polymer battery can be simplified. .

노트북, 핸드 피시, 이동통신단말기 등 휴대용 기기의 급속한 확산으로 인하여 고용량, 고성능의 재충전용 이차전지에 대한 수요가 급증하고 있다. 리튬이온 고분자 전지는 음극으로 흡장탈착이 가능한 탄소재(카본 또는 카본복합체)를 사용함과 아울러 양극으로 구조변형에 의해서 리튬이온의 충방전이 가능한 리튬복합산화물을 사용하고, 산소기, 질소기, 황산기 등을 포함하는 한 개 이상의 유기 용매에 리튬염을 녹인 비수 전해액을 사용하여, 양극과 음간에 리튬이온이 이동될 때 기전력을 발생시킴으로써 충,방전이 이루어지도록 되어 있다. 그러나, 이러한 리튬이온 고분자 전지는 수분과의 반응성이 크고, 열적으로 불안정한 과량의 전해액을 쓰기 때문에 안정성에 대한 우려가 상존하고 있다. 또한, 전지 포장재로서 금속 캔 등을 사용함으로써 에너지 밀도가 떨어짐은 물론 전지형태에 대한 설계 자유도가 자유롭지 못한 단점도 있다.Due to the rapid proliferation of portable devices such as laptops, hand fishes, and mobile communication terminals, the demand for high capacity, high performance rechargeable secondary batteries is rapidly increasing. The lithium ion polymer battery uses a carbon material (carbon or carbon composite material) that can be absorbed and desorbed as a negative electrode, and a lithium composite oxide capable of charging and discharging lithium ions by structural deformation as a positive electrode. Using a non-aqueous electrolyte in which lithium salt is dissolved in one or more organic solvents, the charge and discharge are made by generating electromotive force when lithium ions are moved between the positive electrode and the negative electrode. However, such lithium ion polymer batteries have high reactivity with water and use excessive electrolytes that are thermally unstable, and thus there is a concern about stability. In addition, by using a metal can or the like as a battery packaging material, not only the energy density is lowered, but also there is a disadvantage in that design freedom for the battery type is not free.

이러한 문제점들을 보완하기 위하여 다양한 형태의 전지 설계가 가능하고, 에너지 밀도가 높으며, 소형/경량화가 가능할 뿐만 아니라 안정성이 우수한 리튬이온 고분자 전지를 제공하기 위한 연구가 활발하게 이루어지고 있다.In order to compensate for these problems, various types of battery designs are possible, energy density is high, miniaturization and weight reduction are possible, and research is being actively conducted to provide a lithium ion polymer battery having excellent stability.

고분자 전해질은 극판 안으로의 리튬이온의 흡장탈착에 의한 전극부피변화에 내구력이 있고, 고체의 성질과 낮은 액체 함량 때문에 액체 전해질보다 반응성이 낮아서 전지 사이클 특성을 개선시킬 수 있으며, 한편으로는 액체 전해질에 비하여 안정성이 우수한 장점이 있다. 특히 폴리비닐리덴플루오라이드-헥사플루오르프로필렌(PVDF-HFP)를 고분자 전해질로 사용하는 벨코어(Bellcore) 방식의 전지용 극판은 리튬이온의 흡장탈착이 가능한 활물질과, 결착재로서 PVDF-HFP 공중합체와, 그리고 극판의 저항을 낮춤과 아울러 리튬이온의 이동통로로 기능하는 디부틸프탈레이트를 아세톤에 녹인 슬러리를 필름에 도포함으로써 제조될 수 있다. 그리고, 상기한 바와 같은 극판을 가진 전극과 고분자 전해질을 음극/고분자 전해질/양극의 순으로 적층하여 단전지를 만들고, 디부틸프탈레이트를 추출한 후에 전해액을 주입하여 플라스틱 백에 열포장함으로써 리튬이온 고분자 전지를 얻을 수 있다.The polymer electrolyte is durable in electrode volume change due to the adsorption and desorption of lithium ions into the electrode plate, and is less reactive than the liquid electrolyte due to the properties of the solid and the low liquid content, thereby improving battery cycle characteristics. Compared with the stability is excellent. In particular, a battery core plate of a bellcore type battery using polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) as a polymer electrolyte has an active material capable of absorbing and desorbing lithium ions, and a PVDF-HFP copolymer as a binder. And it can be prepared by applying a slurry in which dibutyl phthalate dissolved in acetone to lower the resistance of the plate and also serves as a mobile passage of lithium ions to the film. In addition, the electrode having the electrode plate and the polymer electrolyte as described above are laminated in the order of negative electrode / polymer electrolyte / anode to make a single cell, and after extracting dibutyl phthalate, the electrolyte is injected and thermally packaged in a plastic bag to produce a lithium ion polymer battery. You can get it.

이러한 리튬이온 고분자 전지 및 그 제조방법의 장점은 PVDF-HFP 공중합체의 높은 이온전도도로 인하여 리튬이온 전지와 동일한 전지 특성을 나타내면서도 고분자 전해질을 사용함으로써 안정성이 뛰어나고 구조 변형성이 우수하며 초박막화할 수 있는 장점이 있다.The advantage of this lithium ion polymer battery and its manufacturing method is that due to the high ionic conductivity of the PVDF-HFP copolymer, it exhibits the same battery characteristics as that of the lithium ion battery, but also has excellent stability, excellent structural deformation, and ultra-thin film by using a polymer electrolyte. There is an advantage.

그러나, 상기한 장점에도 불구하고, 리튬이온 고분자 전지 및 그 제조방법에 있어서는 높은 휘발성을 가지는 아세톤을 용제로 사용하기 때문에 슬러리를 집전체에 직접 도포하기 어렵고, 이 때문에 종래에는 PET 필름 위에 슬러리가 도포한 것을 거물망 구조의 집전체에 열압착함으로써 극판을 제조함으로써, 제조공정이 복잡해져 생산성이 떨어진다. 또한 극판과 고분자 전해질의 적층상태에 있어서는 계면저항이 커서 전지 특성에 악영향을 끼치는 문제점이 있었다. 또한, 전해액 함침성을 증가시키기 위해 첨가한 디부틸프탈레이트를 추출하는 공정의 품질관리에 따라 전지성능 차이가 매우 커서 균일한 성능의 전지를 제조하기가 어렵다.However, in spite of the above advantages, in the lithium ion polymer battery and its manufacturing method, acetone having high volatility is used as the solvent, so that the slurry is difficult to apply directly to the current collector. By manufacturing the electrode plate by thermocompression bonding the current collector having a big net structure, the manufacturing process is complicated and productivity is lowered. In addition, in the lamination state of the electrode plate and the polymer electrolyte, there is a problem that the interface resistance is large, which adversely affects the battery characteristics. In addition, according to the quality control of the process of extracting the dibutyl phthalate added to increase the electrolyte impregnation, the battery performance difference is very large, it is difficult to manufacture a battery of uniform performance.

따라서, 본 발명자들은 상기한 문제점들을 고려하여 연구를 거듭한 결과 극판 및 고분자 전해질에 디부틸프탈레이트를 첨가하지 않고도 이온전도도가 우수한 극판을 제조할 수 있는 방법을 개발하게 되었다.Accordingly, the present inventors have studied in view of the above problems and have developed a method capable of manufacturing an electrode plate having excellent ion conductivity without adding dibutyl phthalate to the electrode plate and the polymer electrolyte.

본 발명은 리튬이온 전지용 슬러리를 집전체에 직접 도포하여 극판을 형성하고, 이 극판과 절연성 다공질막과 일체화된 고분자 전해질을 이용하여 리튬이온 고분자 전지를 만들 수 있도록 함으로써, 고분자 전해질의 기계적 강도 증가, 극판과 고분자 전해질간의 낮은 계면저항, 리튬이온 고분자 전지의 경량화 및 리튬이온 고The present invention is to apply a slurry for a lithium ion battery directly to the current collector to form a pole plate, and to make a lithium ion polymer battery using the polymer electrolyte integrated with the pole plate and the insulating porous membrane, thereby increasing the mechanical strength of the polymer electrolyte, Low interfacial resistance between electrode plate and polymer electrolyte, light weight of lithium ion polymer battery and high lithium ion

분자 전지의 제조공정의 단순화를 도모할 수 있도록 하는 것을 목적으로 한다.An object of the present invention is to simplify the manufacturing process of a molecular battery.

상기 목적을 달성하기 위하여, 본 발명에 따른 리튬이온 고분자 전지 제조방법은, 음극 활물질 및 고분자 결착재를 용매에 녹여 음극 슬러리를 만들어 이를 집전체에 도포하여 열풍건조함으로써 음극을 제조하는 단계와; 양극 활물질, 도전재 및 고분자 결착재를 용매에 녹여 양극 슬러리를 만들어 이를 집전체에 도포하여 열풍건조함으로써 양극을 만드는 단계와; 고분자 매트릭스 및 리튬염에 고분자 전해질의 가소제를 첨가하여 녹인 겔을 필름에 도포함으로써 고분자 전해질을 만드는 단계와; 상기 음극, 양극 및 고분자 전해질을 소정의 조합으로 권취 또는 적층하여 단전지를 만드는 단계와; 그리고, 상기 단전지를 플라스틱 백에 넣어 포장하여 리튬이온 고분자 전지를 만드는 단계를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the lithium ion polymer battery manufacturing method according to the present invention comprises the steps of preparing a negative electrode by dissolving the negative electrode active material and the polymer binder in a solvent to make a negative electrode slurry and applying it to a current collector to dry hot air; Dissolving a positive electrode active material, a conductive material, and a polymer binder in a solvent to form a positive electrode slurry, and applying the same to a current collector to hot air dry the positive electrode slurry; Making a polymer electrolyte by adding a plasticizer of a polymer electrolyte to the polymer matrix and a lithium salt and applying the melted gel to the film; Winding or stacking the negative electrode, the positive electrode, and the polymer electrolyte in a predetermined combination to form a unit cell; In addition, the single cell is packaged in a plastic bag, characterized in that it comprises a step of making a lithium ion polymer battery.

본 발명의 다른 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.Other features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.

본 발명에 따른 리튬이온 고분자 전지 제조방법에 있어서는 전극 활물질과 고분자 결착재를 용매에 녹인 전극 슬러리를 집전체에 직접 도포하여 전극을 제조함으로써 집전체와 활물질간의 계면저항을 낮춤과 아울러 결착력을 증대시킬 수 있도록 되어 있다.In the method of manufacturing a lithium ion polymer battery according to the present invention, the electrode slurry prepared by dissolving an electrode active material and a polymer binder in a solvent is directly applied to a current collector to prepare an electrode, thereby lowering the interfacial resistance between the current collector and the active material and increasing binding force. It is supposed to be.

즉, 본 발명에 따른 리튬이온 고분자 전지 제조방법에 있어서의 음극 제조방법은 다음과 같이 이루어진다.That is, the negative electrode manufacturing method in the lithium ion polymer battery manufacturing method according to the present invention is made as follows.

먼저 음극 활물질 및 고분자 결착재를 용매에 녹여 음극 슬러리를 만든다. 그리고, 이 음극 슬러리를 집전체에 도포하여 열풍건조함으로써 음극을 제조할 수 있다.First, the negative electrode active material and the polymer binder are dissolved in a solvent to prepare a negative electrode slurry. And a negative electrode can be manufactured by apply | coating this negative electrode slurry to an electrical power collector, and hot-air drying.

구체적으로 음극 활물질로는 코우크스를 원료로 하는 메조페이스카본마이크로비드(MCMB), 메조페이스카본파이버(MPCF) 및 흑연계 탄소를 포함하는 군에서 선택된 어느 하나 또는 이들을 조합한 것을 사용하고, 고분자 결착재로는 폴리비닐리덴플루오라이드(PVDF) 고분자를 사용한다. 이 음극 활물질 및 고분자 결착재를 혼합하고, 여기에 NMP 용매를 첨가함으로써 음극 활물질 및 고분자 결착재를 녹여 음극 슬러리를 만든다. 집전체로는 망체 구조의 익스펜디드 메탈(expended metal) 또는 펀치드 메탈(punched metal)을 사용하며, 이 집전체의 한 쪽 면 또는 양쪽 면에 상기 음극 슬러리를 직접 도포하여 열풍건조함으로써 집전체의 한 쪽 면 또는 양쪽 면에 극판이 형성된 음극을 얻을 수 있다.Specifically, as the negative electrode active material, any one selected from the group containing mesophase carbon microbead (MCMB), mesophase carbon fiber (MPCF), and graphite-based carbon, which are coke-based materials, and a combination thereof are used. As a material, polyvinylidene fluoride (PVDF) polymer is used. The negative electrode active material and the polymer binder are mixed, and an NMP solvent is added thereto to melt the negative electrode active material and the polymer binder to form a negative electrode slurry. As a current collector, an expanded metal or a punched metal having a mesh structure is used, and the current collector is applied by hot-air drying by directly applying the negative electrode slurry to one or both surfaces of the current collector. It is possible to obtain a cathode in which a plate is formed on one or both sides of the substrate.

다음에 본 발명에 따른 리튬이온 고분자 전지용 전극 제조방법으로서, 양극제조방법은 다음과 같이 이루어진다.Next, as a method for manufacturing an electrode for a lithium ion polymer battery according to the present invention, a method for producing a cathode is performed as follows.

먼저 양극 활물질, 도전재 및 고분자 결착재를 용매에 녹여 양극 슬러리를 만든다. 그리고 이 양극 슬러리를 집전체에 도포하여 열풍건조함으로써 양극을 제조할 수 있다.First, the positive electrode active material, the conductive material, and the polymer binder are dissolved in a solvent to form a positive electrode slurry. The positive electrode slurry can be prepared by applying the positive electrode slurry to a current collector and drying the hot air.

구체적으로 양극 활물질로는 리튬코발트산화물, 리튬망간산화물 또는 리튬니켈산화물을 포함하는 군에서 선택된 어느 하나 또는 이들의 혼합물로 된 리튬복합산화물이 사용된다. 그리고, 고분자 결착재로서 폴리비닐리덴플루오라이드(PVDF) 고분자가 사용되며, 도전재는 극판의 전자전도성을 증가시키기 위하여 첨가된다. 이 양극 활물질, 도전재 및 고분자 결착재를 혼합하고, 여기에 NMP 용매를 첨가함으로써 음극 활물질, 도전재 및 고분자 결착재를 녹여 양극 슬러리를 만들고, 이양극 슬러리를 익스펜디드 메탈 또는 펀치드 메탈로 된 집전체의 한 쪽 면 또는 양쪽 면에 직접 도포하여 열풍건조함으로써 집전체의 한 쪽 면 또는 양쪽 면에 극판이 형성된 양극을 얻을 수 있다.Specifically, a lithium composite oxide of any one or a mixture thereof selected from the group containing lithium cobalt oxide, lithium manganese oxide, or lithium nickel oxide is used as the positive electrode active material. As the polymer binder, polyvinylidene fluoride (PVDF) polymer is used, and a conductive material is added to increase the electron conductivity of the electrode plate. The positive electrode active material, the conductive material and the polymer binder are mixed, and an NMP solvent is added thereto to melt the negative electrode active material, the conductive material and the polymer binder to form a positive electrode slurry, and the bipolar slurry is expanded or expanded to a punched metal. It is possible to obtain a positive electrode having a pole plate formed on one or both sides of the current collector by directly applying it to one or both surfaces of the current collector and hot air drying.

다음에는 상기한 바와 같이 리튬이온 고분자 전지를 제조하는데 사용하는 고분자 전해질을 만들기 위한 방법에 대하여 설명한다.Next, a method for making a polymer electrolyte used to manufacture a lithium ion polymer battery as described above will be described.

고분자 매트릭스로 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴니트릴Polyvinylidene fluoride (PVDF), polyacrylonitrile as polymer matrix

(PAN), 폴리에틸렌옥사이드(PEO), 폴리메틸메타크릴레이트(PMMA), 폴리염화비닐(PAN), polyethylene oxide (PEO), polymethyl methacrylate (PMMA), polyvinyl chloride

(PVC), 폴리스티렌(PS) 또는 공중합체로 이루어진 고분자 중에서 적어도 한가지를 준비한다. 그리고, 리튬헥사플루오르포스페이트(LiPF6), 리튬퍼클로레이트(LiCIO4), 리튬테트라플루오르보레이트(LiBF4), 리튬헥사플로오르아스젠네이트(LiAsF6), 리튬트리플루오르메탄설포네이트(LiCF3SO3) 및 이들의 혼합물 중에서 적어도 한가지를 포함하는 리튬염을 준비한다. 또한, 에틸렌카보네이트(EC), 프로필렌카보네이트At least one of a polymer made of (PVC), polystyrene (PS) or a copolymer is prepared. Lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiCIO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroassenate (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 And a lithium salt containing at least one of these mixtures. In addition, ethylene carbonate (EC), propylene carbonate

(PC), 부틸렌카보네이트(BC),-부틸로락톤(GBL), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 테트라하이드로퓨란(THF) 및 이들의 혼합물 중에서 적어도 한가지를 포함하는 고분자 전해질의 가소제를 준비하고, 상기 가소제를 고분자 매트릭스 및 리튬염에 첨가하여 이들을 녹여 겔용액 상태로 다음 이 겔용액을 필름 위에 도포하여 고분자 전해질을 제조한다. 필름은 리튬이온 고분자 전지의 세퍼레이터 기능을 하는 것으로 다공질막의 형태로 된 것이 바람직하며, 이와 같이 절연성 다공질막을 이용하여 고분자 전해질을 제조함으로써 고분자 전해질의 일정한 기계적인 강도를 유지할수 있으며, 다공질막의 필름을 사용함으로써 기공을 통하여 리튬이온의 이동이 가능해진다.(PC), butylene carbonate (BC), Prepare a plasticizer of a polymer electrolyte comprising at least one of butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), tetrahydrofuran (THF) and mixtures thereof Then, the plasticizer is added to the polymer matrix and the lithium salt to dissolve them, and in the gel solution state, the gel solution is then applied onto the film to prepare a polymer electrolyte. The film preferably functions as a separator of a lithium ion polymer battery, and is preferably in the form of a porous membrane. As described above, a polymer electrolyte is prepared using an insulating porous membrane to maintain a constant mechanical strength of the polymer electrolyte, and a film of the porous membrane is used. This allows the movement of lithium ions through the pores.

다음에 상기한 제조방법들에 의하여 제조된 음극, 양극 및 고분자 전해질을 소정의 조합, 예컨대 음극/고분자 전해질/양극의 순으로 권취 또는 적층하여 단전지를 만든다.Next, the negative electrode, the positive electrode, and the polymer electrolyte prepared by the above-described manufacturing methods are wound or laminated in a predetermined combination, for example, negative electrode / polymer electrolyte / anode, to form a single cell.

그리고, 상기 단전지를 플라스틱 백에 넣어 열포장함으로써 리튬이온 고분자 전지의 제조를 완료한다.In addition, the single cell is heat-packed in a plastic bag to complete the production of a lithium ion polymer battery.

본 발명에 따라 제조된 리튬이온 고분자 전지는 충방전 특성을 시험한 결과 극판 슬러리를 유리판이나 필름 위에 도포하여서 된 극판을 집전체인 그리드에 압착시켜 만든 전극을 사용하여 이루어진 종래 리튬이온 고분자 전지에 비하여 극판 및 고분자 전해질에 디부틸프탈레이트를 첨가하지 않고도 이온전도도가 우수하고, 집전체와 극판의 계면저항이 낮으며, 결착력이 증대되어 리튬이온 고분자 전지의 사이클 특성 및 고율특성이 우수함을 알 수 있었다.The lithium ion polymer battery manufactured according to the present invention has been tested with charge and discharge characteristics, compared with a conventional lithium ion polymer battery using electrodes made by compressing a pole plate slurry coated on a glass plate or a film onto a grid as a current collector. It was found that the ionic conductivity was excellent without adding dibutyl phthalate to the electrode plate and the polymer electrolyte, the interfacial resistance between the current collector and the electrode plate was low, and the binding force was increased, thereby providing excellent cycle characteristics and high rate characteristics of the lithium ion polymer battery.

<실시예 1><Example 1>

음극 활물질로 MCMB 92 wt%, 고분자 결착재로 폴리(비닐리덴플루오라이드-co-헥사플루오르프로필렌)(P(VDF-HFP)) 공중합체 8 wt%를 NMP 용매에 녹여 음극 슬러리를 만들고, 이 음극 슬러리를 Cu로 된 집전체에 직접 도포하여 열풍건조함으로써 음극을 만들었다.92 wt% of MCMB as a negative electrode active material and 8 wt% of poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)) copolymer as a polymer binder were dissolved in NMP solvent to form a negative electrode slurry. The slurry was applied directly to a current collector made of Cu, followed by hot air drying to form a negative electrode.

또한, 양극 활물질로 LiCoO2, 도전재로 아세틸렌 블랙 및 고분자 결착재로폴리(비닐리덴플루오라이드-co-헥사플루오프로필렌)(P(VDF-HFP))를 그 무게비가 90 : 6 : 4의 비율이 되도록 준비하여 아세톤 용매에 녹여 양극 슬러리를 만들고, 이 양극 슬러리를 Al로 된 집전체에 직접 도포하여 열풍건조함으로써 양극을 만들었다.Further, LiCoO 2 as the positive electrode active material, acetylene black as the conductive material, and poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)) as the polymer binder had a weight ratio of 90: 6: 4. A positive electrode slurry was prepared by dissolving in an acetone solvent to prepare a positive electrode slurry. The positive electrode slurry was directly applied to a current collector made of Al, followed by hot air drying to make a positive electrode.

한편, 폴리(비닐리덴플루오라이드-co-헥사플루오르프로필렌)(P(VDF-HFP)) 공중합체 및 실리카를, EC와 EMC의 동일부피비의 혼합용매에 1M 농도가 되도록 LiPF6를 녹인 전해액에 녹여 슬러리를 만들고, 이 슬러리를 세퍼레이터인 PE 필름에 도포하여 고분자 전해질을 제조하였다.Meanwhile, the poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)) copolymer and silica were dissolved in an electrolyte solution in which LiPF 6 was dissolved in a mixed solvent of EC and EMC in the same volume ratio. A slurry was made and the slurry was applied to a PE film as a separator to prepare a polymer electrolyte.

그리고, 상기한 바와 같이 얻은 음극, 양극 및 고분자 전해질을 양극/고분자 전해질/음극/고분자 전해질/양극의 순으로 조합하여 권취 또는 적층하여 단전지를 만들고, 상기 단전지를 플라스틱 백에 넣어 열포장하여 리튬이온 고분자 전지의 제조를 완료하였다.In addition, the negative electrode, the positive electrode, and the polymer electrolyte obtained as described above are combined in the order of positive electrode / polymer electrolyte / cathode / polymer electrolyte / anode to make a single cell, and the unit cell is placed in a plastic bag and thermally packaged to obtain lithium ions. Production of the polymer battery was completed.

이와 같이 제조된 리튬이온 고분자 전지를 4.2∼3.0V의 범위에서 1㎃/㎠의 전류를 인가하여 전지의 충방전 특성을 시험한 결과를 표 1에 나타내었다. 표 1과 같이 실시예 1에 따른 리튬이온 고분자 전지는 전지의 사이클수가 증가하고 충방전 효율이 우수함을 알 수 있었다.Table 1 shows the results of testing the charge / discharge characteristics of the battery by applying a current of 1 mA / cm 2 in the range of 4.2 to 3.0 V. As shown in Table 1, the lithium ion polymer battery according to Example 1 was found to increase the cycle number of the battery and excellent charge and discharge efficiency.

<실시예 2><Example 2>

음극과 양극은 실시예 1과 동일하게 제조하였다.The negative electrode and the positive electrode were prepared in the same manner as in Example 1.

그리고 고분자 전해질은 EC와 DEC가 동일부피비로 혼합된 혼합용매를 사용하고 나머지는 실시예 1과 같이 하여 제조하고, 또한 상기 음극, 양극 고분자 전해질을 실시예 1과 같은 방법에 의하여 리튬이온 고분자 전지를 제조하여, 실시예 1과 같이 충방전 특성을 시험한 결과를 표 1에 나타내었다. 표 1에 나타나는 바와 같이 실시예 2의 리튬이온 고분자 전지는 실시예 1의 리튬이온 고분자 전지에 비하여 사이클 특성이 다소 떨어짐을 알 수 있었다.The polymer electrolyte was prepared using a mixed solvent in which EC and DEC were mixed at the same volume ratio, and the rest were prepared in the same manner as in Example 1, and the anode and cathode polymer electrolytes were prepared in the same manner as in Example 1. To prepare, as shown in Table 1, the results of testing the charge and discharge characteristics are shown in Table 1. As shown in Table 1, it was found that the lithium ion polymer battery of Example 2 was slightly inferior in cycle characteristics to the lithium ion polymer battery of Example 1.

<비교예>Comparative Example

음극 활물질로 MCMB 75 wt%, 고분자 결착재로 폴리(비닐리덴플루오라이드-co-헥사플루오르프로필렌)(P(VDF-HFP)) 공중합체 8 wt% 및 디부틸프탈레이트 17 wt%를 아세톤에 녹여 슬러리를 만들고, 이 슬러리를 PET에 도포하여 극판을 만든 후 이 극판을 Cu로 된 집전체에 일정압력 및 온도를 가하여 압착함으로써 음극을 만들었다.75 wt% of MCMB as a negative electrode active material, 8 wt% of poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)) copolymer and 17 wt% of dibutylphthalate as a polymer binder were dissolved in acetone. The slurry was applied to PET to make an electrode plate, and then the electrode plate was pressed by applying a constant pressure and temperature to a current collector made of Cu.

또한, 양극 활물질로 리튬코발트산화물 75 wt%, 1111도전재로 아세틸렌 블랙 5 wt%, 및 고분자 결착재로 폴리(비닐리덴플루오라이드-co-헥사플루오프로필렌)In addition, 75 wt% of lithium cobalt oxide as the positive electrode active material, 5 wt% of acetylene black as the 1111 conductive material, and poly (vinylidene fluoride-co-hexafluoropropylene) as the polymer binder.

(P(VDF-HFP)) 6 wt% 및 디부틸프탈레이트 14 wt%를 아세톤 용매에 녹여 양극 슬러리를 만들고, 이 슬러리를 PET에 도포하여 극판을 만든 후 이 극판을 Al로 된 집전체에 일정압력 및 온도를 가하여 압착함으로써 양극을 만들었다.(P (VDF-HFP)) 6 wt% and 14 wt% dibutyl phthalate are dissolved in acetone solvent to make a positive electrode slurry, and this slurry is applied to PET to make a pole plate. And pressure was applied to form a positive electrode.

한편, 폴리(비닐리덴플루오라이드-co-헥사플루오르프로필렌)(P(VDF-HFP)) 40 wt%, 실리카 30 wt% 및 디부틸프탈레이트 30 wt%를 아세톤에 혼합시킨 슬러리를 세퍼레이터인 PET 필름에 도포하여 고분자 전해질을 제조하였다.Meanwhile, a slurry obtained by mixing 40 wt% of poly (vinylidene fluoride-co-hexafluoropropylene) (P (VDF-HFP)), 30 wt% of silica, and 30 wt% of dibutylphthalate in acetone was added to a PET film as a separator. It was applied to prepare a polymer electrolyte.

그리고, 상기한 바와 같이 얻은 음극, 양극 및 고분자 전해질을 양극/고분자전해질/음극/고분자 전해질/양극의 순으로 조합하여 열과 압력을 가하여 적층함으로써 단전지를 만들고, 이 단전지로부터 디부틸프탈레이트를 추출한 후 전해액 주입공정을 거친 다음, 상기 단전지를 플라스틱 백에 넣어 열포장하여 리튬이온 고분자 전지의 제조를 완료하였다.Then, the negative electrode, the positive electrode, and the polymer electrolyte obtained as described above are combined in the order of positive electrode / polymer electrolyte / cathode / polymer electrolyte / anode to be laminated by applying heat and pressure to extract a dibutyl phthalate from the cell. After the electrolyte injection process, the single cell was heat-packed in a plastic bag to complete the production of a lithium ion polymer battery.

이와 같이 제조된 리튬이온 고분자 전지를 실시예 1과 동일한 조건으로 전지의 충방전 특성을 시험한 결과를 표 1에 나타내었다. 표 1과 같이 비교예의 리튬이온 고분자 전지는 벨코어 형식의 리튬 고분자 전지의 일반적인 형태로서 극판과 고분자 전해질간의 높은 계면저항으로 인하여 사이클이 진행됨에 따라 용량열화가 크게 일어나 사이클 특성이 저하됨을 알 수 있었다.Table 1 shows the results of testing the charge / discharge characteristics of the lithium ion polymer battery thus prepared under the same conditions as in Example 1. As shown in Table 1, the lithium ion polymer battery of the comparative example is a general form of the lithium polymer battery of the core core, and due to the high interfacial resistance between the electrode plate and the polymer electrolyte, the capacity deteriorates with the cycle and the cycle characteristics are deteriorated. .

충방전효율(%)Charge and discharge efficiency (%) 사이클수(회)Cycles (times) 용량열화율(mAh/cycle)Capacity deterioration rate (mAh / cycle) 실시예 1Example 1 99.899.8 530530 0.180.18 실시예 2Example 2 99.699.6 485485 0.230.23 비교예Comparative example 99.199.1 380380 0.560.56

상기한 바와 같이, 본 발명에 있어서는, 활물질과 고분자 전해질을 용매에 녹인 슬러리를 집전체에 직접 도포하여 전극을 만들고, 이 전극을 이용하여 리튬이온 고분자 전지를 제조하도록 이루어짐으로써, 극판과 집전체와의 계면저항이 낮고, 전극 저항이 낮아 리튬이온의 충전/방전이 용이해져 전지의 충방전 효율이 증가되므로 리튬이온 고분자 전지의 수명을 연장시킬 수 있다.As described above, in the present invention, a slurry prepared by dissolving an active material and a polymer electrolyte in a solvent is applied directly to a current collector to make an electrode, and a lithium ion polymer battery is manufactured by using the electrode. Low interfacial resistance and low electrode resistance facilitate charge / discharge of lithium ions, thereby increasing the charge and discharge efficiency of the battery, thereby extending the life of the lithium ion polymer battery.

또한 극판 두께를 얇게 함으로써 리튬이온의 이동경로를 단축시켜서 극판의이온전도도가 증가되고, 절연성 다공질막의 필름에 고분자 전해질을 도포하여 사용함으로써 고분자 전해질의 기계적인 강도 향상과 더불어 이온전도도가 더욱 증가되는 한편 극판과 고분자 전해질과의 계면저항도 저하된다.In addition, by reducing the thickness of the electrode plate, the movement path of lithium ions is shortened to increase the ion conductivity of the electrode plate, and by applying the polymer electrolyte to the film of the insulating porous membrane, the mechanical strength of the polymer electrolyte is increased and the ion conductivity is further increased. The interface resistance between the electrode plate and the polymer electrolyte is also lowered.

또한, 디부틸프탈레이트 추출공정이 배제됨과 아울러 별도로 극판을 만들어 집전체에 압착하지 않고, 슬러리의 도포에 의하여 집전체에 극판이 적층되도록 함으로써, 리튬이온 고분자 전지용 전극의 제조공수 절감 및 생산성 향상에 의하여 리튬이온 고분자 전지의 제조원가를 낮출 수 있을 뿐만 아니라, 균일한 성능의 리튬이온 고분자 전지의 제조가 가능하다.In addition, the dibutyl phthalate extraction process is eliminated, and the electrode plate is laminated on the current collector by applying slurry, instead of making the electrode plate and pressing the current collector, thereby reducing the man-hour and productivity of the lithium ion polymer battery electrode. In addition to lowering the manufacturing cost of the lithium ion polymer battery, it is possible to manufacture a lithium ion polymer battery with uniform performance.

본 발명은 또한 고분자 전해질의 고분자로 폴리아크로니트릴계 수지, 폴리에테르계 수지, 폴리에스테르계 수지 또는 폴리비닐계 수지가 적용가능한 리튬이온 고분자 전지에 효과가 크다.The present invention is also effective in lithium ion polymer batteries in which polyacrylonitrile resins, polyether resins, polyester resins or polyvinyl resins are applicable as polymers of polymer electrolytes.

Claims (4)

음극 활물질 및 고분자 결착재를 용매에 녹여 음극 슬러리를 만들어 이를 집전체에 도포하여 열풍건조함으로써 음극을 제조하는 단계와;Preparing a negative electrode by dissolving a negative electrode active material and a polymeric binder in a solvent to form a negative electrode slurry and applying the same to a current collector for hot air drying; 양극 활물질, 도전재 및 고분자 결착재를 용매에 녹여 양극 슬러리를 만들어 이를 집전체에 도포하여 열풍건조함으로써 양극을 만드는 단계와;Dissolving a positive electrode active material, a conductive material, and a polymer binder in a solvent to form a positive electrode slurry, and applying the same to a current collector to hot air dry the positive electrode slurry; 고분자 매트릭스 및 리튬염에 고분자 전해질의 가소제를 첨가하여 녹인 겔을 필름에 도포함으로써 고분자 전해질을 만드는 단계와;Making a polymer electrolyte by adding a plasticizer of a polymer electrolyte to the polymer matrix and a lithium salt and applying the melted gel to the film; 상기 음극, 양극 및 고분자 전해질을 소정의 조합으로 권취 또는 적층하여 단전지를 만드는 단계와; 그리고,Winding or stacking the negative electrode, the positive electrode, and the polymer electrolyte in a predetermined combination to form a unit cell; And, 상기 단전지를 플라스틱 백에 넣어 포장하여 리튬이온 고분자 전지를 만드는 단계를 포함하여 이루어지는 것을 특징으로 하는 리튬이온 고분자 전지 제조방법.The method of manufacturing a lithium ion polymer battery comprising the step of packaging the unit cell in a plastic bag to make a lithium ion polymer battery. 제 1 항에 있어서,The method of claim 1, 상기 음극 활물질로는 코우크스를 원료로 하는 메조페이스카본마이크로비드Mesophase carbon microbeads made of coke as the negative electrode active material (MCMB), 메조페이스카본파이버(MPCF) 및 흑연계 탄소를 포함하는 군에서 선택된 어느 하나 또는 이들을 조합한 것을 사용하고, 고분자 결착재로는 폴리비닐리덴플루오라이드(PVDF) 고분자를 사용하며, 집전체로는 망체 구조의 익스펜디드 메탈 또는 펀치드 메탈을 사용하여, 음극을 제조함을 특징으로 하는 리튬이온 고분자 전지 제조방법.(MCMB), mesophase carbon fiber (MPCF), and any one selected from the group containing graphite carbon, or a combination thereof, and a polyvinylidene fluoride (PVDF) polymer is used as the polymer binder. The manufacturing method of the lithium ion polymer battery characterized by manufacturing a negative electrode using the expanded metal or punched metal of a net structure as a whole. 제 1 항에 있어서,The method of claim 1, 상기 양극 활물질로는 리튬코발트산화물, 리튬망간산화물 또는 리튬니켈산화물을 포함하는 군에서 선택된 어느 하나 또는 이들의 혼합물로 된 리튬복합산화물을 사용하고, 고분자 결착재로서 폴리비닐리덴플루오라이드(PVDF) 고분자를 사용하며, 집전체로 익스펜디드 메탈 또는 펀치드 메탈을 사용하여, 양극을 제조함을 특징으로 하는 리튬이온 고분자 전지 제조방법.The positive electrode active material is a lithium composite oxide of any one or a mixture thereof selected from the group consisting of lithium cobalt oxide, lithium manganese oxide or lithium nickel oxide, and a polyvinylidene fluoride (PVDF) polymer as a polymer binder. Using a lithium ion polymer battery, characterized in that for producing a positive electrode, using an expanded metal or punched metal as a current collector. 제 1 항에 있어서,The method of claim 1, 상기 고분자 매트릭스로 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴니트릴Polyvinylidene fluoride (PVDF), polyacrylonitrile as the polymer matrix (PAN), 폴리에틸렌옥사이드(PEO), 폴리메틸메타크릴레이트(PMMA), 폴리염화비닐(PAN), polyethylene oxide (PEO), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), 폴리스티렌(PS) 또는 공중합체로 이루어진 고분자 중에서 적어도 한가지를 사용하고, 리튬염으로 리튬헥사플루오르포스페이트(LiPF6), 리튬퍼클로레이트(PVC), at least one of a polymer made of polystyrene (PS) or a copolymer is used, and lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate as a lithium salt (LiCIO4), 리튬테트라플루오르보레이트(LiBF4), 리튬헥사플로오르아스젠네이트(LiCIO 4 ), Lithium tetrafluoroborate (LiBF 4 ), Lithium hexafluoroassenate (LiAsF6), 리튬트리플루오르메탄설포네이트(LiCF3SO3) 및 이들의 혼합물 중에서 적어도 한가지를 포함하는 것을 사용하며, 고분자 전해질의 가소제로 에틸렌카보네이트(LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and mixtures thereof containing at least one of them, ethylene carbonate as a plasticizer of the polymer electrolyte (EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC),-부틸로락톤(GBL), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 테트라하이드로퓨란(THF) 및 이들의 혼합물 중에서 적어도 한가지를 포함하는 것을 사용하며,(EC), propylene carbonate (PC), butylene carbonate (BC), -But include at least one of butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), tetrahydrofuran (THF) and mixtures thereof, 상기 가소제를 고분자 매트릭스 및 리튬염에 첨가하여 이들을 녹인 겔용액을 다공질막 형태의 필름에 도포하여 고분자 전해질을 제조함을 특징으로 하는 리튬이온 고분자 전지 제조방법.The plasticizer is added to a polymer matrix and a lithium salt, and the gel solution dissolved therein is coated on a film in the form of a porous membrane to prepare a polymer electrolyte.
KR1020000037183A 2000-06-30 2000-06-30 Method for manufacturing lithium polymer battery KR20020002858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037183A KR20020002858A (en) 2000-06-30 2000-06-30 Method for manufacturing lithium polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037183A KR20020002858A (en) 2000-06-30 2000-06-30 Method for manufacturing lithium polymer battery

Publications (1)

Publication Number Publication Date
KR20020002858A true KR20020002858A (en) 2002-01-10

Family

ID=19675428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037183A KR20020002858A (en) 2000-06-30 2000-06-30 Method for manufacturing lithium polymer battery

Country Status (1)

Country Link
KR (1) KR20020002858A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046667A (en) * 2002-11-28 2004-06-05 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
CN103545553A (en) * 2012-07-11 2014-01-29 兴能高科技股份有限公司 Manufacturing method of colloid lithium battery
WO2018001164A1 (en) * 2016-06-27 2018-01-04 宁德时代新能源科技股份有限公司 Cell and battery using same
CN113488698A (en) * 2020-07-31 2021-10-08 惠州市合盈科技有限公司 Manufacturing method for producing soft-shell lithium battery
CN114388869A (en) * 2021-12-23 2022-04-22 荣盛盟固利新能源科技股份有限公司 Gel polymer battery and preparation method thereof
US11476498B2 (en) 2018-03-27 2022-10-18 Lg Energy Solution, Ltd. Complex solid electrolyte membrane for all-solid-state battery and all-solid-state battery including same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046667A (en) * 2002-11-28 2004-06-05 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
CN103545553A (en) * 2012-07-11 2014-01-29 兴能高科技股份有限公司 Manufacturing method of colloid lithium battery
WO2018001164A1 (en) * 2016-06-27 2018-01-04 宁德时代新能源科技股份有限公司 Cell and battery using same
US11476498B2 (en) 2018-03-27 2022-10-18 Lg Energy Solution, Ltd. Complex solid electrolyte membrane for all-solid-state battery and all-solid-state battery including same
CN113488698A (en) * 2020-07-31 2021-10-08 惠州市合盈科技有限公司 Manufacturing method for producing soft-shell lithium battery
CN114388869A (en) * 2021-12-23 2022-04-22 荣盛盟固利新能源科技股份有限公司 Gel polymer battery and preparation method thereof

Similar Documents

Publication Publication Date Title
US7883554B2 (en) Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
US7135254B2 (en) Multi-layered, UV-cured polymer electrolyte and lithium secondary battery comprising the same
US6610109B2 (en) Method of manufacturing lithium secondary cell
KR20000019372A (en) Solid polymer alloy electrolyte of homogeneous phase, complex electrode using the electrolyte, lithium polymer battery, lithium ion polymer battery and manufacturing method thereof
WO2001089022A1 (en) A lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
KR20010016921A (en) Lithium ion polymer battery
WO2001089020A1 (en) A hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
KR20010089233A (en) Solid electrolyte cell
WO2002061872A1 (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
CN112055909A (en) Method for manufacturing all-solid-state battery including polymer solid electrolyte and all-solid-state battery obtained by the method
KR102311802B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte for all solid-state battery and an electrode manufactured thereby
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
CN104124415A (en) Composite gel polymer electrolyte as well as preparation method and application thereof
WO2001089023A1 (en) A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
KR20020002858A (en) Method for manufacturing lithium polymer battery
KR100364965B1 (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
KR100385701B1 (en) Lithium battery and method for preparing the same
KR100324626B1 (en) Composite electrodes and lithium secondary battery using gel-type polymer electrolytes, and its fabrication method
CN114512718A (en) Composite solid electrolyte, preparation method thereof and high-performance all-solid-state battery
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR20030005254A (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
KR100406076B1 (en) Litium polymer secondary battery
KR100373728B1 (en) Electrode active material composition of lithium secondary battery and lithium secondary battery prepared using the same
WO2001091222A1 (en) A lithium secondary battery comprising a polymer electrolyte fabricated by a spray method and its fabrication method

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application