KR100276328B1 - The manufacturing method for non oriented electric steelsheet with low hysterisis - Google Patents

The manufacturing method for non oriented electric steelsheet with low hysterisis Download PDF

Info

Publication number
KR100276328B1
KR100276328B1 KR1019960069479A KR19960069479A KR100276328B1 KR 100276328 B1 KR100276328 B1 KR 100276328B1 KR 1019960069479 A KR1019960069479 A KR 1019960069479A KR 19960069479 A KR19960069479 A KR 19960069479A KR 100276328 B1 KR100276328 B1 KR 100276328B1
Authority
KR
South Korea
Prior art keywords
less
annealing
rolling
iron loss
final
Prior art date
Application number
KR1019960069479A
Other languages
Korean (ko)
Other versions
KR19980050642A (en
Inventor
박종태
우종수
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019960069479A priority Critical patent/KR100276328B1/en
Publication of KR19980050642A publication Critical patent/KR19980050642A/en
Application granted granted Critical
Publication of KR100276328B1 publication Critical patent/KR100276328B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for manufacturing fully-processed non-oriented electrical steel sheets having low iron loss is provided to reduce electricity loss of iron core material for small scaled rotators adopted in motor and transformer by adding Cr and controlling final annealing condition/skin pass rolling condition properly. CONSTITUTION: In the manufacturing method of fully-processed non-oriented electrical steel sheets where a silicone steel slab comprising C 0.01wt.% or less, Si 0.1-1.5wt.%, Mn 0.5wt.% or less, Al 1.0wt.% or less, S 0.010wt.% or less, N 0.01wt.% or less, P 0.15wt.% or less, a balance of Fe, and inevitable impurities undergoes hot rolling, annealing, cold rolling, process annealing, and final annealing, the present invention is characterized in that Cr 0.05-1.0wt.% is contained in the silicone steel slab, and also the final continuous annealing is performed in the transformation temperature of 875 to Ac1 for 10sec-30min after temper rolling.

Description

철손이 낮은 풀리 프로세스 무방향성 전기강판의 제조방법Manufacturing method of pulley process non-oriented electrical steel sheet with low iron loss

본 발명은 각종 모터 및 소형변압기 등 전기 기기의 철심재료로 쓰이는 풀리프로세스 무방향성 전기강판의 제조방법에 관한 것으로써, 보다 상세하게는 철손이 낮은 풀리 프로세스 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a pulley process non-oriented electrical steel sheet used as an iron core material of electric machines such as various motors and small transformers, and more particularly, to a method for manufacturing a pulley process non-oriented electrical steel sheet having low iron loss.

최근, 에너지절약 차원에서 전기 기기의 효율을 높이려는 추세에 따라 철심재료인 전기강판에 있어서도 철손이 낮은 제품에 대한 욕구가 점차 증가되고 있는 실정이다. 무방향성 전기강판의 철손은 이력손실과 와전류손실로 이루어지는데, 이력손실은 철심재료의 결정방위, 순도, 내부응력 등의 영향을 받는 반면에 와전류손실은 철심재료의 두께, 비저항, 자구의 구조 등의 영향을 받는다. 또한, 상기의 이력손실은 총철손의 70-80%을 차지하므로 이력손실의 감소는 철손을 낮출 수 있는 중요한 요건의 하나인데, 이러한 이력손실은 결정립크기에 역비례하므로 결정립크기를 크게 하면 철손이 낮아지게 된다. 결정립크기를 크게 하기 위해서 최종 소둔공정에서 장시간 고온으로 강판을 소둔 처리하는 것이 유효하지만 경제적으로 불리하고, 또한 연속적으로 소둔 되므로 장시간 소둔 한다는 것은 사실상 불가능하다.Recently, according to the trend of increasing the efficiency of electrical equipment in terms of energy conservation, the demand for products with low iron loss is gradually increasing even in electrical steel sheets which are iron core materials. Iron loss of non-oriented electrical steel is composed of hysteresis loss and eddy current loss. Hysteresis loss is affected by crystal orientation, purity, and internal stress of iron core material, while eddy current loss is related to thickness, specific resistance, and structure of magnetic core material. Is affected. In addition, since the hysteresis loss accounts for 70-80% of the total iron loss, the reduction of the hysteresis loss is one of the important requirements for lowering the iron loss. This hysteresis loss is inversely proportional to the grain size. You lose. In order to increase the grain size, it is effective to anneal the steel sheet at a high temperature for a long time in the final annealing process, but it is economically disadvantageous, and since it is continuously annealed, it is virtually impossible to anneal it for a long time.

또한, 무방향성 전기강판의 철손은 집합조직에 의해서도 영향을 받는데, 자화용이축인 <100> 방향이 판면에 평행한 결정립이 많을수록 자기특성에 유리하고 이력손실을 낮추어 철손을 낮출 수 있다. 그러므로 자화용이축을 포함하지 않는 (111),(211)면보다는 (100),(110)면이 많은 철심재료를 만드는 것이 철손을 낮추어 에너지효율을 높일 수 있는 방법이다.In addition, the iron loss of the non-oriented electrical steel sheet is also affected by the texture, the more the <100> direction of the magnetization axis is parallel to the plate surface, the more favorable the magnetic properties and lower the hysteresis loss by lowering the hysteresis loss. Therefore, making iron core materials with more (100) and (110) planes than the (111) and (211) planes that do not contain a magnetizing biaxial axis is a method of increasing energy efficiency by lowering iron losses.

한편, 무방향성 전기강판은 수요가가 가공후에 응력제거소둔을 반드시 실시해야만 하는 세미 프로세스 제품(semi-prosessed material)과 수요가가 응력제거소둔을 할 필요가 없는 풀리 프로세스 제품(fully-prosessed material)으로 크게 대별할 수 있다. 상기 세미 프로세스 제품은 제강 → 연속주조 → 열간압연 → 열연판소둔 →냉간압연 → 소둔 → 스킨패스압연 → 절연코팅의 제조공정으로 변형을 받은 상태로 출하된다. 따라서 수요가는 제품을 구입하여 원하는 형상으로 제품을 가공한 후에는 그 제품에 맞는 자기특성을 얻기 위하여 응력제거소둔을 실시 해야한다. 통상적으로 응력제거소둔은 균열온도가 800℃이상이 되면 절연코팅의 밀착성이 열화되어 전기 기기의 특성을 악화시키기 때문에 균열온도 800℃ 전후에서 4-13시간정도로 장시간 실시된다.On the other hand, non-oriented electrical steel sheet is a semi-prosessed material that must be subjected to stress relief annealing after the demand, and a fully-prosessed material that does not require stress relief annealing. It can be largely divided into. The semi-processed products are shipped in a modified state in the manufacturing process of steelmaking → continuous casting → hot rolling → hot rolled sheet annealing → cold rolling → annealing → skin pass rolling → insulation coating. Therefore, after purchasing the product with high demand and processing the product into the desired shape, it is necessary to perform stress relief annealing in order to obtain magnetic properties suitable for the product. In general, the stress relief annealing is performed for a long time of about 4 to 13 hours at the crack temperature of about 800 ° C because the adhesion of the insulation coating is deteriorated when the cracking temperature is higher than 800 ° C, thereby deteriorating the characteristics of the electric equipment.

상기 풀리 프로세스 제품은 제강 → 연속주조 → 열간압연 → 열연판소둔 → 냉간압연 → 최종소둔 → 절연코팅의 제조공정을 통하여 변형이 해소된 상태로 출하되므로 수요가가 응력제거소둔을 하지 않고 사용할 수 있는 장점을 가진 제품이다.The pulley process products are shipped in a state where deformation is solved through the manufacturing process of steelmaking → continuous casting → hot rolling → hot rolled sheet annealing → cold rolling → final annealing → insulation coating, so that the demand can be used without stress relief annealing. This product has merit.

이제까지는 풀리 프로세스 무방향성 전기강판의 철손을 낮추기 위하여 특수원소첨가, 불순물이 적은 청정강 제조, 소둔조건을 제어하는 방법 등을 사용하여 왔다. 특수원소를 첨가한 대표적인 예로 일본공고 특허공보 (소) 56-54370호에 제시된 방법을 들 수 있는데, 상기 방법은 무방향성 전기강판에 Sb를 첨가하는 방법이다.Until now, in order to reduce the iron loss of the pulley process non-oriented electrical steel sheet, special elements have been added, clean steel with less impurities, a method of controlling annealing conditions, and the like. A typical example of the addition of a special element is the method disclosed in Japanese Patent Application Laid-open No. 56-54370, which is a method of adding Sb to a non-oriented electrical steel sheet.

상기 방법에 의하면 집합조직의 개선에 따른 자속밀도의 상숭으로 철손의 감소를 조금은 기대할 수 있으나, Sb이 결정립계에 편석하여 결정립성장을 방해하므로 철손을 낮추는 데는 한계가 있다. 또한, 소둔조건을 제어하는 예로서는 일본공개 특허공보(소) 59-8049호에 제시된 방법을 들 수 있는데, 상기 방법은 최종소둔시 자구의 이동을 방해하여 철손을 높이는 내부산화층의 생성을 억제하고 결정립을 크게 성장시키기 위하여 최종소둔을 1050℃이상의 온도에서 3-60초범위로 단시간 실시함으로써 우수한 자기특성을 얻는 방법이다. 그러나, 상기 방법은 Si함량이 2.5%로 높은 경우에는 상변태구역이 존재하지 않기 때문에 효과적이지만, Si함량이 1.5%이하로 낮은 경우에는 소둔시 페라이트-오스테나이트 상변태가 일어나 오히려 결정립 크기가 작아지므로 철손이 높아지는 문제점이 있다.According to the above method, the reduction of iron loss can be expected a little due to the increase in magnetic flux density due to the improvement of the aggregate structure. However, since Sb segregates at grain boundaries and interferes with grain growth, there is a limit to lowering the iron loss. As an example of controlling the annealing conditions, there is a method disclosed in Japanese Patent Application Laid-Open No. 59-8049, which inhibits the formation of an internal oxide layer that inhibits the movement of magnetic domains at the time of final annealing and increases iron loss, and crystal grains. In order to grow large, the final annealing is performed for a short time in the range of 3-60 seconds at a temperature of 1050 ℃ or more to obtain excellent magnetic properties. However, the above method is effective because the phase transformation zone does not exist when the Si content is high as 2.5%. However, when the Si content is lower than 1.5%, the ferrite-austenite phase transformation occurs during annealing, and thus the grain size is reduced. There is a problem with this increase.

한편, 무방향성 전기강판의 다른 생산방법인 세미 프로세스 무방향성 전기강판의 경우는 자기특성을 향상시키기 위하여 소둔시의 냉각속도 제어와 특수원소 첨가 등의 방법을 사용하여 왔는데, 각각에 대한 대표적인 예를 들면 일본 공개 특허공보(소) 63-255323호와 일본공개 특허공보 (소) 59-100217 호 및 일본공개 (소)61-3371호에 제시된 방법을 들 수 있다. 그러나 상기 방법들은 모두 수요가들이 소기의 자기특성을 얻기 위해서는 가공후에 응력제거소둔을 실시해야만 하는 세미프로세스 제품의 문제점을 벗어나지 못한 단점이 있다.Meanwhile, semi-process non-oriented electrical steel, which is another production method of non-oriented electrical steel, has been used to control the cooling rate during annealing and to add special elements to improve magnetic properties. For example, the method of Unexamined-Japanese-Patent No. 63-255323, Unexamined-Japanese-Patent No. 59-100217, and Unexamined-Japanese-Patent No. 61-3371 is mentioned. However, all of the above methods have disadvantages in that they do not escape the problem of semi-process products, which require stress relief annealing after processing in order to obtain desired magnetic properties.

따라서, 본 발명자들은 최종소둔시 결정립을 크게 성장시킴으로써 이력손실 감소에 의하여 철손을 감소시킬 수 있는 방법에 대하여 연구와 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 기존의 강종에 Cr을 첨가하고, 스킨 패스 압연과 단시간의 최종소둔조건을 적절히 조합하여 변형유기결정립 성장에 의하여 결정립을 매우 효과적으로 균일하게 성장시킴으로써 철손이 낮은 무방향성 전기강판을 풀리 프로세스에 의해 제조하는 방법을 제공하고자 하는데 그 목적이 있다.Therefore, the present inventors have conducted research and experiment on a method for reducing iron loss by reducing hysteresis loss by growing grains at the time of final annealing and suggesting the present invention based on the results. A method for producing a non-oriented electrical steel sheet having low iron loss by a pulley process by adding Cr to steel grades and appropriately combining skin pass rolling with a short final annealing condition to grow the grains very effectively and uniformly by growth of strained organic grains. Its purpose is to provide it.

상기 목적을 달성하기 위한 본 발명은 중량%로, C: 0.01%이하, Si: 0.1-1.5%, Mn: 0.5%이하 Al:1.0%이하, S: 0.010%이하, N: 0.01%이하와 P: 0.15%이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 열간압연, 열연판소둔, 냉간압연, 중간소둔, 최종소둔하는 풀리 프로세스 무방향성전기강판의 제조방법에 있어서, 상기 규소강 스라브에는 Cr이 0.05-1.0% 함유되어 있고, 상기 냉연강판의 중간소둔후에 1-9%로 스킨패스 압연한 다음, 875℃ ∼ Ac1변태점의 온도에서 30초-10분 동안 최종연속소둔하는 철손이 낮은 풀리 프로세스 무방향성 전기강판의제조방법에 관한 것이다.The present invention for achieving the above object by weight, C: 0.01% or less, Si: 0.1-1.5%, Mn: 0.5% or less Al: 1.0% or less, S: 0.010% or less, N: 0.01% or less : A method for producing a pulley process non-oriented electrical steel sheet in which a silicon steel slab comprising 0.15% or less and remaining Fe and inevitably contained impurities is hot rolled, hot rolled sheet annealed, cold rolled, intermediate annealed, or annealed. The slab contains 0.05-1.0% of Cr, and after the intermediate annealing of the cold-rolled steel sheet, the skin pass rolled to 1-9%, and the iron loss was finally annealed for 30 seconds to 10 minutes at a temperature of 875 ° C to Ac 1 transformation point. This low pulley process relates to a method of manufacturing non-oriented electrical steel sheet.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명자들은 최종연속소둔시 결정립을 크게 성장시켜 철손을 낮출 수 있는 여러가지 조건을 검토해 본 결과, 스킨패스 압연과 최종소둔조건의 적절한 조합으로 변형유기결정립성장을 일으켜 결정립을 크게 성장시킬 수는 있으나, 결정립들이 균일하게 성장하지 않고 혼립상태로 존재한다는 사실을 발견하였다. 또한, 변형유기결정립성장에 의한 결정립성장은 단시간의 연속소둔에서는 통상적인 결정립성장보다 훨씬 높은 온도에서 일어난다는 사실도 발견하였다. 이러한 사실로부터 변형유기결정립성장에 의하여 크고 균일한 결정립을 얻기 위해서는 페라이트-오스테나이트 변태온도를 높이고, 결정립계의 이동을 용이하게 해주는 것이 중요하다는 것을 알 수 있었다. 이러한 작용을 위해 본 발명에서는 강 스라브중에 Cr을 적절히 첨가하는데, 상기 Cr은 페라이트-오스테나이트 변태온도를 높이는데 탁월한 효과가 있을뿐 아니라, 스킨패스 압연후 단시간의 최종연속소둔시 결정립계에 편석되는 일없이 결정립계를 용이하게 이동시켜 변형유기결정립성장으로 결정립을 아주 크고 균일하게 성장키는 작용이 있고, 이러한 작용이 효과적으로 일어나도록 Cr의 첨가량과 제조방법을 제어함에 본 발명의 특징이 있다.The present inventors have studied various conditions that can greatly reduce the iron loss by growing the grains in the final continuous annealing, and as a result, it is possible to grow the grains largely by causing strain organic grain growth by a proper combination of the skin pass rolling and the final annealing conditions. It was found that the grains do not grow uniformly but exist in a mixed state. It has also been found that grain growth by strained organic grain growth occurs at a much higher temperature than conventional grain growth in a short time continuous annealing. From these facts, it was found that it is important to increase the ferrite-austenite transformation temperature and facilitate the movement of grain boundaries in order to obtain large and uniform grains by strained organic grain growth. In the present invention, Cr is properly added to the steel slab for this action, and the Cr is not only excellent in increasing the ferrite-austenite transformation temperature, but also segregated in the grain boundary during the final continuous annealing after skin pass rolling. There is a feature of the present invention to control the addition amount and the production method of Cr so as to easily move the grain boundaries and grow the grains very large and uniformly by strained organic grain growth, so that such action occurs effectively.

먼저 본 발명에서 첨가원소의 성분범위에 대하여 설명한다.First, the component range of the additional element in the present invention will be described.

상기 C는 함량이 0.01%를 넘으면 자기시효를 일으켜 철손을 열화 시키므로 첨가함량은 0.01%이하로 하는 것이 바람직하다.When the content of C exceeds 0.01%, it causes self aging and deteriorates iron loss, so the content of C is preferably 0.01% or less.

상기 Si는 비저항을 증가시켜 철손의 향상에 기여하는 원소이지만, 그 함량이 0.1%미만이거나 1.5%를 넘으면 스킨패스 압연에 의한 철손 개선효과가 작아 지므로 첨가함량은 0.1-1.50%의 범위로 하는 것이 바람직하다.The Si is an element that contributes to the improvement of iron loss by increasing the specific resistance, but if the content is less than 0.1% or more than 1.5%, the iron loss improvement effect by skin pass rolling is reduced, so the addition content is in the range of 0.1-1.50%. desirable.

상기 Mn은 철손 개선에 유효한 원소이지만 0.5%를 넘으면 페라이트-오스테나이트 변태온도를 낮추어 오히려 철손을 열하시키므로 첨가함량은 0.5% 이하로 하는 것이 바람직하다.The Mn is an effective element for improving the iron loss, but if it exceeds 0.5%, the ferrite-austenite transformation temperature is lowered and the iron loss is deteriorated, so the addition content is preferably 0.5% or less.

상기 Al은 규소와 마찬가지로 철손향상에 기여하지만, 함량이 1.0%를 넘으면 냉간압연성이 나빠지므로 그 첨가 범위는 1.0%이하로 한다.Al, like silicon, contributes to the improvement of iron loss, but if the content exceeds 1.0%, the cold rolling is worse, so that the addition range is 1.0% or less.

상기 S과 N는 철손 개선에 유해한 개재물을 형성하여 소둔시 결정립성장을 방해하므로 첨가범위는 낮을수록 바람직하기에 각각 0.01%이하로 제한한다.Since the S and N form inclusions harmful to iron loss improvement and hinder grain growth during annealing, the lower the addition range, the more preferably the limit of 0.01% or less.

상기 P은 기계적강도 확보를 위하여 필요한 원소이지만 함량이 0.15%를 넘으면 냉간압연성이 나빠지므로 0.15% 이하로 한다.The P is an element necessary for securing mechanical strength, but if the content is more than 0.15%, cold rolling is worse, so it is 0.15% or less.

상기 Cr은 함량이 0.05%이상 되어야 스킨패스 압연후 단시간의 최종연속소둔시 결정립계를 용이하게 이동시켜 결정립을 균일하고 크게 성장시키는 작용을 발휘하지만 1.0% 이상 되면 이러한 효과는 포화될 뿐만 아니라 자속밀도를 저하시키므로 그 첨가범위는 0.05-1.0% 범위로 하는 것이 바람직하다.The Cr content should be 0.05% or more to easily move the grain boundaries during the final continuous annealing after skin pass rolling, and to uniformly and greatly grow the grains. Since it lowers, it is preferable to make the addition range into 0.05-1.0% range.

상기와 같은 조성의 규소강 스라브를 재가열한 후 열간압연한 다음 열간압연판을 소둔하고, 다시 냉간압연한 다음 중간소둔을 실시하고 난 후에 스킨패스압연을 하여 최종두께를 얻는다. 그 다음 냉간압연한 판을 최종소둔한다.After reheating the silicon steel slab of the composition as described above, hot rolling, annealing the hot rolled plate, cold rolling, and then performing an intermediate annealing to obtain the final thickness by skin pass rolling. Then the cold rolled plate is finally annealed.

본 발명에서는 상기 열연판소둔 및 중간소둔은 재결정온도 이상에서 실시하고, 열연판소둔은 생략하여도 무방하다.In the present invention, the hot rolled sheet annealing and intermediate annealing may be carried out at a recrystallization temperature or higher, and the hot rolled sheet annealing may be omitted.

상기 스킨패스압연은 압연율을 1-9%로 하는 것이 바람직한데, 그 이유는 압연율이 1%미만이면 결정립성장 구동력이 약해 최종소둔시 변형유기결정립성장이 일어나지 않고, 압연율이 9%를 넘으면 최종소둔시 새로운 핵생성이 일어나 변형유기결정립성장에 의한 철손감소효과를 기대할 수 없기 때문이다.The skin pass rolling preferably has a rolling rate of 1-9%. The reason is that when the rolling rate is less than 1%, the grain growth driving force is weak, so that no deformation organic grain growth occurs during final annealing, and the rolling rate is 9%. If this is exceeded, new nucleation occurs at the time of final annealing, so it is impossible to expect the effect of reducing iron loss due to strained organic grain growth.

또한, 스킨패스 압연율을 1-9% 범위로 하여도 상기 최종소둔온도가 875℃보다 낮거나 소둔시간이 30초 미만이면 변형유기결정립성장이 아닌 통상적인 결정립성장만 일어난다거나, 변형유기결정립성장이 일어난다 하여도 완전하게 일어나지 않아 혼립조직이 생김으로 인해 철손이 높아진다. 또한, 최종소둔온도가 Ac1변태점보다 높으면 페라이트-오스테나이트 변태가 일어나 결정립이 미세해지므로 오히려 철손이 높아지게 되고, 최종소둔시간이 10분 이상으로 길어져도 결정립성장에 의한 철손향상은 적고 자기특성에 유해한 산화물이 생성되어 오히려 철손은 높아지고 비경제적이다. 따라서, 최종소둔조건은 875℃ ∼ Ac1변태점의 온도에서 30초-10분 동안 하는 것이 바람직하다.In addition, even when the skin pass rolling rate is in the range of 1-9%, if the final annealing temperature is lower than 875 ° C. or the annealing time is less than 30 seconds, only normal grain growth, not strain organic grain growth, or strain organic grain growth occurs. This does not happen completely, but the iron loss is increased due to the formation of a mixed tissue. In addition, if the final annealing temperature is higher than the Ac 1 transformation point, ferrite-austenite transformation occurs and the grains become finer, resulting in higher iron loss. Even if the final annealing time is longer than 10 minutes, the iron loss due to grain growth is small and the magnetic properties are improved. Harmful oxides are produced, resulting in higher iron losses and uneconomics. Therefore, the final annealing condition is preferably carried out for 30 seconds to 10 minutes at the temperature of 875 ℃ to Ac 1 transformation point.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로, C:0.0043%, Si:0.82%, Mn:0.27%, Al:0.28%, S:0.0027%, N:0.0018%, P:0.025%, 그리고 Cr을 각각 하기표 1과 같이 첨가하고, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 1180℃에서 재가열하여 두께 2.3mm로 열간압연한 후 산세하여 스케일을 제거하였다. 상기 열간압연판을 냉간압연하고 750℃에서 2분간 중간소둔한 후 스킨패스 압연율 3%로 하여 최종두께 0.50mm로 압연하였다. 스킨패스압연판을 900℃에서 3분간 최종소둔하여 자기특성을 측정하고, 그 결과를 하기 표 1에 나타내였다.By weight, C: 0.0043%, Si: 0.82%, Mn: 0.27%, Al: 0.28%, S: 0.0027%, N: 0.0018%, P: 0.025%, and Cr were added as shown in Table 1, respectively. The silicon steel slab consisting of the remaining Fe and the impurities contained inevitably was reheated at 1180 ° C., hot rolled to 2.3 mm in thickness, and pickled to remove scale. The hot rolled sheet was cold rolled and annealed at 750 ° C. for 2 minutes, and then rolled to a final thickness of 0.50 mm at a skin pass rolling rate of 3%. The skin pass rolling plate was finally annealed at 900 ° C. for 3 minutes to measure magnetic properties, and the results are shown in Table 1 below.

[표 1]TABLE 1

상기 표 1에 나타난 바와 같이, 본 발명의 Cr함량 범위를 만족하는 발명재(1-2)는 Cr이 첨가되지 않은 비교재(1)에 비하여 철손이 감소한다는 사실을 알 수 있었다.As shown in Table 1, the invention material (1-2) satisfying the Cr content range of the present invention was found to reduce the iron loss compared to the comparative material (1) without addition of Cr.

또한, Cr함량이 1.32%로 본 발명의 범위를 벗어난 비교재(2)의 경우는 발명재(2)와 철손은 비슷하지만 자속밀도가 저하되는 문제점이 있었다.In addition, in the case of the comparative material (2) having a Cr content of 1.32%, which is outside the scope of the present invention, iron loss was similar to that of the inventive material (2), but the magnetic flux density was lowered.

[실시예 2]Example 2

중량%로, C:0.0038%, Si:0.76%, Mn:0.31%, Al:0.28%, S:0.0042%, N:0.0021%, P:0.024%, Cr:0.17%, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 1180℃에서 재가열하여 두께 2.0mm로 열간압연한 후 산세하여 스케일을 제거하였다. 상기 열간압연판을 하기 표2와 같은 조건으로 압연조건을 변화시켜 최종두께 0.50mm로 냉간압연 한 다음, 상기 냉연판을 900℃에서 3분간 최종소둔하여 자기특성을 측정하고, 그 결과를 하기 표 2에 나타내었다.By weight, C: 0.0038%, Si: 0.76%, Mn: 0.31%, Al: 0.28%, S: 0.0042%, N: 0.0021%, P: 0.024%, Cr: 0.17%, remaining Fe and inevitably contained The silicon steel slab made of impurities was reheated at 1180 ° C., hot rolled to a thickness of 2.0 mm, and then pickled to remove scale. The hot rolled sheet was cold rolled to a final thickness of 0.50 mm by changing rolling conditions under the conditions shown in Table 2, and then the cold rolled sheet was finally annealed at 900 ° C. for 3 minutes to measure magnetic properties. 2 is shown.

[표 2]TABLE 2

상기 표 2에 나타난 바와 같이 발명재(3-4)는 통상적인 제조방법으로 얻어진 비교재(3)에 비하여 결정립이 크게 성장되어 철손이 낮으며, 스킨패스 압연율이 본 발명의 범위에 속하지 않는 비교재(4-5)는 통상적으로 제조된 비교재(3)에 비하여 철손특성이 거의 개선되지 않았다는 사실을 알 수 있었다.As shown in Table 2, the invention material (3-4) is a large grain growth is low compared to the comparative material (3) obtained by the conventional manufacturing method, the iron loss is low, the skin pass rolling rate does not belong to the scope of the present invention It was found that the comparative material 4-5 had almost no improvement in iron loss characteristics compared with the conventional comparative material 3 produced.

[실시예 3]Example 3

중량%로, C:0.0029%, Si:0.85%, Mn:0.21%, Al:0.20%, S:0.0051%, N:0.0021%, P:0.025%, Cr:0.45%, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 1180℃에서 재가열하여 두께 2.2mm로 열간압연한 후 산세하여 스케일으로 제거하였다. 상기 열간압연판을 냉간압연하고 770℃에서 2분간 중간소둔한 후 스킨패스 압연율 4%로 하여 최종두께 0.50mm로 압연하였다. 하기 표 3에 표시된 조건으로 최종소둔하여 자기특성을 측정하고, 그 결과를 하기 표 3에 나타내었다.By weight, C: 0.0029%, Si: 0.85%, Mn: 0.21%, Al: 0.20%, S: 0.0051%, N: 0.0021%, P: 0.025%, Cr: 0.45%, remaining Fe and inevitably contained The silicon steel slab made of impurity was reheated at 1180 ° C., hot rolled to 2.2 mm in thickness, and then pickled to remove scale. The hot rolled sheet was cold rolled and annealed at 770 ° C. for 2 minutes, and then rolled to a final thickness of 0.50 mm at a skin pass rolling rate of 4%. After the final annealing under the conditions shown in Table 3 to measure the magnetic properties, the results are shown in Table 3.

[표 3]TABLE 3

상기 표 3에 나타난 바와 같이 최종소둔온도가 720℃인 비교재(6)와 최종소둔온도가 본 성분계인 Ac1변태점인 1015℃보다 높은 비교재(7)은 발명재(5-6)에 비하여 철손이 높아진다는 사실을 알 수 있었다. 또한, 최종소둔온도는 본 발명의 범위에 있으나 소둔시간이 5초로 짧은 비교재(8)이나 20분으로 긴 비교재(9)의 경우도 발명재에 비하여 철손이 높아진다는 것을 알 수 있었다.As shown in Table 3, the comparative annealing material (6) having a final annealing temperature of 720 ° C. and a comparative material (7) having a final annealing temperature higher than 1015 ° C., which is Ac 1 transformation point of the present component system, were compared to the inventive material (5-6). The iron loss is high. In addition, the final annealing temperature is within the scope of the present invention, but it was also found that the iron loss was higher in the case of the comparative material 8 having a shorter annealing time of 5 seconds or the comparative material 9 having a longer 20 minutes than the invention material.

상술한 바와 같이, 본 발명은 강중 Cr를 적정량 첨가하고, 스킨패스 압연 및 최종연속소둔조건을 적절히 제어함으로써 종래재와 비교하여 철손이 낮은 풀리 프로세스 무방향성 전기강판을 제공할 수 있고, 상기 제공된 무방향성 전기강판은 우수한 에너지효율이 요구되는 각종모터 등의 전기 기기 제조분야에 적용될 수 있는 유용한 효과가 있다.As described above, the present invention can provide a pulley process non-oriented electrical steel sheet having lower iron loss compared to conventional materials by adding an appropriate amount of Cr in steel and appropriately controlling the skin pass rolling and final continuous annealing conditions, Oriented electrical steel sheet has a useful effect that can be applied to the field of electrical equipment manufacturing, such as various motors that require excellent energy efficiency.

Claims (1)

(정정) 중량%로, C:0.01%이하, Si:0.1-1.5%, Mn:0.5%이하 Al:1.0%이하, S:0.010%이하, N:0.01%이하와 P:0.15%이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 열간압연, 열연판소둔, 냉간압연, 중간소둔, 최종소둔하는 풀리 프로세스 무방향성전기강판의 제조방법에 있어서, 상기 규소강 스라브에는 Cr이 0.05-1.0% 함유되어 있고, 상기 냉연강판의 중간소둔후에 1-9%로 스킨패스 압연한 다음, 875℃ ∼ Ac1변태점의 온도에서 30초-10분 동안 최종연속소둔하는 것을 특징으로 하는 철손이 낮은 풀리 프로세스 무방향성 전기강판의 제조방법.(Correction) By weight%, C: 0.01% or less, Si: 0.1-1.5%, Mn: 0.5% or less, Al: 1.0% or less, S: 0.010% or less, N: 0.01% or less and P: 0.15% or less In the method for producing a pulley process non-oriented electrical steel sheet for hot rolling, hot rolled sheet annealing, cold rolling, intermediate annealing, and final annealing of silicon steel slab made of Fe and inevitable impurities, Cr is 0.05- 1.0%, and after the intermediate annealing of the cold-rolled steel sheet, the skin pass rolling to 1-9%, and then low iron loss, characterized in that the final continuous annealing for 30 seconds-10 minutes at a temperature of 875 ℃ ~ Ac 1 transformation point Method for manufacturing pulley process non-oriented electrical steel sheet.
KR1019960069479A 1996-12-21 1996-12-21 The manufacturing method for non oriented electric steelsheet with low hysterisis KR100276328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960069479A KR100276328B1 (en) 1996-12-21 1996-12-21 The manufacturing method for non oriented electric steelsheet with low hysterisis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069479A KR100276328B1 (en) 1996-12-21 1996-12-21 The manufacturing method for non oriented electric steelsheet with low hysterisis

Publications (2)

Publication Number Publication Date
KR19980050642A KR19980050642A (en) 1998-09-15
KR100276328B1 true KR100276328B1 (en) 2000-12-15

Family

ID=19489955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069479A KR100276328B1 (en) 1996-12-21 1996-12-21 The manufacturing method for non oriented electric steelsheet with low hysterisis

Country Status (1)

Country Link
KR (1) KR100276328B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309922A (en) * 1988-02-25 1989-12-14 Nippon Steel Corp Production of grain-oriented magnetic steel sheet having low iron loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309922A (en) * 1988-02-25 1989-12-14 Nippon Steel Corp Production of grain-oriented magnetic steel sheet having low iron loss

Also Published As

Publication number Publication date
KR19980050642A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
KR20150001467A (en) Oriented electrical steel sheet and method of manufacturing the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR100544417B1 (en) Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR102515028B1 (en) Method for manufactruing non-oriented electrical steel sheet and non-oriented electrical steel sheet prepared by the same
KR100479991B1 (en) A method for producing non-oriented silicon steel with low core loss
KR100276328B1 (en) The manufacturing method for non oriented electric steelsheet with low hysterisis
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
JPH01306523A (en) Production of non-oriented electrical sheet having high magnetic flux density
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100957939B1 (en) Non-oriented electrical sheets with excellent magnetism and method for manufacturing the same
KR100276279B1 (en) The manufacturing method for fully process non oriented electric steel sheet with excellent low hysterisis
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JPH0273919A (en) Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
KR910003880B1 (en) Making process for electrical sheet
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR960003174B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density
KR960005226B1 (en) Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030902

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee