KR100272582B1 - Scan converter - Google Patents
Scan converter Download PDFInfo
- Publication number
- KR100272582B1 KR100272582B1 KR1019970052143A KR19970052143A KR100272582B1 KR 100272582 B1 KR100272582 B1 KR 100272582B1 KR 1019970052143 A KR1019970052143 A KR 1019970052143A KR 19970052143 A KR19970052143 A KR 19970052143A KR 100272582 B1 KR100272582 B1 KR 100272582B1
- Authority
- KR
- South Korea
- Prior art keywords
- motion
- value
- field
- data
- difference
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N11/00—Colour television systems
- H04N11/06—Transmission systems characterised by the manner in which the individual colour picture signal components are combined
- H04N11/20—Conversion of the manner in which the individual colour picture signal components are combined, e.g. conversion of colour television standards
- H04N11/22—Conversion of the manner in which the individual colour picture signal components are combined, e.g. conversion of colour television standards in which simultaneous signals are converted into sequential signals or vice versa
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0117—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
- H04N7/012—Conversion between an interlaced and a progressive signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0135—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Graphics (AREA)
- Television Systems (AREA)
Abstract
Description
본 발명은 비월주사 필드(Interlaced Field) 데이터를 순차주사 프레임(Progressive Frame) 데이터로 변환하는 스캔 컨버터 회로에 관한 것이다.The present invention relates to a scan converter circuit for converting interlaced field data into progressive frame data.
최근에 각광받고 있는 표준 TV(Standard Definition TV ; SDTV)등에서는 순차주사 프레임 데이터로 디스플레이 하게 되어 있으며 내부 자료 처리시에도 순차주사 방식이 다루기 용이하다. 따라서, 입력이 비월주사 필드 데이터이면 이것을 순차주사 프레임 데이터로 변환하여야 한다.Recently, the standard definition TV (SDTV), which is in the spotlight, is displayed as sequential scanning frame data, and the sequential scanning method is easy to handle even when processing internal data. Therefore, if the input is interlaced field data, it must be converted into progressive scan frame data.
이때, 비월주사-순차주사 변환에 가장 흔히 사용되는 기술은 바로 전 필드 데이터를 현재 필드 라인 데이터 사이에 보간(Interpolation)하는 인터-필드 보간(Inter-field Interpolation) 방법과 현재 필드 자체의 라인 보간(Line Interpolation) 즉, 현재 필드내에서 수직 방향으로 전후 두 라인의 중간값으로 현재 필드 라인 데이터 사이를 보간하는 인트라-필드 보간(Intra-field Interpolation) 방법 등이 있다.At this time, the most commonly used technique for interlaced-to-sequential scanning conversion is an inter-field interpolation method that interpolates the previous field data between current field line data and the line interpolation of the current field itself. Line interpolation, that is, an intra-field interpolation method of interpolating current field line data with a middle value between two lines before and after in a vertical direction in a current field.
이들 방법은 아주 단순한 하드웨어를 구성할 수 있는 장점이 있는 반면 상기된 인터-필드 보간 방법은 움직임이 클수록 톱 필드(Top Filed)와 바텀 필드(Bottom Field) 사이의 격차가 크므로 움직임이 있는 부분의 보간 후 움직임이 큰 부분에서 화면이 찌그러져 보이는 등 화질의 열화가 상당히 심하고, 인트라-보간 방법은 없는 데이터를 강제로 생성하므로 정지화 부분의 보간 후 화질이 열화가 상당히 심해지는 문제점이 있다.While these methods have the advantage of being able to construct very simple hardware, the inter-field interpolation method described above has a larger gap between the top filed and the bottom field as the motion increases. The image quality is severely deteriorated, such as the screen being distorted in a large part after interpolation, and the image quality is severely deteriorated after interpolation of the still image because the data is forcibly generated without the intra-interpolation method.
따라서, 이를 해결하기 위하여 각 픽셀 데이터 간의 차값을 미리 정해진 문턱값(Threshold Value)과 비교하여 움직임 유무를 검출하고, 움직임 유무에 따라 인터-필드 보간 방법과 인트라-필드 보간 방법을 선택적으로 이용하여 비월주사 필드 데이터를 순차주사 프레임 데이터로 변환하는 방법이 있다. 그러나, 이 방법은 움직임 유무를 검출하기 위한 문턱값이 고정되어 있으므로 움직임이 적은 부분에서는 노이즈를 움직임이 있는 것으로 오판단하거나 움직임이 많은 부분에서는 실제 움직임을 노이즈로 간주하여 움직임이 없다고 오판단하는 경우가 발생할 수 있다. 즉, 현재 픽셀에 대해 움직임 유무를 정확히 판단하지 못하므로 마찬가지로 화질의 열화를 초래할 수 있다.Therefore, in order to solve this problem, the difference between each pixel data is compared with a predetermined threshold value and motion is detected, and interlacing and intra-field interpolation are selectively performed according to the motion. There is a method of converting scan field data into progressive scan frame data. However, this method has a fixed threshold for detecting the presence or absence of motion. Therefore, if there is a small amount of motion, noise is judged to have a motion, or if there is a large amount of motion, the actual motion is regarded as noise, and it is judged that there is no motion. May occur. That is, since it is not possible to accurately determine whether there is motion with respect to the current pixel, it may cause deterioration of image quality.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 한 픽셀에 대해 정확하게 움직임 여부를 판단하도록 하는 스캔 컨버터 회로를 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a scan converter circuit for accurately determining whether or not to move a pixel.
본 발명의 다른 목적은 영상의 움직임 유무를 판단하는데 사용될 문턱값을 주변 상황에 따라 바꾸어줌으로써, 주어진 픽쳐의 움직임 특성에 따라 유동적으로 대처할 수 있도록 하는 스캔 컨버터 회로를 제공함에 있다.Another object of the present invention is to provide a scan converter circuit that can flexibly cope with a movement characteristic of a given picture by changing a threshold value used to determine whether there is motion of an image according to surrounding conditions.
본 발명에 따른 스캔 컨버터 회로의 특징은, 움직임 예측 라인 버퍼 값에 따라 정지를 판단하는데 사용되는 문턱값과 움직임을 판단하는데 사용되는 문턱값을 결정하고, 이 두 문턱값과 두 필드간의 차 값을 각각 비교하여 현 픽셀의 움직임을 판단하며, 현 픽셀의 움직임 유무와 상기 움직임 예측 라인 버퍼 값으로 새로운 움직임 예측 라인 버퍼 값을 결정하고, 상기 움직임 유무에 따른 블렌딩 계수를 구하여 데이터 보간에 이용하는데 있다.A feature of the scan converter circuit according to the present invention is to determine the threshold value used to determine the stop and the threshold value used to determine the motion according to the motion prediction line buffer value, and to determine the difference between the two threshold values and the two fields. The comparison is performed to determine the motion of the current pixel, determine a new motion prediction line buffer value based on the presence / absence of the current pixel and the motion prediction line buffer value, and obtain a blending coefficient according to the motion presence to use the data for interpolation.
도 1은 본 발명의 입력으로 사용될 세 필드와 보간되는 픽셀의 관계를 보여준 도면1 illustrates the relationship between three fields to be used as input for the present invention and interpolated pixels
도 2는 본 발명에 따른 스캔 컨버터의 간략 블록도2 is a simplified block diagram of a scan converter according to the present invention.
도 3은 문턱값과 블렌딩 계수와의 관계를 나타낸 그래프3 is a graph showing the relationship between a threshold and a blending coefficient
도 4a는 본 발명의 움직임 예측 라인 버퍼의 일예를 나타낸 도면4A illustrates an example of a motion prediction line buffer of the present invention.
도 4b는 본 발명에서 주변 상태와 현재 픽셀의 움직임 여부에 따라 움직임 예측 라인 버퍼의 값이 새로이 결정되는 과정을 나타낸 상태 천이 다이아그램4B is a state transition diagram illustrating a process of newly determining a value of a motion prediction line buffer according to an ambient state and whether a current pixel is moved in the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
21 : 필드 차 계산부 22 : 로우패스필터21: field difference calculation unit 22: low pass filter
23 : 움직임 검출 및 계수 발생부 24 : 데이터 보간부23: motion detection and coefficient generator 24: data interpolator
m[i,j] : 움직임 예측 라인 버퍼m [i, j]: motion prediction line buffer
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 입력으로 사용될 세 필드에 대한 설명도로서, F[n]은 현재 필드이고, F[n-1]은 바로 이전 필드이며, F[n+1]은 바로 이후 필드이다. x[i,j]는 현 필드에 없는 라인상의 픽셀로서 새로이 만들어질 픽셀 데이터이며, 움직임 여부에 대한 판단이 필요한 픽셀이다. b[i,j]와 c[i,j]는 공간적으로 x[i,j]와 같은 위치에 있는 픽셀이다.1 is an explanatory diagram of three fields to be used as inputs of the present invention, where F [n] is the current field, F [n-1] is the immediately preceding field, and F [n + 1] is the immediately following field. x [i, j] is a pixel on the line which is not present in the current field and is newly created pixel data, and is a pixel that needs to be judged whether or not to move. b [i, j] and c [i, j] are the pixels at spatially equal to x [i, j].
도 2는 본 발명에 따른 스캔 컨버터 회로의 간략 블록도로서, 이전 필드(F[n-1]), 현재필드(F[n]), 이후 필드(F[n+1])의 각 픽셀 데이터간의 차이를 계산하는 필드 차 계산부(21), 상기 필드 차 계산부(21)에서 계산된 차 값이 임펄스성 노이즈를 제거하는 로우 패스 필터(Low Pass Filter ; LPF)(22), 상기 LPF(22)를 통과한 차 값을 가변적인 문턱값과 비교하여 움직임을 검출하고 블렌딩을 위한 계수(Blending Coefficient ; blc)를 구하는 움직임 검출 및 계수 발생부(23), 및 상기 움직임 검출 및 계수 발생부(23)에서 구한 블렌딩 계수로 블렌딩을 수행하여 비월주사 필드 데이터를 순차주사 프레임 데이터로 변환하는 데이터 보간부(24)로 구성된다.2 is a simplified block diagram of a scan converter circuit according to the present invention, in which pixel data of a previous field F [n-1], a current field F [n], and a subsequent field F [n + 1] are shown. A field
이와 같이 구성된 본 발명은 정지하고 있는 주변에서는 문턱값을 높여주어 신호 차이가 많이 나도 노이즈로 간주하여 정지화로 판단하도록 하고, 움직임이 있는 주변에서는 문턱값을 나춰주어 조금만 신호차이가 나도 움직임이 있는 것으로 판단하도록 한다.The present invention configured as described above increases the threshold value at a stationary periphery and considers it as a still image even though there are many signal differences, and divides the threshold value at the periphery where there is motion, even though there is a slight signal difference. Use judgment.
이를 위해 먼저 필드 차 계산부(21)는 이전 필드(F[n-1])의 픽셀 데이터 (b[i,j-1],b[i,j],b[i,j+1]와 이후 필드(F[n+1]의 픽셀 데이터(c[i,j-1],c[i,j],c[i,j+1]를 입력받아 각 픽셀 데이터간이 차이를 계산한 후 LPF(22)를 통과시켜 갑자기 튀는 노이즈등을 제거한다. 상기 LPF(22)를 통과한 두 필드간의 차값은 움직임 검출 및 계수 발생부(23)로 입력된다.To this end, the
상기 움직임 검출 및 계수 발생부(23)는 도 4a와 같은 움직임 예측 라인 버퍼(m[j])를 사용하여 정지를 판단하는 문턱값(th_m)과 움직임을 판단하는 문턱값(th_M)을 픽쳐의 움직임 상태에 따라 적응적으로(ad아파트ive) 결정한다. 상기 움직임 예측 라인 버퍼(m[j])는 1비트만을 사용하여 단순히 움직임(Motion)과 정지(Still)만을 구별하게 할 수도 있고, 3비트 이상을 사용하여 움직임과 스틸 상태를 세분화 할 수도 있다.The motion detection and
본 발명에서 움직임 예측 라인 버퍼(m[j[)를 일실시예로 2 비트로 가정하면, 강한 스틸(Still) 약한 스틸, 강한 움직임, 약한 움직임 4개의 값을 갖을 수 있다. 여기서, 새로운 m[j]는 x[i,j]의 움직임 여부와 이전 [j]의 값에 의해 결정된다.In the present invention, assuming that the motion prediction line buffer m [j [) is 2 bits in one embodiment, it may have four values of strong still weak still, strong motion, and weak motion. Here, the new m [j] is determined by whether x [i, j] is moved and the value of the previous [j].
즉, 상기 움직임 예측 라인 버퍼(m[j])에는 이전 라인의 픽셀에 대한 움직임 상태가 저장되어 있다. 따라서, 움직임 예측 라인 버퍼(m[j]) 값 즉, 주변의 상태에 따라 문턱값(th_m), th_M)을 결정하고, 이 문턱값(th_m), th_M)과 LPF(22)에서 출력되는 두 필드간의 차 값을 각각 비교하여 현재 픽셀의 움직임을 판단한다. 그리고, 현재 픽셀의 움직임 유무와 상기 m[j] 값으로 새로이 변경될 m[j] 값을 결정하고, 결정된 값을 움직임 예측 라인 버퍼(m[j])에 오버라이트(Overwrite)한다. 만일, 이전 라인의 3개의 움직임 예측 라인 버퍼(m[j-1],m[j],m[j+1])의 평균값을 이용하여 문턱값(th_m), th_M)을 결정하고 현 픽셀의 움직임을 판단한다면 현재 라인의 다음 픽셀의 문턱값(th_m, th_M) 및 움직임 유무가 결정된 후에야 변경된 m[j]값을 움직임 예측 라인 버퍼(m[j])에 오버라이트한다.That is, the motion prediction line buffer m [j] stores the motion state of the pixel of the previous line. Accordingly, the thresholds th_m and th_M are determined according to the motion prediction line buffer m [j] value, that is, the surrounding state, and the two thresholds th_m and th_M and the two outputs from the
도 4b는 현 픽셀의 움직임 유무와 이전 m[j] 값 즉, 주변의 상태에 따라 변경될 m[j] 값을 결정하기 위한 일실시예의 상태천이 다이아그램으로서, 이전 m[k]값 즉, 주변이 강한 스틸(Still)이고 현재 픽셀이 움직임이 없다고 판별되면 강한 스틸에 해당하는 값(00)이 새로운 m[j] 값이 되고, 주변이 강한 스틸이고 현재 픽셀이 움직임이 있다고 판별되면 약한 움직임에 해당하는 값(10)이 새로운 m[j] 값이 된다. 이를 표로 나타내면 다음의 표 1과 같다.FIG. 4B is a state transition diagram of an embodiment for determining whether a current pixel is present and a previous m [j] value, that is, an m [j] value to be changed according to a surrounding state. If it is determined that the surrounding is strong still and the current pixel is no motion, the value corresponding to the strong still (00) becomes the new m [j] value, and if it is determined that the surrounding is strong still and the current pixel is moving, weak motion The value 10 corresponding to becomes the new m [j] value. This is shown in Table 1 below.
이와 같이 움직임 예측 라인 버퍼(m[j]) 값 즉, 주변 상태가 강한 스틸을 나타내면 정지를 판단하는 문턱값(th_m)을 약한 스틸 상태일 때보다 더 높여주어 두 필드간에 어느 정도 신호차이가 나도 이를 노이즈로 간주시킴에 의해 정지화로 판단하도록 하고, 주변 상태가 강한 움직임을 나타내면 움직임을 판단하는 문턱값(th_M)을 약한 움직임 상태일 때보다 더 낮춰주어 두 필드간의 차이가 조금만 있어도 이를 움직임이 있는 것으로 판단하도록 한다. 여기서, 강한 스틸, 약한 스틸, 약한 움직임, 강한 움직임에 따른 문턱값(th_m, th_M)을 미리 설정하여 두고 움직임 예측 라인 버퍼(m[j]) 값에 따라 어느 하나를 선택하여 사용할 수도 있다.As such, when the motion prediction line buffer (m [j]) value, that is, the surrounding state indicates a strong still state, the threshold value (th_m) for determining the stop is raised higher than when the still state is used, and there is a difference in signal between the two fields. By considering this as noise, it is judged as a still image, and when the surrounding state indicates a strong motion, the threshold value (th_M) for judging the motion is lowered than when the motion is weak, so even if there is a slight difference between the two fields, To be judged. Here, the threshold values th_m and th_M according to the strong still, the weak still, the weak motion, and the strong motion may be set in advance, and any one may be selected and used according to the value of the motion prediction line buffer m [j].
이때, 도 3에서와 같이 두 필드간이 차 값이 문턱 값(th_m)보다 작으면 현재 픽셀이 움직임이 없는 스틸 상태라고 판단하고 이때의 블렌딩 계수(blc)는 0, 문턱값(th_M)보다 크면 움직임이 있다고 판단하고 이때의 블렌딩 계수(blc)는 C(움직임)로 포화(Saturate)시킨다. 그리고, 두 필드간의 차 값이 문턱값 th_m 과 th_M 사이에 있으면 움직임을 판단하기 불분명한 부분으로서, 움직임이 작은 경우에 해당되며 이때의 블렌딩 계수(blc)는 0과 C의 중간값을 갖는다.In this case, as shown in FIG. 3, if the difference value between the two fields is smaller than the threshold value th_m, it is determined that the current pixel is still without motion, and the blending coefficient blc at this time is 0 and the motion is greater than the threshold value th_M. It is determined that there is, and the blending coefficient blc at this time is saturated with C (movement). If the difference between the two fields is between the threshold values th_m and th_M, it is unclear to determine the motion. The motion is small and the blending coefficient blc has a median value between 0 and C.
한편, 데이터 보간부(24)는 상기 움직임 검출 및 계수 발생부(23)에서 블렌딩 계수(blc)가 출력되면 이를 하기 수학식 1에 대입하여 블렌딩을 수행한다.Meanwhile, when the blending coefficient blc is output from the motion detection and
여기서, x[i,j]는 현 필드에 없는 라인상의 픽셀로서, 비월주사 필드 데이터를 순차주사 프레임 데이터로 변환시 보간되는 픽셀 데이터 값이다.Here, x [i, j] is a pixel on the line not present in the current field, and is a pixel data value interpolated when the interlaced field data is converted into progressive scan frame data.
이와 같이 본 발명은 톱 필드(Top field)에 대해서는 바텀 필드(Bottom field)에 해당되는 라인을, 버텀 필드에 대해서는 톱 필드에 해당되는 라인을 만드는데 움직임 여부를 판단하기 위한 문턱값을 가변시키고 가변되는 문턱값을 이용하여 움직임 여부를 판단함으로써, 사용자가 의도한 화면의 화질을 개선할 수 있다.As described above, the present invention creates a line corresponding to the bottom field for the top field and a line corresponding to the top field for the bottom field. By determining whether to move using the threshold value, it is possible to improve the image quality of the screen intended by the user.
또한, 본 발명은 비월주사 방식의 전송 신호를 순차주사 모니터에 디스플레이하기 위한 장치나 디지털 티브(TV)의 디스플레이 처리 분야에 적용될 수 있다.In addition, the present invention can be applied to an apparatus for displaying an interlaced transmission signal on a sequential scan monitor or a display processing field of a digital television (TV).
이상에서와 같이 본 발명에 따른 스캔 컨버터 회로에 의하면, 주변 상태 즉, 적은 비트로 된 움직임 예측 라인 버퍼 값을 가지고 정지와 움직임을 판단하기 위한 문턱값을 새로이 설정하고, 이 문턱값과 두 필드간의 차 값을 비교하여 현재 픽셀의 움직임을 판단하며, 현재 픽셀의 움직임 유무와 상기 움직임 예측 라인 버퍼값으로 움직임 예측 라인 버퍼 값을 다시 결정하여 움직임 예측 라인 버퍼에 새로이 써넣음으로써, 정지하고 있는 주변에서는 문턱값이 높아져 두 필드간의 신호차이가 많이 나도 이를 노이즈로 간주하여 정지화로 판단하도록 하고, 움직임이 있는 주변에서는 문턱값이 낮아져 조금만 신호차이가 나도 움직임이 있는 것으로 판단하도록 한다. 따라서, 한 픽셀에 대해 움직임과 정지 상태를 정확히 판단하여 그 픽셀 값을 결정할 수 있으므로 비월주사 필드 데이터를 순차주사 프레임 데이터로 변환시 화질이 개선되는 효과가 있다.As described above, according to the scan converter circuit of the present invention, a threshold value for determining stop and motion is set with a peripheral state, that is, a motion prediction line buffer value having a small number of bits, and the difference between the threshold value and the two fields. Compare the values to determine the motion of the current pixel, and determine the motion prediction line buffer value again by using the current pixel movement and the motion prediction line buffer value, and rewrite the motion prediction line buffer value into the motion prediction line buffer. Even though the signal difference between the two fields is high due to a high value, it is regarded as noise and judged as a still image, and the threshold value is lowered in the vicinity of the movement so that the signal difference is judged to be even if there is a slight difference. Therefore, since the pixel value can be determined by accurately determining the motion and still state of one pixel, the image quality can be improved when the interlaced field data is converted into progressive scan frame data.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970052143A KR100272582B1 (en) | 1997-10-10 | 1997-10-10 | Scan converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970052143A KR100272582B1 (en) | 1997-10-10 | 1997-10-10 | Scan converter |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990031433A KR19990031433A (en) | 1999-05-06 |
KR100272582B1 true KR100272582B1 (en) | 2000-11-15 |
Family
ID=19522558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970052143A KR100272582B1 (en) | 1997-10-10 | 1997-10-10 | Scan converter |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100272582B1 (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7667773B2 (en) | 2004-07-28 | 2010-02-23 | Samsung Electronics Co., Ltd. | Apparatus and method of motion-compensation adaptive deinterlacing |
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03185984A (en) * | 1989-12-14 | 1991-08-13 | Matsushita Electric Ind Co Ltd | Movement adaptive scanning line inteprolation circuit |
-
1997
- 1997-10-10 KR KR1019970052143A patent/KR100272582B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03185984A (en) * | 1989-12-14 | 1991-08-13 | Matsushita Electric Ind Co Ltd | Movement adaptive scanning line inteprolation circuit |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7667773B2 (en) | 2004-07-28 | 2010-02-23 | Samsung Electronics Co., Ltd. | Apparatus and method of motion-compensation adaptive deinterlacing |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US10033944B2 (en) | 2009-03-02 | 2018-07-24 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9843743B2 (en) | 2009-06-03 | 2017-12-12 | Flir Systems, Inc. | Infant monitoring systems and methods using thermal imaging |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9723228B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Infrared camera system architectures |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US9538038B2 (en) | 2011-06-10 | 2017-01-03 | Flir Systems, Inc. | Flexible memory systems and methods |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US9716844B2 (en) | 2011-06-10 | 2017-07-25 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10230910B2 (en) | 2011-06-10 | 2019-03-12 | Flir Systems, Inc. | Infrared camera system architectures |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
US10250822B2 (en) | 2011-06-10 | 2019-04-02 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
Also Published As
Publication number | Publication date |
---|---|
KR19990031433A (en) | 1999-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100272582B1 (en) | Scan converter | |
KR100393066B1 (en) | Apparatus and method for adaptive motion compensated de-interlacing video data using adaptive compensated olation and method thereof | |
CN101088290B (en) | Spatio-temporal adaptive video de-interlacing method, device and system | |
US8189105B2 (en) | Systems and methods of motion and edge adaptive processing including motion compensation features | |
KR20040009967A (en) | Apparatus and method for deinterlacing | |
KR20040010862A (en) | Apparatus and method for deinterlacing | |
KR19990060492A (en) | DTV's deinterlacing device and method | |
AU2003264648A1 (en) | Deinterlacing apparatus and method | |
KR100422575B1 (en) | An Efficient Spatial and Temporal Interpolation system for De-interlacing and its method | |
GB2431802A (en) | Interpolating pixels | |
US8055094B2 (en) | Apparatus and method of motion adaptive image processing | |
US20060033839A1 (en) | De-interlacing method | |
US8532177B2 (en) | Motion adaptive image processing | |
US8013935B2 (en) | Picture processing circuit and picture processing method | |
KR100931110B1 (en) | Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm | |
US8212920B2 (en) | Apparatus and method of motion adaptive image processing | |
US8086075B2 (en) | Motion adaptive image processing | |
KR20030082249A (en) | Motion adaptive spatial-temporal deinterlacing method | |
JP4551343B2 (en) | Video processing apparatus and video processing method | |
KR100252949B1 (en) | scan converter | |
US20100079668A1 (en) | Video de-interlacing | |
KR100252943B1 (en) | scan converter | |
KR100382650B1 (en) | Method and apparatus for detecting motion using scaled motion information in video signal processing system and data interpolating method and apparatus therefor | |
KR930002691B1 (en) | Fax device and method | |
KR100272583B1 (en) | Scan converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070629 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |