KR100931110B1 - Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm - Google Patents

Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm Download PDF

Info

Publication number
KR100931110B1
KR100931110B1 KR1020070106678A KR20070106678A KR100931110B1 KR 100931110 B1 KR100931110 B1 KR 100931110B1 KR 1020070106678 A KR1020070106678 A KR 1020070106678A KR 20070106678 A KR20070106678 A KR 20070106678A KR 100931110 B1 KR100931110 B1 KR 100931110B1
Authority
KR
South Korea
Prior art keywords
pixel
target pixel
adjacent
value
interpolation target
Prior art date
Application number
KR1020070106678A
Other languages
Korean (ko)
Other versions
KR20090041131A (en
Inventor
정제창
전광길
이록규
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020070106678A priority Critical patent/KR100931110B1/en
Publication of KR20090041131A publication Critical patent/KR20090041131A/en
Application granted granted Critical
Publication of KR100931110B1 publication Critical patent/KR100931110B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/012Conversion between an interlaced and a progressive signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/0142Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes the interpolation being edge adaptive

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Television Systems (AREA)
  • Image Processing (AREA)

Abstract

시간축의 주파수가 증가하더라도 수직 방향으로 화질이 열화되는 것을 방지할 수 있는 디인터레이싱 장치 및 방법을 제공한다. 본 발명이 일 실시예에 따른 디인터레이싱 장치는 입력 격행 주사 신호의 보간대상화소를 포함하는 현재 필드 영상에 대하여 시간 방향으로 인접한 이전 필드 영상 및 다음 필드 영상에 포함되는 복수의 제1 화소와 상기 현재 필드 영상에 포함되고 또한 상기 보간대상화소에 공간 방향으로 인접한 복수의 제2 화소를 이용하여, 상기 보간대상화소에 대한 주 에지 방향이 시간 도메인 또는 공간 도메인에 속하는지와 함께 세부 방향을 판정하기 위한 에지 방향 감지부와, 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에, 상기 보간대상화소에 공간 방향으로 인접한 상기 제2 화소들에 대하여 상기 주 에지 방향으로 위쪽 및 아래쪽으로 각각 인접한 제3 화소를 이용하여 상기 보간대상화소에 대한 상부 차이와 하부 차이를 계산하기 위한 상하부 차이 계산부와, 상기 상부 차이와 상기 하부 차이의 특성을 이용하여 상기 보간대상화소에 대한 에지 유형을 판정하기 위한 에지 유형 인식부와, 상기 주 에지 방향이 시간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제1 화소를 이용하여 선형 보간을 수행하고, 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제2 화소 및 제3 화소를 이용하여 상기 에지 유형 인식부에서 판정된 에지 유형에 따라서 적응적으로 보간을 수행하여 순행 주사 신호를 출력하기 위한 보간부를 포함한다.The present invention provides a deinterlacing apparatus and method capable of preventing deterioration of image quality in a vertical direction even when the frequency of the time axis increases. According to an embodiment of the present invention, a deinterlacing apparatus includes a plurality of first pixels and a current field included in a previous field image and a next field image adjacent in a time direction with respect to a current field image including an interpolation target pixel of an input-parallel scan signal. An edge for determining the detailed direction along with whether the main edge direction for the interpolation target pixel belongs to the time domain or the spatial domain using a plurality of second pixels included in the image and adjacent in the spatial direction to the interpolation target pixel; And a third pixel adjacent upward and downward in the main edge direction with respect to the second pixel adjacent in the spatial direction to the interpolation target pixel when it is determined that the direction detecting unit and the main edge direction belong to the spatial domain. To calculate the upper difference and the lower difference for the interpolation target pixel using A lower difference calculator, an edge type recognition unit for determining an edge type for the interpolation target pixel using characteristics of the upper difference and the lower difference, and the main edge direction belonging to the time domain Linear interpolation is performed using the first pixels adjacent to the main edge direction, and when it is determined that the main edge direction belongs to the spatial domain, the second and third pixels adjacent to the main edge direction are used. And an interpolation unit for adaptively performing interpolation according to the edge type determined by the edge type recognition unit to output a progressive scan signal.

Description

퍼지 룰 기반 에지 복원 알고리즘을 이용하는 디인터레이싱 장치 및 방법{Equipment and method for de-interlacing using fuzzy rule-based edge-restoration algorithm}Deinterlacing apparatus and method using fuzzy rule-based edge reconstruction algorithm {Equipment and method for de-interlacing using fuzzy rule-based edge-restoration algorithm}

본 발명은 영상 신호의 디인터레이싱(De-interlacing)에 관한 것으로, 보다 구체적으로 퍼지 룰 기반 에지 복원 알고리즘을 이용하는 디인터레이싱 장치 및 방법에 관한 것이다.The present invention relates to de-interlacing of video signals, and more particularly, to an apparatus and method for deinterlacing using fuzzy rule-based edge recovery algorithm.

인터레이싱(Interlacing)은 전체 프레임(Frame)을 필드(Field)라고 불리는 두 부분으로 분할하는 것이다. 두 개의 필드 중에서 하나는 짝수 번째 수평 라인들로 구성된 영상이고, 다른 하나는 홀수 번째 수평 라인들로 구성된 영상이다. 방송이나 저장 장치 등에서는 이러한 필드 영상을 이용하여 널리 격행 주사 포맷으로 부호화, 전송, 및/또는 재생하는데, 화질의 현저한 열화 없이도 제한된 대역폭을 효율적으로 사용할 수 있는 장점이 있다. 예를 들어, NTSC(National Television System Committee), PAL(Phase Alternation Line), 및 세캄(SECAM) 등과 같은 방송 표준에서는 이러한 격행 주사 포맷이 널리 사용되어 왔다. Interlacing is the division of an entire frame into two parts called fields. One of the two fields is an image composed of even-numbered horizontal lines, and the other is an image composed of odd-numbered horizontal lines. In broadcast or storage devices, such field images are used to encode, transmit, and / or reproduce in a widely accompaniment scanning format, which has an advantage of efficiently using a limited bandwidth without significant deterioration in image quality. For example, such a conventional scanning format has been widely used in broadcast standards such as the National Television System Committee (NTSC), Phase Alternation Line (PAL), and Secam (SECAM).

필드 영상을 디스플레이하는 격행 주사 방식은 인간의 시각 시스템에서 만족 스러운 효과를 보여 왔지만, 최근 HDTV의 등장과 함께 평판 디스플레이 장치의 스크린 크기 증가로 인하여 인터레이싱 결함(Interlacing Artifacts)이 나타나기 시작하였다. 인터레이싱 결함이란 예컨대, 라인 크롤(Line Crawl) 현상, 톱니 형상의 왜곡(Serration), 및 라인간 깜박임(Inter-line flicker) 등과 같이 화질이 열화되는 현상이다. 따라서 최근의 HDTV 시스템은 스크린의 크기가 큰 평판 디스플레이 장치를 이용하여 향상된 화질의 영상을 제공하기 위하여 순행 주사 방식을 지원하고 있다.Conventional scanning methods for displaying field images have shown satisfactory effects in human visual systems, but interlacing artifacts have begun to appear due to the increase in screen size of flat panel display devices with the advent of HDTV. An interlacing defect is a phenomenon in which image quality deteriorates, for example, a line crawl phenomenon, a serration distortion, and an inter-line flicker. Therefore, the recent HDTV system supports a progressive scan method to provide an image of improved quality using a flat screen display device having a large screen size.

디인터레이싱은 격행 주사 포맷의 영상을 순행 주사 포맷의 영상으로 변환하여 출력할 수 있도록 주사 포맷을 변환하는 기술이다. 이러한 디인터레이싱은 필드 영상의 비어있는 라인에 대한 예측되는 또는 보간되는 화소값이 실제 영상의 화소값과 얼마나 정확하게 일치하는가 하는 것이 중요하다. 디인터레이싱에 있어서는, 원래의 프레임 영상의 화소값을 정확하게 복원하고 또한 에지 샤프니스(Edge Sharpness) 등을 유지할 수 있어야 한다. 특히, 저역 통과 필터링(Low Pass Filtering) 및 데시메이션(Decimation)된 영상 신호는 원본 영상보다 해상도가 낮아지기 때문에, 디인터레이싱에 의하여 에지 샤프니스를 포함한 원래 영상의 특성을 보다 정확하고 세밀하게 복원하는 것이 특히 중요하다.De-interlacing is a technique of converting a scan format so that an image of a progressive scan format can be converted into an image of a progressive scan format and output. This deinterlacing is important in how exactly the predicted or interpolated pixel values for the empty lines of the field image match the pixel values of the actual image. In the deinterlacing, it is necessary to accurately restore the pixel value of the original frame image and maintain edge sharpness or the like. In particular, since low-pass filtering and decimated video signals have lower resolution than the original video, it is particularly important to reconstruct the original video including edge sharpness more accurately and precisely by deinterlacing. Do.

디인터레이싱은 크게 움직임 보상(Motion Compensation)이 있는 방법과 움직임 보상이 없는 방법의 두 가지로 분류할 수 있다. 전자의 방법은 에러 전파(Error Propagation)의 문제와 계산이 복잡한 단점이 있기 때문에, 일반적으로 후자의 방법이 널리 이용된다. 디인터레이싱은 또한 보간(Interpolating)을 함에 있어서 참 조 화소로써 어떤 도메인의 정보, 즉 공간 도메인의 정보 및/또는 시간 도메인의 정보를 이용하는지에 따라서 시간 방향(Temporal) 방법, 공간 방향(Spatial) 방법, 및 시공간 방향 적응적(Spatio-Temporal Adaptive) 방법으로도 구분할 수 있다. De-interlacing can be broadly classified into two methods, a motion compensation method and a motion compensation method. The latter method is generally widely used because of the disadvantages of error propagation and complicated calculations. De-interlacing also depends on the temporal method, spatial method, spatial method, depending on which domain information, i.e., spatial domain information and / or temporal domain information, is used as the reference pixel in interpolating. And Spatio-Temporal Adaptive methods.

공간 도메인 정보를 이용하는 대표적인 디인터레이싱 알고리즘은 '밥(Bob)'이라고 불리는 방법이다. Bob에서는 한 필드의 각 라인을 두 번 사용하여 하나의 프레임을 만든다. 다시 말하면, 필드 영상의 두 라인 사이의 비어있는 라인에 상하 두 라인의 평균 데이터를 삽입하여 보간함으로써 새로운 프레임 영상을 복원한다. 이와 같이, 공간 도메인 정보를 이용하는 방법은 같은 필드 내의 다른 위치에 있는 화소 정보를 이용하기 때문에 필드내 보간(Intra-field Interpolation)이라고도 한다. 그리고 에지-기반 라인 평균(Edge-based Line Averaging, ELA) 알고리즘은 보간을 함에 있어서 같은 필드 영상 내에서의 에지 방향을 이용하는 방법으로서, 필드내 보간 방법의 일종이다.A typical deinterlacing algorithm that uses spatial domain information is a method called Bob. Bob creates a frame using each line of the field twice. In other words, a new frame image is reconstructed by interpolating interpolation by inserting average data of two upper and lower lines into an empty line between two lines of the field image. As described above, the method of using spatial domain information is also referred to as intra-field interpolation because it uses pixel information at different positions in the same field. The edge-based line averaging (ELA) algorithm is a method of using edge direction in the same field image for interpolation, which is a kind of intrafield interpolation method.

그리고 시간 도메인 정보를 이용하는 대표적인 디인터레이싱 알고리즘은 '위브(Weave)'라고 불리는 방법이다. Weave에 의하면, 탑 필드(Top-field) 영상과 바텀 필드(Bottom-field) 영상을 결합하여 하나의 프레임 영상을 만든다. 즉, 현재 필드의 라인 사이에 직전 필드의 라인을 단순히 삽입함으로써 하나의 프레임을 구현한다. 이와 같이, 시간 도메인 정보를 이용하는 방법은 다른 필드의 화소 정보를 이용하여 보간하기 때문에 필드간 보간(Inter-field Interpolation)이라고도 한다.A typical deinterlacing algorithm using time domain information is a method called 'weave'. According to Weave, a single frame image is generated by combining a top-field image and a bottom-field image. That is, one frame is implemented by simply inserting the line of the immediately preceding field between the lines of the current field. As described above, the method of using time domain information is also referred to as inter-field interpolation because it interpolates using pixel information of another field.

또한, 공간 도메인 정보와 시간 도메인 정보를 함께 이용하고, 또한 에지의 방향성을 고려하는 방법 중의 하나로써 STELA(Spatio-Temporal Edge-based Line Averaging) 방법이 있다. STELA 알고리즘에서는 시공간 윈도우 상에서 에지-기반 라인 평균 기법을 이용한다.In addition, there is a spatial-temporal edge-based line averaging (STELA) method as one of methods for using spatial domain information and time domain information together and considering edge orientation. The STELA algorithm uses an edge-based line averaging technique over space-time windows.

하지만, 현재까지 제안된 여러 가지의 디인터레이싱 방법들은 특정한 환경에서는 좋은 성능을 발휘하지만, 환경이 변동되는 경우에는 그 성능이 기대에 미치지 못하는 경우가 발생한다. 즉, 기존의 여러 가지 방법들은 다양한 환경에 모두 만족스러운 결과가 나오지 않으며, 여전히 디인터레이싱된 영상의 화질과 디인터레이싱을 위한 연산 속도의 개선이 필요하다. 특히, STELA와 같은 종래의 시공간 기반의 보간 알고리즘은 시간축의 주파수가 증가함에 따라서 수직 방향의 화질이 떨어지는 문제점을 보여 주고 있다. However, various deinterlacing methods proposed to date show good performance in a specific environment, but when the environment changes, the performance may not meet expectations. In other words, the existing various methods do not produce satisfactory results in various environments, and still need to improve the quality of the deinterlaced image and the operation speed for deinterlacing. In particular, the conventional space-time-based interpolation algorithm such as STELA shows a problem that the image quality in the vertical direction drops as the frequency of the time axis increases.

본 발명이 해결하고자 하는 과제는 시간축의 주파수가 증가하더라도 디인터레이싱 영상의 수직 방향의 화질이 떨어지지 않는 디인터레이싱 장치 및 방법을 제공하는 것이다. An object of the present invention is to provide a deinterlacing apparatus and method in which the image quality in the vertical direction of the deinterlaced image does not degrade even when the frequency of the time axis increases.

본 발명이 해결하고자 하는 다른 과제는 보다 세밀한 영상의 복원이 가능할 뿐만 아니라 경계 부분의 샤프니스(Sharpness)를 향상시켜서 화질을 개선할 수 있는 디인터레이싱 장치 및 방법을 제공하는 것이다.Another object of the present invention is to provide a deinterlacing apparatus and method capable of reconstructing a more detailed image and improving image quality by improving sharpness of a boundary portion.

본 발명이 해결하고자 하는 또 다른 과제는 디인터레이싱 영상의 화질을 개선함에 있어서 연산량이 증가하는 것을 상대적으로 완화시킬 수 있는 디인터레이싱 장치 및 방법을 제공하는 것이다. Another object of the present invention is to provide a deinterlacing apparatus and method which can relatively alleviate an increase in the amount of computation in improving the image quality of a deinterlacing image.

상기한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 디인터레이싱 장치 또는 방법은 입력 격행 주사 신호의 보간대상화소를 포함하는 현재 필드 영상에 대하여 시간 방향으로 인접한 이전 필드 영상 및 다음 필드 영상에 포함되는 복수의 제1 화소와 상기 현재 필드 영상에 포함되고 또한 상기 보간대상화소에 공간 방향으로 인접한 복수의 제2 화소를 이용하여, 상기 보간대상화소에 대한 주 에지 방향이 시간 도메인 또는 공간 도메인에 속하는지와 함께 세부 방향을 판정하기 위한 에지 방향 감지부 또는 에지 방향 감지 단계; 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에, 상기 보간대상화소에 공간 방향으로 인접한 상기 제2 화소들에 대하여 상기 주 에지 방향으로 위쪽 및 아래쪽으로 각각 인접한 제3 화소를 이용하여 상기 보간대상화소에 대한 상부 차이와 하부 차이를 계산하기 위한 상하부 차이 계산부 또는 상하부 차이 계산 단계; 상기 상부 차이와 상기 하부 차이의 특성을 이용하여 상기 보간대상화소에 대한 에지 유형을 판정하기 위한 에지 유형 인식부 또는 에지 유형 인식 단계; 및 상기 주 에지 방향이 시간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제1 화소를 이용하여 선형 보간을 수행하고, 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제2 화소 및 제3 화소를 이용하여 상기 에지 유형 인식부에서 판정된 에지 유형에 따라서 적응적으로 보간을 수행하여 순행 주사 신호를 출력하기 위한 보간부 또는 보간 단계를 포함한다.Deinterlacing apparatus or method according to an embodiment of the present invention for solving the above problems is included in the previous field image and the next field image adjacent in the time direction with respect to the current field image including the interpolation target pixel of the input-parallel scan signal By using a plurality of first pixels and a plurality of second pixels included in the current field image and adjacent to the interpolation target pixel in a spatial direction, whether the main edge direction of the interpolation target pixel belongs to a time domain or a spatial domain Edge direction detecting unit or edge direction detecting step for determining a detailed direction together; When it is determined that the main edge direction belongs to the spatial domain, the interpolation is performed using third pixels adjacent to the interpolation target pixel in the spatial direction and upward and downward in the main edge direction, respectively. An upper and lower difference calculation unit or upper and lower difference calculation steps for calculating an upper difference and a lower difference for the target pixel; An edge type recognition unit or edge type recognition step for determining an edge type for the interpolation target pixel using characteristics of the upper difference and the lower difference; And when the main edge direction is determined to belong to the time domain, linear interpolation is performed by using the first pixel adjacent to the main edge direction, and when the main edge direction is determined to belong to the spatial domain, And an interpolation unit or interpolation step for outputting a progressive scan signal by adaptively interpolating according to the edge type determined by the edge type recognition unit by using the second and third pixels adjacent in the edge direction.

이러한 과제 해결 수단에 의하면, 보간대상화소의 주 에지 방향이 공간 도메인에 속하는 경우에는 보간대상화소에 바로 인접한 화소만이 아니라 그 위쪽과 아래쪽으로 인접한 라인의 화소를 이용하여 보간대상화소의 에지 유형을 판정하고, 또한 판정된 에지 유형에 따라서 적응적으로 보간을 수행한다. 따라서 본 발명의 실시예에 의하면, 시간축의 주파수가 증가하더라도 디인터레이싱 영상의 수직 방향의 화질이 떨어지는 것을 방지할 수가 있고, 수직 방향으로 보다 세밀한 영상의 복원이 가능할 뿐만 아니라 경계 부분의 샤프니스(Sharpness)를 향상시켜서 화질을 개선할 수 있다. 뿐만 아니라, 본 발명의 실시예에 의하면, 디인터레이싱 영상의 화질을 개선함에 있어서 연산량이 증가하는 것을 상대적으로 완화시킬 수 있다.According to this problem solving means, when the main edge direction of the interpolation target pixel belongs to the spatial domain, not only the pixel directly adjacent to the interpolation target pixel but also the pixel of the line adjacent to and above the interpolation target pixel is used to determine the edge type of the interpolation target pixel. Determine, and also adaptively interpolate according to the determined edge type. Therefore, according to an embodiment of the present invention, even if the frequency of the time axis increases, the image quality of the deinterlaced image can be prevented from falling, and the image of the image can be reconstructed in the vertical direction. You can improve the picture quality by improving. In addition, according to the embodiment of the present invention, it is possible to relatively alleviate an increase in the amount of calculation in improving the image quality of the deinterlaced image.

이하에서는, 첨부 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다. 후술하는 실시예는 본 발명의 기술적 사상을 설명하기 위한 목적이므로, 본 발명의 기술적 사상은 이 실시예에 의하여 한정되는 것으로 해석되어서는 안된다. 본 실시예에 대한 설명 및 도면에서 각각의 구성요소에 부가된 참조 부호는 단지 설명의 편의를 위하여 기재된 것일 뿐이다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Since the embodiments described below are for the purpose of illustrating the technical idea of the present invention, the technical idea of the present invention should not be construed as being limited by the embodiments. Reference numerals added to the respective components in the description of the embodiment and the drawings are merely described for convenience of description.

도 1은 본 발명의 일 실시예에 따른 디인터레이싱 장치의 구성을 보여 주는 블록도이다. 도 1을 참조하면, 디인터레이싱 장치(100)는 에지 방향 감지부(Main Edge Direction Detector, 110), 상하부 차이 계산부(Upper and Lower Difference Calculator, 120), 에지 유형 인식부(Edge Pattern Recognizer, 130), 및 보간부(Interpolating Unit, 140)를 포함한다.1 is a block diagram showing the configuration of a deinterlacing apparatus according to an embodiment of the present invention. Referring to FIG. 1, the deinterlacing apparatus 100 includes a main edge direction detector 110, an upper and lower difference calculator 120, and an edge pattern recognizer 130. , And an interpolating unit 140.

에지 방향 감지부(110)는 보간하고자 하는 화소, 즉 보간대상화소에 시간 방향 및 공간 방향으로 인접한 화소를 이용하여 주 에지(Main Edge) 방향을 판정한다. 보다 구체적으로, 에지 방향 감지부(110)는 주 에지 방향이 시간 도메인(Temporal Domain, TD) 또는 공간 도메인(Spatial Domain, SD)에 속하는지와 함께 해당 도메인에서의 주 에지의 세부 방향을 판정한다. 이를 위하여, 에지 방향 감지부(110)는 비어있는 라인(Missing Line)을 선형적으로 보간하기 위하여 픽셀들 사이의 방향적 상관성(Directional Correlations)을 이용한다. 에지 방향을 판정하기 위하여 이용되는 인접한 화소의 일례는 도 2에 도시된 시공간 윈도우(Spatio-temporal Window) 내에서 포함되는 화소들이다. 일반적으로, 보간대상화소의 픽셀값을 x(i,j,k)로 나타내며, 후술하는 바와 같이 본 발명의 일 실시예에서는 퍼지 룰 기반 이미지 프로세싱(Fuzzy Rule-based Image Processing)을 이용하므로, 보간대상화소의 픽셀값은 x FER (i,j,k)로 나타내기로 한다. 여기서, 변수 i는 영상의 칼럼 (즉, 수직 라인) 번호, 변수 j는 (수평) 라인 번호, 변수 k는 필드 번호를 나타낸다.The edge direction detector 110 determines a main edge direction by using pixels to be interpolated, that is, pixels adjacent to the interpolation target pixel in the temporal and spatial directions. More specifically, the edge direction detecting unit 110 determines whether the main edge direction belongs to a temporal domain (TD) or a spatial domain (SD), and determines the detailed direction of the main edge in the corresponding domain. . To this end, the edge direction detection unit 110 uses directional correlation between pixels to linearly interpolate the missing line. Examples of adjacent pixels used to determine the edge direction are pixels included in the spatial-temporal window shown in FIG. 2. In general, the pixel value of the pixel to be interpolated is represented by x ( i , j , k ), and as described below, since one embodiment of the present invention uses fuzzy rule-based image processing, interpolation is performed. The pixel value of the target pixel is represented by x FER ( i , j , k ). Here, the variable i represents a column (ie, vertical line) number of the image, the variable j represents a (horizontal) line number, and the variable k represents a field number.

도 2를 참조하면, 에지 방향 감지부(110)에서는 보간대상화소에 인접한 화소들로서 공간 윈도우 내에 포함되는 화소, 즉 같은 k번째 필드의 (j-1)번째 라인과 (j+1)번째 라인의 6개의 화소(211, 212, 213, 214, 215, 216)와 시간 윈도우 내에 포함되는 화소, 즉 (k-1)번째 필드(220)의 j번째 라인의 3개의 화소(221, 222, 223)와 (k+1)번째 필드(230)의 j번째 라인의 3개의 화소(231, 232, 233)를 이용하 여 주 에지 방향을 판정한다. 여기서, 도 2의 {u, d, r, l, p, n}은 각각 {up, down, right, left, previous, next}를 나타낸다. 상기 시공간 윈도우에 포함되는 화소들의 시공간 상관성을 측정하기 위하여 에지 방향 감지부(110)는 인접 화소들을 이용하여 6가지 방향(점선으로 표시)으로 변화(Change)를 계산한다. 변화를 계산하는 식의 일례는 수학식 1과 같다. Referring to FIG. 2, in the edge direction detecting unit 110, pixels included in a spatial window as pixels adjacent to an interpolation target pixel, that is, the (j-1) th and (j + 1) th lines of the same kth field. Six pixels 211, 212, 213, 214, 215, and 216 and pixels included in the time window, that is, three pixels 221, 222, and 223 of the jth line of the (k-1) th field 220. And the main edge direction are determined using the three pixels 231, 232, and 233 of the j-th line of the (k + 1) -th field 230. Here, {u, d, r, l, p, n} of FIG. 2 represents {up, down, right, left, previous, next}, respectively. In order to measure the space-time correlation of the pixels included in the space-time window, the edge direction detector 110 calculates a change in six directions (indicated by dashed lines) using adjacent pixels. An example of an equation for calculating the change is shown in Equation 1.

Figure 112007075787993-pat00001
Figure 112007075787993-pat00001

그리고 에지 방향 감지부(110)는 상기 수학식 1에 따른 계산 결과를 이용하여 주 에지 방향이 시간 도메인(TD) 또는 공간 도메인(SD)에 속하는지와 해당 도메인에서의 주 에지의 정확한 방향을 판정한다. 주 에지 방향은 예컨대, 수학식 2를 이용하여 결정할 수 있다.The edge direction detecting unit 110 determines whether the main edge direction belongs to the time domain TD or the spatial domain SD and the correct direction of the main edge in the corresponding domain by using the calculation result according to Equation 1 above. do. The major edge direction can be determined using, for example, Equation 2.

Figure 112007075787993-pat00002
Figure 112007075787993-pat00002

수학식 2를 참조하면, 상기한 6개의 방향에 대한 차이값들 중에서 가장 작은 차이값을 갖는 방향이 주 에지 방향으로 결정된다. 수학식 2에서 C Φ,θ 는 방향적 상관성 측정치(Directional Correlation Measurement)를 나타내는데, 방향적 상관성 측정치는 주 에지 방향이 공간 도메인에 속하는지 또는 시간 도메인에 속하는지를 나타내는 파라미터인 Φ(∈{SD, TD})와 해당 도메인에서의 구체적인 방향을 가리키 는 파라미터인 θ(∈{45o, 0o, -45o})로 표현할 수 있다.Referring to Equation 2, the direction having the smallest difference among the difference values for the six directions is determined as the main edge direction. In Equation 2, C Φ, θ represents a directional correlation measurement, which is a parameter indicating whether the main edge direction belongs to the spatial domain or the time domain, Φ (∈ {S D , TD }) and θ (∈ {45 o , 0 o , -45 o }) which indicates a specific direction in the domain.

본 발명에 의하면, 에지 방향 감지부(110)에서 주 에지 방향이 시간 방향에 속하는 것으로 판정되는 경우, 즉 수학식 1과 수학식 2에 의하여 계산된 방향적 상관성 측정치(C Φ,θ )의 파라미터 Φ가 TD에 해당되는 경우에는, 입력 신호가 바로 보간부(140)로 송신된다. 그리고 보간부(140)는 일반적인 선형 보간을 이용하여 보간대상화소의 픽셀값을 구한다. 주 에지 방향이 TD에 속하는 경우에, 보간부(140)에서 보간대상화소의 픽셀값을 구하는 방법은 예컨대, 수학식 3으로 표현할 수 있다. According to the present invention, when the edge direction detection unit 110 determines that the main edge direction belongs to the time direction, that is, the parameter of the directional correlation measurement value C Φ, θ calculated by Equations 1 and 2, When φ corresponds to TD, the input signal is transmitted directly to the interpolator 140. The interpolator 140 obtains pixel values of the interpolation target pixel using general linear interpolation. When the main edge direction belongs to the TD, the method of obtaining the pixel value of the interpolation target pixel in the interpolation unit 140 may be expressed by, for example, Equation (3).

Figure 112007075787993-pat00003
Figure 112007075787993-pat00003

반면, 에지 방향 감지부(110)에서 에지 방향이 공간 방향에 속하는 것으로 판정되는 경우, 즉 수학식 1과 수학식 2에 의하여 계산된 방향적 상관성 측정치(C Φ,θ )의 파라미터 Φ가 SD에 해당되는 경우에는, 보간대상화소에 대하여 에지 유형(Edge Pattern)을 보다 세분화한 다음, 각 유형에 따라서 적응적으로 보간을 수행한다. 이를 위하여, 본 발명의 실시예에 의하면, 상하부 차이 계산부(120)는 보간대상화소와 동일한 필드인 k번째 필드 내에서, 도 2의 공간적 윈도우에 포함되는 픽셀들보다 더 위쪽 라인 또는 더 아래쪽 라인에 위치하는 픽셀들을 이용하여, 주 에지 방향에서의 상부 차이와 하부 차이를 더 계산한다. 상기 상부 차이는 판정된 주 에지 방향으로 인접한 상부 라인과의 픽셀값의 차, 즉 (j-3)번째 라인의 픽셀값에서 (j-1)번째 라인의 픽셀값을 뺀 값으로 계산할 수 있다. 그리고 상기 하부 차이는 판정된 주 에지 방향으로 인접한 하부 라인과의 픽셀값의 차, 즉 (j+1)번째 라인의 픽셀값에서 (j+3)번째 라인의 픽셀값을 뺀 값으로 계산할 수 있다. On the other hand, if the edge direction detection unit 110, it is determined that the edge direction belonging to the spatial direction, that is, a parameter Φ of the directional correlation measurements (C Φ, θ) calculated by the Equations (1) and (2) in SD If applicable, the edge type is further subdivided for the interpolation target pixel, and then interpolation is adaptively performed according to each type. To this end, according to an embodiment of the present invention, the upper and lower difference calculation unit 120 is a line higher or lower than the pixels included in the spatial window of FIG. 2 in the k-th field which is the same field as the interpolation target pixel. Using the pixels located at, the upper and lower differences in the main edge direction are further calculated. The upper difference may be calculated by subtracting the pixel value of the (j-1) -th line from the pixel value of the (j-3) -th line, that is, the difference between the pixel values with the adjacent upper line in the determined main edge direction. The lower difference may be calculated by subtracting the pixel value of the (j + 1) -th line from the pixel value of the (j + 1) -th line, that is, the difference between the pixel values with the adjacent lower line in the determined main edge direction. .

그리고 에지 유형 인식부(130)에서 상기 상부 차이와 상기 하부 차이를 이용하여 보간될 픽셀의 세분화된 에지 유형을 판정한다. 본 발명의 실시예에 의하면, 보간될 픽셀의 에지 유형은, '단순 에지(Simple Edge)', '단조 경사(Monotonic Slope)', 또는 '피크(Peak) 또는 벨리(Valley)' 중의 어느 하나일 수 있다. '단순 에지'란 상기 상부 차이와 하부 차이의 특성상 주 에지 방향으로 보간될 픽셀에서 에지가 형성되는 경우(도 6의 (d) 참조)를 말한다. '단조 경사'란 상기 상부 차이와 하부 차이의 특성상 주 에지 방향으로 픽셀값이 단조 증가하거나 또는 단조 감소하게 되는 경우(도 6의 (e) 참조)를 말한다. 그리고 '피크 또는 벨리'는 상기 상부 차이와 하부 차이의 특성상 주 에지 방향으로 보간될 픽셀에서 피크가 형성되거나 또는 벨리가 형성되는 경우(도 6의 (f) 참조)를 말한다.The edge type recognition unit 130 determines the subdivided edge type of the pixel to be interpolated using the upper difference and the lower difference. According to an embodiment of the present invention, an edge type of a pixel to be interpolated may be any one of 'simple edge', 'monotonic slope', or 'peak or valley'. Can be. The term 'simple edge' refers to a case where an edge is formed in a pixel to be interpolated in the main edge direction due to the characteristics of the upper difference and the lower difference (see FIG. 6D). 'Forging slope' refers to a case in which the pixel value monotonously increases or monotonically decreases in the direction of the main edge due to the characteristics of the upper difference and the lower difference (see FIG. 6E). 'Peak or valley' refers to the case where a peak is formed or a valley is formed in the pixel to be interpolated in the direction of the main edge due to the characteristics of the upper difference and the lower difference (see FIG. 6F).

보다 구체적으로, 에지 유형 인식부(130)에서는 상기 상부 차이와 하부 차이가 양(Positive, P)인지 또는 음(Negative, N)인지, 및/또는 상기 상부 차이와 하부 차이의 절대값이 각각 소정의 임계치보다 큰지(Big, B) 또는 작은지(Small, S)에 기초하여 에지 유형이 '단순 에지', '단조 경사', 또는 '피크 또는 벨리'에 해당되는지를 판정할 수 있다. 여기서, 임계치는 이론적으로 결정하기는 어려우며 실 험을 통해서 적절한 값으로 결정될 수 있는데, 상부 차이와 하부 차이가 양인 경우의 임계치와 음인 경우의 임계치의 값이 같을 수도 있지만, 다를 수도 있다. More specifically, in the edge type recognition unit 130, whether the upper difference and the lower difference are positive (P) or negative (Negative, N), and / or the absolute values of the upper difference and the lower difference are respectively predetermined. It may be determined whether the edge type corresponds to a 'simple edge', 'forged slope', or 'peak or valley' based on whether it is greater than Big, B or Small (S). Here, the threshold is difficult to determine theoretically and can be determined as an appropriate value through experimentation. The threshold value when the upper difference and the lower difference is positive and the threshold value when the negative value may be the same, but may be different.

예를 들어, 상기 상부 차이와 하부 차이의 절대값 중에서 어느 하나는 상기 임계치보다 크고 다른 하나는 상기 임계치보다 작은 경우에, 에지 유형 인식부(130)는 보간될 픽셀의 에지 유형을 '단순 에지'로 판정할 수가 있다. 상기 상부 차이와 하부 차이의 절대값 중에서 어느 하나는 상기 임계치보다 크고 다른 하나는 상기 임계치보다 작은 경우로는, '상부 차이와 하부 차이'가 '큰 음수(BN)와 작은 음수(SN)', '큰 음수와 작은 양수(SP)', '큰 양수(BP)와 작은 음수', 또는 '큰 양수와 작은 양수(SP)'에 해당되는 첫 번째 경우와 '작은 음수와 큰 음수', '작은 음수와 큰 양수', '작은 양수와 큰 음수', 또는 '작은 양수와 큰 양수'에 해당되는 두 번째 경우가 있을 수 있다.For example, when one of the absolute values of the upper difference and the lower difference is greater than the threshold and the other is smaller than the threshold, the edge type recognizer 130 sets the edge type of the pixel to be interpolated as 'simple edge'. Can be determined. If one of the absolute value of the upper difference and the lower difference is greater than the threshold and the other is smaller than the threshold value, the 'upper difference and the lower difference' is 'big negative (BN) and small negative (SN)', The first case of "big negative and small positive" (SP), "big positive (BP) and small negative", or "big positive and small positive (SP)", and "small negative and big negative", "small There may be a second case for negative and large positive numbers, 'small positive and large negative numbers', or 'small positive and large positive numbers'.

그리고 상기 상부 차이와 하부 차이의 절대값이 모두 상기 임계치보다 크거나 또는 작은 경우에는, 에지 유형 인식부(130)는 상기 상부 차이와 하부 차이의 부호가 동일한 지에 따라서 보간될 픽셀의 에지 유형을 '단조 경사' 또는 '피크 또는 벨리'로 판정할 수가 있다. 보다 구체적으로, 상기 상부 차이와 하부 차이의 부호가 같은 경우는 '단조 경사'로 판정하는데, 이와 같은 경우로는, '상부 차이와 하부 차이'가 '큰 음수와 큰 음수', '작은 음수와 작은 음수', '작은 양수와 작은 양수', 또는 '큰 양수와 큰 양수'가 있을 수 있다. 그리고 상기 상부 차이와 하부 차이의 부호가 다른 경우는 '피크 또는 벨리'로 판정하는데, 이와 같은 경우로는, '상부 차이와 하부 차이'가 '큰 음수와 큰 양수', '작은 음수와 작은 양수', '큰 양수와 큰 음수', 또는 '작은 양수와 작은 음수'가 있을 수 있다.And when both the absolute value of the upper difference and the lower difference is greater or smaller than the threshold, the edge type recognition unit 130 determines the edge type of the pixel to be interpolated depending on whether the sign of the upper difference and the lower difference is the same. Forging slope 'or' peak or valley '. More specifically, when the sign of the upper difference and the lower difference is the same, it is determined as' forging inclination, 'In this case, the' upper difference and lower difference 'is the' big negative and big negative ',' small negative Small negative numbers', 'small positive numbers and small positive numbers', or' big positive numbers and big positive numbers'. If the sign of the upper difference and the lower difference is different, it is determined as 'peak or valley'. In this case, the upper and lower differences are 'large negative and large positive', 'small negative and small positive'. ',' Big positive and big negative ', or' small positive and small negative '.

계속해서 도 1을 참조하면, 보간부(140)에서는 에지 유형 판정부(130)에서의 판정 결과인 보간대상화소의 에지 유형에 기초하여 적응적으로 픽셀값을 구한다. 예를 들어, 판정된 에지 유형이 '단순 에지'인 경우에, 보간부(140)는 주 에지 방향에 위치하는 인접한 라인(즉, (j-1)번째 라인 또는 (j+1)번째 라인)의 픽셀값들 중에서 하나를 보간대상화소의 픽셀값으로 한다. 보다 구체적으로, '단순 에지'로 판정되는 경우 중에서 상기한 첫 번째 경우에 해당되는 경우에는 (j+1)번째 라인의 주 에지 방향의 픽셀값으로 보간을 수행하며, '단순 에지'로 판정되는 경우 중에서 상기한 두 번째 경우에 해당되는 경우에는 (j-1)번째 라인의 주 에지 방향의 픽셀값으로 보간을 수행한다. 그리고 판정된 에지 유형이 '단조 경사'인 경우에, 보간부(140)는 주 에지 방향에 위치하는 인접한 라인의 픽셀값들의 평균을 보간대상화소의 픽셀값으로 한다. Subsequently, referring to FIG. 1, the interpolator 140 adaptively obtains a pixel value based on the edge type of the interpolation target pixel, which is a determination result of the edge type determination unit 130. For example, when the determined edge type is 'simple edge', the interpolation unit 140 may be adjacent lines (ie, (j-1) th lines or (j + 1) th lines) located in the main edge direction. One of the pixel values of is taken as the pixel value of the interpolation target pixel. More specifically, in the case of the first case among the cases determined as 'simple edge', interpolation is performed with the pixel value in the main edge direction of the (j + 1) -th line, and is determined as 'simple edge'. In the case of the second case, interpolation is performed with pixel values in the main edge direction of the (j-1) th line. In the case where the determined edge type is 'forged gradient', the interpolator 140 sets the average of pixel values of adjacent lines positioned in the main edge direction as the pixel value of the interpolation target pixel.

마지막으로 판정된 에지 유형이 '피크 또는 벨리'인 경우에, 보간부(140)는 주 에지 방향에 위치하는 (j-3), (j-1), (j+1), 및 (j+3)번째 라인의 픽셀값들을 이용하여 보간대상화소의 픽셀값을 구할 수 있다. 예컨대, 수학식 4를 이용하고, j=0인 경우의 값, 즉 F(0)의 값으로 보간을 수행할 수 있다. 단, 수학식 4에서 F(-3), F(-1), F(1), F(3)은 각각 주 에지 방향으로 (j-3)번째 라인, (j-1)번째 라인, (j+1)번째 라인, 및 (j+3)번째 라인에 위치하는 픽셀의 값이다. When the last determined edge type is 'peak or valley', the interpolation unit 140 is located in the main edge direction (j-3), (j-1), (j + 1), and (j + 3) The pixel values of the interpolation target pixel can be obtained using the pixel values of the first line. For example, using Equation 4, interpolation may be performed using a value of j = 0, that is, a value of F (0). However, in Equation 4, F (-3), F (-1), F (1), and F (3) are the (j-3) th line, (j-1) th line, (( j + 1) th line and (j + 3) th pixel value.

Figure 112007075787993-pat00004
Figure 112007075787993-pat00004

본 발명의 일 실시예에 의하면, 상하부 차이 계산부(120)에서 상부 차이와 하부 차이를 계산하고, 또한 계산된 결과를 가지고 에지 유형 인식부(130)에서 에지 유형을 판정하고, 또한 판정된 유형에 따라서 보간부(140)에서 적응적으로 보간을 수행하는데 있어서, 퍼지 룰-기반 에지 복원 알고리즘(Fuzzy Rule-Based Edge-Restoration Algorithm)을 이용할 수 있다.According to an embodiment of the present invention, the upper and lower difference calculation unit 120 calculates the upper difference and the lower difference, and also with the calculated result to determine the edge type in the edge type recognition unit 130, and also the determined type In the interpolation unit 140, adaptively interpolating, a fuzzy rule-based edge-restoration algorithm may be used.

퍼지 테크닉은 비선형적이며 정보 기반적(Knowledge-based)이기 때문에 새로운 방법에 대한 적합한 틀(Framework)을 제공한다. 도 3은 퍼지 테크닉을 이용한 이미지 처리 알고리즘, 즉 퍼지 이미지 프로세싱을 보여 주는 흐름도이다. 도 3을 참조하면, 퍼지 이미지 프로세싱은 크게 3단계, 즉 퍼지화 단계(Fuzzification, Θ), 멤버값에 대한 연산 단계(Suitable operation on Membership values, Ε), 및 역퍼지화 단계(Defuzzification, Ψ)로 이루어져 있다. 이러한 퍼지 이미지 프로세싱에 의하면, 입력 x(i,j,k)에 대한 출력 xFER(i,j,k)은 수학식 5로 표현할 수 있다. 참고로, 도 3에서 xL(i,j,k)는 종래의 보간 알고리즘에 따라서 단순하게 선형 보간을 수행했을 경우의 출력을 나타낸다. The fuzzy technique is nonlinear and knowledge-based, providing a suitable framework for the new method. 3 is a flowchart showing an image processing algorithm, ie, fuzzy image processing, using a fuzzy technique. Referring to FIG. 3, the fuzzy image processing is largely three stages, that is, the fuzzy process (Fuzzification, Θ), the operation operation on member values (E), and the defuzzy process (Defuzzification, Ψ). Consists of According to this fuzzy image processing, the output x FER (i, j, k) for the input x (i, j, k) can be expressed by Equation 5. For reference, in FIG. 3, x L (i, j, k) represents an output when linear interpolation is simply performed according to a conventional interpolation algorithm.

Figure 112007075787993-pat00005
Figure 112007075787993-pat00005

본 발명의 실시예에 따른 접근법은, 어떠한 실제 세계의 이미지는 저역통과 필터링과 데시메이션(Lowpass Filtering and Decimation) 후에 별도의 안티-에일리어싱 저역통과 필터링(Anti-aliasing Lowpass Filtering)을 거치거나 또는 영상 획득 시스템으로부터 획득한 높은 해상도의 이미지로부터 획득할 수 있다는 관찰 사실에 기초한다. 그리고 어떠한 이상적인 에지가 존재하는 것으로 가정하였다. 이러한 필터링 오퍼레이션은 고해상도 이미지에서 에지 자체의 위치에 따라서 인접 픽셀의 값을 대칭적으로 또는 비대칭적으로 수정한다. 따라서 데이메이션 후에, 저해상도 이미지의 픽셀들 값을 분석하면, 에지의 위치에 대한 정보를 서브-픽셀의 해상도로 알 수가 있다. 따라서 이러한 에지의 위치 정보를 이용하면 고해상도의 이미지에 대하여 보다 높은 정확도를 가지고 저해상도 이미지의 픽셀을 보간할 수가 있다. 저해상도 이미지에 존재하는 에지는 일반적으로 고해상도 이미지의 가파른 에지로부터 유도되는 것으로 가정할 수 있으므로, 저해상도 이미지에 존재하는 에지는 가파른 에지로 재구성할 수 있다. 만족스러운 결과를 달성하기 위하여, 사람의 감각에 대하여 중요성이 있고, 계산 시간을 증가시키지 않으며, 또한 데이터에 포함될 수 있는 노이즈의 영향을 받지 않는 대상의 윤곽을 선택할 필요가 있다. The approach according to an embodiment of the present invention is that any real world image is subjected to separate anti-aliasing lowpass filtering or image acquisition after lowpass filtering and decimation. It is based on the observation that it can be obtained from a high resolution image obtained from the system. And it is assumed that any ideal edge exists. This filtering operation modifies the values of adjacent pixels symmetrically or asymmetrically according to the position of the edge itself in the high resolution image. Thus, after the date, analyzing the pixel values of the low resolution image, the information about the position of the edge can be known at the resolution of the sub-pixel. Therefore, by using the position information of the edge, it is possible to interpolate the pixels of the low resolution image with higher accuracy for the high resolution image. Since the edges present in the low resolution image are generally derived from the steep edges of the high resolution image, the edges present in the low resolution image can be reconstructed into the steep edges. In order to achieve a satisfactory result, it is necessary to select the contour of the object that is important for the human senses, does not increase computation time, and is not affected by noise that may be included in the data.

이러한 본 발명의 실시예에 따른 퍼지 룰 기반 공간 도메인 선형 평균 알고리즘(Fuzzy Rule-based Spatial Domain Linear Average Algorithm)에서는 보간대상 화소가 강한 에지에 속하는지 또는 어떤 유형의 에지에 해당되는지를 판정하기 위하여 퍼지 그레디언트값(Fuzzy Gradient Value)을 이용한다. 퍼지 그레디언트 산출부는 이러한 퍼지 그레디언트값을 계산하기 위한 수단으로서, 상하부 차이 계산부(120)의 일례이다. 본 발명의 실시예에 의하면, 퍼지 그레디언트값은 보간대상화소와 동일한 필드인 k번째 필드 내에서, 도 2의 공간적 윈도우에 포함되는 픽셀들보다 더 위쪽 라인 또는 더 아래쪽 라인에 위치하는 픽셀들을 이용하여 퍼지 그레디언트를 계산한다.In the fuzzy rule-based spatial domain linear average algorithm according to an embodiment of the present invention, a fuzzy rule is used to determine whether an interpolated pixel belongs to a strong edge or a type of edge. Use the gradient gradient value. The fuzzy gradient calculator is an example of the upper and lower difference calculator 120 as a means for calculating the fuzzy gradient value. According to an exemplary embodiment of the present invention, the fuzzy gradient value is determined by using pixels located in an upper line or a lower line than pixels included in the spatial window of FIG. 2 within the kth field, which is the same field as the interpolation target pixel. Compute the fuzzy gradients.

도 4는 퍼지 그레디언트 산출부에서 퍼지 그레디언트값을 구하는데 이용하는 이웃 윈도(Neighbor Window)의 픽셀들의 위치를 보여주는 도면이다. 도 4를 참조하면, 필드 영상의 각 픽셀 x(i,j,k)(경계 픽셀이 아닌 픽셀)에 대하여 이웃 윈도우가 사용된다. (i,j,k)에 대한 각 이웃 윈도우는 도 2의 공간 윈도우에서 정의된 하나의 방향에 대응한다.4 is a diagram illustrating positions of pixels of a neighbor window used by the fuzzy gradient calculator to obtain a fuzzy gradient value. Referring to FIG. 4, a neighbor window is used for each pixel x ( i , j , k ) (a pixel other than a boundary pixel) of the field image. Each neighboring window for (i, j, k) corresponds to one direction defined in the spatial window of FIG.

Figure 112007075787993-pat00006
Figure 112007075787993-pat00006

그리고 퍼지 그레디언트 ΓU EDx(i,j,k), CSD,EDx(i,j,k), 및 ΓL EDx(i,j,k)는, 표 1에 개시되어 있는 바와 같이, 이웃하는 픽셀들 사이의 차이(difference)로 정의된다. 표 1에서 첫 번째 칼럼의 각 방향(Each Direction, ED)은 보간하고자 하는 픽셀을 중심으로 수직 방향에 대한 상대 각도를 나타낸다(도 4 참조). 그리고 표 1에서 세 번째 칼럼은 각 방향에 대한 기본 그레디언트의 정의 및 이를 구하는 계산식이 개시되어 있고, 두 번째 및 네 번째 칼럼은 각각 상부 그레디언트와 하부 그레디언트의 정의 및 계산식이 개시되어 있다. 결국, 세 가지의 기본 방향 각각에 대하여 세 개의 퍼지 그레디언트값이 정의된다. And the fuzzy gradients Γ U ED x (i, j, k), C SD, ED x (i, j, k), and Γ L ED x (i, j, k) are as shown in Table 1 , Is defined as the difference between neighboring pixels. Each direction (Each Direction, ED) of the first column in Table 1 represents the relative angle to the vertical direction with respect to the pixel to be interpolated (see FIG. 4). In Table 1, the third column discloses a definition of a basic gradient for each direction and a formula for calculating the same, and the second and fourth columns disclose a definition and a formula of an upper gradient and a lower gradient, respectively. As a result, three fuzzy gradient values are defined for each of the three basic directions.

기본 그레디언트에 포함되는 세 개의 파라미터 CSD,45x(i,j,k), CSD,0x(i,j,k), 및 CSD,-45x(i,j,k)는 기본 그레디언트값으로 불린다. 그리고 상부 그레디언트에 포함되는 세 개의 파라미터 ΓU 45x(i,j,k), ΓU 0x(i,j,k), 및 ΓU -45x(i,j,k)는 상부 그레디언트값으로 불리며, 하부 그레디언트에 포함되는 세 개의 파라미터 ΓD 45x(i,j,k), ΓD 0x(i,j,k), 및 ΓD -45x(i,j,k)는 하부 그레디언트값으로 불린다. The three parameters C SD, 45 x (i, j, k), C SD, 0 x (i, j, k), and C SD, -45 x (i, j, k) are included in the base gradient. It is called gradient value. The three parameters Γ U 45 x (i, j, k), Γ U 0 x (i, j, k), and Γ U -45 x (i, j, k) included in the upper gradient are the upper gradient values. The three parameters included in the lower gradient Γ D 45 x (i, j, k), Γ D 0 x (i, j, k), and Γ D -45 x (i, j, k) are It is called gradient value.

일반적으로, Bob 알고리즘(필드내 선형 보간 알고리즘)은 움직임 결점을 보여주지 않으며 계산량을 최소한으로 할 수 있는 장점이 있다. 그러나 이미지에 대한 보간이 이루어지기 이전에 수직 방향의 해상도는 원 영상의 1/2이 되기 때문에, 순행 주사 영상에서는 세부적인 사항을 모두 표현할 수가 없다. 필드내 선형 보간 알고리즘에서 나타나는 이러한 문제점을 해결하기 위하여, 본 발명에 따른 알고리즘에서는, 세 개의 기본 그레디언트값에 추가하여, 상부 그레디언트값과 하부 그레디언트값을 이용하여, 보간대상화소의 픽셀값을 결정한다. 게다가, 각 방향에 대하여 하나의 기본 그레디언트를 사용하지 않고, 본 발명의 실시예에서는 각 방향에 대하여 상부 그레디언트와 하부 그레디언트를 모두 사용한다. 단, 여기서 사용하는 상부 및 하부 그레디언트는 기본 그레디언트의 방향(즉, 에지 방향 감지부(110)에서 판정한 주 에지 방향)과 같은 방향의 것이다.In general, the Bob algorithm (intra-field linear interpolation algorithm) does not show any motion defects and has the advantage of minimizing the amount of computation. However, since the resolution in the vertical direction is 1/2 of the original image before the interpolation of the image, all the details cannot be expressed in the progressive scan image. To solve this problem in the intra-field linear interpolation algorithm, the algorithm according to the present invention uses the upper and lower gradient values in addition to the three basic gradient values to determine the pixel values of the interpolation target pixels. . In addition, one base gradient is not used for each direction, and an embodiment of the present invention uses both an upper gradient and a lower gradient for each direction. However, the upper and lower gradients used herein are in the same direction as the direction of the basic gradient (that is, the main edge direction determined by the edge direction detection unit 110).

따라서 퍼지 룰 기반 에지 복원 알고리즘을 이용하는 본 발명의 실시예에 의하여 보간대상화소의 픽셀값은, 보간대상화소에 바로 인접한 (j-1)번째 라인 및 (j+1)번째 라인의 픽셀값외에도 (j-3)번째 라인 및 (j+3)번째 라인의 픽셀값도 함께 이용하여 표현한다. 즉, 도 4에 도시된 바와 같이, (j-3)번째 라인의 픽셀값으로 t, (j-1)번째 라인의 픽셀값으로 u, (j+1)번째 라인의 픽셀값으로 v, 그리고 (j+3)번째 라인의 픽셀값으로 w를 할당할 경우에, 보간대상화소의 픽셀값 xFER(i,j,k)은 t, u, v, 및 w를 이용하여 표현할 수 있다(t∈{UL, U, UR}, u∈{ul, u, ur}, v∈{dl, d, dr}, w∈{DL, D, DR}). Therefore, according to an embodiment of the present invention using a fuzzy rule-based edge reconstruction algorithm, the pixel value of the interpolation target pixel may be equal to the pixel value of the (j-1) th line and the (j + 1) th line immediately adjacent to the interpolation target pixel. The pixel values of the j-3) th line and the (j + 3) th line are also expressed. That is, as shown in FIG. 4, t is the pixel value of the (j-3) th line, u is the pixel value of the (j-1) th line, v is the pixel value of the (j + 1) th line, and When w is assigned to the pixel value of the (j + 3) th line, the pixel value x FER (i, j, k) of the interpolation target pixel can be expressed using t, u, v, and w (t ∈ {UL, U, UR}, u∈ {ul, u, ur}, v∈ {dl, d, dr}, w∈ {DL, D, DR}).

퍼지 이미지 처리 알고리즘에서는 보간대상화소의 에지 유형을 판정하기 위하여 멥버쉽 함수(Membership Function)를 이용한다. 멥버쉽 함수는 주 에지 방향으로 인접한 픽셀값 사이의 상대적인 차이를 몇 개의 카테고리로 분류함으로써, 보간대상화소의 특성을 파악하여 이를 유형화하기 위한 것이다. The fuzzy image processing algorithm uses a membership function to determine the edge type of the interpolation pixel. The membership function is to classify and classify the characteristics of the interpolation target pixels by classifying the relative difference between adjacent pixel values in the main edge direction into several categories.

본 발명의 실시예에 의하면, 멤버쉽 함수는 센터 포인터에 대한 상부 및 하부 픽셀들의 픽셀값(예컨대, 휘도) 차이에 기초한다. 본 발명의 실시예에서 이용될 수 있는 퍼지 세트의 일례는 도 5에 도시되어 있다. 일반적으로 "크다(Big)", "작다(Small)", "음(Negative)", "양(Positive)"은 픽셀값을 판정하는데 있어서 다소 추상적인 특성만을 보여주는 것이기 때문에, 이들 용어들은 퍼지 세트로써 표현될 수 있다. 퍼지 세트는 멤버쉽 함수로 표현될 수 있다. 도 5를 참조하면, 멤버쉽 함수의 예들은 BN(퍼지 세트 큰 음수(Big Negative)), SN(퍼지 세트 작은 음수(Small Negative)), SP(퍼지 세트 작은 양수(Small Positive)), 및 BP(퍼지 세트 큰 양수(Big Positive))이다. 이들 함수의 수평 축은 모든 가능한 그레디언트 값[-255, 255]을 나타내며, 이들 함수의 수직 축은 멤버쉽 디그리(Membership Degree)(∈[0,1])를 나타낸다. 멤버쉽 디그리는 특정 그레디언트 값이 프레디킷트(Predicate, 예컨대 BP)에 매칭되는 정도를 나타낸다. 만일 특정 그레디언트 값이 퍼지 세트 BP에 대하여 1의 멤버쉽 디그리를 갖는다면, 상기 그레디언트 값은 확실하게 '큰 양수'라는 것을 의미한다. 파라미터 세트는 다음과 같이 선택된다: 큰 음수 경계(Negative Big Bound, Tnb), 작은 음수 경계(Negative Small Bound, Tns), 작은 양수 경계(Positive Small Bound, Tps), 및 큰 양수 경계(Positve Big Bound, Tpb). 그러나 상기 파라미터 세트 Tnb, Tns, Tps, 및 Tpb에 대한 적절한 값을 이론적으로 구한다는 것은 일반적으로 쉽지가 않기 때문에, 이들 파라미터 세트에 대한 값들은 실험적으로 결정될 수 있다. 시뮬레이션 결과에 의하면, Tnb=-35, Tns=-15, Tps=15, 및 Tpb=35이었는데, 본 발명의 실시예가 여기에만 한정되는 것은 아니다. In accordance with an embodiment of the invention, the membership function is based on the difference in pixel values (eg, luminance) of the top and bottom pixels relative to the center pointer. One example of a purge set that can be used in an embodiment of the invention is shown in FIG. 5. In general, these terms are called fuzzy sets because "big", "small", "negative", and "positive" show only somewhat abstract characteristics in determining pixel values. It can be expressed as The fuzzy set can be represented by a membership function. Referring to FIG. 5, examples of membership functions include BN (fuge set big negative), SN (fuge set small negative), SP (fuge set small positive), and BP ( Fuzzy Set Big Positive. The horizontal axis of these functions represents all possible gradient values [-255, 255], and the vertical axis of these functions represents membership degree (∈ [0,1]). Membership degree indicates the degree to which a particular gradient value matches a predicate (eg, BP). If a particular gradient value has a membership degree of 1 for the fuzzy set BP, then that gradient value is certainly 'big positive'. The parameter set is selected as follows: Negative Big Bound (T nb ), Negative Small Bound (T ns ), Small Positive Bound (T ps ), and Large Positive Bound ( Positve Big Bound, T pb ). However, it is generally not easy to theoretically find the appropriate values for the parameter sets T nb , T ns , T ps , and T pb , so the values for these parameter sets can be determined experimentally. According to the simulation results, T nb = -35, T ns = -15, T ps = 15, and T pb = 35, but the embodiment of the present invention is not limited thereto.

에지 유형 판정부(130)는 인접한 픽셀들 사이의 차이, 예컨대 휘도 차이를 이용하도록 설계될 수 있다. 예를 들어, 일차원 선형 보간을 한다고 가정하자. 도 6은 에지의 존재로 인하여 나타나는 효과를 보여 주기 위한 것으로서, (a)는 고 해상도의 최초 데이터, (b)는 (a)의 데이터에 대하여 저역 통과 필터링을 수행한 후의 데이터, (c)는 (b)의 데이터에 대하여 데시메이션을 수행한 후의 데이터를 보여준다. 연속된 4개의 픽셀값들을 각각 t, u, v, w라고 할 경우에, 도 6의 (d), (e), 및 (f)에 도시되어 있는 바와 같이, 종래의 선형 보간에 의한 출력값 xL (◇로 표시)은 xL = (u+v)/2로 주어진다. 그러나 본 발명의 실시예와 같이, 에지 유형에 따라 적응적으로 보간을 수행할 경우에는, 출력값 xFER (□로 표시)은 종래의 선형 보간에 의한 출력값과는 차이가 있다. The edge type determination unit 130 may be designed to use a difference between adjacent pixels, for example, a luminance difference. For example, suppose you are doing one-dimensional linear interpolation. FIG. 6 shows the effect of the edges. (A) is the initial data of high resolution, (b) the data after low pass filtering is performed on the data of (a), and (c) The data after decimation of the data in (b) is shown. When four consecutive pixel values are referred to as t, u, v, and w, respectively, output values x by conventional linear interpolation, as shown in Figs. 6D, 6E, and 6F. L (indicated by ◇) is given by x L = (u + v) / 2. However, as in the embodiment of the present invention, when the interpolation is adaptively performed according to the edge type, the output value x FER (denoted by?) Is different from the output value by the conventional linear interpolation.

예를 들어, 도 6의 (d)와 같이, 판정된 에지 유형이 '단순 에지'에 해당되는 경우에는, 출력값 xFER은 왼쪽으로 인접한 픽셀값 u 또는 오른쪽으로 인접한 픽셀값 v 중의 하나와 유사하여야 한다. 따라서 본 발명의 실시예에서는 도 6의 (d)에 도시되어 있는 바와 같이, 출력값 xFER은 u 또는 v가 된다. 이러한 결과는 종래의 선형 보간 알고리즘에 의할 경우에는 에지를 보존할 수 없다는 것을 보여 준다. 에지를 보존하는 보간 알고리즘은 수학식 6으로 표현되는 규칙에 따라 구현이 가능하다.For example, as shown in (d) of FIG. 6, when the determined edge type corresponds to 'simple edge', the output value x FER should be similar to one of the pixel value u adjacent to the left or the pixel value v adjacent to the right. do. Therefore, in the embodiment of the present invention, as shown in Fig. 6D , the output value x FER is u or v. These results show that edges cannot be preserved by conventional linear interpolation algorithms. An interpolation algorithm for preserving edges can be implemented according to the rule represented by Equation 6.

Figure 112007075787993-pat00007
Figure 112007075787993-pat00007

판정된 에지 유형이 도 6의 (e)와 같이 '단조 경사'에 해당되는 경우에는, 단조 경사 신호를 보존하기 위하여 출력값 xFER은 종래와 마찬가지로 (u+v)/2로써, 선형 보간법이 적합하다. 그러나 판정된 에지 유형이 도 6의 (f)와 같이 '피크 또는 벨리'에 해당되는 경우에, 출력값 xFER은 선형 보간에 의해서 구해지는 값인 (u+v)/2에 피크 또는 벨리 부분을 보상하기 위한 보상 파라미터λ를 고려해야 한다. 이를 정리하면, 수학식 7과 같다. In the case where the determined edge type corresponds to the 'forged slope' as shown in FIG. 6 (e), in order to preserve the forged gradient signal, the output value x FER is (u + v) / 2 as in the prior art, and linear interpolation is suitable Do. However, when the determined edge type corresponds to 'peak or valley' as shown in Fig. 6 (f), the output value x FER compensates the peak or valley portion at (u + v) / 2, which is a value obtained by linear interpolation. The compensation parameter λ must be taken into account. To sum up this, it is shown in equation (7).

Figure 112007075787993-pat00008
Figure 112007075787993-pat00008

도 7은 에지 유형이 피크 또는 벨리인 경우에, 종래의 선형 보간을 이용하여 출력값 xL과 본 발명의 실시예에 따른 출력값 xFER을 구하는 과정의 차이점을 보여 주기 위한 도면이다. 도 7을 참조하면, 선형 보간일 경우에는 출력값 xL은 인접한 화소의 출력값과 동일한 값(즉, u 또는 v)을 갖는다. 그러나 본 발명의 실시예에 의할 경우에는 보간의 정확성을 향상시키기 위하여 보간대상화소에 주 에지 방향으로 인접한 네 개의 화소를 이용함으로써, 비록 미세한 차이이기는 하지만 λ 만큼의 차이가 더 보상된다. 도 7을 참조하면 알 수 있는 바와 같이, 에지 유형이 피크 또는 벨리인 경우는 보간대상화소는 인접한 픽셀값보다 λ만큼 조금 더 커거나 더 작은 것이 원본 영상에 더 가깝다. FIG. 7 is a diagram illustrating differences between a process of obtaining an output value x L and an output value x FER according to an embodiment of the present invention using conventional linear interpolation when the edge type is peak or valley. Referring to FIG. 7, in the case of linear interpolation, the output value x L has the same value as that of the adjacent pixel (ie, u or v). However, according to the embodiment of the present invention, by using four pixels adjacent to the interpolation target pixel in the main edge direction to improve the accuracy of interpolation, the difference as much as λ is compensated even though it is a slight difference. As can be seen with reference to FIG. 7, when the edge type is peak or valley, the interpolation target pixel is closer to the original image by being slightly larger or smaller by λ than the adjacent pixel value.

보다 구체적으로, j에 대한 3차 함수로 근사한 수직 방향의 픽셀값, 예컨대 밝기 변화를 고려해보자. 도 7에서 기호 '○'은 실제로 존재하는 화소를 의미한다. 또한, F(j)=α+βj+γj2+δj3는 j에 대한 3차 함수이다. F(0)을 보간대상화소의 값이라고 하고, F(-3), F(-1), F(1), 및 F(3)은 원본 필드의 샘플값이라고 하자. 여기서, F(-3), F(-1), F(1), 및 F(3)은 이미 알려진 값으로서, 다음의 네 개의 식으로 구해질 수 있다. 즉, F(-3)=α-3β+9γ-27δ, F(-1)=α-β+γ-δ, F(1)=α+β+γ+δ, 및 F(3)=α+3β+9γ+27δ. 그리고 이 수식들을 이용하여 출력값 xFER (=F(0))은 다음의 수학식 8을 이용하여 구할 수 있다. More specifically, consider a vertical pixel value, such as a brightness change, approximated by a cubic function of j. In FIG. 7, the symbol '○' means a pixel that actually exists. In addition, F (j) = α + βj + γj 2 + δj 3 is a cubic function for j. Let F (0) be the value of the interpolation target pixel, and F (-3), F (-1), F (1), and F (3) are sample values of the original field. Here, F (-3), F (-1), F (1), and F (3) are known values and can be obtained by the following four equations. That is, F (-3) = α-3β + 9γ-27δ, F (-1) = α-β + γ-δ, F (1) = α + β + γ + δ, and F (3) = α + 3β + 9γ + 27δ. Using these equations, the output value x FER (= F (0)) can be obtained using Equation 8 below.

Figure 112007075787993-pat00009
Figure 112007075787993-pat00009

그리고 λ는 다음의 수학식 9로 정의할 수 있다.And lambda can be defined by the following equation (9).

Figure 112007075787993-pat00010
Figure 112007075787993-pat00010

이상의 내용을 요약하면, 표 2와 같다.The above is summarized in Table 2.

Figure 112007075787993-pat00011
Figure 112007075787993-pat00011

이상에서 설명한 바와 같이, 격행 주사 방식을 사용하는 영상을 디인터레이싱하는 과정에서, 본 발명의 실시예와 같이 퍼지-룰 기반의 에지 복원 알고리즘을 이용함으로써, 기존의 디인터레이싱 기법인 STELA 보다 우수한 화질을 실현할 수 있다. 특히, 본 발명의 실시예에 의하면, 주 에지 방향이 공간 도메인에 속하는 경우에는, 보상될 화소의 에지 유형을 단순 에지, 단조 경사, 또는 피크 또는 벨리로 분류하고, 각 유형에 따라서 적응적으로 보간을 수행함으로써, 가상의 수직 풀해상도의 에지 퀄리티를 얻을 수가 있다.As described above, in the process of deinterlacing an image using a conventional scanning method, by using a fuzzy-rule-based edge reconstruction algorithm as in the embodiment of the present invention, it is possible to realize better image quality than STELA, which is a conventional deinterlacing technique. have. In particular, according to an embodiment of the present invention, when the main edge direction belongs to the spatial domain, the edge types of pixels to be compensated are classified into simple edges, monotonic slopes, or peaks or valleys, and adaptively interpolated according to each type. By performing the above, the edge quality of the virtual vertical full resolution can be obtained.

도 1은 본 발명의 일 실시예에 따른 디인터레이싱 장치의 구성을 보여 주는 블록도이다.1 is a block diagram showing the configuration of a deinterlacing apparatus according to an embodiment of the present invention.

도 2는 에지 방향을 판정하기 위하여 이용되는 시공간 윈도우를 보여 주는 도면이다.2 shows a space-time window used to determine the edge direction.

도 3은 퍼지 이미지 프로세싱을 보여 주는 흐름도이다.3 is a flowchart showing fuzzy image processing.

도 4는 퍼지 그레디언트 산출부에서 퍼지 그레디언트값을 구하는데 이용하는 이웃 윈도(Neighbor Window)의 픽셀들의 위치를 보여주는 도면이다.4 is a diagram illustrating positions of pixels of a neighbor window used by the fuzzy gradient calculator to obtain a fuzzy gradient value.

도 5는 본 발명의 일 실시예에 이용되는 퍼지 세트의 멤버쉽 함수를 보여 주는 도면이다.5 is a diagram illustrating a membership function of a fuzzy set used in an embodiment of the present invention.

도 6은 에지의 존재로 인하여 나타나는 효과를 보여 주기 위한 것으로서, (a)는 고 해상도의 최초 데이터, (b)는 (a)의 데이터에 대하여 저역 통과 필터링을 수행한 후의 데이터, (c)는 (b)의 데이터에 대하여 데시메이션을 수행한 후의 데이터, (d), (e), 및 (f)는 본 발명의 일 실시예에 따른 에지 유형을 보여 주는 도면이다.FIG. 6 shows the effect of the edges. (A) is the initial data of high resolution, (b) the data after low pass filtering is performed on the data of (a), and (c) Data after decimation of the data of (b), (d), (e), and (f) are diagrams showing edge types according to an embodiment of the present invention.

도 7은 본 발명의 일 실시예에 따라 λ를 구하는 과정을 설명하기 위한 그래프이다.7 is a graph illustrating a process of obtaining lambda according to an embodiment of the present invention.

Claims (14)

입력 격행 주사 신호의 보간대상화소를 포함하는 현재 필드 영상에 대하여 시간 방향으로 인접한 이전 필드 영상 및 다음 필드 영상에 포함되는 복수의 제1 화소와 상기 현재 필드 영상에 포함되고 또한 상기 보간대상화소에 공간 방향으로 인접한 복수의 제2 화소를 이용하여, 상기 보간대상화소에 대한 주 에지 방향이 시간 도메인 또는 공간 도메인에 속하는지와 함께 세부 방향을 판정하기 위한 에지 방향 감지부;A plurality of first pixels included in a previous field image and a next field image in a time direction with respect to a current field image including an interpolation target pixel of an input-parallel scan signal, and a space included in the current field image and spaced in the interpolation target pixel An edge direction detecting unit for determining a detailed direction together with whether the main edge direction of the interpolation target pixel belongs to a time domain or a spatial domain using a plurality of second pixels adjacent to each other in a direction; 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에, 상기 보간대상화소에 공간 방향으로 인접한 상기 제2 화소들에 대하여 상기 주 에지 방향으로 위쪽 및 아래쪽으로 각각 인접한 제3 화소를 이용하여 상기 보간대상화소에 대한 상부 차이와 하부 차이를 계산하기 위한 상하부 차이 계산부;When it is determined that the main edge direction belongs to the spatial domain, the interpolation is performed using third pixels adjacent to the interpolation target pixel in the spatial direction and upward and downward in the main edge direction, respectively. An upper and lower difference calculation unit for calculating an upper difference and a lower difference for the target pixel; 상기 상부 차이와 상기 하부 차이의 특성을 이용하여 상기 보간대상화소에 대한 에지 유형을 판정하기 위한 에지 유형 인식부; 및An edge type recognition unit for determining an edge type for the interpolation target pixel using characteristics of the upper difference and the lower difference; And 상기 주 에지 방향이 시간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제1 화소를 이용하여 선형 보간을 수행하고, 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제2 화소 및 제3 화소를 이용하여 상기 에지 유형 인식부에서 판정된 에지 유형에 따라서 적응적으로 보간을 수행하여 순행 주사 신호를 출력하기 위한 보간부를 포함하는 디인터레이싱 장치.If it is determined that the main edge direction belongs to the time domain, linear interpolation is performed using the first pixel adjacent to the main edge direction, and if it is determined that the main edge direction belongs to the spatial domain, the main edge And an interpolation unit for adaptively performing interpolation according to the edge type determined by the edge type recognizing unit using the second and third pixels adjacent in the direction to output a forward scan signal. 제1항에 있어서, 상기 에지 방향 감지부는 하기 식 (E-1)을 이용하여 상기 주 에지 방향을 판정하는 것을 특징으로 하는 디인터레이싱 장치.The deinterlacing apparatus according to claim 1, wherein the edge direction detecting unit determines the main edge direction using the following formula (E-1).
Figure 112007075787993-pat00012
(E-1)
Figure 112007075787993-pat00012
(E-1)
여기서, CTD ,45°, CTD ,0°, CTD ,-45°, CSD ,45°, CSD ,0°, 및 CSD ,-45°는 각각 ┃pl - nr┃, ┃p - n┃, ┃pr - nl┃, ┃ul - dr┃, ┃u - d┃, 및 ┃ur - dl┃을 나타내며, Where C TD , 45 ° , C TD , 0 ° , C TD , -45 ° , C SD , 45 ° , C SD , 0 ° , and C SD , -45 ° are each ┃pl-nr┃, ┃p n┃, ┃pr-nl┃, ┃ul-dr┃, ┃u-d┃, and ┃ur-dl┃, 'pl'은 이전 프레임에서 상기 보간대상화소의 위치에 대하여 왼쪽(Previous and Left)에 인접한 화소의 값, 'nr'은 다음 프레임에서 상기 보간대상화소의 위치에 대하여 오른쪽(Next and Right)에 인접한 화소의 값, 'p'는 이전 프레임에서 상기 보간대상화소의 위치(Previous)에 위치한 화소의 값, 'n'은 다음 프레임에서 상기 보간대상화소의 위치(Next)에 위치한 화소의 값, 'pr'은 이전 프레임에서 상기 보간대상화소의 위치에 대하여 오른쪽(Previous and Right)에 인접한 화소의 값, 'nl'은 다음 프레임에서 상기 보간대상화소의 위치에 대하여 왼쪽(Previous and Left)에 인접한 화소의 값, 'ul'는 상기 보간대상화소의 좌상(Up and Left)쪽에 인접한 화소의 값, 'dr'는 상기 보간대상화소의 우하(Down and Right)쪽에 인접한 화소의 값, 'u'는 상기 보간대상화소의 위(Up)쪽에 인접한 화소의 값, 'd'는 상기 보간대상화소의 아래(Down)쪽에 인접한 화소의 값, 'ur'은 상기 보간대상화소의 우상(Up and Right)쪽에 인접한 화소의 값, 'dl'은 상기 보간대상화소의 좌하(Down and Left)쪽에 인접한 화소의 값을 나타내며,'pl' is the value of the pixel adjacent to the location of the interpolation target pixel in the previous frame and 'nr' is the value of the pixel adjacent to the position of the interpolation target pixel in the next frame. The value of the pixel, 'p' is the value of the pixel located at the position (Previous) of the interpolation target pixel in the previous frame, 'n' is the value of the pixel located at the position (Next) of the pixel to be interpolated in the next frame, 'pr 'Is the value of the pixel adjacent to the right and right for the position of the interpolation target pixel in the previous frame, and' nl 'is the value of the pixel adjacent to the left and right with respect to the position of the interpolation target pixel in the next frame. 'Ul' is the value of the pixel adjacent to the upper and left side of the interpolation target pixel, 'dr' is the value of the pixel adjacent to the down and right side of the interpolation target pixel, and 'u' is the value of the interpolation The value of the pixel adjacent to the up side of the target pixel, 'd Is the value of the pixel adjacent to the down side of the interpolation target pixel, 'ur' is the value of the pixel adjacent to the upper and right side of the interpolation target pixel, and 'dl' is the lower left of the pixel to be interpolated. and Left) value of the adjacent pixel, Φ는 시간 도메인(Time Domain, TD)인지 또는 공간 도메인(Spatial Domain, SD)를 가리키는 파라미터이고, θ는 시간 방향 또는 수직 공간 방향에 대한 각도를 가리키는 파라미터이다.Φ is a parameter indicating whether it is a time domain (TD) or a spatial domain (SD), and θ is a parameter indicating an angle with respect to a time direction or a vertical space direction.
제2항에 있어서, 상기 Φ가 시간 도메인(TD)에 해당되는 경우에, 상기 보간부는 하기 식 (E-2)를 이용하여 보간을 수행하는 것을 특징으로 하는 디인터레이싱 장치.The de-interlacing apparatus according to claim 2, wherein when the? Corresponds to a time domain (TD), the interpolation unit performs interpolation using the following equation (E-2).
Figure 112007075787993-pat00013
(E-2)
Figure 112007075787993-pat00013
(E-2)
여기서, xFER(i,j,k)는 k번째 필드 영상에서 i번째 칼럼 라인과 j번째 수평 라인의 교차점에 위치하는 상기 보간대상화소의 화소값을 가리킨다.Here, x FER (i, j, k) indicates a pixel value of the interpolation target pixel located at the intersection of the i th column line and the j th horizontal line in the k th field image.
제2항에 있어서, 상기 상하부 차이 계산부는 하기 표 (T-1)에 개시된 식을 이용하여 상기 주 에지 방향으로 상부 차이와 하부 차이를 계산하는 것을 특징으로 하는 디인터레이싱 장치.The de-interlacing apparatus according to claim 2, wherein the upper and lower difference calculation units calculate an upper difference and a lower difference in the main edge direction by using the equation disclosed in the following table (T-1).
Figure 112007075787993-pat00014
(T-1)
Figure 112007075787993-pat00014
(T-1)
여기서, 각 방향(ED)은 상기 수직 방향에 대한 상대각도를 가리키고,Here, each direction ED indicates a relative angle with respect to the vertical direction, CSD,45x(i,j,k), CSD,0x(i,j,k), 및 CSD,-45x(i,j,k)는 기본 그레디언트, ΓU 45x(i,j,k), ΓU 0x(i,j,k), 및 ΓU -45x(i,j,k)는 상부 그레디언트(Upper Gradient), ΓD 45x(i,j,k), ΓD 0x(i,j,k), 및 ΓD -45x(i,j,k)는 하부 그레디언트(Lower Gradient)를 가리키고, C SD, 45 x (i, j, k), C SD, 0 x (i, j, k), and C SD, -45 x (i, j, k) are the basic gradients, Γ U 45 x (i , j, k), Γ U 0 x (i, j, k), and Γ U -45 x (i, j, k) are Upper Gradient, Γ D 45 x (i, j, k) , Γ D 0 x (i, j, k), and Γ D -45 x (i, j, k) indicate the Lower Gradient, 'ul' 및 'UL'은 각각 보간대상화소의 좌상(Up and Left)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'dr' 및 'DR'은 각각 보간대상화소의 우하(Down and Right)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'u' 및 'U'는 각각 보간대상화소의 위(Up)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'd' 및 'D'는 각각 보간대상화소의 아래(Down)쪽으로 인접한 화소에 이에 인접한 화소의 값, 'ur' 및 'UR'은 각각 보간대상화소의 우상(Up and Right)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'dl' 및 'DL'은 각각 보간대상화소의 좌하(Down and Left)쪽으로 인접한 화소와 이에 인접한 화소의 값을 나타낸다.'ul' and 'UL' are pixels adjacent to the upper and left sides of the interpolation target pixel, and the values of adjacent pixels, 'dr' and 'DR' are respectively adjacent to the lower and right sides of the interpolation target pixel. The values of pixels and adjacent pixels, 'u' and 'U', respectively, are upwards of the interpolation target pixel, and the values of adjacent pixels and adjacent pixels, 'd' and 'D' are respectively below the interpolation target pixel ( Pixels adjacent to Down), 'ur' and 'UR' are adjacent to the upper and right pixels of the interpolation target pixel, and 'dl' and 'DL' are adjacent The pixels adjacent to the left and left of the interpolation target pixel and values of the pixels adjacent thereto are shown.
제4항에 있어서, 상기 에지 유형 인식부는, 상기 상부 차이와 상기 하부 차이가 양수(Positive, P)인지 음수(Negative, N)인지 판정하거나 또는 상기 상부 차이와 상기 하부 차이 각각의 절대값이 소정의 임계치보다 큰지(Big, B) 작은지(Small, S)를 판정함으로써, 상기 보간대상화소의 에지 유형을 판정하는 것을 특징으로 하는 디인터레이싱 장치.The method of claim 4, wherein the edge type recognizer determines whether the upper difference and the lower difference are positive or negative, or an absolute value of each of the upper difference and the lower difference is predetermined. And an edge type of the interpolation target pixel is determined by determining whether it is larger (Big, B) or smaller (Small, S). 제5항에 있어서, 상기 보간대상화소의 에지 유형은 '단순 에지', '단조 경사', 및 '피크 또는 벨리' 중의 하나이고, The method of claim 5, wherein the edge type of the pixel to be interpolated is one of 'simple edge', 'forged slope', and 'peak or valley', (상기 상부 차이, 상기 하부 차이)가 (BN, SN), (SN, SP), (BP, SN), (BP, SP), (SN, BN), (SN, BP), (SP, BN), 또는 (SP, BP)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '단순 에지'로 판정하고,(The upper difference, the lower difference) is (BN, SN), (SN, SP), (BP, SN), (BP, SP), (SN, BN), (SN, BP), (SP, BN ), Or (SP, BP), the edge type recognition unit determines the edge type of the interpolation target pixel as 'simple edge', (상기 상부 차이, 상기 하부 차이)가 (BN, BN), (SN, SN), (SP, SP), 또는 (BP, BP)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '단조 경사'로 판정하고,When (the upper difference, the lower difference) corresponds to (BN, BN), (SN, SN), (SP, SP), or (BP, BP), the edge type recognizing unit of the interpolation target pixel Determine the edge type as 'Forged Slope', (상기 상부 차이, 상기 하부 차이)가 (BN, BP), (SN, SP), (BP, BN), 또는 (SP, SN)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '피크 또는 벨리'로 판정하는 것을 특징으로 하는 디인터레이싱 장치.When (the upper difference, the lower difference) corresponds to (BN, BP), (SN, SP), (BP, BN), or (SP, SN), the edge type recognition unit of the interpolation target pixel A deinterlacing device, characterized in that the edge type is determined as 'peak or valley'. 여기서, 'BN'은 상기 상부 차이 또는 하부 차이가 음수이고 그 절대값이 상기 임계치보다 크다는 것을 가리키고, 'SN'는 상기 상부 차이 또는 하부 차이가 음수이고 그 절대값이 상기 임계치보다 작다는 것을 가리키고, 'SP'는 상기 상부 차이 또는 하부 차이가 양수이고 그 절대값이 상기 임계치보다 작다는 것을 가리키 고, 'BP'는 상기 상부 차이 또는 하부 차이가 양수이고 그 절대값이 상기 임계치보다 크다는 것을 가리킨다.Here, 'BN' indicates that the upper or lower difference is negative and its absolute value is greater than the threshold, and 'SN' indicates that the upper or lower difference is negative and its absolute value is less than the threshold. 'SP' indicates that the upper difference or lower difference is positive and its absolute value is less than the threshold, and 'BP' indicates that the upper difference or lower difference is positive and its absolute value is greater than the threshold. Point. 제6항에 있어서, 상기 Φ가 공간 도메인(SD)에 해당되는 경우에, 상기 보간부는 하기 식 (E-3) 또는 (E-4)를 이용하여 보간을 수행하는 것을 특징으로 하는 디인터레이싱 장치. 7. The deinterlacing apparatus according to claim 6, wherein the interpolation unit performs interpolation using Equation (E-3) or (E-4) when Φ corresponds to the spatial domain SD.
Figure 112007075787993-pat00015
(E-3)
Figure 112007075787993-pat00015
(E-3)
Figure 112007075787993-pat00016
(E-4)
Figure 112007075787993-pat00016
(E-4)
여기서, xFER(i,j,k)는 k번째 필드 영상에서 i번째 칼럼 라인과 j번째 수평 라인의 교차점에 위치하는 상기 보간대상화소의 화소값을 가리키고,Here, x FER (i, j, k) indicates a pixel value of the interpolation target pixel located at the intersection of the i th column line and the j th horizontal line in the k th field image, 't'는 UL, U, UR 중에서 상기 주 에지 방향에 위치하는 화소의 값, 'u'는 ul, u, ur 중에서 상기 주 에지 방향에 위치하는 화소의 값, 'v'는 dl, d, dr 중에서 상기 주 에지 방향에 위치하는 화소의 값, 및 'w'는 DL, D, DR 중에서 상기 주 에지 방향에 위치하는 화소의 값을 가리키며,'t' is the value of the pixel located in the main edge direction among UL, U, UR, 'u' is the value of the pixel located in the main edge direction among ul, u, ur, and 'v' is dl, d, The value of the pixel located in the main edge direction among dr, and 'w' indicates the value of the pixel located in the main edge direction among DL, D, DR, λ는 0.0625×(-t+u+v-w)를 나타낸다.λ represents 0.0625 × (−t + u + v−w).
입력 격행 주사 신호의 보간대상화소를 포함하는 현재 필드 영상에 대하여 시간 방향으로 인접한 이전 필드 영상 및 다음 필드 영상에 포함되는 복수의 제1 화소와 상기 현재 필드 영상에 포함되고 또한 상기 보간대상화소에 공간 방향으로 인접한 복수의 제2 화소를 이용하여, 상기 보간대상화소에 대한 주 에지 방향이 시간 도메인 또는 공간 도메인에 속하는지와 함께 세부 방향을 판정하는 단계; A plurality of first pixels included in a previous field image and a next field image in a time direction with respect to a current field image including an interpolation target pixel of an input-parallel scan signal, and a space included in the current field image and spaced in the interpolation target pixel Determining a detailed direction along with whether the main edge direction for the interpolation target pixel belongs to a time domain or a spatial domain using a plurality of second pixels adjacent in the direction; 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에, 상기 보간대상화소에 공간 방향으로 인접한 상기 제2 화소들에 대하여 상기 주 에지 방향으로 위쪽 및 아래쪽으로 각각 인접한 제3 화소를 이용하여 상기 보간대상화소에 대한 상부 차이와 하부 차이를 계산하는 단계; When it is determined that the main edge direction belongs to the spatial domain, the interpolation is performed using third pixels adjacent to the interpolation target pixel in the spatial direction and upward and downward in the main edge direction, respectively. Calculating an upper difference and a lower difference for the target pixel; 상기 상부 차이와 상기 하부 차이의 특성을 이용하여 상기 보간대상화소에 대한 에지 유형을 판정하는 단계; 및Determining an edge type for the interpolation target pixel using characteristics of the upper difference and the lower difference; And 상기 주 에지 방향이 시간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제1 화소를 이용하여 선형 보간을 수행하고, 상기 주 에지 방향이 공간 도메인에 속하는 것으로 판정된 경우에는 상기 주 에지 방향으로 인접한 상기 제2 화소 및 제3 화소를 이용하여 상기 에지 유형 인식부에서 판정된 에지 유형에 따라서 적응적으로 보간을 수행하여 순행 주사 신호를 출력하는 단계를 포함하는 디인터레이싱 방법.If it is determined that the main edge direction belongs to the time domain, linear interpolation is performed using the first pixel adjacent to the main edge direction, and if it is determined that the main edge direction belongs to the spatial domain, the main edge And interpolating adaptively according to the edge type determined by the edge type recognition unit using the second and third pixels adjacent to each other in a direction to output a progressive scan signal. 제8항에 있어서, 상기 방향을 판정하는 단계에서는 하기 식 (E-5)를 이용하여 상기 주 에지 방향을 판정하는 것을 특징으로 하는 디인터레이싱 방법.9. The deinterlacing method according to claim 8, wherein in the step of determining the direction, the main edge direction is determined using the following formula (E-5).
Figure 112009029047173-pat00017
(E-5)
Figure 112009029047173-pat00017
(E-5)
여기서, CTD,45°, CTD,0°, CTD,-45°, CSD,45°, CSD,0°, 및 CSD,-45°는 각각 ┃pl - nr┃, ┃p - n┃, ┃pr - nl┃, ┃ul - dr┃, ┃u - d┃, 및 ┃ur - dl┃을 나타내며, Where C TD, 45 ° , C TD, 0 ° , C TD, -45 ° , C SD, 45 ° , C SD, 0 ° , and C SD, -45 ° are respectively ┃pl-nr┃, ┃p n┃, ┃pr-nl┃, ┃ul-dr┃, ┃u-d┃, and ┃ur-dl┃, 'pl'은 이전 프레임에서 상기 보간대상화소의 위치에 대하여 왼쪽(Previous and Left)에 인접한 화소의 값, 'nr'은 다음 프레임에서 상기 보간대상화소의 위치에 대하여 오른쪽(Next and Right)에 인접한 화소의 값, 'p'는 이전 프레임에서 상기 보간대상화소의 위치(Previous)에 위치한 화소의 값, 'n'은 다음 프레임에서 상기 보간대상화소의 위치(Next)에 위치한 화소의 값, 'pr'은 이전 프레임에서 상기 보간대상화소의 위치에 대하여 오른쪽(Previous and Right)에 인접한 화소의 값, 'nl'은 다음 프레임에서 상기 보간대상화소의 위치에 대하여 왼쪽(Previous and Left)에 인접한 화소의 값, 'ul'는 상기 보간대상화소의 좌상(Up and Left)쪽에 인접한 화소의 값, 'dr'는 상기 보간대상화소의 우하(Down and Right)쪽에 인접한 화소의 값, 'u'는 상기 보간대상화소의 위(Up)쪽에 인접한 화소의 값, 'd'는 상기 보간대상화소의 아래(Down)쪽에 인접한 화소의 값, 'ur'은 상기 보간대상화소의 우상(Up and Right)쪽에 인접한 화소의 값, 'dl'은 상기 보간대상화소의 좌하(Down and Left)쪽에 인접한 화소의 값을 나타내며,'pl' is the value of the pixel adjacent to the location of the interpolation target pixel in the previous frame and 'nr' is the value of the pixel adjacent to the position of the interpolation target pixel in the next frame. The value of the pixel, 'p' is the value of the pixel located at the position (Previous) of the interpolation target pixel in the previous frame, 'n' is the value of the pixel located at the position (Next) of the pixel to be interpolated in the next frame, 'pr 'Is the value of the pixel adjacent to the right and right for the position of the interpolation target pixel in the previous frame, and' nl 'is the value of the pixel adjacent to the left and right with respect to the position of the interpolation target pixel in the next frame. 'Ul' is the value of the pixel adjacent to the upper and left side of the interpolation target pixel, 'dr' is the value of the pixel adjacent to the down and right side of the interpolation target pixel, and 'u' is the value of the interpolation The value of the pixel adjacent to the up side of the target pixel, 'd Is the value of the pixel adjacent to the down side of the interpolation target pixel, 'ur' is the value of the pixel adjacent to the upper and right side of the interpolation target pixel, and 'dl' is the lower left of the pixel to be interpolated. and Left) value of the adjacent pixel, Φ는 시간 도메인(Time Domain, TD)인지 또는 공간 도메인(Spatial Domain, SD)를 가리키는 파라미터이고, θ는 시간 방향 또는 수직 공간 방향에 대한 각도를 가리키는 파라미터이다.Φ is a parameter indicating whether it is a time domain (TD) or a spatial domain (SD), and θ is a parameter indicating an angle with respect to a time direction or a vertical space direction.
제9항에 있어서, 상기 Φ가 시간 도메인(TD)에 해당되는 경우에, 상기 보간을 수행하여 순행 주사 신호를 출력하는 단계에서는 하기 식 (E-6)을 이용하여 보간을 수행하는 것을 특징으로 하는 디인터레이싱 방법.10. The method of claim 9, wherein when Φ corresponds to the time domain TD, interpolation is performed using Equation (E-6) in the step of outputting a forward scan signal by performing the interpolation. De-interlacing method.
Figure 112009029047173-pat00018
(E-6)
Figure 112009029047173-pat00018
(E-6)
여기서, xFER(i,j,k)는 k번째 필드 영상에서 i번째 칼럼 라인과 j번째 수평 라인의 교차점에 위치하는 상기 보간대상화소의 화소값을 가리킨다.Here, x FER (i, j, k) indicates a pixel value of the interpolation target pixel located at the intersection of the i th column line and the j th horizontal line in the k th field image.
제10항에 있어서, 상기 상부 차이와 하부 차이를 계산하는 단계에서는 하기 표 (T-2)에 개시된 식을 이용하여 상기 주 에지 방향으로 상부 차이와 하부 차이를 계산하는 것을 특징으로 하는 디인터레이싱 방법.The deinterlacing method according to claim 10, wherein in the calculating of the upper difference and the lower difference, the upper difference and the lower difference are calculated in the main edge direction by using the formula disclosed in Table (T-2).
Figure 112009029047173-pat00019
(T-2)
Figure 112009029047173-pat00019
(T-2)
여기서, 각 방향(ED)은 상기 수직 방향에 대한 상대각도를 가리키고,Here, each direction ED indicates a relative angle with respect to the vertical direction, CSD,45x(i,j,k), CSD,0x(i,j,k), 및 CSD,-45x(i,j,k)는 기본 그레디언트, ΓU 45x(i,j,k), ΓU 0x(i,j,k), 및 ΓU -45x(i,j,k)는 상부 그레디언트(Upper Gradient), ΓD 45x(i,j,k), ΓD 0x(i,j,k), 및 ΓD -45x(i,j,k)는 하부 그레디언트(Lower Gradient)를 가리키고, C SD, 45 x (i, j, k), C SD, 0 x (i, j, k), and C SD, -45 x (i, j, k) are the basic gradients, Γ U 45 x (i , j, k), Γ U 0 x (i, j, k), and Γ U -45 x (i, j, k) are Upper Gradient, Γ D 45 x (i, j, k) , Γ D 0 x (i, j, k), and Γ D -45 x (i, j, k) indicate the Lower Gradient, 'ul' 및 'UL'은 각각 보간대상화소의 좌상(Up and Left)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'dr' 및 'DR'은 각각 보간대상화소의 우하(Down and Right)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'u' 및 'U'는 각각 보간대상화소의 위(Up)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'd' 및 'D'는 각각 보간대상화소의 아래(Down)쪽으로 인접한 화소에 이에 인접한 화소의 값, 'ur' 및 'UR'은 각각 보간대상화소의 우상(Up and Right)쪽으로 인접한 화소와 이에 인접한 화소의 값, 'dl' 및 'DL'은 각각 보간대상화소의 좌하(Down and Left)쪽으로 인접한 화소와 이에 인접한 화소의 값을 나타낸다.'ul' and 'UL' are pixels adjacent to the upper and left sides of the interpolation target pixel, and the values of adjacent pixels, 'dr' and 'DR' are respectively adjacent to the lower and right sides of the interpolation target pixel. The values of pixels and adjacent pixels, 'u' and 'U', respectively, are upwards of the interpolation target pixel, and the values of adjacent pixels and adjacent pixels, 'd' and 'D' are respectively below the interpolation target pixel ( Pixels adjacent to Down), 'ur' and 'UR' are adjacent to the upper and right pixels of the interpolation target pixel, and 'dl' and 'DL' are adjacent The pixels adjacent to the left and left of the interpolation target pixel and values of the pixels adjacent thereto are shown.
제11항에 있어서, 상기 에지 유형 인식 단계에서는, 상기 상부 차이와 상기 하부 차이가 양수(Positive, P)인지 음수(Negative, N)인지 판정하거나 또는 상기 상부 차이와 상기 하부 차이 각각의 절대값이 소정의 임계치보다 큰지(Big, B) 작은지(Small, S)를 판정함으로써, 상기 보간대상화소의 에지 유형을 판정하는 것을 특징으로 하는 디인터레이싱 방법.12. The method of claim 11, wherein in the edge type recognition step, it is determined whether the upper difference and the lower difference are positive (P) or negative (N), or the absolute value of each of the upper difference and the lower difference is And an edge type of the interpolation target pixel is determined by determining whether it is larger than a predetermined threshold (Big, B) or smaller (Small, S). 제12항에 있어서, 상기 보간대상화소의 에지 유형은 '단순 에지', '단조 경사', 및 '피크 또는 벨리' 중의 하나이고, The method of claim 12, wherein the edge type of the pixel to be interpolated is one of 'simple edge', 'forged slope', and 'peak or valley', (상기 상부 차이, 상기 하부 차이)가 (BN, SN), (SN, SP), (BP, SN), (BP, SP), (SN, BN), (SN, BP), (SP, BN), 또는 (SP, BP)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '단순 에지'로 판정하고,(The upper difference, the lower difference) is (BN, SN), (SN, SP), (BP, SN), (BP, SP), (SN, BN), (SN, BP), (SP, BN ), Or (SP, BP), the edge type recognition unit determines the edge type of the interpolation target pixel as 'simple edge', (상기 상부 차이, 상기 하부 차이)가 (BN, BN), (SN, SN), (SP, SP), 또는 (BP, BP)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '단조 경사'로 판정하고,When (the upper difference, the lower difference) corresponds to (BN, BN), (SN, SN), (SP, SP), or (BP, BP), the edge type recognizing unit of the interpolation target pixel Determine the edge type as 'Forged Slope', (상기 상부 차이, 상기 하부 차이)가 (BN, BP), (SN, SP), (BP, BN), 또는 (SP, SN)에 해당되는 경우에, 상기 에지 유형 인식부는 상기 보간대상화소의 에지 유형을 '피크 또는 벨리'로 판정하는 것을 특징으로 하는 디인터레이싱 방법.When (the upper difference, the lower difference) corresponds to (BN, BP), (SN, SP), (BP, BN), or (SP, SN), the edge type recognition unit of the interpolation target pixel A method of deinterlacing, characterized in that determining the edge type to 'peak or valley'. 여기서, 'BN'은 상기 상부 차이 또는 하부 차이가 음수이고 그 절대값이 상 기 임계치보다 크다는 것을 가리키고, 'SN'는 상기 상부 차이 또는 하부 차이가 음수이고 그 절대값이 상기 임계치보다 작다는 것을 가리키고, 'SP'는 상기 상부 차이 또는 하부 차이가 양수이고 그 절대값이 상기 임계치보다 작다는 것을 가리키고, 'BP'는 상기 상부 차이 또는 하부 차이가 양수이고 그 절대값이 상기 임계치보다 크다는 것을 가리킨다.Here, 'BN' indicates that the upper difference or lower difference is negative and its absolute value is greater than the upper threshold, and 'SN' indicates that the upper difference or lower difference is negative and its absolute value is smaller than the threshold. 'SP' indicates that the upper or lower difference is positive and its absolute value is less than the threshold, and 'BP' indicates that the upper or lower difference is positive and its absolute value is greater than the threshold. . 제13항에 있어서, 상기 Φ가 공간 도메인(SD)에 해당되는 경우에, 상기 보간을 수행하여 순행 주사 신호를 출력하는 단계는 하기 식 (E-7) 또는 (E-8)을 이용하여 보간을 수행하는 것을 특징으로 하는 디인터레이싱 장치. The method of claim 13, wherein when Φ corresponds to the spatial domain SD, outputting a forward scanning signal by performing the interpolation may be performed using the following equation (E-7) or (E-8). Deinterlacing apparatus, characterized in that for performing.
Figure 112009029047173-pat00020
(E-7)
Figure 112009029047173-pat00020
(E-7)
Figure 112009029047173-pat00021
(E-8)
Figure 112009029047173-pat00021
(E-8)
여기서, xFER(i,j,k)는 k번째 필드 영상에서 i번째 칼럼 라인과 j번째 수평 라인의 교차점에 위치하는 상기 보간대상화소의 화소값을 가리키고,Here, x FER (i, j, k) indicates a pixel value of the interpolation target pixel located at the intersection of the i th column line and the j th horizontal line in the k th field image, 't'는 UL, U, UR 중에서 상기 주 에지 방향에 위치하는 화소의 값, 'u'는 ul, u, ur 중에서 상기 주 에지 방향에 위치하는 화소의 값, 'v'는 dl, d, dr 중에서 상기 주 에지 방향에 위치하는 화소의 값, 및 'w'는 DL, D, DR 중에서 상기 주 에지 방향에 위치하는 화소의 값을 가리키며,'t' is the value of the pixel located in the main edge direction among UL, U, UR, 'u' is the value of the pixel located in the main edge direction among ul, u, ur, and 'v' is dl, d, The value of the pixel located in the main edge direction among dr, and 'w' indicates the value of the pixel located in the main edge direction among DL, D, DR, λ는 0.0625×(-t+u+v-w)를 나타낸다.λ represents 0.0625 × (−t + u + v−w).
KR1020070106678A 2007-10-23 2007-10-23 Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm KR100931110B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070106678A KR100931110B1 (en) 2007-10-23 2007-10-23 Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070106678A KR100931110B1 (en) 2007-10-23 2007-10-23 Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm

Publications (2)

Publication Number Publication Date
KR20090041131A KR20090041131A (en) 2009-04-28
KR100931110B1 true KR100931110B1 (en) 2009-12-10

Family

ID=40764311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070106678A KR100931110B1 (en) 2007-10-23 2007-10-23 Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm

Country Status (1)

Country Link
KR (1) KR100931110B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500266B1 (en) * 2014-03-28 2015-03-06 인천대학교 산학협력단 A robust fuzzy-bilateral filtering method and its application to video deinterlacing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101706453B1 (en) * 2015-05-27 2017-02-14 한양대학교 에리카산학협력단 Image interpolation method and apparatus based on edge using slope tracing
KR101829742B1 (en) * 2016-12-14 2018-02-19 인천대학교 산학협력단 Deinterlacing apparatus and method based on bilinear filter and fuzzy-based weighted average filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010252A (en) * 2001-07-26 2003-02-05 주식회사 하이닉스반도체 An Efficient Spatial and Temporal Interpolation system for De-interlacing and its method
KR20050023983A (en) * 2003-09-04 2005-03-10 삼성전자주식회사 Image adaptive deinterlacing method using spatial correlation based on edge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010252A (en) * 2001-07-26 2003-02-05 주식회사 하이닉스반도체 An Efficient Spatial and Temporal Interpolation system for De-interlacing and its method
KR20050023983A (en) * 2003-09-04 2005-03-10 삼성전자주식회사 Image adaptive deinterlacing method using spatial correlation based on edge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500266B1 (en) * 2014-03-28 2015-03-06 인천대학교 산학협력단 A robust fuzzy-bilateral filtering method and its application to video deinterlacing

Also Published As

Publication number Publication date
KR20090041131A (en) 2009-04-28

Similar Documents

Publication Publication Date Title
US7042512B2 (en) Apparatus and method for adaptive motion compensated de-interlacing of video data
US6262773B1 (en) System for conversion of interlaced video to progressive video using edge correlation
KR100272582B1 (en) Scan converter
US7423691B2 (en) Method of low latency interlace to progressive video format conversion
US7907209B2 (en) Content adaptive de-interlacing algorithm
US5784115A (en) System and method for motion compensated de-interlacing of video frames
JP3850071B2 (en) Conversion device and conversion method
US20030086498A1 (en) Apparatus and method of converting frame and/or field rate using adaptive motion compensation
US20050129306A1 (en) Method and apparatus for image deinterlacing using neural networks
US8189105B2 (en) Systems and methods of motion and edge adaptive processing including motion compensation features
KR20040009967A (en) Apparatus and method for deinterlacing
EP2107521A2 (en) Detecting a border region in an image
EP1039746B1 (en) Line interpolation method and apparatus
KR100484182B1 (en) Apparatus and method for deinterlacing
JPH02290382A (en) Method for converting video signal into film picture
KR100967521B1 (en) Equipment and method for de-interlacing using directional correlations
JPH02290383A (en) Television signal system converter with moving correction
KR20060135742A (en) Motion compensated de-interlacing with film mode adaptation
KR100422575B1 (en) An Efficient Spatial and Temporal Interpolation system for De-interlacing and its method
US20030059126A1 (en) Apparatus and method for line interpolating of image signal
KR100931110B1 (en) Deinterlacing apparatus and method using fuzzy rule-based edge recovery algorithm
JPH06326976A (en) Movement compensating type processing system of video signal
Park et al. Covariance-based adaptive deinterlacing method using edge map
KR101158847B1 (en) Deinterlacing apparatus and method using edge map
CN111294545A (en) Image data interpolation method and device, storage medium and terminal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee