KR100266669B1 - Circuit for generating internal clock of semiconductor memory - Google Patents

Circuit for generating internal clock of semiconductor memory Download PDF

Info

Publication number
KR100266669B1
KR100266669B1 KR1019980005478A KR19980005478A KR100266669B1 KR 100266669 B1 KR100266669 B1 KR 100266669B1 KR 1019980005478 A KR1019980005478 A KR 1019980005478A KR 19980005478 A KR19980005478 A KR 19980005478A KR 100266669 B1 KR100266669 B1 KR 100266669B1
Authority
KR
South Korea
Prior art keywords
signal
duty cycle
output
gate
drain
Prior art date
Application number
KR1019980005478A
Other languages
Korean (ko)
Other versions
KR19990070557A (en
Inventor
이병주
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019980005478A priority Critical patent/KR100266669B1/en
Publication of KR19990070557A publication Critical patent/KR19990070557A/en
Application granted granted Critical
Publication of KR100266669B1 publication Critical patent/KR100266669B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/00006Changing the frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
    • H03K5/1565Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2254Calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

PURPOSE: A circuit for generating an internal clock of a semiconductor memory is provided to prevent the waste of current with disabling a duty cycle correcting portion individually by preventing the waste of time with reaching the level needed in correcting the duty ratio in the duty cycle. CONSTITUTION: The circuit for generating the internal clock of the semiconductor memory includes a clock buffer(11), the first control portion(12), the second control portion(13), a duty cycle correcting portion(14) and a frequency doubling portion(15). The clock buffer(11) buffers the external clock. The first control portion(12) outputs the duty cycle correcting clock signal and permits or intercepts the first and second driving signals and the control signal and the duty cycle correcting driving signal. The duty cycle correcting portion(14) compensates the duty ratio of the duty cycle correcting clock signal outputs it and outputs the driving voltage for compensating the duty ratio. The second control portion(13) outputs the driving voltage to the duty cycle correcting portion(14) again. The frequency doubling portion(15) doubles the frequency of the output signal of the duty cycle correcting portion(14) and outputs it.

Description

반도체메모리의 내부클럭 발생회로Internal Clock Generation Circuit of Semiconductor Memory

본 발명은 반도체메모리의 내부클럭 발생회로에 관한 것으로, 특히 액티브(active), 스탠바이(stand-by) 및 전원다운 모드의 동작을 제한하여 저전원에서 동작하기에 적당하도록 한 반도체메모리의 내부클럭 발생회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal clock generation circuit of a semiconductor memory, and more particularly, to generate an internal clock of a semiconductor memory that is suitable for operation at a low power supply by limiting the operation of active, standby and power down modes. It is about a circuit.

도1은 종래 반도체메모리의 내부클럭 발생회로를 보인 블록구성도로서, 이에 도시한 바와같이 외부클럭(EXT_CLK)과 기준전압(Vref)을 입력받아 버퍼링하는 클럭버퍼(1)와; 그 클럭버퍼(1)의 출력(CLK_BUF, )을 입력받아 듀티싸이클을 교정하여 클럭버퍼(1)로 궤환하는 듀티싸이클 교정부(2)와; 듀티싸이클 교정부(2)를 통해 듀티싸이클이 교정된 클럭버퍼(1)의 출력을 입력받아 분주된 클럭(I_CLK,Q_CLK, , )을 발생시키는 쿼드러쳐(quadrature) 분주부(3)와; 그 쿼드러쳐 분주부(3)의 출력을 입력받아 더블링된 출력(DBL_CLK)을 발생시키는 배타적오아조합부(4)로 구성된다.FIG. 1 is a block diagram showing an internal clock generation circuit of a conventional semiconductor memory. As shown in FIG. 1, a clock buffer 1 receives and buffers an external clock EXT_CLK and a reference voltage Vref; The output of the clock buffer 1 (CLK_BUF, A duty cycle corrector 2 for correcting the duty cycle and returning it to the clock buffer 1; The duty cycle corrector 2 receives the output of the clock buffer 1 whose duty cycle has been calibrated, and the divided clocks I_CLK, Q_CLK, , A quadrature dispensing unit 3 for generating); An exclusive orthogonal combination unit 4 which receives the output of the quadrature divider 3 and generates a doubled output DBL_CLK.

그리고, 도2는 상기 듀티싸이클 교정부(2)의 내부회로도로서, 이에 도시한 바와같이 게이트에 상기 클럭버퍼(1)의 출력(CLK_BUF, )을 각기 입력받고, 소스가 공통접속된 엔모스트랜지스터(NM1,NM2)와; 게이트에 구동신호(Ven)를 입력받고, 엔모스트랜지스터(NM1,NM2)의 공통접속된 소스와 접지사이에 접속된 엔모스트랜지스터(NM3)와; 전원전압(VCC)에 소스가 접속되고, 드레인이 엔모스트랜지스터(NM1,NM2)의 드레인과 각각 접속된 피모스트랜지스터(PM1,PM4)와; 전원전압(VCC)에 소스가 접속되고, 게이트와 드레인이 피모스트랜지스터(PM1)의 게이트에 공통접속된 피모스트랜지스터(PM2)와; 전원전압(VCC)에 소스가 접속되고, 게이트와 드레인이 피모스트랜지스터(PM4)의 게이트에 공통접속된 피모스트랜지스터(PM3)로 구성되며, 그 피모스트랜지스터(PM1,PM3)의 드레인을 공통접속하여 접지된 커패시터(C1)를 통해 반전된 출력신호( )를 출력하고, 그 피모스트랜지스터(PM2,PM4)의 드레인을 공통접속하여 접지된 커패시터(C2)를 통해 출력신호(DCC)를 출력한다.FIG. 2 is an internal circuit diagram of the duty cycle corrector 2. As shown in FIG. 2, the output of the clock buffer 1 (CLK_BUF, N) and NMOS transistors NM1 and NM2 connected to a common source; An enMOS transistor NM3 connected to the ground and the common source of the NMOS transistors NM1 and NM2, the driving signal Ven being input to the gate; PIM transistors PM1 and PM4 having a source connected to the power supply voltage VCC and having drains connected to drains of the NMOS transistors NM1 and NM2, respectively; A PMOS transistor PM2 having a source connected to the power supply voltage VCC, and a gate and a drain thereof commonly connected to the gate of the PMOS transistor PM1; A source is connected to the power supply voltage VCC, the gate and the drain are constituted by a PMOS transistor PM3 commonly connected to the gate of the PMOS transistor PM4, and the drains of the PMOS transistors PM1 and PM3 are common. Output signal inverted through the connected capacitor C1 ), The drains of the PMOS transistors PM2 and PM4 are commonly connected, and the output signal DCC is output through the grounded capacitor C2.

이하, 상기한 바와같은 종래 회로의 동작을 설명한다.The operation of the conventional circuit as described above will be described below.

외부클럭(EXT_CLK)이 클럭버퍼(1)를 지나면 여러 가지 요인(공정변화, 온도변화 등)에 의해 초기에 주어진 클럭과는 달리 50%의 듀티비를 벗어난 클럭으로 입력되고, 내부회로의 동작에 관여한다.When the external clock (EXT_CLK) passes the clock buffer (1), it is input as a clock that is out of 50% duty ratio, unlike the clock given initially due to various factors (process change, temperature change, etc.) Get involved.

따라서, 아날로그회로인 듀티싸이클 교정부(2)가 클럭버퍼(1)의 출력(CLK_BUF, )을 입력받아 그 펄스폭에 따른 커패시터(C2,C1)의 충전 및 방전을 통해 아날로그 전압신호인 출력신호(DCC, )를 발생시키고, 이 출력신호(DCC, )는 귀환루프에 의해 클럭버퍼(1)에 입력되어 클럭버퍼(1) 출력(CLK_BUF, )의 펄스폭을 50%의 듀티비를 갖는 클럭으로 보상해준다.Therefore, the duty cycle corrector 2, which is an analog circuit, outputs the clock CLK_BUF, ) And the output signal (DCC, which is an analog voltage signal) by charging and discharging the capacitors (C2, C1) according to the pulse width. ) And this output signal (DCC, ) Is inputted to the clock buffer 1 by the feedback loop to output the clock buffer 1 (CLK_BUF, ) Pulse width is compensated by a clock with a 50% duty ratio.

이와같이 보상된 클럭버퍼(1)의 출력(CLK_BUF, )을 쿼드러쳐 분주부(4)가 입력받아 분주된 클럭(I_CLK,Q_CLK, , )을 발생시키고, 배타적오아조합부(4)가 쿼드러쳐 분주부(3)의 출력을 대칭적으로 배타적오아조합하여 더블링된 출력(DBL_CLK)을 발생시킨다.The output of the clock buffer 1 compensated in this way (CLK_BUF, ) And the divided clocks (I_CLK, Q_CLK, , ), And the exclusive oar combination unit 4 symmetrically combines the output of the quadrature divider 3 to generate a doubled output DBL_CLK.

그러나, 상기한 바와같은 종래 반도체메모리의 내부클럭 발생회로는 듀티싸이클 교정부의 출력신호가 일정한 레벨에 도달하기까지 많은 시간이 소요됨에 따라 스탠바이모드나 전원다운모드에서도 항상 액티브상태를 유지해야 함으로써, 전류가 낭비되는 문제점이 있었다.However, since the internal clock generation circuit of the conventional semiconductor memory as described above takes a long time until the output signal of the duty cycle correction unit reaches a constant level, the internal clock generation circuit must always be active even in the standby mode or the power down mode. There was a problem that the current is wasted.

본 발명은 상기한 바와같은 문제점을 해결하기 위하여 창안한 것으로, 본 발명의 목적은 액티브, 스탠바이 및 전원다운 모드의 동작을 제한하여 저전원에서 동작하고, 스탠바이 또는 전원다운 모드에서 액티브 모드로 전환될 때 듀티싸이클의 교정을 빠르게 할 수 있는 반도체메모리의 내부클럭 발생회로를 제공하는데 있다.The present invention has been made to solve the above problems, and an object of the present invention is to operate in a low power supply by limiting the operation of the active, standby and power down modes, and to switch from the standby or power down mode to the active mode. It is to provide an internal clock generation circuit of a semiconductor memory that can quickly calibrate the duty cycle.

도1은 종래 반도체메모리의 내부클럭 발생회로를 보인 블록구성도.1 is a block diagram showing an internal clock generation circuit of a conventional semiconductor memory.

도2는 도1에 있어서, 듀티싸이클 교정부의 내부회로도.2 is an internal circuit diagram of a duty cycle correction unit in FIG. 1;

도3은 본 발명의 일 실시예를 보인 블록구성도.Figure 3 is a block diagram showing an embodiment of the present invention.

도4는 도3에 있어서, 제1제어부의 회로구성도.FIG. 4 is a circuit diagram of the first control unit in FIG. 3; FIG.

도5는 도3에 있어서, 제2제어부의 회로구성도.FIG. 5 is a circuit diagram of the second control unit in FIG. 3; FIG.

도6은 도3에 있어서, 입출력신호의 파형도.6 is a waveform diagram of an input / output signal in FIG.

***도면의 주요 부분에 대한 부호의 설명****** Description of the symbols for the main parts of the drawings ***

EXT_CLK:외부클럭 11:클럭버퍼EXT_CLK: External Clock 11: Clock Buffer

ACTIVE:액티브신호 PWROK:파워오케이신호ACTIVE: Active signal PWROK: Power ok signal

IN_EN:입력인에이블신호 DCC_CLK:듀티싸이클교정 클럭신호IN_EN: Input enable signal DCC_CLK: Duty cycle calibration clock signal

EN1,EN2:구동신호 CS1:제어신호EN1, EN2: Drive signal CS1: Control signal

DCC_EN:듀티싸이클교정 구동신호 12,13:제1,제2제어부DCC_EN: Duty cycle calibration drive signal 12, 13: 1st, 2nd control part

CNTL:구동전압 CNTL_REF:구동기준전압CNTL: Drive Voltage CNTL_REF: Drive Reference Voltage

14:듀티싸이클 교정부 15:주파수 더블링부14: duty cycle correction unit 15: frequency doubling unit

DBL_CLK:출력신호DBL_CLK: Output signal

상기한 바와같은 본 발명의 목적은 외부클럭을 입력받아 버퍼링하는 클럭버퍼와; 싱크로너스(synchronous) 디램(DRAM)의 고유신호인 액티브신호, 파워오케이신호 및 입력인에이블신호를 논리조합함으로써, 입력인에이블신호의 인가여부에 따라 상기 클럭버퍼의 출력신호에 동기하여 듀티싸이클교정 클럭신호를 출력함과 아울러 제1,제2구동신호, 제어신호 및 듀티싸이클교정 구동신호를 인가 또는 차단하는 제1제어부와; 상기 제1제어부로부터 입력되는 듀티싸이클교정 구동신호에 따라 듀티싸이클교정 클럭신호의 듀티비를 보상하여 출력하고, 이때 듀티비를 보상하는 구동전압을 출력하는 듀티싸이클 교정부와; 상기 제1제어부로부터 제1,제2구동신호를 입력받고, 듀티싸이클 교정부로부터 구동전압을 입력받아 그 구동전압의 레벨을 구동기준전압으로 유지하다가 상기 제어신호에 따라 다시 구동전압으로 듀티싸이클 교정부에 출력하는 제2제어부와; 상기 듀티싸이클 교정부 출력신호의 주파수를 더블링하여 출력하는 주파수 더블링부로 구성함으로써 달성되는 것으로, 본 발명에 의한 반도체메모리의 내부클럭 발생회로를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.An object of the present invention as described above is a clock buffer for receiving and buffering an external clock; By logically combining the active signal, the power ok signal, and the input enable signal, which are inherent signals of the synchronous DRAM, the duty cycle correction clock is synchronized with the output signal of the clock buffer depending on whether the input enable signal is applied. A first control unit which outputs a signal and applies or blocks the first and second drive signals, the control signal and the duty cycle calibration drive signal; A duty cycle corrector configured to compensate for and output a duty ratio of the duty cycle correction clock signal according to the duty cycle correction drive signal input from the first controller, and output a driving voltage to compensate for the duty ratio; The first and second drive signals are input from the first controller, the drive voltage is input from the duty cycle corrector, and the drive voltage is maintained at the drive reference voltage. The duty cycle is changed back to the drive voltage according to the control signal. A second control unit outputting to the government; This is achieved by configuring a frequency doubling unit for doubling and outputting the frequency of the duty cycle corrector output signal. The internal clock generation circuit of the semiconductor memory according to the present invention will be described in detail with reference to the accompanying drawings.

도3은 본 발명의 일 실시예를 보인 블록구성도로서, 이에 도시한 바와같이 외부클럭(EXT_CLK)을 입력받아 버퍼링하는 클럭버퍼(11)와; 싱크로너스 디램의 고유신호인 액티브신호(ACTIVE), 파워오케이신호(PWROK) 및 입력인에이블신호(IN_EN)를 논리조합함으로써, 입력인에이블신호(IN_EN)의 인가여부에 따라 클럭버퍼(11)의 출력(BUF_CLK)에 동기하여 듀티싸이클교정 클럭신호(DCC_CLK)를 출력함과 아울러 구동신호(EN1,EN2), 제어신호(CS1) 및 듀티싸이클교정 구동신호(DCC_EN)를 인가 또는 차단하는 제1제어부(12)와; 상기 제1제어부(12)로부터 입력되는 듀티싸이클교정 구동신호(DCC_EN)에 따라 듀티싸이클교정 클럭신호(DCC_CLK)의 듀티비를 보상하여 출력하고, 이때 듀티비를 보상하는 구동전압(CNTL)을 출력하는 듀티싸이클 교정부(14)와; 상기 제1제어부(12)로부터 구동신호(EN1,EN2)를 입력받고, 듀티싸이클 교정부(14)로부터 구동전압(CNTL)을 입력받아 구동전압(CNTL)의 레벨을 유지하다가 제어신호(CS1)에 따라 다시 구동전압(CNTL)으로 듀티싸이클 교정부(14)에 출력하는 제2제어부(13)와; 그 듀티싸이클 교정부(14) 출력의 주파수를 더블링하여 출력신호(DBL_CLK)로 출력하는 주파수 더블링부(15)로 구성된다. 이하, 상기한 바와같은 본 발명의 일 실시예에 대한 동작을 설명한다.3 is a block diagram showing an embodiment of the present invention, and a clock buffer 11 for receiving and buffering an external clock EXT_CLK as shown therein; By combining the active signal ACTIVE, the power ok signal PWROK, and the input enable signal IN_EN, which are inherent signals of the synchronous DRAM, the clock buffer 11 is outputted according to whether the input enable signal IN_EN is applied. A first control unit for outputting the duty cycle correction clock signal DCC_CLK in synchronization with BUF_CLK, and applying or blocking the driving signals EN1 and EN2, the control signal CS1, and the duty cycle correction driving signal DCC_EN. 12); The duty cycle of the duty cycle correction clock signal DCC_CLK is compensated for and output according to the duty cycle correction driving signal DCC_EN input from the first controller 12, and a driving voltage CNTL for compensating for the duty ratio is output. A duty cycle corrector 14; The driving signals EN1 and EN2 are input from the first controller 12 and the driving voltage CNTL is input from the duty cycle corrector 14 to maintain the level of the driving voltage CNTL. A second controller 13 outputting the driving cycle CNTL to the duty cycle corrector 14 again; And a frequency doubling unit 15 which doubles the frequency of the output of the duty cycle corrector 14 and outputs the output signal as the output signal DBL_CLK. Hereinafter, the operation of one embodiment of the present invention as described above will be described.

먼저, 제1제어부(12)가 액티브신호(ACTIVE), 파워오케이신호(PWROK) 및 입력인에이블신호(IN_EN)를 논리조합함으로써, 입력인에이블신호(IN_EN)의 인가여부에 따라 클럭버퍼(11)의 출력신호(BUF_CLK)에 동기하여 듀티싸이클교정 클럭신호(DCC_CLK)를 출력함과 아울러 구동신호(EN1,EN2), 제어신호(CS1) 및 듀티싸이클교정 구동신호(DCC_EN)를 인가 또는 차단한다.First, the first controller 12 logically combines the active signal ACTIVE, the power ok signal PWROK, and the input enable signal IN_EN, thereby providing a clock buffer 11 according to whether the input enable signal IN_EN is applied. Outputs the duty cycle correction clock signal DCC_CLK in synchronization with the output signal BUF_CLK, and also applies or blocks the driving signals EN1 and EN2, the control signal CS1, and the duty cycle correction driving signal DCC_EN. .

이와같은 제1제어부(12)는 도4의 회로구성도에 도시한 바와같이 일측에 인버터(INV11)를 통한 파워오케이신호(PWROK)를 입력받고, 타측에 액티브신호(ACTIVE)를 입력받아 노아조합하는 노아게이트(NOR11)와; 일측에 입력인에이블신호(IN_EN)를 입력받고, 타측에 노아게이트(NOR11)의 출력을 인버터(INV12)를 통해 입력받아 낸드조합하는 낸드게이트(NAND11)와; 그 낸드게이트(NAND11)의 출력을 반전하여 듀티싸이클교정 구동신호(DCC_EN)를 출력하는 인버터(INV13) 및 그 인버터(INV13)의 출력을 반전하여 제어신호(CS1)를 출력하는 인버터(INV14)와; 상기 인버터(INV13)의 출력을 입력단(D)에 입력받아 클럭버퍼(11)의 출력(BUF_CLK)에 동기하여 출력단(Q)을 통해 출력하는 플립플롭(F/F)과; 그 플립플롭(F/F)의 출력을 차례로 반전하여 듀티싸이클교정 클럭신호(DCC_CLK)를 출력하는 인버터(INV15,INV16)와; 상기 낸드게이트(NAND11)의 출력을 차례로 반전하여 구동신호(EN1)를 출력하는 인버터(INV17,INV18)와; 그 인버터(INV18)의 출력을 일측에 직접 입력받고, 타측에 인버터(INV19) 및 지연부(21)를 통해 입력받아 낸드조합하는 낸드게이트(NAND12)와; 그 낸드게이트(NAND12)의 출력을 반전하여 구동신호(EN2)를 출력하는 인버터(INV20)로 구성된다.The first control unit 12 receives the power ok signal PWROK through the inverter INV11 on one side and the active signal ACTIVE on the other side, as shown in the circuit diagram of FIG. 4. Noah gate (NOR11) and; A NAND gate NAND11 configured to receive an input enable signal IN_EN on one side and to NAND the output of the NOA gate NOR11 on the other side through the inverter INV12; An inverter INV13 that inverts the output of the NAND gate NAND11 to output the duty cycle correction drive signal DCC_EN, and an inverter INV14 that inverts the output of the inverter INV13 and outputs the control signal CS1; ; A flip-flop (F / F) which receives the output of the inverter (INV13) to the input terminal (D) and outputs it through the output terminal (Q) in synchronization with the output (BUF_CLK) of the clock buffer (11); Inverters INV15 and INV16 which invert the output of the flip-flop F / F in order to output the duty cycle correction clock signal DCC_CLK; Inverters INV17 and INV18 for inverting the output of the NAND gate NAND11 and outputting a driving signal EN1; A NAND gate NAND12 for directly inputting the output of the inverter INV18 to one side and receiving and inputting the input through the inverter INV19 and the delay unit 21 to the other side; An inverter INV20 for inverting the output of the NAND gate NAND12 and outputting the driving signal EN2.

따라서, 초기에 전원이 인가되었을때는 파워오케이신호(PWROK)와 입력인에이블신호(IN_EN)에 의해 제1제어부(12)로부터 출력되는 듀티싸이클교정 구동신호(DCC_EN)가 듀티싸이클 교정부(14)를 구동하여 그 듀티싸이클 교정부(14)에 입력되는 듀티싸이클교정 클럭신호(DCC_CLK)가 50%의 듀티비를 갖도록 듀티싸이클을 교정하며, 이때 듀티비를 보상하는 구동전압(CNTL)이 제2제어부(13)에 입력된다. 한편, 듀티싸이클 교정부(14)의 출력은 주파수 더블링부(15)에 입력되어 더블링된 출력신호(DBL_CLK)가 출력된다.Therefore, when power is initially applied, the duty cycle correction unit 14 outputs the duty cycle correction driving signal DCC_EN output from the first control unit 12 by the power ok signal PWROK and the input enable signal IN_EN. To correct the duty cycle so that the duty cycle correction clock signal DCC_CLK input to the duty cycle corrector 14 has a duty ratio of 50%, and the driving voltage CNTL for compensating for the duty ratio is a second value. It is input to the control part 13. On the other hand, the output of the duty cycle corrector 14 is input to the frequency doubling unit 15 to output the doubled output signal DBL_CLK.

그리고, 초기 전원인가가 끝난 후의 동작은 액티브신호(ACTIVE)에 의해 제어된다. 즉, 회로가 액티브모드일때만 액티브신호(ACTIVE)에 의해 동작하고, 스탠바이 및 전원다운 모드에서는 듀티싸이클교정 구동신호(DCC_EN)가 디세이블(disable)되어 듀티싸이클 교정부(14)가 동작하지 않게 된다.The operation after the initial power-up is finished is controlled by the active signal ACTIVE. That is, the circuit operates by the active signal ACTIVE only in the active mode, and the duty cycle correction drive signal DCC_EN is disabled in the standby and power-down modes so that the duty cycle corrector 14 does not operate. do.

그러나, 이때 제2제어부(13)가 제1제어부(12)로부터 구동신호(EN1,EN2)를 입력받고, 듀티싸이클 교정부(14)로부터 구동전압(CNTL)을 입력받아 구동전압(CNTL)의 레벨을 구동기준전압(CNTL_REF)으로 유지한다. 이후, 스탠바이 및 전원다운 모드에서 액티브모드로 전환되면 제어신호(CS1)에 따라 그 구동기준전압(CNTL_REF)을 구동전압(CNTL)으로 듀티싸이클 교정부(14)에 출력한다.However, at this time, the second control unit 13 receives the driving signals EN1 and EN2 from the first control unit 12, receives the driving voltage CNTL from the duty cycle corrector 14, and receives the driving voltage CNTL. The level is maintained at the driving reference voltage CNTL_REF. Subsequently, when the standby mode and the power down mode are switched to the active mode, the driving reference voltage CNTL_REF is output to the duty cycle corrector 14 as the driving voltage CNTL according to the control signal CS1.

이와같은 제2제어부(13)는 도5의 회로구성도에 도시한 바와같이 구동신호(EN1,EN2)를 게이트에 각각 입력받고, 소스가 접지되고, 드레인이 공통접속된 엔모스트랜지스터(NM11,NM12)와; 그 엔모스트랜지스터(NM11)의 드레인에 소스가 접속되고, 게이트와 드레인이 공통접속되어 커패시터(C11)를 통해 접지된 엔모스트랜지스터(NM13) 및 엔모스트랜지스터(NM12)의 드레인에 소스가 접속되고, 게이트가 커패시터(C12)를 통해 접지된 엔모스트랜지스터(NM14)와; 게이트에 상기 제어신호(CS1)를 입력받고, 소스가 엔모스트랜지스터(NM13)의 게이트에 접속되고, 드레인이 엔모스트랜지스터(NM14)의 게이트에 접속된 엔모스트랜지스터(NM15)와; 상기 구동신호(EN1)를 각각의 게이트에 입력받고, 소스가 전원전압(VDD)에 접속되며, 드레인이 엔모스트랜지스터(NM13,NM14)의 드레인에 각기 접속된 피모스트랜지스터(PM11,PM12)와; 소스가 전원전압(VDD)에 접속되고, 드레인이 피모스트랜지스터(PM11)의 드레인에 접속된 피모스트랜지스터(PM13)와; 소스가 전원전압(VDD)에 접속되고, 게이트가 피모스트랜지스터(PM13)의 게이트에 접속되고, 드레인이 게이트에 접속됨과 아울러 피모스트랜지스터(PM12)의 드레인에 공통접속된 피모스트랜지스터(PM14)로 구성된다.As shown in the circuit diagram of FIG. 5, the second control unit 13 receives the driving signals EN1 and EN2, respectively, the source is grounded, and the drain is commonly connected to the NMOS transistor NM11, NM12); A source is connected to the drain of the NMOS transistor NM11, a gate and a drain are commonly connected, and a source is connected to the drain of the NMOS13 and NMOS transistors grounded through the capacitor C11. And an MOS transistor NM14 whose gate is grounded through a capacitor C12; An MOS transistor (NM15) whose input signal is supplied to a gate thereof, whose source is connected to the gate of the NMOS transistor (NM13), and whose drain is connected to the gate of the NMOS transistor (NM14); The driving signal EN1 is input to each gate, a source is connected to the power supply voltage VDD, and a drain is connected to the PMOS transistors PM11 and PM12 respectively connected to the drains of the NMOS transistors NM13 and NM14. ; A PMOS transistor PM13 whose source is connected to the power supply voltage VDD and whose drain is connected to the drain of the PMOS transistor PM11; PMOS transistor PM14 having a source connected to the power supply voltage VDD, a gate connected to the gate of the PMOS transistor PM13, a drain connected to the gate, and commonly connected to the drain of the PMOS transistor PM12. It consists of.

따라서, 스탠바이 및 파워다운 모드에서 액티브 모드로 전환되면, 듀티싸이클 교정부(14)가 구동되고, 이때 구동전압(CNTL)의 레벨은 제2제어부(13)에서 보존한 구동기준전압(CNTL_REF)의 레벨을 갖게 되므로, 듀티비 교정에 필요한 레벨에 도달하는 것이 수 싸이클내에 이루어진다.Accordingly, when the standby cycle and the power down mode are switched to the active mode, the duty cycle corrector 14 is driven, and at this time, the level of the drive voltage CNTL is equal to that of the drive reference voltage CNTL_REF stored by the second controller 13. Having a level, it is within a few cycles to reach the level required for duty ratio correction.

상기한 바와같은 본 발명의 일 실시예에 대한 동작을 각 신호들의 파형도인 도6을 참조하여 좀더 상세히 설명하면 다음과 같다.The operation of one embodiment of the present invention as described above will be described in more detail with reference to FIG. 6, which is a waveform diagram of each signal.

초기 파워오케이신호(PWROK)가 저전위인 구간(즉, 전원인가 구간)에 듀티비 교정 및 주파수 더블링을 위한 동작은 종래기술과 마찬가지로 많은 싸이클이 소요되지만, 파워오케이신호(PWROK)가 고전위인 구간(즉, 전원인가 끝인 구간)에는 액티브신호(ACTIVE)가 고전위이면 듀티싸이클교정 구동신호(DCC_EN)가 고전위로 출력되어 듀티싸이클 교정부(14)를 구동하고, 액티브신호(ACTIVE)가 저전위이면 듀티싸이클교정 구동신호(DCC_EN)가 저전위로 출력되어 듀티싸이클 교정부(14)의 구동을 차단한다.The operation for duty ratio correction and frequency doubling in the period where the initial power ok signal PWROK is low potential (i.e., the power-on period) takes many cycles as in the prior art, but the period where the power ok signal PWROK is high potential ( That is, if the active signal ACTIVE is at high potential, the duty cycle correction driving signal DCC_EN is output at high potential to drive the duty cycle corrector 14 while the active signal ACTIVE is at low potential. The duty cycle correction driving signal DCC_EN is output at a low potential to block driving of the duty cycle corrector 14.

또한, 듀티싸이클 교정부(14)가 구동될때는 구동신호(EN1)와 제어신호(CS1)가 저전위로 제2제어부(13)에 인가되므로, 엔모스트랜지스터(NM15)는 턴오프되고, 커패시터(C1)는 고전위를 구동기준전압(CNTL_REF)으로 충전한다.In addition, when the duty cycle corrector 14 is driven, the driving signal EN1 and the control signal CS1 are applied to the second control unit 13 at a low potential, so that the NMOS transistor NM15 is turned off and the capacitor ( C1) charges the high potential to the driving reference voltage CNTL_REF.

이 구동기준전압(CNTL_REF)은 듀티싸이클 교정부(14)가 디세이블된 후, 다시 구동될 때 제어신호(CS1)에 의해 구동전압(CNTL)으로 인가된다.The driving reference voltage CNTL_REF is applied as the driving voltage CNTL by the control signal CS1 when the duty cycle corrector 14 is disabled and then driven again.

상기한 바와같은 본 발명에 의한 반도체메모리의 내부클럭 발생회로는 듀티싸이클 교정부가 디세이블 된 후, 다시 구동될 때 듀티비 교정에 필요한 레벨에 수 싸이클내에 도달하여 시간낭비를 방지함으로써, 듀티싸이클 교정부를 독립적으로 디세이블시킬 수 있어 전류낭비를 방지할 수 있는 효과가 있다.As described above, the internal clock generation circuit of the semiconductor memory according to the present invention prevents wasting time by reaching the level required for duty ratio correction within a few cycles when the duty cycle corrector is disabled and then driven again. The wealth can be independently disabled, preventing current waste.

Claims (3)

외부클럭을 입력받아 버퍼링하는 클럭버퍼와; 싱크로너스 디램의 고유신호인 액티브신호, 파워오케이신호 및 입력인에이블신호를 논리조합함으로써, 입력인에이블신호의 인가여부에 따라 상기 클럭버퍼의 출력신호에 동기하여 듀티싸이클교정 클럭신호를 출력함과 아울러 제1,제2구동신호, 제어신호 및 듀티싸이클교정 구동신호를 인가 또는 차단하는 제1제어부와; 상기 제1제어부로부터 입력되는 듀티싸이클교정 구동신호에 따라 듀티싸이클교정 클럭신호의 듀티비를 보상하여 출력하고, 이때 듀티비를 보상하는 구동전압을 출력하는 듀티싸이클 교정부와; 상기 제1제어부로부터 제1,제2구동신호를 입력받고, 듀티싸이클 교정부로부터 구동전압을 입력받아 그 구동전압의 레벨을 구동기준전압으로 유지하다가 상기 제어신호에 따라 다시 구동전압으로 듀티싸이클 교정부에 출력하는 제2제어부와; 상기 듀티싸이클 교정부 출력신호의 주파수를 더블링하여 출력하는 주파수 더블링부로 구성된 것을 특징으로 하는 반도체메모리의 내부클럭 발생회로.A clock buffer which receives and buffers an external clock; By combining the active signal, the power ok signal, and the input enable signal, which are inherent signals of the synchronous DRAM, the duty cycle correction clock signal is output in synchronization with the output signal of the clock buffer depending on whether the input enable signal is applied. A first control unit which applies or blocks the first and second drive signals, the control signal and the duty cycle calibration drive signal; A duty cycle corrector configured to compensate for and output a duty ratio of the duty cycle correction clock signal according to the duty cycle correction drive signal input from the first controller, and output a driving voltage to compensate for the duty ratio; The first and second drive signals are input from the first controller, the drive voltage is input from the duty cycle corrector, and the drive voltage is maintained at the drive reference voltage. The duty cycle is changed back to the drive voltage according to the control signal. A second control unit outputting to the government; And a frequency doubling unit for doubling and outputting the frequency of the duty cycle corrector output signal. 제 1항에 있어서, 상기 제1제어부는 일측에 제1인버터를 통한 파워오케이신호를 입력받고, 타측에 액티브신호를 입력받아 노아조합하는 노아게이트와; 일측에 입력인에이블신호를 입력받고, 타측에 노아게이트의 출력을 제2인버터를 통해 입력받아 낸드조합하는 제1낸드게이트와; 상기 제1낸드게이트의 출력을 반전하여 듀티싸이클교정 구동신호를 출력하는 제3인버터 및 그 제3인버터의 출력을 반전하여 제어신호와 제1구동신호를 출력하는 제4인버터와; 상기 제3인버터의 출력을 입력단에 입력받아 클럭버퍼의 출력에 동기하여 듀티싸이클교정 클럭신호를 출력단을 통해 출력하는 플립플롭과; 상기 제4인버터의 출력을 일측에 직접 입력받고, 타측에 제5인버터 및 지연부를 통해 입력받아 낸드조합하는 제2낸드게이트와; 그 제2낸드게이트의 출력을 반전하여 제2구동신호를 출력하는 제6인버터로 구성하여 된 것을 특징으로 하는 반도체메모리의 내부클럭 발생회로.2. The apparatus of claim 1, wherein the first control unit comprises: a NOA gate receiving a power ok signal through a first inverter on one side and an NOA receiving on the other side; A first NAND gate configured to receive an input enable signal on one side, and to NAND the output of the NOA gate on the other side through a second inverter; A third inverter for inverting the output of the first NAND gate and outputting a duty cycle correction driving signal and a fourth inverter for inverting the output of the third inverter and outputting a control signal and a first driving signal; A flip-flop receiving an output of the third inverter at an input terminal and outputting a duty cycle corrected clock signal through an output terminal in synchronization with an output of a clock buffer; A second NAND gate that directly receives the output of the fourth inverter on one side and receives and inputs the NAND through the fifth inverter and the delay unit on the other side; And a sixth inverter for inverting the output of the second NAND gate and outputting a second drive signal. 제 1항에 있어서, 상기 제2제어부는 구동신호(EN1,EN2)를 게이트에 각각 입력받고, 소스가 접지되고, 드레인이 공통접속된 엔모스트랜지스터(NM11,NM12)와; 그 엔모스트랜지스터(NM11)의 드레인에 소스가 접속되고, 게이트와 드레인이 공통접속되어 커패시터(C11)를 통해 접지된 엔모스트랜지스터(NM13) 및 엔모스트랜지스터(NM12)의 드레인에 소스가 접속되고, 게이트가 커패시터(C12)를 통해 접지된 엔모스트랜지스터(NM14)와; 게이트에 상기 제어신호(CS1)를 입력받고, 소스가 엔모스트랜지스터(NM13)의 게이트에 접속되고, 드레인이 엔모스트랜지스터(NM14)의 게이트에 접속된 엔모스트랜지스터(NM15)와; 상기 구동신호(EN1)를 각각의 게이트에 입력받고, 소스가 전원전압(VDD)에 접속되며, 드레인이 엔모스트랜지스터(NM13,NM14)의 드레인에 각기 접속된 피모스트랜지스터(PM11,PM12)와; 소스가 전원전압(VDD)에 접속되고, 드레인이 피모스트랜지스터(PM11)의 드레인에 접속된 피모스트랜지스터(PM13)와; 소스가 전원전압(VDD)에 접속되고, 게이트가 피모스트랜지스터(PM13)의 게이트에 접속되고, 드레인이 게이트에 접속됨과 아울러 피모스트랜지스터(PM12)의 드레인에 공통접속된 피모스트랜지스터(PM14)로 구성하여 된 것을 특징으로 하는 반도체메모리의 내부클럭 발생회로.2. The display device of claim 1, wherein the second control unit comprises: an MOS transistor (NM11, NM12) having a driving signal (EN1, EN2) respectively input to a gate, a source of which is grounded, and a drain of which is commonly connected; A source is connected to the drain of the NMOS transistor NM11, a gate and a drain are commonly connected, and a source is connected to the drain of the NMOS13 and NMOS transistors grounded through the capacitor C11. And an MOS transistor NM14 whose gate is grounded through a capacitor C12; An MOS transistor (NM15) whose input signal is supplied to a gate thereof, whose source is connected to the gate of the NMOS transistor (NM13), and whose drain is connected to the gate of the NMOS transistor (NM14); The driving signal EN1 is input to each gate, a source is connected to the power supply voltage VDD, and a drain is connected to the PMOS transistors PM11 and PM12 respectively connected to the drains of the NMOS transistors NM13 and NM14. ; A PMOS transistor PM13 having a source connected to the power supply voltage VDD and a drain connected to the drain of the PMOS transistor PM11; PMOS transistor PM14 having a source connected to the power supply voltage VDD, a gate connected to the gate of the PMOS transistor PM13, a drain connected to the gate, and commonly connected to the drain of the PMOS transistor PM12. An internal clock generation circuit of a semiconductor memory, characterized in that consisting of.
KR1019980005478A 1998-02-21 1998-02-21 Circuit for generating internal clock of semiconductor memory KR100266669B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980005478A KR100266669B1 (en) 1998-02-21 1998-02-21 Circuit for generating internal clock of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980005478A KR100266669B1 (en) 1998-02-21 1998-02-21 Circuit for generating internal clock of semiconductor memory

Publications (2)

Publication Number Publication Date
KR19990070557A KR19990070557A (en) 1999-09-15
KR100266669B1 true KR100266669B1 (en) 2000-09-15

Family

ID=19533523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980005478A KR100266669B1 (en) 1998-02-21 1998-02-21 Circuit for generating internal clock of semiconductor memory

Country Status (1)

Country Link
KR (1) KR100266669B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674906B1 (en) * 2001-06-01 2007-01-26 삼성전자주식회사 Duty Cycle Corrector and duty cycle correction method for correcting duty cycle to predetermined value and preserving the predetermined value
KR100607339B1 (en) * 2004-10-25 2006-07-28 주식회사 하이닉스반도체 Input buffer circuit for semiconductor memory device
CN112653446B (en) * 2020-12-24 2024-06-04 西安翔腾微电子科技有限公司 CMOS driving circuit with synchronous enabling and output level setting functions and driving method

Also Published As

Publication number Publication date
KR19990070557A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
JP2902434B2 (en) Voltage conversion circuit in semiconductor integrated circuit
JP3549751B2 (en) Semiconductor integrated circuit device
US6333670B1 (en) Semiconductor device capable of stably generating internal voltage with low supply voltage
US7765415B2 (en) Semiconductor integrated circuit
US20070201294A1 (en) Control circuit for power supply device, power supply device, and control method thereof
JPH09153777A (en) Semiconductor device and comparator circuit
US20070152728A1 (en) Pulse generator
JPH11340812A (en) Semiconductor device
JP4834261B2 (en) Boost power supply generation circuit
JPH1166855A (en) Potential detecting circuit, semiconductor device and semiconductor storage device
KR100266669B1 (en) Circuit for generating internal clock of semiconductor memory
US6285241B1 (en) Internal voltage boosting circuit
KR100583097B1 (en) Apparatus for detecting power up
US11562796B2 (en) Frequency-voltage conversion circuit, semiconductor device, and memory system
US6346823B1 (en) Pulse generator for providing pulse signal with constant pulse width
JP2004364313A (en) Delay circuit
KR100398575B1 (en) High voltage generation circuit of semiconductor memory device
US9581973B1 (en) Dual mode clock using a common resonator and associated method of use
KR100647384B1 (en) Appratus for controlling Reservoir Capacitance in Semiconductor Memory Device
US5530672A (en) Integrated circuit for operation with plural supply voltages
US6307416B1 (en) Integrated circuit for producing two output clock signals at levels which do not overlap in time
KR960004566B1 (en) Address input circuit of sram
JP7506517B2 (en) Semiconductor Device
JP3068450B2 (en) Substrate voltage generation circuit
KR970008871A (en) Clock delay control circuit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080527

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee