KR100265598B1 - Method of fabricating gate electrode of semiconductor device - Google Patents

Method of fabricating gate electrode of semiconductor device Download PDF

Info

Publication number
KR100265598B1
KR100265598B1 KR1019970030260A KR19970030260A KR100265598B1 KR 100265598 B1 KR100265598 B1 KR 100265598B1 KR 1019970030260 A KR1019970030260 A KR 1019970030260A KR 19970030260 A KR19970030260 A KR 19970030260A KR 100265598 B1 KR100265598 B1 KR 100265598B1
Authority
KR
South Korea
Prior art keywords
layer
gate electrode
polysilicon layer
forming
semiconductor device
Prior art date
Application number
KR1019970030260A
Other languages
Korean (ko)
Other versions
KR19990006038A (en
Inventor
서환석
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970030260A priority Critical patent/KR100265598B1/en
Publication of KR19990006038A publication Critical patent/KR19990006038A/en
Application granted granted Critical
Publication of KR100265598B1 publication Critical patent/KR100265598B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A gate electrode formation method is provided to reduce a sheet resistance of the gate electrode and to simplify the manufacturing process by using W/WNx/polysilicon patterns as the gate electrode. CONSTITUTION: After forming a gate oxide on a semiconductor substrate, a polysilicon layer is formed on the gate oxide. A first tungsten(W) film is formed on the polysilicon layer. A tungsten nitride film(WNx) is formed on the first tungsten film by performing a nitrogen plasma treatment. A second tungsten film is formed on the WNx film. By sequentially etching the second W film, the WNx film and the polysilicon layer, a gate electrode made of W/WNx/polysilicon patterns is formed.

Description

반도체소자의 게이트전극 제조방법Method for manufacturing gate electrode of semiconductor device

본 발명은 반도체소자의 게이트전극 제조방법에 관한 것으로서, 특히 모스전계효과 트랜지스터(Metal Oxide Semiconductor Field Effect Transistor; 이하 MOS FET라 칭함)의 게이트전극을 다결정실리콘층과 W층의 적층 구조로 형성하되, 두층 사이의 확산방지막을 얇은 W층의 질소 플라즈마 처리하는 방법으로 형성하여 공정수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 게이트전극 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gate electrode of a semiconductor device. In particular, a gate electrode of a metal oxide semiconductor field effect transistor (hereinafter referred to as a MOS FET) is formed in a stacked structure of a polysilicon layer and a W layer, The present invention relates to a method of manufacturing a gate electrode of a semiconductor device capable of improving the process yield and reliability of device operation by forming a diffusion barrier between two layers by a nitrogen plasma treatment of a thin W layer.

반도체소자가 고집적화되어 감에 따라 MOSFET의 게이트 전극도 폭이 줄어들고 있으나, 게이트 전극의 폭이 N배 줄어들면 게이트전극의 전기 저항이 N배 증가되어 반도체소자의 동작 속도를 떨어뜨리는 문제점이 있다. 따라서 게이트전극의 저항을 감소시키기 위하여 가장 안정적인 MOSFET 특성을 나타내는 폴리실리콘층/산화막 계면의 특성을 이용하여 폴리실리콘층과 실리사이드의 적층 구조인 폴리사이드가 저 저항 게이트로서 사용된다.As the semiconductor device is highly integrated, the gate electrode of the MOSFET is also reduced in width, but when the width of the gate electrode is reduced by N times, the electrical resistance of the gate electrode is increased by N times, thereby reducing the operation speed of the semiconductor device. Therefore, in order to reduce the resistance of the gate electrode, polyside, which is a laminated structure of the polysilicon layer and the silicide, is used as the low resistance gate by using the property of the polysilicon layer / oxide layer interface showing the most stable MOSFET characteristics.

일반적으로 반도체 회로를 구성하는 트랜지스터의 기능에서 가장 중요한 기능은 전류구동능력이며, 이를 고려하여 MOSFET의 채널 폭을 조정한다. 가장 널리 쓰이는 MOSFET는 게이트 전극으로 불순물이 도핑된 폴리실리콘층을 사용하고, 소오스/드레인 영역은 반도체기판상에 불순물이 도핑된 확산 영역이 사용된다. 여기서 게이트전극의 면저항은 약 30∼70Ω/□정도이며, 소오스/드레인 영역의 면저항은 N+의 경우에는 약 70∼150Ω/□, P+의 경우 약 100∼250Ω/□ 정도이며, 게이트전극이나 소오스/드레인 영역 상에 형성되는 콘택의 경우에는 콘택 저항이 하나의 콘택당 약 30∼70Ω/□ 정도이다.In general, the most important function of the transistors constituting the semiconductor circuit is current driving capability, and the channel width of the MOSFET is adjusted in consideration of this. The most widely used MOSFET uses a polysilicon layer doped with impurities as a gate electrode, and a diffusion region doped with impurities on a semiconductor substrate is used as a source / drain region. Here, the sheet resistance of the gate electrode is about 30 to 70 kΩ / □, the sheet resistance of the source / drain regions is about 70 to 150 kΩ / □ for N +, about 100 to 250 kΩ / □ for P +, and the gate electrode or source / In the case of a contact formed on the drain region, the contact resistance is about 30 to 70 mA / square per contact.

이와 같이 게이트전극과 소오스/드레인 영역의 높은 면저항 및 콘택 저항을 감소시키기 위하여 실리사이드(salicide, self-aligned silicide) 방법이나 선택적 금속막 증착 방법으로 게이트전극과 소오스/드레인 영역의 상부에만 금속 실리사이드막을 형성하여 MOS FET의 전류구동능력을 증가시켰다. 이러한 실리사이드중에서 TiSi2는 저항이 가장 낮고, 비교적 열 안정성이 우수하고 제조방법이 용이하여 가장 각광받고 있다.In order to reduce the high sheet resistance and contact resistance of the gate electrode and the source / drain regions, a metal silicide layer is formed only on the gate electrode and the source / drain regions by a method of silicide (self-aligned silicide) or selective metal film deposition. This increases the current driving capability of the MOS FET. Among these silicides, TiSi 2 has the lowest resistance, relatively excellent thermal stability, and easy manufacturing method.

Ti 실리사이드를 사용하면 게이트전극과 소오스/드레인 영역의 면저항을 약 5Ω/□, 콘택 저항은 콘택당 약 3Ω/□ 이하로 현저하게 감소되어 MOSFET의 전류구동능력이 40% 이상 증가되므로 MOSFET의 고집적화가 가능하다.The use of Ti silicide significantly reduces the sheet resistance of the gate electrode and the source / drain regions to about 5 mA / □ and the contact resistance is about 3 mA / □ or less per contact, which increases the current driving capability of the MOSFET by more than 40%, resulting in high integration of the MOSFET. It is possible.

따라서 기가급 이상의 DRAM 소자나, 고집적화와 동시에 고속동작이 요구되는 로직 소자에서는 게이트전극과 소오스/드레인 영역의 표면에 실리사이드막을 형성하여 면저항을 낮추어 줄 필요성이 증가되고 있으며, 상기 Ti실리사이드막 보다 열적 안정성이 우수한 W-실리사이드막이 게이트전극으로 사용되기도 하지만 실리사이드막 자체의 저항이 통상의 금속보다는 높아 기가급 이상의 소자에서는 열적 안정성이 우수하고, 저항이 낮은 W층을 사용하기도 한다.Therefore, in a DRAM device having a giga-level or more or a logic device requiring high integration and high-speed operation, the necessity of lowering sheet resistance by forming a silicide film on the surface of the gate electrode and the source / drain regions is increasing, and more thermal stability than the Ti silicide film. Although this excellent W-silicide film is used as a gate electrode, the resistance of the silicide film itself is higher than that of a conventional metal, so that a W layer having excellent thermal stability and low resistance may be used in devices having a giga-level or higher.

도시되어 있지는 않으나, 종래의 W층을 이용한 게이트전극 제조방법을 살펴보면 다음과 같다.Although not shown, a conventional method of manufacturing a gate electrode using a W layer is as follows.

먼저, 반도체기판 상에 게이트산화막을 형성하고, 그 상부에 게이트전극이 되는 도핑된 다결정실리콘층을 형성한 후, 상기 다결정실리콘층 상에 확산방지막으로 TiN 이나 WNX층을 반응성 스퍼터링 방법으로 형성하고, W층을 형성하고, 패턴닝하여 W층과 확산방지막 및 다결정실리콘층 패턴으로된 게이트전극을 형성한다.First, a gate oxide film is formed on a semiconductor substrate, and then a doped polysilicon layer to be a gate electrode is formed thereon, and then a TiN or WN X layer is formed on the polysilicon layer as a diffusion barrier layer by a reactive sputtering method. And a W layer are formed and patterned to form a gate electrode having a W layer, a diffusion barrier and a polysilicon layer pattern.

상기와 같이 종래 기술에 따른 반도체소자의 저저항 게이트전극으로 다결정실리콘층과 확산방지막 및 W층의 적층 구조를 사용하는데, 적층막이 다양하여 적층 공정시 불량 발생의 요인이 증가되고, 공정이 복잡하여 수율이 떨어지는 등의 문제점이 있다.As a low resistance gate electrode of the semiconductor device according to the prior art as described above, a multilayer structure of a polysilicon layer, a diffusion barrier and a W layer is used. There is a problem such as a poor yield.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 다결정실리콘층과 W층의 적층 구조로된 게이트전극을 형성하되, 별도의 확산방지막 증착공정 없이 W/WNX/poly-Si 구조의 위드라인을 형성하여 공정이 간단하고, 확산방지가 이루어져 소자의 특성이 향상되어 공정수율 및 소자 동작의 신뢰성을 향상시킬 수 있는 반도체소자의 게이트전극 제조방법을 제공함에 있다.The present invention is to solve the above problems, an object of the present invention is to form a gate electrode having a laminated structure of a polysilicon layer and a W layer, W / WN X / poly-Si without a separate diffusion barrier film deposition process The present invention provides a method for manufacturing a gate electrode of a semiconductor device which can form a process line and a process is simple, and diffusion prevention is performed to improve device characteristics, thereby improving process yield and reliability of device operation.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자의 게이트전극 제조방법의 특징은, 반도체기판 상에 게이트산화막을 형성하는 공정과, 상기 게이트산화막 상에 다결정실리콘층을 형성하는 공정과, 상기 다결정실리콘층 상에 제1W층을 소정 두께 형성하는 공정과, 상기 제1W층을 질소 플라즈마 처리하여 WNX층을 형성하는 공정과, 상기 WNX층 상에 제2W층을 형성하는 공정과, 상기 제2W층과 WNX층 및 다결정실리콘층을 순차적으로 게이트 패턴닝 마스크로 사진식각하여 게이트전극을 형성하는 공정을 구비함에 있다.Features of the method for manufacturing a gate electrode of a semiconductor device according to the present invention for achieving the above object, the step of forming a gate oxide film on a semiconductor substrate, the process of forming a polysilicon layer on the gate oxide film, and Forming a first thickness of the first W layer on the polysilicon layer, forming a WN X layer by subjecting the first W layer to nitrogen plasma, forming a second W layer on the WN X layer, and And forming a gate electrode by sequentially etching the second W layer, the WN X layer, and the polysilicon layer with a gate patterning mask.

이하, 본 발명에 따른 반도체소자의 게이트전극 제조방법에 관하여 상세히 설명한다.Hereinafter, a method of manufacturing a gate electrode of a semiconductor device according to the present invention will be described in detail.

먼저, 반도체기판 상에 게이트 산화막과 다결정실리콘을 증착한 후, 자연산화막과 불순물 제거를 위한 세척 공정을 실시하고, 텅스텐 증착용 스퍼터링 챔버에서 제1W층을 30∼100Å 정도 두께로 증착한다. 여기서 상기 다결정실리콘층 형성을 위한 소스 가스로는 SiH4, Si2H6또는 SiH2Cl2가스를 사용하며, 상기의 다결정실리콘층은 PH3나 AsH3등의 가스를 혼합 사용하여 P이나 As가 불순물로 포함된다. 또한, 상기 다결정실리콘층을 언도프트로 형성하고 후에 이온주입으로 도핑할 수도 있다.First, a gate oxide film and polysilicon are deposited on a semiconductor substrate, followed by a washing process for removing a native oxide film and impurities, and depositing a first W layer in a tungsten deposition sputtering chamber at a thickness of about 30 to 100 kPa. Here, SiH 4 , Si 2 H 6, or SiH 2 Cl 2 gas may be used as the source gas for forming the polysilicon layer, and the polysilicon layer may be mixed with a gas such as PH 3 or AsH 3 to form P or As. It is included as an impurity. The polysilicon layer may also be undoped and later doped with ion implantation.

또한 상기 제1W층은 스퍼터링 방법이나 WF6와 SiH4또는 H2가스를 사용하는 화학기상증착(Chemical Vapor Deposition; 이하 CVD라 칭함) 방법으로 형성할 수도 있다.In addition, the first W layer may be formed by a sputtering method or a chemical vapor deposition (CVD) method using WF 6 and SiH 4 or H 2 gas.

그다음 상기의 챔버에서 상기 제1W층을 1mTorr∼10Torr 질소 분위기에서, DC 나 RF 또는 마이크로파 등의 파워를 50∼1000W 파워로 질소 플라즈마 처리하면 30∼100Å정도의 얇은 제1W층은 대부분 WNX막으로 바뀌게하고, 이 후 같은 챔버에서 300∼1000Å 정도 두께의 제2W층을 제1W층과 같은 방법으로 증착하여 게이트 전극의 증착 공정을 완료한다. 이때 상기 WNX막은 비정질 구조를 가지며 50Å 이하의 얇은 두께에서도 텅스텐과 실리콘 사이의 우수한 확산방지막 성능을 나타내게 된다.Then, when the first W layer is 1mTorr to 10 Torr nitrogen atmosphere in the chamber, and nitrogen plasma is treated with power such as DC, RF or microwave at 50 to 1000 W power, the thin 1W layer of about 30 to 100 kW is mostly WN X film. Then, in the same chamber, a second W layer having a thickness of about 300 to 1000 mW is deposited in the same manner as the first W layer to complete the deposition process of the gate electrode. At this time, the WN X film has an amorphous structure and exhibits excellent diffusion barrier performance between tungsten and silicon even at a thin thickness of 50 kPa or less.

그후, 상기 제2W층과 WNX층 및 다결정실리콘층을 게이트 패턴닝 마스크를 사용하여 순차적으로 패턴닝하여 게이트전극을 형성한다.Thereafter, the second W layer, the WN X layer, and the polysilicon layer are sequentially patterned using a gate patterning mask to form a gate electrode.

상기와 같이 형성된 W/WNX/폴리-Si 구조의 워드라인은 면저항이 기존의 폴리사이드 구조의 워드라인에 비하여 1/5∼1/10 정도로 매우 작다.The word line of the W / WN X / poly-Si structure formed as described above has a very small sheet resistance of about 1/5 to 1/10 of that of the conventional polyside structure.

이상에서 설명한 바와 같이, 본 발명에 따른 W-폴리사이드 구조의 게이트전극을 구비하는 반도체소자의 제조방법은 얇은 W층을 질소 플라즈마 처리하여 확산방지막인 WNX층을 형성하고, 연속적으로 W층을 형성하였으므로, 게이트전극의 면저항이 감소되어 소자의 동작 특성이 향상되고, 한 번의 공정으로 W/WNX막이 형성되므로 공정 스텝이 감소하고 제조 비용 및 시간을 절감할 수 있는 이점이 있다.As described above, in the method of manufacturing a semiconductor device having a gate electrode having a W-polyside structure according to the present invention, a thin W layer is subjected to nitrogen plasma treatment to form a WN X layer as a diffusion barrier layer, and a W layer is continuously formed. Since it is formed, the sheet resistance of the gate electrode is reduced to improve the operation characteristics of the device, and since the W / WN X film is formed in one step, there is an advantage in that the process step is reduced and manufacturing cost and time can be reduced.

Claims (9)

반도체기판상에 게이트 산화막을 형성하는 공정과, 상기 게이트산화막상에 다결정실리콘층을 형성하는 공정과, 상기 다결정실리콘층 상에 제1W층을 소정 두께 형성하는 공정과, 상기 제1W층을 질소 플라즈마 처리하여 WNX층을 형성하는 공정과, 상기 WNX층 상에 제2W층을 형성하는 공정과, 상기 제2W층과 WNX층 및 다결정실리콘층을 순차적으로 게이트 패턴닝 마스크로 사진식각하여 게이트전극을 형성하는 공정을 구비하는 반도체소자의 게이트전극 제조방법.Forming a gate oxide film on the semiconductor substrate, forming a polysilicon layer on the gate oxide film, forming a predetermined thickness of the first W layer on the polysilicon layer, and nitrogen plasma for the first W layer. processed by photolithography in the gate patterning mask process, a step, wherein 2W layer and WN X layer and a polysilicon layer forming the second 2W layer on the WN X layer to form a WN X layer sequentially gate A method of manufacturing a gate electrode of a semiconductor device comprising the step of forming an electrode. 제1항에 있어서, 상기 다결정실리콘층을 SiH4, Si2H6또는 SiH2Cl2가스를 소스 가스로 사용하여 형성하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of claim 1, wherein the polysilicon layer is formed using SiH 4 , Si 2 H 6, or SiH 2 Cl 2 gas as a source gas. 제1항에 있어서, 상기 다결정실리콘층 형성시 PH3나 AsH3등의 가스를 혼합 사용하여 P 이나 As가 불순물로 포함되도록 하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of claim 1, wherein P or As is included as an impurity by mixing a gas such as PH 3 or AsH 3 when forming the polysilicon layer. 제1항에 있어서, 상기 다결정실리콘층을 언도프트로 형성하고 후에 이온주입으로 도핑하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method according to claim 1, wherein the polysilicon layer is undoped and subsequently doped by ion implantation. 제1항에 있어서, 상기 다결정실리콘층 형성후에 자연산화막과 불순물 제거를 위한 세척 공정을 실시하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of claim 1, wherein after the polysilicon layer is formed, a cleaning process for removing the native oxide layer and impurities is performed. 제1항에 있어서, 상기 제1W층을 30∼100Å 두께로 형성하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of manufacturing a gate electrode of a semiconductor device according to claim 1, wherein the first W layer is formed to have a thickness of 30 to 100 kHz. 제1항에 있어서, 상기 질소 플라즈마 처리 공정은 1mTorr∼10Torr 질소 분위기에서, DC 나 RF 또는 마이크로파로 50∼1000W 파워로 처리하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of claim 1, wherein the nitrogen plasma treatment process is performed at 1 to 10 Torr nitrogen atmosphere by 50 to 1000 W power using DC, RF, or microwave. 제1항에 있어서, 상기 제2W층을 300∼1000Å 두께로 형성하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of manufacturing a gate electrode of a semiconductor device according to claim 1, wherein the second W layer is formed to have a thickness of 300 to 1000 GPa. 제1항에 있어서, 상기 제1 및 제2W층을 스퍼터링 방법이나 WF6와 SiH4또는 H2가스를 사용하는 CVD 방법으로 형성하는 것을 특징으로 하는 반도체소자의 게이트전극 제조방법.The method of claim 1, wherein the first and second W layers are formed by a sputtering method or a CVD method using WF 6 and SiH 4 or H 2 gas.
KR1019970030260A 1997-06-30 1997-06-30 Method of fabricating gate electrode of semiconductor device KR100265598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970030260A KR100265598B1 (en) 1997-06-30 1997-06-30 Method of fabricating gate electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970030260A KR100265598B1 (en) 1997-06-30 1997-06-30 Method of fabricating gate electrode of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990006038A KR19990006038A (en) 1999-01-25
KR100265598B1 true KR100265598B1 (en) 2000-10-02

Family

ID=19513003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970030260A KR100265598B1 (en) 1997-06-30 1997-06-30 Method of fabricating gate electrode of semiconductor device

Country Status (1)

Country Link
KR (1) KR100265598B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393964B1 (en) * 2000-12-18 2003-08-06 주식회사 하이닉스반도체 Method of forming Gate of SRAM Device
KR100696763B1 (en) * 2001-06-22 2007-03-19 주식회사 하이닉스반도체 Forming method for gate electrode of semiconductor device

Also Published As

Publication number Publication date
KR19990006038A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
US6306743B1 (en) Method for forming a gate electrode on a semiconductor substrate
US6713392B1 (en) Nitrogen oxide plasma treatment for reduced nickel silicide bridging
KR0147626B1 (en) Method for forming gate electrode
US6602754B1 (en) Nitrogen implant into nitride spacer to reduce nickel silicide formation on spacer
US6383880B1 (en) NH3/N2-plasma treatment for reduced nickel silicide bridging
KR100265598B1 (en) Method of fabricating gate electrode of semiconductor device
KR100327588B1 (en) Method of forming W-gate electrode in semiconductor device
US6087259A (en) Method for forming bit lines of semiconductor devices
KR100313943B1 (en) Method for forming gate of semiconductor device
KR100696763B1 (en) Forming method for gate electrode of semiconductor device
KR100706823B1 (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride
KR20010008590A (en) Method of forming gate electrode in semiconductor device
JPH08130216A (en) Semiconductor device and its manufacture
KR100333549B1 (en) Forming method for bit line of semiconductor device
KR20040001861A (en) Metal gate electrode and method for fabricating the same
KR20020001381A (en) Method of forming a gate electrode in a semiconductor device
KR100431309B1 (en) Method for forming metal interconnection in semiconductor device
KR100431085B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100414229B1 (en) Method of simultaneously forming a diffusion barrier and a ohmic contact using titanium nitride
KR100203910B1 (en) Method of manufacturing a mos field effect transistor
KR100362934B1 (en) Method for manufacturing semiconductor device
KR100400288B1 (en) Method for manufacturing transistor of semiconductor device
KR100197996B1 (en) Method of manufacturing semiconductor device
KR100318273B1 (en) Method for forming bit line of semiconductor device
KR19990006037A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090526

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee