KR100264217B1 - Manufacturing method of low reflecting matrix blank - Google Patents

Manufacturing method of low reflecting matrix blank Download PDF

Info

Publication number
KR100264217B1
KR100264217B1 KR1019930011867A KR930011867A KR100264217B1 KR 100264217 B1 KR100264217 B1 KR 100264217B1 KR 1019930011867 A KR1019930011867 A KR 1019930011867A KR 930011867 A KR930011867 A KR 930011867A KR 100264217 B1 KR100264217 B1 KR 100264217B1
Authority
KR
South Korea
Prior art keywords
oxide film
chromium
target
film
oxide
Prior art date
Application number
KR1019930011867A
Other languages
Korean (ko)
Other versions
KR950001345A (en
Inventor
이윤석
Original Assignee
박영구
삼성코닝주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영구, 삼성코닝주식회사 filed Critical 박영구
Priority to KR1019930011867A priority Critical patent/KR100264217B1/en
Publication of KR950001345A publication Critical patent/KR950001345A/en
Application granted granted Critical
Publication of KR100264217B1 publication Critical patent/KR100264217B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE: A method for manufacturing a low deflection matrix blank is to improve a uniformity of an oxide film by sputtering a target made of a mixture of chromium and chromium oxide and to adjust the composition of the oxide film by changing the composition of the target. CONSTITUTION: Metal chromium powder and chromium oxide are mixed in a mixing ratio of 1 to 1, and are executed by shaping and centering processes to form a target. An oxide film is formed on a substrate by changing the mixing ratio of the metal chromium powder and the chromium oxide according to the composition of the oxide film using DC magnetron sputter or an RF sputter. A chromium film is formed on the oxide film. A reactive gas such as oxygen is injected into a chamber to adjust the composition of the oxide film. The formation of the oxide film using the target is carried out by any one process of a vacuum evaporation process and an ion implanting process.

Description

[발명의 명칭][Name of invention]

저반사 매트릭스 블랭크 제조방법Low reflection matrix blank manufacturing method

[발명의 상세한 설명]Detailed description of the invention

[산업상의 이용분야][Industrial use]

본 발명은 매트릭스 블랭크 제조방법에 관한 것으로, 보다 상세하게는 투명 유리기판과 크롬차광막 사이에 증착 시키는 산화크롬막을 상기 크롬과 크롬산화물을 혼합하여 만든 타겟을 이용하여 D.C 스퍼터링법으로 형성하므로써 상기 산화막의 균질성을 높이고 성막속도를 빠르게 할 수 있는 저반사 매트릭스 블랭크 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a matrix blank, and more particularly, to form a chromium oxide film deposited between a transparent glass substrate and a chromium light shielding film by DC sputtering using a target made by mixing the chromium and chromium oxide. It relates to a low reflection matrix blank manufacturing method that can increase the homogeneity and speed the film formation.

[종래기술 및 문제점][Prior Art and Problem]

저반사 매트릭스 블랭크를 만드는 경우, 종래에는 투명 유리기판 위에 산화막을 형성하고 상기 산화막 상에 다시 크롬산화막을 증착하게 되는데 이때 상기 산화막은 스퍼터 챔버에 산소가스를 주입한 후, 상기 크롬타겟(target)을 스퍼터시켜 형성하는 반응성 스퍼터링 방법을 이용하여 증착시킨다. 저반사 매트릭스 블랭크의 경우에는 상기 산화막과 크롬막의 순서를 반대로 하여 전술된 방법과 동일하게 제작하면 된다. 이때 상기 산화막은 금속펠릿(Pallet)을 E/Beam 등으로 가열하여 증발시키면서 산소를 주입하여 제작하게 되는데, 여기서 산소 가스를 주입시킨 반응성 스퍼터링법은 산소의 분압을 타겟 표면에 균일하게 맞추기 어렵기 때문에 적층된 산화막의 물성, 막두께 등이 기판의 위치에 따라 변하기 쉽다는 단점을 가지게 된다. 또한 상기 크롬은 산소와의 반응성이 커서 주입되어진 산소에 의해 크롬 타겟의 표면이 산화되면서 스퍼터링의 속도가 크게 감소할 뿐 아니라 산소분압의 증가에 따라 성막속도 및 막 조성의 변화가 어느 한 산소의 분압치에서 급격히 변화하여 조성 조적이 어렵다는 문제점을 안고 있었다.In the case of making a low reflection matrix blank, an oxide film is formed on a transparent glass substrate and a chromium oxide film is deposited on the oxide film. In this case, the oxide film is injected with oxygen gas into a sputter chamber, and then the chromium target is targeted. It deposits using the reactive sputtering method formed by sputtering. In the case of the low reflection matrix blank, the order of the oxide film and the chromium film may be reversed to produce the same method as described above. At this time, the oxide film is manufactured by injecting oxygen while heating the metal pellet (Pallet) with E / Beam or the like, where the reactive sputtering method of injecting oxygen gas is difficult to uniformly adjust the partial pressure of oxygen to the target surface. The physical properties, film thickness, etc. of the stacked oxide films are easily changed depending on the position of the substrate. In addition, since the surface of the chromium target is oxidized by the injected oxygen due to its high reactivity with oxygen, the rate of sputtering is greatly reduced, and as the oxygen partial pressure increases, the film formation rate and the film composition change according to the oxygen partial pressure. The rapid change in value has made it difficult to formulate compositions.

[발명의 목적][Purpose of invention]

이에 본 발명은 상기와 같은 문제점을 감안하여 이루어진 것으로, 산소가스를 반응성 스퍼터링하지 않고 타겟 자체를 크롬과 크롬산화물의 혼합체로 만들어 스퍼터링하므로써 증착하고자 하는 산화막의 균질성을 높이고 성막속도를 빠르게 할 뿐 아니라 타겟의 조성을 변화시켜 산화막의 조성을 조절할 수 있는 저반사 매트릭스 블랭크 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made in view of the above problems, and by increasing the homogeneity of the oxide film to be deposited by sputtering the target itself into a mixture of chromium and chromium oxides without reactive sputtering of oxygen gas, the film formation speed is increased as well as the target. It is an object of the present invention to provide a method for manufacturing a low reflection matrix blank which can control the composition of an oxide film by changing the composition of.

[발명의 구성][Configuration of Invention]

상기와 같은 목적을 달성하기 위한 본 발명에 따른 저반사 매트릭스 블랭크 제조방법은 금속 크롬분말과 산화크롬분말을 1:1로 혼합ㆍ성형ㆍ소결하여 타겟을 형성하는 공정과, 상기 금속 크롬분말과 산화크롬분말의 혼합비를 얻고자 하는 산화막의 조성에 따라 변화시켜 금속분말이 타겟 전체에 걸쳐서 서로 연결되도록 한 뒤 DC 마그네트론 스퍼터 또는 RF 스퍼터를 이용하여 기판상에 산화막을 형성하는 공정으로 이루어 진다.The method for producing a low reflection matrix blank according to the present invention for achieving the above object comprises a step of mixing, molding and sintering a metal chromium powder and chromium oxide powder in a 1: 1 to form a target, and the metal chromium powder and oxidation It is a process of forming an oxide film on a substrate using a DC magnetron sputter or an RF sputter after the metal powder is connected to each other throughout the target by changing the composition of the oxide film to obtain the mixing ratio of the chromium powder.

[발명의 작용][Action of invention]

본 발명은 상술한 공정에 의해 산화막의 성막속도 및 막두께의 균일성을 향상시킬 수 있을 뿐 아니라 타겟 전체를 산화물로 하지 않고 금속과의 혼합물로 형성하므로써 DC를 이용한 스퍼터의 경우 전원부의 개조 없이도 본 공정을 적용할 수 있어 이중막 형성공정을 용이하게 할 수 있게 된다.The present invention not only improves the deposition rate and the film thickness uniformity of the oxide film by the above-described process, but also forms the mixture as a mixture of metals without using the entire target as an oxide. The process can be applied to facilitate the double film forming process.

[실시예]EXAMPLE

이하, 본 발명의 실시예에 대해 상세히 설명하면 아래와 같다.Hereinafter, an embodiment of the present invention will be described in detail.

본 발명에 의한 저반사 매트릭스 블랭크 제조공정은 크게 금속 크롬분말과 산화크롬분말을 1:1로 혼합ㆍ성형ㆍ소결하여 타겟을 형성하는 공정과, 상기 금속 크롬분말과 산화 크롬분말의 혼합비를 얻고자하는 산화막의 조성에 따라 변화시켜 금속분말이 타겟 전체에 걸쳐서 서로 연결되도록 한 뒤 DC 마그네트론 스퍼터 또는 RF 스퍼터를 이용하여 기판상에 산화막을 형성하는 공정과, 상기 산화막상에 크롬막을 스퍼터링법으로 형성하는 공정으로 이루어 진다.The process for producing a low reflection matrix blank according to the present invention is a step of forming a target by mixing, molding and sintering a metal chromium powder and chromium oxide powder in a 1: 1 ratio, and to obtain a mixing ratio of the metal chromium powder and chromium oxide powder. Forming a oxide film on the substrate by using a DC magnetron sputter or an RF sputter, and then forming a chromium film on the oxide film by a sputtering method by changing the composition of the oxide film so that the metal powder is connected to each other throughout the target. The process is done.

또한, 얻고자 하는 산화막 조성의 조정은 상기와 같이 금속 크롬 분말과 산화 크롬 분말의 혼합비로서 조정하지만, 이와 함께 산소 등의 반응성 가스를 챔버내에 소량 주입시키므로써 상기 막의 조성을 미세 조정한다.The oxide film composition to be obtained is adjusted as a mixing ratio of the metal chromium powder and the chromium oxide powder as described above, but the composition of the film is finely adjusted by injecting a small amount of reactive gas such as oxygen into the chamber.

상기 공정을 기초로 한 각 층막의 특성은 [표 1]에 제시해 놓았으며, 상기 특성을 갖는 저반사 이중막인 크롬막과 산화막의 두께를 변화시킨 경우에 대한 각각의 반사율은 [표 2]에 제시해 놓았다. 이때 상기 이중막의 총두께는 광학막 두께를 3.5이상이 되도록 하기 위해서 1300Å로 제한하였다.The characteristics of each layer film based on the above process are shown in [Table 1], and the reflectances for the case where the thickness of the chromium film and the oxide film which are the low reflection double films having the above properties are changed are shown in [Table 2]. Presented. At this time, the total thickness of the double film was limited to 1300Å in order to make the optical film thickness 3.5 or more.

[표 1]TABLE 1

[표 2]TABLE 2

(* ; 가장 바람직한 막두께 조성을 보인 예)(*; Example showing the most desirable film thickness composition)

상기 [표 1]과 [표 2]에 제시된 실험 데이터에서 알 수 있듯이 이중막의 총두께가 1300Å인 경우 반사율 특성이 가장 낮으며, 이때 상기 크롬분말 및 산화크롬 분말의 산화막 조성은 산소등의 반응성 가스를 챔버내에 주입시켜 조절하도록 되어 있다.As can be seen from the experimental data presented in [Table 1] and [Table 2], when the total thickness of the double film is 1300Å, the reflectance characteristic is the lowest, and the oxide film composition of the chromium powder and chromium oxide powder is a reactive gas such as oxygen. Is adjusted by injecting it into the chamber.

또한 상기 타겟을 이용하여 형성된 산화막은 진공 증발증착 또는 이온 플레팅중 선택된 어느 하나로도 성막 가능하며, 상기 타겟을 이용한 스퍼터링의 스퍼터 파우어는 1-5KW의 전력내에서 형성된다. 여기서 상기 산화막은 아르곤 가스를 수십SCCM 넣어서 전체 압력이 2.5*10(-3승)Torr 상태에서 증착됨에 유의한다.In addition, the oxide film formed using the target can be formed by any one selected from vacuum evaporation deposition or ion plating, and the sputter powder of sputtering using the target is formed within a power of 1-5KW. Note that the oxide film is deposited at a total pressure of 2.5 * 10 (-3 power) Torr with argon gas containing several tens of SCCM.

기존에 챔버에 산소를 넣어 반응성 스퍼터링 법으로 산화막을 형성한 경우와 본 발명의 공정에 의해 산화막을 제조한 경우의 결과치를 [표 1]을 참고로 하여 살펴보면, 550nm에서 기존의 경우 성막 다이나믹 속도가 150Åm/min, 기판상의 막두께 분포에 따른 반사율이 10%인 반면, 본 발명의 경우(이중막의 총두께가 1300Å일 경우)는 다이나믹 속도가 270Åm/min, 기판상의 막두께 분포에 따른 반사율은 5-6%로 산화물 타겟을 쓰는 경우가 성막속도, 막두께 균일도를 약 2배정도 향상시킬 수 있음을 알 수 있다.Referring to Table 1, the results of the case where the oxide film was formed by adding oxygen to the chamber by the reactive sputtering method and when the oxide film was manufactured by the process of the present invention will be described with reference to [Table 1]. 150 Åm / min, the reflectance according to the film thickness distribution on the substrate is 10%, while in the present invention (when the total thickness of the double film is 1300)), the dynamic speed is 270 Åm / min, the reflectance according to the film thickness distribution on the substrate is 5 It can be seen that the use of an oxide target at -6% can improve film formation speed and film thickness uniformity by about two times.

[발명의 효과][Effects of the Invention]

본 발명은 상술한 공정에 의해, 기존의 반응성 스퍼터링에 비해 성막속도 및 막두께 균일성을 향상시킬 수 있고, 또한 반응성 가스(산소)를 도입, 벤트(Vent)시키기 위해서 소요 되어지는 시간을 생략하고 동일 챔버내에 산화물 타겟과 금속 타겟을 근접하게 설치할 수 있게 되어 인 라인(In Line) 스퍼터에서 모터속도 조절에 의해 간단하게 이중막 생성을 할 수 있게 된다.The present invention can improve the film formation speed and the film thickness uniformity by the above-described process, and eliminates the time required to introduce and vent the reactive gas (oxygen). Since the oxide target and the metal target can be installed in the same chamber, the dual film can be easily generated by adjusting the motor speed in the in-line sputter.

뿐만 아니라 타겟 전체를 산화물로 하지 않고 금속과의 혼합물로 형성하므로써 DC 스퍼터의 경우 전원부의 개조없이도 본 공정을 적용할 수 있는 장점을 가지게 된다.In addition, since the entire target is formed of a mixture with a metal rather than an oxide, the DC sputter has an advantage that the present process can be applied without modification of the power supply.

Claims (3)

금속 크롬 분말과 산화크롬 분말을 1:1로 혼합ㆍ성형ㆍ소결하여 타겟을 형성하는 공정과, 상기 두 분말의 혼합비를 얻고자 하는 산화막의 조성에 따라 변화시켜 DC 마그네트론 스퍼터 또는 RF 스퍼터를 이용하여 기판상에 산화막을 형성하는 공정과, 상기 산화막상에 크롬막을 형성하는 공정으로 이루어짐을 특징으로 하는 저반사 매트릭스 블랭크 제조방법.A process of forming a target by mixing, shaping and sintering a metal chromium powder and chromium oxide powder in a 1: 1 manner, and changing it according to the composition of an oxide film to obtain a mixing ratio of the two powders, using a DC magnetron sputter or an RF sputter. A process for forming an oxide film on a substrate, and a method for forming a chromium film on the oxide film. 제1항에 있어서, 상기 산화막 조성의 조정을 위해 산소 등의 반응성 가스를 챔버내에 주입시키는 것을 특징으로 하는 저반사 매트릭스 블랭크 제조방법.The method of manufacturing a low reflection matrix blank according to claim 1, wherein a reactive gas such as oxygen is injected into the chamber to adjust the oxide film composition. 제1항에 있어서, 상기 타겟을 이용하여 형성된 산화막은 진공 증발증착과 이온 플레팅 중 선택된 어느 하나로 형성 가능함을 특징으로 하는 저반사 매트릭스 블랭크 제조방법.The method of claim 1, wherein the oxide film formed using the target can be formed by any one selected from vacuum evaporation and ion plating.
KR1019930011867A 1993-06-28 1993-06-28 Manufacturing method of low reflecting matrix blank KR100264217B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930011867A KR100264217B1 (en) 1993-06-28 1993-06-28 Manufacturing method of low reflecting matrix blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930011867A KR100264217B1 (en) 1993-06-28 1993-06-28 Manufacturing method of low reflecting matrix blank

Publications (2)

Publication Number Publication Date
KR950001345A KR950001345A (en) 1995-01-03
KR100264217B1 true KR100264217B1 (en) 2000-08-16

Family

ID=19358142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930011867A KR100264217B1 (en) 1993-06-28 1993-06-28 Manufacturing method of low reflecting matrix blank

Country Status (1)

Country Link
KR (1) KR100264217B1 (en)

Also Published As

Publication number Publication date
KR950001345A (en) 1995-01-03

Similar Documents

Publication Publication Date Title
JP3836163B2 (en) Method for forming high refractive index film
US7431808B2 (en) Sputter target based on titanium dioxide
US4990234A (en) Process for coating substrates made of a transparent material, for example floatglass
JP2007314892A (en) Sputtering target and method for the preparation thereof
KR100817107B1 (en) Method for manufacturing color tile using thin film deposition method
EP0698798A2 (en) Coated optical plastic lens
US6365014B2 (en) Cathode targets of silicon and transition metal
US20210222279A1 (en) Method for regulating color of hard coating, hard coating, and method for preparing the same
KR100264217B1 (en) Manufacturing method of low reflecting matrix blank
KR100203671B1 (en) Ito sintered body ito transparent conductive film and method of forming the film
DE3731127A1 (en) Process and device for the vacuum plasma arc deposition of decorative and wear-resistant coatings
EP0992604A2 (en) Method for controlling the refractive index of a dry plating film
KR20080079048A (en) Zinc oxide-based thin film and method for preparing the same
JP3004760B2 (en) Titanium oxide blue film
JPH08218165A (en) Target for indium-tin oxide film
CN110735121B (en) Preparation method of unconventional refractive index mixed film based on magnetron sputtering
JP3506782B2 (en) Manufacturing method of optical thin film
JPH02242252A (en) Photomask blank and photomask
US6793781B2 (en) Cathode targets of silicon and transition metal
JP2009299160A (en) Conductive aluminum thin film
JP2716186B2 (en) Articles with a bronze color
JP2019083020A (en) Multilayer thin film
US20080296149A1 (en) Mixed chromium oxide-chromium metal sputtering target
KR100777718B1 (en) Target for functional films and method of manufacturing functional films using the same
JPH08283935A (en) Target and production of high refractive index film using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080429

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee