KR100248208B1 - Method for forming mirror coating of laser diode - Google Patents
Method for forming mirror coating of laser diode Download PDFInfo
- Publication number
- KR100248208B1 KR100248208B1 KR1019970028465A KR19970028465A KR100248208B1 KR 100248208 B1 KR100248208 B1 KR 100248208B1 KR 1019970028465 A KR1019970028465 A KR 1019970028465A KR 19970028465 A KR19970028465 A KR 19970028465A KR 100248208 B1 KR100248208 B1 KR 100248208B1
- Authority
- KR
- South Korea
- Prior art keywords
- laser diode
- coating
- film
- mirror surface
- coating film
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 43
- 239000011248 coating agent Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 19
- 239000010408 film Substances 0.000 claims abstract description 35
- 238000000313 electron-beam-induced deposition Methods 0.000 claims abstract description 6
- 238000004544 sputter deposition Methods 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims abstract description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 3
- 239000011247 coating layer Substances 0.000 claims abstract 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 레이저 다이오드의 제조 방법에 관한 것으로, 특히 레이저 다이오드의 특성을 향상시키기 위하여 레이저 다이오드가 제조된 웨이퍼의 단면을 2단계로 거울면 코팅하는 레이저 다이오드의 거울면 코팅 방법에 관한 것이다. 따라서, 상기 목적을 달성하기 위하여 본 발명에 따른 레이저 다이오드의 거울면을 코팅하기 위한 레이저 다이오드의 거울면 코팅 방법으로서, 상기 레이저 다이오드의 거울면에 박막의 제1코팅막을 형성하는 단계; 및 상기 코팅막 상에 소정 두께의 제2코팅막을 형성하는 단계 포함하는 것을 특징으로 한다. 그리고, 상기 제1코팅막은 스퍼터링 방식 또는 플라즈마 인가 화학 기상 증착 방식에 의하여 형성하고, 상기 제2 코팅막은 전자빔 증착 방식에 의하여 형성한다.The present invention relates to a method of manufacturing a laser diode, and more particularly, to a mirror surface coating method of a laser diode for mirror-coating the cross section of a wafer on which the laser diode is manufactured in two steps in order to improve the characteristics of the laser diode. Accordingly, in order to achieve the above object, a mirror surface coating method of a laser diode for coating the mirror surface of the laser diode according to the present invention, comprising: forming a first coating film of a thin film on the mirror surface of the laser diode; And forming a second coating film having a predetermined thickness on the coating film. The first coating layer is formed by sputtering or plasma applied chemical vapor deposition, and the second coating layer is formed by electron beam deposition.
Description
본 발명은 레이저 다이오드의 제조 방법에 관한 것으로, 특히 레이저 다이오드의 특성을 향상시키기 위하여 레이저 다이오드가 제조된 웨이퍼의 단면을 2단계로 거울면 코팅하는 레이저 다이오드의 거울면 코팅 방법에 관한 것이다.The present invention relates to a method of manufacturing a laser diode, and more particularly, to a mirror surface coating method of a laser diode for mirror-coating the cross section of a wafer on which the laser diode is manufactured in two steps in order to improve the characteristics of the laser diode.
일반적으로, P-N 구조에 전류를 인가하여 동상의 광자(Photon)가 공진기 내의 매질을 통과하면서 밀도 반전이 충분히 이뤄진 부분에서 간섭성(Coherence)을 갖고 유도 방출되어 증폭된 빛을 내는 원리를 이용한 레이저 다이오드는 광 통신 시스템, 광 CATV 시스템, 광 대역 ISDN등 광섬유를 통하여 광신호를 보내는 광원으로 사용된다.In general, a laser diode using the principle of applying a current to a PN structure and causing in-phase photons to pass through a medium in the resonator and have coherence and induced emission and amplified light in a sufficiently inverted density region Is used as a light source for transmitting optical signals through optical fibers such as optical communication systems, optical CATV systems, and broadband ISDN.
이러한 레이저 다이오드의 제조 공정을 그 구조에 따라 웨이퍼 상에 구현한 후, 결정 방향에 따라 적당한 길이로 절단하면 여러 개의 레이저 다이오드가 옆으로 나란히 인접한 레이저 다이오드칩 바(LD Chip Bar)가 형성된다.After the manufacturing process of the laser diode is implemented on the wafer according to its structure, the laser diode chip bar is formed by cutting several laser diodes adjacently side by side by cutting to an appropriate length according to the crystal direction.
이 레이저 다이오드칩 바의 절단면인 양쪽 거울면에 알루미늄 산화막(Al2O3)이나 알루미늄 산화막/비정질 실리콘(Al2O3/ a-Si)등의 물질을 스퍼터링(Sputtering), 플라즈마 인가 화학 기상 증착(PECVD) 또는 전자빔 증착(E-Beam Evaporation) 방식을 이용하여 증착하는 것을 거울면 코팅(Mirror coating)이라 한다.Sputtering materials such as aluminum oxide film (Al 2 O 3 ), aluminum oxide film / amorphous silicon (Al 2 O 3 / a-Si), and plasma applied chemical vapor deposition on both mirror surfaces of the laser diode chip bar. Deposition using a PECVD or E-Beam Evaporation method is called a mirror coating.
이러한 거울면 코팅은 레이저 다이오드의 내부 반사를 조절하여 사면 효율(Slope efficiency)을 증가시키고 문턱 전류를 저하시켜 전류 효율이 높아진다. 일반적으로, 코팅막의 두께를 균일하게 증착할 수 있는 전자빔 증착 방식을 많이 이용한다.This mirror coating increases the slope efficiency by adjusting the internal reflection of the laser diode and lowers the threshold current to increase the current efficiency. In general, an electron beam deposition method that can uniformly deposit the thickness of the coating film is used.
원래 전자빔 증착 방식은 금속 물질을 증착하기 위한 것으로, 웨이퍼를 장착하고 고진공 하에서 웨이퍼를 상온으로 유지하면서 증착하고자 하는 금속에 전자빔을 쏘아 녹여 증발시킴으로써 그 증기가 웨이퍼에 쌓이도록 하는 방식이다.Originally, the electron beam deposition method is for depositing a metal material, in which a vapor is deposited on a wafer by evaporating by melting an electron beam onto a metal to be deposited while mounting the wafer and keeping the wafer at room temperature under high vacuum.
그러나, 이러한 전자빔 증착 방식을 이용하여 레이저 다이오드칩 바에 알루미늄 산화막(Al2O3) 등을 전자빔으로 녹여 거울면 코팅을 하는 경우, 상온으로 유지된 레이저 다이오드칩 바와의 부착력이 나빠 개개의 레이저 다이오드로 분리시 코팅막이 떨어지는 문제가 있다.However, when the aluminum oxide film (Al 2 O 3 ) or the like is applied to the laser diode chip bar by applying an electron beam to the mirror coating, the adhesion to the laser diode chip bar maintained at room temperature is poor. There is a problem that the coating film falls during separation.
또한, 상기에서 언급한 스퍼터링이나 PECVD방식을 이용하는 경우, 부착력은 우수하나 코팅막이 두께 균일도가 나빠서 전체적으로 여러 개의 레이저칩 바를 코팅시 재현성이 떨어지는 문제점이 있다.In addition, in the case of using the above-mentioned sputtering or PECVD method, the adhesion is excellent, but the coating film is poor in uniformity, there is a problem in the reproducibility when coating a plurality of laser chip bar as a whole.
따라서, 본 발명은 레이저 다이오드의 거울면 코팅을 2단계로 실시하여 부착력을 향상시키면서 두께도 균일하게 제어하여 재현성이 우수한 레이저 다이오드의 거울면 코팅을 실시할 수 있는 레이저 다이오드의 거울면 코팅 방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention provides a mirror surface coating method of a laser diode that can perform the mirror surface coating of the laser diode excellent in reproducibility by controlling the thickness uniformly while improving the adhesion by performing the mirror surface coating of the laser diode in two stages. Its purpose is to.
제1도는 레이저 다이오드칩 바의 거울면을 나타내는 도면.1 shows a mirror surface of a laser diode chip bar.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
LD : 레이저 다이오드칩 바 A, B : 거울면LD: Laser Diode Chip Bar A, B: Mirror Surface
101 : 활성층101: active layer
상기 목적을 달성하기 위하여, 본 발명에 따른 레이저 다이오드의 거울면을 코팅하기 위한 레이저 다이오드의 거울면 코팅 방법으로서, 상기 레이저 다이오드의 거울면에 박막의 제1 코팅막을 형성하는 단계; 및 상기 코팅막 상에 소정 두께의 제2 코팅막을 형성하는 단계 포함하는 것을 특징으로 한다.In order to achieve the above object, a mirror surface coating method of a laser diode for coating the mirror surface of the laser diode according to the present invention, comprising: forming a first coating film of a thin film on the mirror surface of the laser diode; And forming a second coating film having a predetermined thickness on the coating film.
[실시예]EXAMPLE
이하, 도면을 참조로하여 본 발명의 실시예를 설명하기로 한다.Hereinafter, embodiments of the present invention will be described with reference to the drawings.
본 발명은 레이저 다이오드의 거울면을 코팅하는 방법으로, 코팅막의 부착력과 두께 균일성을 향상시키기 위하여 2단계로 코팅한다.The present invention is a method of coating the mirror surface of the laser diode, the coating in two steps to improve the adhesion and thickness uniformity of the coating film.
제1도는 레이저 다이오드의 제조 공정을 그 구조에 따라 웨이퍼 상에 구현한 후, 결정 방향에 따라 적당한 길이로 절단하여 형성된 레이저 다이오드칩 바(LD)를 간략하게 도시한 것으로 레이저 다이오드의 활성층(101)이 노출된 절단면인 양쪽 거울면(A,B)에 거울면 코팅을 진행한다.FIG. 1 is a schematic diagram illustrating a laser diode chip bar LD formed by implementing a laser diode manufacturing process on a wafer according to a structure thereof, and then cutting the laser diode chip bar into an appropriate length according to a crystal direction. The
먼저, 1단계로 PECVD 방식으로 실리콘 산화막이나 실리콘 질화막을 얇게 코팅하거나, 스퍼터링 방식으로 실리콘 산화막, 실리콘 질화막 또는 알루미늄 산화막(Al2O3)을 얇게 코팅하여 거울면과의 부착력을 높인다.First, a thin coating of a silicon oxide film or a silicon nitride film by PECVD in one step, or a thin coating of a silicon oxide film, a silicon nitride film or an aluminum oxide film (Al 2 O 3 ) by a sputtering method to increase the adhesion to the mirror surface.
그런 다음, 전자빔 증착 방식을 이용하여 알루미늄 산화막, 비정질 실리콘, YSZ(Yttria Stabilized Zirconia) 등의 물질을 소정 두께 코팅하여 두께를 균일하게 한다.Then, a thickness of the aluminum oxide film, amorphous silicon, Yttria Stabilized Zirconia (YSZ), or the like is coated by using an electron beam deposition method to uniform thickness.
따라서, 이와 같은 방식으로 진행되어 형성된 코팅막은, 레이저 다이오드의 칩을 절단하거나 다이 본딩시 그대로 유지되어 공정에 대한 신뢰도가 높아질 뿐만 아니라 공정의 재현성이 우수하다.Therefore, the coating film formed by progressing in this manner is maintained as it is when cutting or die bonding the chip of the laser diode, thereby increasing the reliability of the process and excellent reproducibility of the process.
이상에서 설명한 바와 같이, 본 발명은 레이저 다이오드의 거울면을 코팅하는 방법으로, PECVD나 스퍼터링 방식으로 박막의 제1 코팅막을 형성하여 코팅막의 부착력을 향상시키고 이어서 전자빔 증착 방식을 사용하여 제2 코팅막을 형성함으로써 균일성을 향상시킨다.As described above, the present invention is a method of coating the mirror surface of the laser diode, by forming a first coating film of the thin film by PECVD or sputtering method to improve the adhesion of the coating film, and then to the second coating film using an electron beam deposition method Formation improves uniformity.
따라서, 이와 같은 방식은 레이저 다이오드의 칩을 절단하거나 다이 본딩시 코팅막이 그대로 유지되어 공정에 대한 신뢰도가 높아질 뿐만 아니라 공정의 재현성이 우수하다.Therefore, in this method, the coating film is maintained as it is when cutting the chip of the laser diode or die bonding, thereby increasing the reliability of the process and excellent reproducibility of the process.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970028465A KR100248208B1 (en) | 1997-06-27 | 1997-06-27 | Method for forming mirror coating of laser diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970028465A KR100248208B1 (en) | 1997-06-27 | 1997-06-27 | Method for forming mirror coating of laser diode |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990004376A KR19990004376A (en) | 1999-01-15 |
KR100248208B1 true KR100248208B1 (en) | 2000-03-15 |
Family
ID=19511883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970028465A KR100248208B1 (en) | 1997-06-27 | 1997-06-27 | Method for forming mirror coating of laser diode |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100248208B1 (en) |
-
1997
- 1997-06-27 KR KR1019970028465A patent/KR100248208B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990004376A (en) | 1999-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749255A (en) | Coating for optical devices | |
CN1713468B (en) | Seal-capping for wafer-scale optoelectronic packages and preparation method thereof | |
JPH03101183A (en) | Semiconductor laser diode and method of mirror passivation of the same | |
US5179430A (en) | Planar type heterojunction avalanche photodiode | |
EP0007805B1 (en) | A method of coating side walls of semiconductor devices | |
KR100248208B1 (en) | Method for forming mirror coating of laser diode | |
US6744796B1 (en) | Passivated optical device and method of forming the same | |
CN109921277A (en) | Eliminate the method and semiconductor laser of semiconductor laser COMD | |
JPS6033320B2 (en) | Semiconductor laser and its manufacturing method | |
US5541139A (en) | Method of manufacturing a radiation-emitting semiconductor diode | |
US6440765B1 (en) | Method for fabricating an infrared-emitting light-emitting diode | |
US6795480B1 (en) | Semiconductor laser device | |
KR100251349B1 (en) | Mirror coating method for a laser diode | |
JPH07263814A (en) | Manufacture of semiconductor device | |
EP0168165A1 (en) | Opto-electronic and electro-optic devices | |
JPH0766500A (en) | Formation of optical thin film | |
RU2789241C1 (en) | METHOD FOR MANUFACTURING LIGHT-EMISSIONING DIODE BASED ON AlGaAs/GaAs HETEROSTRUCTURE | |
JPS6366415B2 (en) | ||
US6888868B2 (en) | Semiconductor laser device and manufacturing method thereof | |
US20040032893A1 (en) | Passivation of the resonator end faces of semiconductor lasers based on iii-v semiconductor material | |
JPH049394B2 (en) | ||
JPS59165418A (en) | Manufacture of semiconductor light emitting element | |
KR100228762B1 (en) | Manufacturing method of optical communicating device | |
JP2002246679A (en) | Semiconductor laser element and manufacturing method therefor | |
JP3617618B2 (en) | Manufacturing method of semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20051118 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |