KR100247657B1 - Method for nitriding nickel alloy - Google Patents

Method for nitriding nickel alloy Download PDF

Info

Publication number
KR100247657B1
KR100247657B1 KR1019920004456A KR920004456A KR100247657B1 KR 100247657 B1 KR100247657 B1 KR 100247657B1 KR 1019920004456 A KR1019920004456 A KR 1019920004456A KR 920004456 A KR920004456 A KR 920004456A KR 100247657 B1 KR100247657 B1 KR 100247657B1
Authority
KR
South Korea
Prior art keywords
gas
nickel alloy
nitriding
fluorine
nickel
Prior art date
Application number
KR1019920004456A
Other languages
Korean (ko)
Other versions
KR930016559A (en
Inventor
다하라마사아키
센보쿠야하루오
기타노겐조
하야시다다다시
미나토데루오
Original Assignee
아오키 히로시
다이도 호쿠산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아오키 히로시, 다이도 호쿠산 가부시키가이샤 filed Critical 아오키 히로시
Publication of KR930016559A publication Critical patent/KR930016559A/en
Application granted granted Critical
Publication of KR100247657B1 publication Critical patent/KR100247657B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

본 발명은 니켈합금의 표면에 질화층을 형성해서 표면경도등을 향상시키는 질화방법에 관한 것으로, 불소계 가스 분위기하에서 니켈합금을 가열상태로 유지하고나서 이것을 질화분위기하에 두고 가열상태로 유지해서 니켈합금의 표면에 질화층을 형성하는 것으로 구성되며 니켈합금의 표면에 깊고 균일한 질화층을 형성하는 것에 의해 니켈합금의 표면경도를 높게한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitriding method for forming a nitride layer on the surface of a nickel alloy to improve surface hardness and the like. It is composed of forming a nitride layer on the surface of the nickel alloy by forming a deep and uniform nitride layer on the surface of the nickel alloy to increase the surface hardness of the nickel alloy.

Description

니켈 합금의 질화방법Nitriding Method of Nickel Alloy

제1도는 본 발명의 질화처리에 이용하는 로 구성도,1 is a furnace configuration diagram used for the nitriding treatment of the present invention,

제2도는 다른 로 구성도,2 is another furnace configuration diagram,

제3도는 질화처리로 이루어진 니켈합금제판(인코넬 600)의 확대 단면도,3 is an enlarged cross-sectional view of a nickel alloy plate (Inconel 600) made of a nitride treatment,

제4도는 질화처리로 이루어진 니켈합금판(인코넬 751)의 확대 단면도,4 is an enlarged cross-sectional view of a nickel alloy plate (Inconel 751) made of nitriding treatment;

제5도는 질화처리로 이루어진 니켈합금판(하스테로이 C)의 확대 단면도이다.5 is an enlarged cross-sectional view of a nickel alloy plate (Hastelloy C) made of nitriding.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 머플로 2 : 외곽1: Muffler 2: Outskirts

3 : 히터 4 : 용기3: heater 4: container

5 : 가스도입관 6 : 배기관5: gas introduction pipe 6: exhaust pipe

7 : 모터 8 : 팬7: motor 8: fan

11 : 금속망 바구니 13 : 진공펌프11: metal mesh basket 13: vacuum pump

14 : 가스배출처리장치 15, 16 : 봄베14: gas discharge treatment apparatus 15, 16: bombe

17 : 유량계 18 : 밸브17: flow meter 18: valve

본 발명은 니켈합금의 표면에 질화층을 형성해서 표면경도등을 향상시키는 질화 방법에 관한 것이다.The present invention relates to a nitriding method for forming a nitride layer on the surface of a nickel alloy to improve surface hardness and the like.

인코넬(Ni-Cr계), 하스테로이(Ni-Cr-Mo계), 인코로이등의 고니켈 함유합금은 내열강도와 내식성에 뛰어난 합금으로서 넓게 사용되어져 왔다.High nickel-containing alloys such as Inconel (Ni-Cr), Hastelloy (Ni-Cr-Mo), and Incoroy have been widely used as alloys excellent in heat resistance and corrosion resistance.

최근에는 이와 같은 니켈함유합금의 내마모성등의 특성을 향상시켜서 그 이용범위를 확대하려고하는 요청이 높아져 왔다.In recent years, there has been a high demand for improving the characteristics such as wear resistance of nickel-containing alloys and extending their use range.

그러나, 상기 인코넬 등의 니켈 합금에 대해 표면경도를 높이는 방법은 현재 확립되어 있지 않다.However, a method of increasing the surface hardness of nickel alloys such as Inconel has not been established at present.

불과 압출경화에 의한 모재강도의 향상 방법과 분말소재를 이용한 초소성재의 연구가 이루어져 있는데 지나지 않다.The research on the method of improving the strength of the base material by fire and extrusion hardening and the study of the superplastic material using the powder material has been made.

그러나, 압출경화에 의한 모재강도의 향상방법에 따르면 합금전체의 강성이 높아지는 것으로부터 합금의 가공성이 나빠진다.However, according to the method of improving the base material strength by extrusion hardening, the workability of the alloy is deteriorated because the rigidity of the whole alloy is increased.

또, 분말소재를 이용한 초소성재는 가격이 매우 높아 실용화에는 문제가 있다.In addition, a superplastic material using a powder material is very expensive, there is a problem in practical use.

한편, 금속제 일반의 표면경화방법에서는 ① 도금법, ② PVD와 같은 코팅법, ③ 질화, 붕화와 같은 확산 침투법이 주류를 이루고 있다.On the other hand, in the general surface hardening method made of metal, ① plating method, ② coating method such as PVD, and ③ diffusion penetration method such as nitriding and boride are mainstream.

그러나 니켈합금에 대해서는 앞에 서술한 바와 같이 경질 크롬도금과 알루미나 코팅과 같은 코팅법이 일부 실용화 되어 있는데 지나지 않다.However, for nickel alloys, some coating methods such as hard chromium plating and alumina coating have been practically used as described above.

이들 방법에서는 코팅법 특유의 품질관리의 곤란함과 막두께의 얇기에 기인해 응용범위의 제약, 또한 처리비용이 높아지는 결점이 있다.These methods have drawbacks such as limitations in application range and processing cost due to difficulty in quality control and thin film thickness that are unique to the coating method.

또, 확산침투법으로서의 표면경화법에 관해서는 인코넬, 하스테로이 합금에 대해서 그로어 방전을 이용한 프라즈마이온 질화가 일부에서 시험되고 있다.In addition, as for the surface hardening method as the diffusion penetration method, plasma ion nitriding using a blower discharge has been tested in part for Inconel and Hastelloy alloys.

그러나, 상기 니켈합금에 대해서, 이와 같은 프라즈마이온 질화를 행해도 거의 질화경화층이 형성되어 있지 않다.However, almost no nitride hardened layer is formed even when such plasma ionization is performed on the nickel alloy.

만약 형성되었다 하더라도 깊이가 불과 수마이크론의 초박층이 부분적으로 형성되는데 지나지 않는다.If formed, only a few microns of ultra-thin layer are partially formed.

따라서 현상태에서는, 상기 니켈합금의 질화는 거의 포기되어 있고 실용화와는 거리가 멀다.Therefore, in the present state, nitriding of the nickel alloy is almost abandoned and is far from practical use.

본 발명은 이와같은 사정을 감안해서 이루어진 것이고, 니켈합금의 표면에 균일한 두께의 질화층을 형성하는 것에 의해 니켈합금의 표면경도를 높게 하는 니켈합금 질화방법의 제공을 그 목적으로 한다.This invention is made | formed in view of such a situation, Comprising: It aims at providing the nickel alloy nitriding method which makes the surface hardness of a nickel alloy high by forming the nitride layer of uniform thickness on the surface of a nickel alloy.

상기의 목적을 달성하기 위해 본 발명의 니켈합금의 질화방법은 불소계 가스 분위기하에 있어서 니켈 합금을 가열상태에서 유지해, 계속해서 이것을 질화분위기 하에 있어서 가열상태로 유지해서 니켈합금의 표면층을 질화층으로 형성하는 구성을 취한다.In order to achieve the above object, the nickel alloy nitriding method of the present invention maintains a nickel alloy in a heated state in a fluorine-based gas atmosphere, and then maintains it in a heated state under a nitride atmosphere to form a surface layer of the nickel alloy as a nitride layer. Take the configuration.

다음에, 이 발명에 관해서 상세히 설명한다.Next, this invention is demonstrated in detail.

이 발명은 니켈합금을 대상으로 해, 이것을 불소계 가스분위기하에서 불화 처리한 후 질화분위기하에서 질화처리 한다.In the present invention, nickel alloys are subjected to fluorination treatment in a fluorine-based gas atmosphere, followed by nitriding in a nitride atmosphere.

이 발명의 대상이 되는 상기 니켈 합금에서는, 니켈 함유량이 25중량%, (이하 「%」라고 약칭한다)이상의 니켈합금이 주로 이용된다.In the said nickel alloy used as the object of this invention, nickel alloy whose nickel content is 25 weight% or more (it abbreviates as "%" hereafter) is mainly used.

예를들면 Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe를 들 수 있다.For example, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe can be mentioned.

구체적으로는 인코넬계, 하스테로이계, 인코로이계등의 고니켈함유 합금을 들 수 있다.Specific examples thereof include high nickel-containing alloys such as Inconel-based, Hastelloy-based, and Incoroy-based.

본 발명에서 니켈합금은 니켈함량이 25%이상인 것이다.In the present invention, the nickel alloy is nickel content of 25% or more.

또, 니켈 합금의 형상등도 묻지 않는다.In addition, the shape of the nickel alloy and the like is also not questioned.

또, 가공의 정도등도 묻지 않는다.In addition, the degree of processing does not matter, too.

니켈합금으로 이루어지는 재료, 니켈합금으로 이루어지는 중간제품, 니켈합금으로 이루어지는 완성품의 전부가 이 발명의 니켈합금의 범위에 포함된다.All of the material which consists of nickel alloys, the intermediate | middle product which consists of nickel alloys, and the finished product which consists of nickel alloys falls in the range of the nickel alloy of this invention.

상기 니켈합금을 그 안에 넣어서 처리하는 불소계 가스분위기에 이용하는 불소계 가스로서는, NF3, BF3, CF4, HF, SF6, WF6, CHF3, SiF4등으로 이루어지는 불소화합물 가스를 들 수 있고, 단독이나 또는 합쳐서 사용할 수 있다.Examples of the fluorine-based gas used in the fluorine-based gas atmosphere in which the nickel alloy is contained therein include a fluorine compound gas composed of NF 3 , BF 3 , CF 4 , HF, SF 6 , WF 6 , CHF 3 , and SiF 4 . May be used alone or in combination.

또, 이들 이외에 분자내에 F를 포함하는 다른 불소화합물 가스도 상기 불소계 가스로서 사용할 수가 있다.In addition to these, other fluorine compound gas containing F in the molecule can also be used as the fluorine-based gas.

또, 이와같은 불소화합물 가스를 열분해 장치에서 열분해 시켜서 생성시킨 F2가스와 미리 만들어진 F2가스도 상기 불소계 가스로서 이용할 수 있다.In addition, a F 2 gas and a pre-made F 2 gas generated by pyrolyzing such a fluorine compound gas in a pyrolysis device can also be used as the fluorine-based gas.

이와 같은 불소화합물가스와, F2가스는 경우에 따라서는 혼합사용된다.In some cases, such as the fluorine compound gas, F 2 gas mixture is used.

그리고, 상기 불소화합물가스, F2가스등의 불소계가스는, 그것만으로도 사용할 수 있지만 통상은 N2가스등의 불활성가스에서 희석되서 사용된다.The fluorine-based gas such as fluorine compound gas and F 2 gas can be used alone, but is usually diluted and used in an inert gas such as N 2 gas.

이와같은 희석된 가스에 대해 불소계 가스 자신의 농도는, 예를들면 10,000-100,000ppm이고, 바람직하게는 20,000-70,000ppm, 보다 바람직한 것은 30,000-50,000ppm이다.For such diluted gases the concentration of the fluorine-based gas itself is, for example, 10,000-100,000 ppm, preferably 20,000-70,000 ppm, more preferably 30,000-50,000 ppm.

이 발명에서는 이와 같은 농도의 불소계가스분위기하에 상기 니켈합금을 넣어 가열상태에서 유지해 불화처리한다.In the present invention, the nickel alloy is placed under such a fluorine-based gas atmosphere to be maintained in a heated state and treated with fluorination.

이것이 이 발명의 최대의 특징이다.This is the greatest feature of this invention.

이 경우, 상기 가열보존유지는, 니켈합금을, 예를들면 550-600℃의 온도에 가열 유지하는 것에 의해 행해진다.In this case, the heat preservation is carried out by heating and maintaining the nickel alloy at a temperature of, for example, 550-600 ° C.

그리고, 불소계가스 분위기속에서의 상기 니켈합금의 유지시간은 합금의 종류와 합금의 형상치수, 가열온도등에 응해서 적당한 시간을 선택하면 좋고, 통상은 십수분내지 수십분으로 설정된다.The nickel alloy holding time in the fluorine-based gas atmosphere may be appropriately selected depending on the type of alloy, the shape size of the alloy, the heating temperature, and the like, and is usually set to several tens to several tens of minutes.

니켈 합금은 이와 같은 불소가스 분위기하에서 처리하는 것에 의해 종래에는 니켈합금속에 침투할 수 없었던 「N」원자가 침투할 수 있도록 된다.The nickel alloy is treated in such a fluorine gas atmosphere so that "N" atoms, which could not penetrate the nickel alloy metal in the past, can penetrate.

이 이유에 관해서는 현단계에서는 충분히 밝히지는 않지만 대략 다음과 같이 생각할 수 있다.The reason for this is not clear at this stage, but it can be thought of as follows.

즉, 니켈합금의 표면에는 질화작용을 하는 「N」원자의 침투를 저해하는 NiO의 산화막이 형성되어 있다.That is, an oxide film of NiO is formed on the surface of the nickel alloy to inhibit the penetration of "N" atoms which act as a nitride.

이 산화막이 형성된 니켈합금을 상기와 같이 불소계가스분위기하에 있어서 가열 상태에서 유지하면 상기 NiO의 산화막에 비교해서 질화작용을 가지는 「N」원자의 침투가 용이해지는 것으로부터, 니켈합금의 표면은 상기 불화처리에 의해서 「N」원자의 침투에 용이한 표면상태로 형성된다.When the nickel alloy on which the oxide film is formed is kept under a fluorine-based gas atmosphere as described above, penetration of "N" atoms having a nitriding effect is facilitated as compared with the oxide film of NiO. Thus, the surface of the nickel alloy is fluorinated. By processing, it forms in the surface state easy to penetrate the "N" atom.

따라서, 이와 같은 「N」원자의 침투에 용이한 표면상태가 되어 있는 니켈 합금을, 하기에 표시한 바와 같이 질화분위기하에 있어서 가열상태로 유지하면, 질화 가스속의 「N」원자가 니켈합금속에 일정한 두께로 균일하게 침투하기 때문에 깊고 균일한 질화층이 형성되게 된다고 생각할 수 있다.Therefore, if the nickel alloy which is in the surface state which is easy to penetrate such an "N" atom is kept in a heating state under a nitriding atmosphere as shown below, the "N" atom in the nitride gas has a constant thickness to the nickel alloy metal. It is conceivable that a deep and uniform nitride layer is formed because it penetrates uniformly.

상기와 같이 불소처리에 의해 「N」원자가 침투하기 쉬운 상태가 되어 있는 니켈합금은 다음에 질화분위기하에 있어서 가열상태로 유지되어 질화처리 된다.As described above, the nickel alloy in which the "N" atom is easily penetrated by the fluorine treatment is then maintained in a heated state under nitriding atmosphere and subjected to nitriding treatment.

이 경우 질화분위기를 만드는 질화가스로서는 NH3로만 이루어지는 단체가스가 이용되고 또, NH3와 탄소원을 가지는 가스(예를들면 RX가스)와의 혼합 가스도 이용된다.In this case, as the nitriding gas nitriding atmosphere to create a group consisting of only NH 3 gas is used again, it is also used a mixed gas of a gas (e.g. RX gas) with NH 3 and a carbon source.

양자를 혼합사용하는 것도 널리 쓰인다.Mixed use of both is also widely used.

통상은 상기 단체가스, 혼합가스에 N2등의 불활성가스를 혼합해서 사용한다.Typically uses a mixture of an inert gas such as N 2 gas to the group, the gas mixture.

경우에 따라서는 이들 가스에 H2가스를 혼합해서 사용하는 것도 널리 쓰인다.In some cases, a mixture of these gases with H 2 gas is also widely used.

이같은 질화분위기하에 있어서, 상기 불화처리에서 이루어진 니켈합금이 가열상태에서 유지된다.Under such a nitriding atmosphere, the nickel alloy formed in the fluorination treatment is maintained in a heated state.

이 경우 가열상태에서의 유지는 통상 500-700℃에 설정되어, 처리시간은 3-6시간에 설정된다.In this case, holding | maintenance in a heating state is normally set to 500-700 degreeC, and a processing time is set to 3-6 hours.

이 질화처리에 의해 니켈합금의 표면층이 치밀하게 균일한 질화층(전체가 한층으로 된다)으로 형성된다.By this nitriding treatment, the surface layer of the nickel alloy is formed into a densely uniform nitride layer (the whole becomes one layer).

이것에 의해 니켈합금의 모재의 경도가 Hv=280-380인 것에 대해서, 표면경도는 Hv=800-1100에 달하게 된다.As a result, the surface hardness reaches Hv = 800-1100 while the hardness of the base metal of the nickel alloy is Hv = 280-380.

이때 형성된 경화층의 두께는 기본적으로 질화온도와 질화처리시간에 의존하고 있지만, 500℃이하에서는 질화층이 형성되기 어렵게 되고, 또 650℃이상에서는 불화막이 파괴되어 Ni가 산화되어 쉬워져서 질화층이 불균일하게 되는 경향을 볼 수 있다.Although the thickness of the cured layer formed at this time is basically dependent on the nitriding temperature and the nitriding treatment time, it is difficult to form the nitride layer below 500 ° C, and above 650 ° C, the fluoride film is destroyed and Ni is easily oxidized to form the nitride layer. You can see the tendency to be uneven.

한편 불화온도가 통상 400℃이하에서는 충분한 불화층이 형성되지 않고, 불화온도 600℃이상에서는 불화반응이 너무 심해져서 머플로의 로재의 소모가 심해지기 때문에 공업적 프로세스로서 적절하지 않다.On the other hand, when the fluorination temperature is usually 400 ° C. or less, sufficient fluoride layer is not formed, and when the fluorination temperature is 600 ° C. or more, the fluorination reaction is so severe that the consumption of the muffle furnace furnace is increased, which is not suitable as an industrial process.

또, 질화층형성상, 불화온도와 질화온도와의 차는 가능한한 작은 것이 바람직하다.In the nitride layer formation, the difference between the fluoride temperature and the nitride temperature is preferably as small as possible.

예를들면, 불화한 후 일단 냉각해, 계속해 질화해도 충분한 질화층이 형성되지 않게 된다.For example, a sufficient nitride layer will not be formed even if it cools once after fluorination and it continues to nitrate.

상기와 같은 불화처리 및 질화처리는 예를들면, 제 1 도에 나타난 금속제의 머플로에서 실시된다.Such fluorination treatment and nitriding treatment are carried out, for example, in a metal muffle shown in FIG.

즉, 이 머플로내에 있어서 우선 불화처리를 해, 계속해 질화처리를 한다.That is, in this muffle, fluorination is first performed, followed by nitriding.

제 1 도에 있어서 (1)은 머플로, (2)는 외곽, (3)은 히터, (4)는 안쪽용기, (5)는 가스도입관, (6)은 배기관, (7)은 모터, (8)은 팬, (11)은 금속망 바구니, (13)은 진공펌프, (14)는 가스배출처리장치, (15)(16)은 봄베, (17)은 유량계, (18)은 밸브이다.In Fig. 1, reference numeral 1 denotes a muffle, 2 denotes an outer perimeter, 3 denotes a heater, 4 denotes an inner container, 5 denotes a gas introduction pipe, 6 denotes an exhaust pipe, and 7 denotes a motor. , 8 is a fan, 11 is a metal basket, 13 is a vacuum pump, 14 is a gas exhaust treatment system, 15 and 16 are cylinders, 17 is a flow meter, and 18 is a flowmeter. Valve.

상기와 같은 로안에 니켈합금(10)을 넣어, NF3, 등의 불소계 가스를 머플로(1)안에 도입해서 가열하면서 불화처리를 해서, 계속해 배기관(6)에서 그 가스를 진공펌프(13)의 작용으로 인출해 가스배출처리장치(14)안에서 무독화해서 외부에 방출한다.The nickel alloy 10 is put into a furnace as described above, and fluorine treatment is carried out while introducing a fluorine-based gas such as NF 3 or the like into the muffle furnace 1, and then the gas is discharged from the exhaust pipe 6 by the vacuum pump 13. It is taken out by the action of and detoxified in the gas discharge treatment apparatus 14 and discharged to the outside.

다음으로, 봄베(15)를 유로에 접속해 머플로(1)안에 질화가스를 도입해서 질화 처리를 해서, 그후 배기관(6), 가스배출처리장치(14)를 경유해서 가스를 외부에 배출한다.Next, the cylinder 15 is connected to the flow path to introduce nitriding gas into the muffle furnace 1 for nitriding, and thereafter, the gas is discharged to the outside via the exhaust pipe 6 and the gas exhaust treatment device 14. .

이 일련의 작업에 의해 불화처리와 질화처리가 행해진다.In this series of operations, fluorination and nitriding are performed.

또, 제 1 도의 장치에 대신해서 제 2 도의 장치를 이용하는 것도 가능하다.It is also possible to use the apparatus of FIG. 2 instead of the apparatus of FIG.

이 장치는 도면표시의 좌측이 불화처리실이 되어 있고, 우측이 질화처리실이 되어 있다.In the apparatus, the left side of the drawing is a fluorination chamber and the right side is a nitriding chamber.

도면에 있어서, (2')는 금속제의 바구니, (3')는 히터, (5')는 가스배출배관, (6')(7')는 개폐뚜껑, (11')는 토대, (21)는 단열벽을 가진 노본체, (22)는 상하로 움직이는 칸막이 벽이고, 이 칸막이벽(22)에 의해서 노본체(21)안의 좌우의 2실(23), (24)에 분할되어 있다.In the figure, 2 'is a metal basket, 3' is a heater, 5 'is a gas exhaust pipe, 6' and 7 'are opening and closing lids, and 11' is a foundation, and ) Is a furnace body having a heat insulation wall, and 22 is a partition wall that moves up and down, and is divided into two chambers 23 and 24 on the left and right sides in the furnace body 21 by this partition wall 22.

(23)은 불화처리실에 (24)는 질화처리실에 형성되어 있다.(23) is formed in the fluorination chamber and (24) is formed in the nitriding chamber.

(25)는 2개의 레일로 이루어지는 가대이고, 니켈합금이 들어간 금속제 바구니(2')를 태워서, 이 바구니(2')를 레일위를 미끄러지게 해서 실(23), (24)를 왕래 할 수 있도록 되어 있다.25 is a stand made up of two rails, and a metal basket 2 'containing nickel alloy is burned, and the basket 2' is allowed to slide on the rails to travel between the threads 23 and 24. It is supposed to be.

(10')는 상기 가대(25)의 다리이다.10 'is a leg of the mount 25. FIG.

(26)은 불화처리실에 불소계가스를 도입하는 가스유입관, (27)은 온도센서, (28)은 질화가스 유입관이다.Denoted at 26 is a gas inlet pipe for introducing a fluorine-based gas into the fluorine treatment chamber, at 27 a temperature sensor, and at 28 a nitride gas inlet pipe.

역시, 상기 금속제의 머플로(1)의 재질은 스텐레스재가 아니고 고니켈계의 내열 합금이 바람직하다.Moreover, the material of the said muffle furnace 1 of metal is not stainless steel, but a high-nickel heat-resistant alloy is preferable.

이 장치는 연속식의 장치이고 질화처리실(24)에서 질화처리를 행할 때의 가열로 불활처리실(23)안을 온도상승시켜, 그 상태에서 불화처리실(23)안에 니켈 합금을 도입해서 불화처리해, 불화처리실(23)의 가스를 배기한 후, 칸막이벽(22)을 올려서 니켈합금을 금속 바구니(2')와 함께 질화처리실(24)안에 넣어서 칸막이벽(22)을 내린다.This apparatus is a continuous apparatus and the temperature is raised in the inactivation chamber 23 by heating when nitriding is performed in the nitriding treatment chamber 24. In this state, a nickel alloy is introduced into the fluorination treatment chamber 23, and fluorination is performed. After the gas in the processing chamber 23 is exhausted, the partition wall 22 is raised to put the nickel alloy together with the metal basket 2 'into the nitriding chamber 24 to lower the partition wall 22.

계속해서, 그 상태에서 질화처리를 하는 것보다 불화처리와 질화처리를 연속해서 하도록 되어 있다.Subsequently, the fluorination treatment and the nitriding treatment are performed continuously rather than the nitriding treatment in that state.

특히, 상기 불화처리를 행함에 있어서 불소계 가스로서 NF3를 이용하면 좋다.In particular, in performing the fluorination treatment, NF 3 may be used as the fluorine-based gas.

즉, NF3은 상온에서 반응성이 없고, 가스 형태에서 취급하기 쉬운 물질이기 때문에 작업도 용이하고, 또 배출가스의 무독화도 간단히 된다.In other words, NF 3 is not reactive at room temperature and is easy to handle in the form of gas, which facilitates work and makes detoxification of the exhaust gas simple.

다음에 실시예에 관해서 설명한다.Next, an Example is described.

인코넬 600(Ni:76, Cr:16, Fe:8) 및 인코넬 751(Ni:73, Cr:16, Ti:2.5) 및 하스테로이 C(Ni:56, Cr:16, Mo:7)에서 이루어지는 3종류의 니켈 합금제 판재를 준비해, 이것을 제 1 도에 나타낸 로 안에 넣어서, 로안을 충분히 진공퍼지한 후, 550℃에 온도상승 했다.Inconel 600 (Ni: 76, Cr: 16, Fe: 8) and Inconel 751 (Ni: 73, Cr: 16, Ti: 2.5) and Hastelloy C (Ni: 56, Cr: 16, Mo: 7) Three kinds of nickel alloy sheet materials were prepared, and the mixture was put in a furnace shown in FIG. 1, and the furnace was sufficiently purged with vacuum, and the temperature was increased to 550 ° C.

그리고, 그 상태에서 불소계가스(NF310Vol%+N290Vol%)를 넣어서 로안을 대기압 상태로 해서, 그 상태에서 30분간 유지했다.Then, fluorine-based gas (NF 3 10Vol% + N 2 90Vol%) was added in the state, and the furnace was brought to atmospheric pressure and held for 30 minutes in that state.

다음에, 상기 불소계 가스를 로안에서 배출한 후, 질화가스(NH350Vol%+N225Vol%+H225Vol%)를 도입해서 로안을 570℃까지 온도 상승시켜, 그 상태에서 3시간 유지해서 질화했다.Next, after discharging the fluorine-based gas from the furnace, a nitrogen gas (NH 3 50Vol% + N 2 25Vol% + H 2 25Vol%) was introduced to raise the furnace to 570 ° C, and maintained for 3 hours in that state. Nitrided.

이와 같이해서 질화처리된 인코넬 600, 인코넬 751, 하스테로이 C의 3종류의 니켈합금제 판재의 표면에는 제 3 도, 제 4 도, 제 5 도에 나타난 바와 같이 각각 두께 15㎛, 12㎛, 10㎛의 질화층으로부터 이루어지는 표면경화층 B가 형성되어 있다.In this manner, the nitrided Inconel 600, Inconel 751, and Hasterloy C plated surfaces of the three kinds of nickel alloy plates were 15 mu m, 12 mu m, and 10 mu m, respectively, as shown in FIGS. The surface hardening layer B which consists of a nitride layer of micrometers is formed.

A는 니켈합금의 모재이다.A is a base material of a nickel alloy.

그리고, 이들 표면경화층 B의 표면경도는 어느쪽도 Hv=800-1000이었다.The surface hardness of these surface hardened layers B was both Hv = 800-1000.

인코넬 600, 인코넬 751 및 하스테로이 C의 3종류의 니켈 합금제인 판재를 대상으로해, 실시예 1과 같이해서 불화처리를 했다.Inconel 600, Inconel 751 and Hasterloy C were made of three kinds of nickel alloy plates, and fluorination treatment was performed in the same manner as in Example 1.

다음에 질화가스로서 NH350Vol%+N225Vol%의 혼합가스를 이용해, 온도 620℃에서 질화처리를 3시간 실시했다.Next, nitriding treatment was performed at a temperature of 620 ° C. for 3 hours, using a mixed gas of NH 3 50 Vol% + N 2 25 Vol% as the nitriding gas.

그리고, 질화처리를 끝낸 것에 실시예 1과 같은 불소계 가스를 이용해 620℃에서 3시간 질화처리를 행하고 또한 상기와 같은 질화가스를 이용해 620℃에서 3시간 질화처리를 행했다.After the nitriding treatment, the nitriding treatment was performed at 620 占 폚 for 3 hours using the same fluorine-based gas as in Example 1, and further nitriding treatment at 620 占 폚 for 3 hours using the above-mentioned nitriding gas.

이와 같이해서 불화처리와 질화처리를 2회 계속해 실시한 3종류의 니켈 합금에 관해서 그 표면에 형성된 질화층에서 이루어지는 경화층의 두께를 측정했다.Thus, the thickness of the hardened layer which consists of the nitride layers formed in the surface about three types of nickel alloys which performed the fluorination process and the nitriding process twice continuously was measured.

그 결과, 인코넬 600, 인코넬 751 및 하스테로이 C의 3종류의 니켈 합금제 판재의 경화층의 두께는 각각 25㎛, 20㎛, 18㎛이고, 표면경도는 실시예 1과 같은 경도로 되어 있었다.As a result, the thicknesses of the hardened layers of three kinds of nickel alloy sheet materials of Inconel 600, Inconel 751 and Hasterloy C were 25 µm, 20 µm and 18 µm, respectively, and the surface hardness was the same as that of Example 1.

불소계 가스로서 F210Vol%+N290Vol%의 혼합가스를 이용했다.As the fluorine-based gas, a mixed gas of F 2 10 Vol% + N 2 90 Vol% was used.

그 이외는 실시예 1과 같은 3종류의 니켈 합금제 판재에 관해서 불화처리와 질화처리를 했다.Other than that, the fluorination treatment and the nitriding treatment were performed with respect to the three kinds of nickel alloy sheet materials as in Example 1.

그 결과, 처리후의 3종류의 판재의 표면에는 실시예 1과 같은 질화경화층이 형성되어 있고, 그 표면경도는 실시예 1과 같았다.As a result, the same nitride hardened layer was formed in the surface of three types of board | plate materials after a process, and the surface hardness was the same as that of Example 1.

상기와 같이 이 발명의 니켈 합금의 질화방법은 불소계 가스 분위기하에 있어서 니켈합금을 가열상태에서 유지하는 것에 의해 니켈 합금에 부착하고 있는 유기, 무기 이물의 제거를 행함과 동시에 니켈합금 표면의 산화피막을 불화막에 변환해서 그후 질화처리 한다.As described above, the nitriding method of the nickel alloy of the present invention removes organic and inorganic foreign matter adhering to the nickel alloy by maintaining the nickel alloy in a heated state in a fluorine-based gas atmosphere and simultaneously removes an oxide film on the surface of the nickel alloy. It is converted to a fluoride film and then nitrided.

이와 같이 니켈 합금표면의 산화피막을 불화막으로 변환하는 것에 의해 불화막의 작용에 의해 니켈 합금표면의 보호가 실시된다.By converting the oxide film on the nickel alloy surface into a fluoride film in this manner, the nickel alloy surface is protected by the action of the fluoride film.

즉, 불화처리로부터 질화처리 사이에 시간적인 경과가 있어도 상기 불화막의 존재에 의해서 니켈 합금의 표면이 보호된다.That is, the surface of the nickel alloy is protected by the presence of the fluoride film even if time passes between the fluorination treatment and the nitriding treatment.

따라서 니켈합금의 표면에 산화피막이 재차 발생하는 일이 없다.Therefore, the oxide film does not occur again on the surface of the nickel alloy.

그리고, 이와 같은 불화막은 「N」원자를 투과시킬 수 있기 때문에 질화처리시에 「N」원자가 니켈합금의 표면층에 소정의 두께, 균일한 상태에서 침투한다.And since such a fluoride film can permeate "N" atom, "N" atom penetrates into the surface layer of nickel alloy by predetermined thickness and uniformity at the time of nitriding process.

그 결과, 니켈합금의 모재의 강성을 높이는 일없이, 그 표면층만을 치밀하고 균질한 질화층을 소정의 깊이에서 형성할 수 있고 그 표면경도를 큰 폭으로 향상할 수 있게 된다.As a result, without increasing the rigidity of the base material of the nickel alloy, only the surface layer can be formed with a dense and homogeneous nitride layer at a predetermined depth, and the surface hardness can be greatly improved.

Claims (4)

불소계 가스 분위기하에 있어서 니켈을 25%이상 함유한 니켈합금을 550-600℃의 가열상태로 유지하고, 이어서 이것을 질화분위기하에서 가열상태로 유지하여 니켈합금의 표면층을 질화층으로 형성하는 것을 특징으로 하는 니켈합금의 질화방법.A nickel alloy containing 25% or more of nickel in a fluorine-based gas atmosphere is maintained in a heated state at 550-600 ° C., and then maintained in a heated state under a nitriding atmosphere to form a surface layer of the nickel alloy as a nitride layer. Nitriding Method of Nickel Alloy. 제1항에 있어서, 불소계 가스 분위기를 만드는 가스가 아래의 (a), (b) 및 (c) 중 1종류 이상과 이것을 희석하는 불활성가스로 구성되는 것을 특징으로 하는 니켈합금의 질화방법.The nickel alloy nitriding method according to claim 1, wherein the gas for producing a fluorine-based gas atmosphere is composed of one or more of the following (a), (b) and (c) and an inert gas which dilutes it. (a) NF3, BF3, CF4, HF, SF6, WF6, CHF3및 SiF4로 구성되는 군으로부터 선택된 1종류 이상의 불소화합물가스,(a) at least one fluorine compound gas selected from the group consisting of NF 3 , BF 3 , CF 4 , HF, SF 6 , WF 6 , CHF 3 and SiF 4 , (b) 상기 (a)의 불소화합물 가스를 열분해하여 생성한 F2가스, 및(b) a F 2 gas produced by pyrolysing the fluorine compound gas of (a), and (c) 미리 만들어진 F2가스(c) premade F 2 gas 제1항에 있어서, 질화분위기를 만드는 가스가 NH3에서만 이루어지는 단체가스, NH3와 RX가스와의 혼합가스, 또는 상기 단체가스, 혼합가스의 어느 하나에 불활성 가스를 혼합한 불활성 가스 혼합가스 또는 이 불활성 가스 혼합가스에 H2가스를 혼합한 혼합가스인 것을 특징으로 하는 니켈합금의 질화방법.The method of claim 1, wherein the group gas is gas to create a nitriding atmosphere consisting of only NH 3, mixed gas of NH 3 and RX gas, or the groups gas, an inert gas is mixed with an inert gas any one of mixed gas mixed gas, or A method of nitriding a nickel alloy, wherein the mixed gas is a mixture of H 2 gas and inert gas mixed gas. 제1항에 있어서, 질화분위기하에 니켈합금을 가열상태로 유지하고 니켈 합금을 500-700℃의 범위내에 가열해서 실시하는 것을 특징으로 하는 니켈합금의 질화방법.The nickel alloy nitriding method according to claim 1, wherein the nickel alloy is kept in a heated state under a nitriding atmosphere, and the nickel alloy is heated within a range of 500 to 700 ° C.
KR1019920004456A 1992-01-14 1992-03-17 Method for nitriding nickel alloy KR100247657B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP92-024763 1992-01-14
JP4024763A JP2501062B2 (en) 1992-01-14 1992-01-14 Nitriding method of nickel alloy

Publications (2)

Publication Number Publication Date
KR930016559A KR930016559A (en) 1993-08-26
KR100247657B1 true KR100247657B1 (en) 2000-04-01

Family

ID=12147193

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920004456A KR100247657B1 (en) 1992-01-14 1992-03-17 Method for nitriding nickel alloy

Country Status (6)

Country Link
EP (1) EP0551702B1 (en)
JP (1) JP2501062B2 (en)
KR (1) KR100247657B1 (en)
CN (1) CN1032264C (en)
DE (1) DE69225880T2 (en)
TW (1) TW198070B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445683A (en) * 1992-05-13 1995-08-29 Daidousanso Co., Ltd. Nickel alloy products with their surfaces nitrided and hardened
US5447181A (en) * 1993-12-07 1995-09-05 Daido Hoxan Inc. Loom guide bar blade with its surface nitrided for hardening
JP2881111B2 (en) * 1994-06-17 1999-04-12 大同ほくさん株式会社 Steel nitriding method
DE4429943C1 (en) * 1994-08-24 1996-02-22 Dornier Gmbh Lindauer Drop wire surface hardening
SE511082C2 (en) * 1996-12-20 1999-08-02 Btg Eclepens Sa coating Sheet
US6165597A (en) * 1998-08-12 2000-12-26 Swagelok Company Selective case hardening processes at low temperature
US6093303A (en) * 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
US6547888B1 (en) 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
JP4947932B2 (en) * 2005-07-26 2012-06-06 エア・ウォーターNv株式会社 Metal gas nitriding method
JP4881049B2 (en) * 2006-04-11 2012-02-22 新日本製鐵株式会社 Conductor roll for electroplating
JP2009197254A (en) * 2008-02-19 2009-09-03 Osaka Industrial Promotion Organization SURFACE TREATMENT METHOD FOR DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY, AND SURFACE-TREATED DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY
JP2010070844A (en) * 2009-02-24 2010-04-02 Air Water Inc Method for using heat treatment furnace, method of heat treatment, and heat treatment furnace
US8377234B2 (en) 2010-04-26 2013-02-19 King Fahd University Of Petroleum And Minerals Method of nitriding nickel-chromium-based superalloys
CN102330062B (en) * 2011-10-18 2013-01-02 沈阳大学 Preparation method of titanium/nickel nitride nano multilayer film
CN102943231B (en) * 2012-10-30 2015-07-08 江苏大学 Surface three-step nitridation method of aluminium and aluminium alloy
CN103074574A (en) * 2012-12-14 2013-05-01 四川大学 Low temperature salt-bath nitridation technology of Ni-based alloy workpiece
DE102013218303A1 (en) * 2013-09-12 2015-03-12 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger with turbine
CN106884134B (en) * 2015-12-16 2020-07-03 中国科学院上海应用物理研究所 Surface passivation treatment method of nickel-based alloy
CN105944746B (en) * 2016-05-18 2018-09-14 中国科学院理化技术研究所 Carbon-supported nickel nitride catalyst and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408168A1 (en) * 1989-07-10 1991-01-16 Daidousanso Co., Ltd. Method of pretreating metallic works and method of nitriding steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129124A (en) * 1959-12-30 1964-04-14 Gen Electric Process for producing interlaminar insulation for electrical apparatus
EP0352061B1 (en) * 1988-07-20 1994-09-21 Hashimoto Chemical Industries Co., Ltd. Metal material with film passivated by fluorination and apparatus composed of the metal material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408168A1 (en) * 1989-07-10 1991-01-16 Daidousanso Co., Ltd. Method of pretreating metallic works and method of nitriding steel

Also Published As

Publication number Publication date
EP0551702A1 (en) 1993-07-21
TW198070B (en) 1993-01-11
EP0551702B1 (en) 1998-06-10
JP2501062B2 (en) 1996-05-29
DE69225880D1 (en) 1998-07-16
JPH05195193A (en) 1993-08-03
CN1032264C (en) 1996-07-10
CN1074489A (en) 1993-07-21
KR930016559A (en) 1993-08-26
DE69225880T2 (en) 1998-12-17

Similar Documents

Publication Publication Date Title
KR100247657B1 (en) Method for nitriding nickel alloy
US5792282A (en) Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
EP0588458A1 (en) Method of nitriding austenitic stainless steel
KR100858598B1 (en) Method for activating surface of metal member
KR100247658B1 (en) Nickel alloy products
DE19526387A1 (en) Steel components with wear and oxidation resistant double coating
US5252145A (en) Method of nitriding nickel alloy
US11840765B2 (en) Nitriding process for carburizing ferrium steels
JPH0466657A (en) Corrosion-resistant aluminum alloy material and its manufacture
Sun et al. The formation and decomposition of nitrogen and carbon fct austenite in austenitic stainless steel
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JP2918765B2 (en) Nickel alloy products whose surface is nitrided and hardened
JP3064909B2 (en) Carburized hardware and its manufacturing method
US7291229B2 (en) Method of surface treatment of titanium metal
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
Zhu et al. Structure and properties of plasma nitrided austenitic stainless steel
Kovács et al. Effects of plasma nitriding on tempered steel
Sundararaman et al. Some observations on the ion nitriding behaviour of a type 316 stainless steel
JPS6274063A (en) Surface treatment of steel
US20020020476A1 (en) Method of surface treatment of titanium metal
JPH0426751A (en) Surface modification treatment for austenitic stainless steel
DE3243228C1 (en) Use of a corrosion-resistant oxide layer
CN106637046A (en) Removing method for passivation film on surface of round or cylindrical stainless steel part
CN117684120A (en) Stainless steel surface composite seepage layer and preparation method and application thereof
Calosso et al. Low-Temperature Nitriding of Precipitation Hardened Corrosion Resistant Tool Steels

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20091210

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee