JP2501062B2 - Nitriding method of nickel alloy - Google Patents

Nitriding method of nickel alloy

Info

Publication number
JP2501062B2
JP2501062B2 JP4024763A JP2476392A JP2501062B2 JP 2501062 B2 JP2501062 B2 JP 2501062B2 JP 4024763 A JP4024763 A JP 4024763A JP 2476392 A JP2476392 A JP 2476392A JP 2501062 B2 JP2501062 B2 JP 2501062B2
Authority
JP
Japan
Prior art keywords
gas
nickel alloy
nitriding
fluorine
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4024763A
Other languages
Japanese (ja)
Other versions
JPH05195193A (en
Inventor
正昭 田原
春男 仙北谷
憲三 北野
忠司 林田
輝男 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP4024763A priority Critical patent/JP2501062B2/en
Priority to US07/845,080 priority patent/US5252145A/en
Priority to DE69225880T priority patent/DE69225880T2/en
Priority to EP92302169A priority patent/EP0551702B1/en
Priority to KR1019920004456A priority patent/KR100247657B1/en
Priority to CN92102171A priority patent/CN1032264C/en
Priority to TW081102766A priority patent/TW198070B/zh
Publication of JPH05195193A publication Critical patent/JPH05195193A/en
Application granted granted Critical
Publication of JP2501062B2 publication Critical patent/JP2501062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ニッケル合金の表面
に窒化層を形成して表面硬度等を向上させる窒化方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitriding method for forming a nitride layer on the surface of a nickel alloy to improve the surface hardness and the like.

【0002】[0002]

【従来の技術】インコネル(Ni−Cr系), ハステロ
イ(Ni−Cr−Mo系),インコロイ等の高ニッケル
含有合金は、耐熱強度と耐食性に優れた合金として広く
使用されるようになってきている。最近では、このよう
なニッケル含有合金の耐摩耗性等の特性を向上させ、さ
らにその利用範囲を拡大しようとする要請が強まってき
ている。しかしながら、上記インコネル等のニッケル合
金に対し表面硬度を高める方法はいまだ確立されていな
い。わずかに押し出し硬化による母材強度の向上方法や
粉末素材を用いた超塑性材の研究がなされているにすぎ
ない。しかし、押し出し硬化による母材強度の向上方法
によれば合金全体の剛性が高くなることから合金の加工
性が悪くなる。また、粉末素材を用いた超塑性材では、
コストが極めて高くなることから実用化には問題があ
る。
2. Description of the Related Art High nickel content alloys such as Inconel (Ni-Cr type), Hastelloy (Ni-Cr-Mo type) and Incoloy have been widely used as alloys excellent in heat resistance and corrosion resistance. There is. Recently, there has been an increasing demand for improving the properties such as wear resistance of such nickel-containing alloys and further expanding the range of use thereof. However, a method for increasing the surface hardness of the nickel alloy such as Inconel has not been established yet. Only the method of improving the strength of the base material by slightly extruding hardening and the superplastic material using the powder material have been studied. However, according to the method of improving the strength of the base material by extrusion hardening, the rigidity of the entire alloy is increased, and thus the workability of the alloy is deteriorated. In addition, in the superplastic material using powder material,
There is a problem in practical use because the cost becomes extremely high.

【0003】ところで、金属材一般の表面硬化方法とし
ては、メッキ法,PVDのようなコーテング法,
窒化,硼化のような拡散浸透法が主流をなしている。し
かしながら、ニッケル合金に対しては、先に述べたよう
に、硬質クロムメッキやアルミナコーテングのようなコ
ーテング法が一部実用化されているにすぎない。これら
の方法では、コーテング法独特の品質管理の困難さや膜
厚の薄さにもとづく応用範囲の制約,さらには処理コス
トが高くなるという欠点がある。また、拡散浸透法とし
ての表面硬化法については、インコネル,ハステロイ合
金に対してグロー放電を利用したプラズマイオン窒化が
一部で試みられている。しかし、上記ニッケル合金に対
して、このようなプラズマイオン窒化を行っても、殆ど
窒化硬化層が形成されていない。仮に形成されたとして
も深さがわずか数ミクロンの超薄層が部分的に形成され
るにすぎない。したがって現状では、上記ニッケル合金
の窒化は殆どあきらめられており、実用化には程遠い。
By the way, as a general surface hardening method for metal materials, a plating method, a coating method such as PVD,
Diffusion and permeation methods such as nitriding and boration are predominant. However, for nickel alloys, as mentioned above, coating methods such as hard chrome plating and alumina coating are only partially put into practical use. These methods have drawbacks such as difficulty in quality control peculiar to the coating method, limitation of application range based on thin film thickness, and high processing cost. As for the surface hardening method as the diffusion and penetration method, plasma ion nitriding using glow discharge has been partially attempted for Inconel and Hastelloy alloys. However, even when such plasma ion nitriding is performed on the above nickel alloy, a nitriding hard layer is hardly formed. Even if formed, the ultra-thin layer having a depth of only a few microns is partially formed. Therefore, at present, nitriding of the above nickel alloys has almost been given up, and it is far from practical use.

【0004】この発明は、このような事情に鑑みなされ
たもので、ニッケル合金の表面に深い均一な窒化層を形
成することにより、ニッケル合金の表面硬度を高くする
ニッケル合金の窒化方法の提供をその目的とする。
The present invention has been made in view of the above circumstances, and provides a nitriding method of a nickel alloy for increasing the surface hardness of the nickel alloy by forming a deep uniform nitriding layer on the surface of the nickel alloy. To that end.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明のニッケル合金の窒化方法は、フッ素系ガ
ス雰囲気下においてニッケル合金を加熱状態で保持し、
ついで、これを窒化雰囲気下において加熱状態で保持し
てニッケル合金の表面に窒化層を形成するという構成を
とる。
In order to achieve the above object, the method for nitriding a nickel alloy according to the present invention is to hold a nickel alloy in a heated state in a fluorine-based gas atmosphere,
Then, this is held in a heated state in a nitriding atmosphere to form a nitride layer on the surface of the nickel alloy.

【0006】つぎに、この発明について詳しく説明す
る。
Next, the present invention will be described in detail.

【0007】この発明は、ニッケル合金を対象とし、こ
れをフッ素系ガス雰囲気下でフッ化処理した後、窒化雰
囲気下において窒化処理する。なお、ほとんどニッケル
合金中には、〔N〕原子と結合して、CrN,MoN,
TiN等の硬い金属間化合物を形成するCr,Mo,T
i等の有価元素が含有される場合が多い。
The present invention is directed to a nickel alloy, which is fluorinated in a fluorine-based gas atmosphere and then nitrided in a nitriding atmosphere. Almost all nickel alloys are bonded with [N] atoms to form CrN, MoN,
Cr, Mo, T forming a hard intermetallic compound such as TiN
In many cases, valuable elements such as i are contained.

【0008】この発明の対象となる上記ニッケル合金と
しては、ニッケルの含有量が25重量%(以下「%」と
略す)以上のニッケル合金が主として用いられる。例え
ばNi−Cr,Ni−Cr−Mo,Ni−Cr−Feが
あげられる。具体的には、インコネル系,ハステロイ
系,インコロイ系等の高ニッケル含有合金があげられ
る。なお、ニッケル含量が25%未満の合金であっても
この発明の処理対象となる。したがって、この発明でニ
ッケル合金とは、ニッケル含量が25%以上のものと2
5%未満のものの双方を含む。好適にはニッケル含量が
25%以上のものである。また、ニッケル合金の形状等
も問わない。また、加工の度合い等も問わない。ニッケ
ル合金からなる材料、ニッケル合金からなる中間製品,
ニッケル合金からなる完成品の全てが、この発明のニッ
ケル合金の範囲に含まれる。
As the above nickel alloy to which the present invention is applied, a nickel alloy having a nickel content of 25% by weight (hereinafter abbreviated as "%") or more is mainly used. Examples thereof include Ni-Cr, Ni-Cr-Mo, and Ni-Cr-Fe. Specific examples thereof include alloys having a high nickel content such as Inconel, Hastelloy, and Incoloy. Note that even alloys having a nickel content of less than 25% are subject to the treatment of the present invention. Therefore, in the present invention, a nickel alloy is a nickel alloy having a nickel content of 25% or more.
Includes both less than 5%. The nickel content is preferably 25% or more. Further, the shape of the nickel alloy does not matter. Moreover, the degree of processing does not matter. Material made of nickel alloy, intermediate product made of nickel alloy,
All nickel alloy finished products are within the scope of the nickel alloys of this invention.

【0009】上記ニッケル合金をその中に入れて処理す
るフッ素系ガス雰囲気に用いるフッ素系ガスとしては、
NF3 ,BF3 ,CF4 ,HF,SF6 ,C2 6 ,W
6,CHF3 ,SiF4 等からなるフッ素化合物ガス
があげられ、単独でもしくは併せ使用される。また、こ
れら以外に、分子内にFを含む他のフッ素化合物ガスも
上記フッ素系ガスとして用いることができる。また、こ
のようなフッ素化合物ガスを熱分解装置で熱分解させて
生成させたF2 ガスや予めつくられたF2 ガスも上記フ
ッ素系ガスとして用いられる。このようなフッ素化合物
ガスとF2 ガスとは、場合によって混合使用される。そ
して、上記フッ素化合物ガス,F2 ガス等のフッ素系ガ
スは、それのみで用いることもできるが、通常はN2
ス等の不活性ガスで希釈されて使用される。このような
希釈されたガスにおけるフッ素系ガス自身の濃度は、例
えば10000〜100000ppmであり、好ましく
は20000〜70000ppm、より好ましいのは3
0000〜50000ppmである。
As the fluorine-based gas used in the fluorine-based gas atmosphere in which the above nickel alloy is placed and treated,
NF 3 , BF 3 , CF 4 , HF, SF 6 , C 2 F 6 , W
Fluorine compound gas composed of F 6 , CHF 3 , SiF 4, etc. may be used alone or in combination. In addition to these, other fluorine compound gas containing F in the molecule can also be used as the fluorine-based gas. Further, F 2 gas was made F 2 gas or in advance was produced by pyrolysis in such fluorine compound gas pyrolysis apparatus is also used as the fluorine-based gas. Such fluorine compound gas and F 2 gas may be mixed and used depending on the case. The fluorine-based gas such as the fluorine compound gas or F 2 gas may be used alone, but it is usually diluted with an inert gas such as N 2 gas before use. The concentration of the fluorine-based gas itself in such a diluted gas is, for example, 10,000 to 100,000 ppm, preferably 20,000 to 70,000 ppm, and more preferably 3
It is 0000-50000 ppm.

【0010】この発明では、このような濃度のフッ素系
ガス雰囲気下に、上記ニッケル合金を入れ、加熱状態で
保持し、フッ化処理する。これがこの発明の最大の特徴
である。この場合、上記加熱保持は、ニッケル合金を、
例えば350〜550℃の温度に加熱保持することによ
って行われる。そして、フッ素系ガス雰囲気中での上記
ニッケル合金の保持時間は、合金の種類や合金の形状寸
法, 加熱温度等に応じて適当な時間を選べばよく、通常
は十数分ないし数十分に設定される。ニッケル合金をこ
のようなフッ素ガス雰囲気下で処理することにより、従
来ではニッケル合金中に浸透できなかった「N」原子が
浸透できるようになる。この理由については現段階では
充分に明らかではないが、およそ、つぎのように考えら
れる。すなわち、ニッケル合金の表面には、窒化作用を
奏する「N」原子の浸透を阻害するNiO,Cr2 3
等の酸化膜が形成されている。この酸化膜が形成された
ニッケル合金を上記のようにフッ素系ガス雰囲気下にお
いて加熱状態で保持すると、上記NiOの酸化膜がNi
2 のフッ化膜に変換する。このNiF2 のフッ化膜
は、NiOの酸化膜に比べて、窒化作用を有する「N」
原子の浸透が容易となることから、ニッケル合金の表面
は上記フッ化処理によって「N」原子の浸透の容易な表
面状態に形成される。したがって、このような「N」原
子の浸透の容易な表面状態となっているニッケル合金
を、下記に示すように、窒化雰囲気下において加熱状態
で保持すると、窒化ガス中の「N」原子がニッケル合金
中に一定の深さで均一に浸透するため、深く均一な窒化
層が形成されるようになると考えられる。
In the present invention, the above nickel alloy is placed in a fluorine-based gas atmosphere having such a concentration, and the nickel alloy is held in a heated state and fluorinated. This is the greatest feature of this invention. In this case, the heating and holding, nickel alloy,
For example, it is performed by heating and holding at a temperature of 350 to 550 ° C. The holding time of the nickel alloy in the fluorine-based gas atmosphere may be selected appropriately depending on the type of alloy, the shape and size of the alloy, the heating temperature, etc. Is set. By treating the nickel alloy in such a fluorine gas atmosphere, it becomes possible to penetrate "N" atoms which could not penetrate into the nickel alloy in the past. The reason for this is not clear at this stage, but it can be considered as follows. That is, on the surface of the nickel alloy, NiO, Cr 2 O 3 that inhibits the penetration of “N” atoms that exert a nitriding action
Etc. oxide film is formed. When the nickel alloy on which the oxide film is formed is held in a heated state in the fluorine-based gas atmosphere as described above, the NiO oxide film becomes Ni.
Converted to F 2 fluoride film. The NiF 2 fluoride film has a nitriding action of “N” as compared with the NiO oxide film.
Since the atoms easily penetrate, the surface of the nickel alloy is formed into a surface state in which the “N” atoms easily penetrate by the fluorination treatment. Therefore, when a nickel alloy having such a surface state that "N" atoms easily penetrate is held in a heated state in a nitriding atmosphere, as shown below, the "N" atoms in the nitriding gas become nickel. It is considered that a deep and uniform nitride layer is formed because the alloy uniformly penetrates into the alloy at a constant depth.

【0011】上記のように、フッ素処理により「N」原
子の浸透しやすい状態となっているニッケル合金は、つ
ぎに窒化雰囲気下において加熱状態で保持され窒化処理
される。この場合、窒化雰囲気をつくる窒化ガスとして
は、NH3 のみからなる単体ガスが用いられ、またNH
3 と炭素源を有するガス(例えばRXガス) との混合ガ
スも用いられる。両者を混合使用することも行われる。
通常は、上記単体ガス,混合ガスにN2 等の不活性ガス
を混合して使用される。場合によっては、これらのガス
にH2 ガスを混合して使用することも行われる。
As described above, the nickel alloy in which the "N" atoms are easily permeated by the fluorine treatment is then held in a heated state in a nitriding atmosphere and subjected to the nitriding treatment. In this case, as the nitriding gas for forming the nitriding atmosphere, a single gas consisting of only NH 3 is used.
A mixed gas of 3 and a gas having a carbon source (for example, RX gas) is also used. It is also possible to use a mixture of both.
Usually, an inert gas such as N 2 is mixed with the above single gas or mixed gas for use. In some cases, H 2 gas may be mixed with these gases and used.

【0012】このような窒化雰囲気下において、上記フ
ッ化処理のなされたニッケル合金が加熱状態で保持され
る。この場合加熱状態での保持は、通常500〜700
℃に設定され、処理時間は3〜6時間に設定される。こ
の窒化処理により上記ニッケル合金の表面層が緻密で均
一な窒化層(全体が一層からなる)に形成される。これ
によりニッケル合金の母材の硬度がHv=280〜38
0であるに対して、表面硬度はHv=800〜1100
にも達するようになる。この時形成される硬化層の厚さ
は、基本的に窒化温度と窒化処理時間に依存している
が、500℃以下では窒化層が形成されにくくなり、ま
た650℃以上ではフッ化膜が破壊され、Niが酸化さ
れ易くなり、窒化層が不均一となる傾向がみられる。
In such a nitriding atmosphere, the fluorinated nickel alloy is held in a heated state. In this case, the holding in the heated state is usually 500 to 700.
The temperature is set to 0 ° C. and the processing time is set to 3 to 6 hours. By this nitriding treatment, the surface layer of the nickel alloy is formed into a dense and uniform nitride layer (the whole layer is composed of one layer). Thereby, the hardness of the nickel alloy base material is Hv = 280-38.
On the other hand, the surface hardness is Hv = 800 to 1100.
Will also reach. The thickness of the hardened layer formed at this time basically depends on the nitriding temperature and the nitriding treatment time, but it is difficult to form the nitride layer at 500 ° C or lower, and the fluoride film is destroyed at 650 ° C or higher. As a result, Ni tends to be easily oxidized and the nitride layer tends to be nonuniform.

【0013】一方フッ化温度が、通常、400℃以下で
は充分なフッ化層が形成されず、フッ化温度600℃以
上ではフッ化反応が激しくなりすぎてマッフル炉の炉材
の消耗が激しくなるため工業的プロセスとして適切では
ない。また、窒化層形成上、フッ化温度と窒化温度との
差はできるだけ小さいことが好ましい。例えば、フッ化
した後、一旦冷却し、ついで窒化しても充分な窒化層が
形成されなくなる。
On the other hand, when the fluorination temperature is usually 400 ° C. or lower, a sufficient fluorinated layer is not formed, and when the fluorination temperature is 600 ° C. or higher, the fluorination reaction becomes too vigorous and the consumption of furnace material in the muffle furnace becomes severe. Therefore, it is not suitable as an industrial process. Further, in forming the nitride layer, it is preferable that the difference between the fluorination temperature and the nitriding temperature is as small as possible. For example, a sufficient nitride layer cannot be formed even if it is cooled once after being fluorinated and then nitrided.

【0014】上記のようなフッ化処理および窒化処理
は、例えば、図1に示すような金属製のマッフル炉で行
われる。すなわち、このマッフル炉内において、まずフ
ッ化処理をし、ついで窒化処理を行う。図1において、
1はマッフル炉、2はその外殻、3はヒーター、4は内
容器、5はガス導入管、6は排気管、7はモーター、8
はフアン、11は金網製かご、13は真空ポンプ、14
は排ガス処理装置、15,16はボンベ、17は流量
計、18はバルブである。この炉内にニッケル合金10
を入れ、NF3 等のフッ素系ガスを炉1内に導入して加
熱しながらフッ化処理をし、ついで排気管6からそのガ
スを真空ポンプ13の作用で引き出し排ガス処理装置1
4内で無毒化して外部に放出する。つぎに、ボンベ15
を流路に接続し炉1内に窒化ガスを導入して窒化処理を
行い、その後、排気管6、排ガス処理装置14を経由し
てガスを外部に排出する。この一連の作業によりフッ化
処理と窒化処理がなされる。また、図1の装置に代え
て、図2の装置を用いることも可能である。この装置
は、図示の左側がフッ化処理室になっており、右側が窒
化処理室になっている。図において、2′は金属製のか
ご、3′はヒータ、5′は排ガス配管、6′,7′は開
閉蓋、11′は土台、21は断熱壁を持つ炉本体、22
は上下に動く隔壁であり、この隔壁22によって炉本体
21内が、左右の2室23,24に分割されている。2
3はフッ化処理室に、24は窒化処理室に形成されてい
る。25は2本のレールからなる架台であり、ニッケル
合金の入った金属製のカゴ2′を乗せ、このカゴ2′を
レールの上を滑らせ、室23,24を行き来できるよう
になっている。10′は上記架台25の脚である。26
はフッ化処理室にフッ素系ガスを導入するガス流入管、
27は温度センサー、28は窒化ガス流入管である。な
お、上記金属製のマッフル炉1の材質はステンレス材で
はなく、高ニッケル系の耐熱合金が望ましい。
The above fluorination treatment and nitriding treatment are carried out, for example, in a metal muffle furnace as shown in FIG. That is, in this muffle furnace, fluorination treatment is first performed, and then nitriding treatment is performed. In FIG.
1 is a muffle furnace, 2 is its outer shell, 3 is a heater, 4 is an inner container, 5 is a gas introduction pipe, 6 is an exhaust pipe, 7 is a motor, 8
Is a fan, 11 is a cage made of wire mesh, 13 is a vacuum pump, 14
Is an exhaust gas treatment device, 15 and 16 are cylinders, 17 is a flow meter, and 18 is a valve. In this furnace, nickel alloy 10
Fluorine gas such as NF 3 is introduced into the furnace 1 to perform fluorination while heating, and then the gas is extracted from the exhaust pipe 6 by the action of the vacuum pump 13
It is detoxified in 4 and released to the outside. Next, the cylinder 15
Is connected to a flow path to introduce a nitriding gas into the furnace 1 for nitriding treatment, and then the gas is discharged to the outside via the exhaust pipe 6 and the exhaust gas treatment device 14. A fluorination process and a nitriding process are performed by this series of operations. Further, the device of FIG. 2 can be used instead of the device of FIG. This apparatus has a fluorination treatment chamber on the left side and a nitriding treatment chamber on the right side. In the figure, 2'is a metal basket, 3'is a heater, 5'is an exhaust gas pipe, 6'and 7'is an opening / closing lid, 11 'is a base, 21 is a furnace body having a heat insulating wall, 22
Is a partition wall that moves up and down, and the partition wall 22 divides the inside of the furnace body 21 into left and right two chambers 23 and 24. Two
3 is formed in the fluorination treatment chamber, and 24 is formed in the nitriding treatment chamber. Reference numeral 25 is a pedestal composed of two rails, on which a metal basket 2'containing a nickel alloy is placed, and the basket 2'can be slid on the rails to move between the chambers 23 and 24. . Reference numeral 10 'is a leg of the mount 25. 26
Is a gas inflow pipe for introducing a fluorine-based gas into the fluorination chamber,
Reference numeral 27 is a temperature sensor, and 28 is a nitriding gas inflow pipe. The metal muffle furnace 1 is preferably made of a high nickel heat resistant alloy, not a stainless steel.

【0015】この装置は、連続式の装置であり、窒化処
理室24で窒化処理を行う際の加熱でフッ化処理室23
内を昇温させ、その状態でフッ化処理室23内にニッケ
ル合金を導入してフッ化処理し、フッ化処理室23のガ
スを排気した後、隔壁22を上げてニッケル合金を金属
製かご2′ごと窒化処理室24内に入れて隔壁22を下
げる。ついで、その状態で窒化処理を行うということに
より、フッ化処理と窒化処理を連続して行うようになっ
ている。
This apparatus is a continuous type apparatus and is heated by the nitriding treatment in the nitriding treatment chamber 24 to heat the fluorination treatment chamber 23.
The inside is heated, and in that state, a nickel alloy is introduced into the fluorination chamber 23 to perform the fluorination treatment, and the gas in the fluorination treatment chamber 23 is exhausted. 2'is put into the nitriding chamber 24 and the partition wall 22 is lowered. Then, the nitriding treatment is performed in this state, so that the fluorination treatment and the nitriding treatment are continuously performed.

【0016】特に、上記フッ化処理を行うにあたってフ
ッ素系ガスとして、NF3 を用いると好適である。すな
わち、NF3 は常温で反応性がなく、ガス状で取り扱い
易い物質であることから、作業も容易で、また排ガスの
無毒化も容易になる。
In particular, it is preferable to use NF 3 as the fluorine-based gas for performing the above fluorination treatment. That is, since NF 3 is a substance that is not reactive at room temperature and is in a gaseous state and is easy to handle, the work is easy and the exhaust gas is easily detoxified.

【0017】[0017]

【発明の効果】以上のように、この発明のニッケル合金
の窒化方法は、フッ素系ガス雰囲気下においてニッケル
合金を加熱状態で保持することにより、ニッケル合金に
付着している有機,無機異物の除去を行うと同時に、ニ
ッケル合金の表面の酸化皮膜をフッ化膜に変換し、その
後窒化処理する。このように、ニッケル合金表面の酸化
皮膜をフッ化膜に変換することにより、フッ化膜の作用
によりニッケル合金表面の保護が行われる。すなわち、
フッ化処理から窒化処理の間に時間的な経過があって
も、上記フッ化膜の存在によってニッケル合金の表面が
保護される。したがって、ニッケル合金の表面に酸化皮
膜が再び生ずることがない。そして、このようなフッ化
膜は、「N」原子を透過させうることから、窒化処理時
に「N」原子がニッケル合金の表面層に所定の深さ,均
一な状態で浸透する。その結果、ニッケル合金の母材の
剛性を高めることなく、その表面層のみに緻密で均質な
窒化層を所定の深さで形成することができ、その表面硬
度を大幅に向上しうるようになる。
As described above, according to the method for nitriding a nickel alloy of the present invention, by holding the nickel alloy in a heated state in a fluorine-based gas atmosphere, removal of organic and inorganic foreign matters adhering to the nickel alloy is achieved. At the same time, the oxide film on the surface of the nickel alloy is converted into a fluoride film, and then nitriding treatment is performed. In this way, by converting the oxide film on the surface of the nickel alloy into the fluoride film, the function of the fluoride film protects the surface of the nickel alloy. That is,
Even if there is a lapse of time between the fluorination treatment and the nitriding treatment, the presence of the fluoride film protects the surface of the nickel alloy. Therefore, an oxide film does not reappear on the surface of the nickel alloy. Since such a fluorinated film can transmit “N” atoms, the “N” atoms permeate the surface layer of the nickel alloy at a predetermined depth and in a uniform state during the nitriding treatment. As a result, a dense and uniform nitride layer can be formed only in the surface layer of the nickel alloy at a predetermined depth without increasing the rigidity of the base material, and the surface hardness can be significantly improved. .

【0018】つぎに、実施例について説明する。Next, examples will be described.

【0019】[0019]

【実施例1】インコネル600(Ni:76,Cr:1
6,Fe:8)およびインコネル751(Ni:73,
Cr16,Ti:2.5)ならびにハステロイC(N
i:56,Cr:16,Mo:7)からなる3種類のニ
ッケル合金製板材を用意し、これを図1に示す炉内に入
れて、炉内を充分に真空パージした後、550℃に昇温
した。そして、その状態でフッ素系ガス(NF3 10V
ol%+N2 90Vol%)を入れて炉内を大気圧の状
態にし、その状態で30分間保持した。つぎに、上記フ
ッ素系ガスを炉内から排出した後、窒化ガス(NH3
0Vol%+N225Vol%+H2 25Vol%)を
導入し、炉内を570℃まで昇温させ、その状態で3時
間保持して窒化した。このようにして窒化処理のなされ
たインコネル600,インコネル751,ハステロイC
の3種類のニッケル合金製の板材の表面には、図3,図
4,図5に示すように、それぞれ厚み15μm,12μ
m,10μmの窒化層からなる表面硬化層Bが形成され
ていた。Aはニッケル合金の母材である。そして、これ
らの表面硬化層Bの表面硬度はいずれもHv=800〜
1000であった。
Example 1 Inconel 600 (Ni: 76, Cr: 1
6, Fe: 8) and Inconel 751 (Ni: 73,
Cr16, Ti: 2.5) and Hastelloy C (N
i: 56, Cr: 16, Mo: 7) three kinds of nickel alloy plate materials are prepared, placed in the furnace shown in FIG. 1, and the inside of the furnace is sufficiently vacuum-purged, and then at 550 ° C. The temperature was raised. Then, in that state, a fluorine-based gas (NF 3 10V
ol% + N 2 90Vol%) Put the furnace in a state of atmospheric pressure was maintained in that state for 30 minutes. Next, after discharging the fluorine-based gas from the furnace, the nitriding gas (NH 3 5
0 Vol% + N 2 25 Vol% + H 2 25 Vol%) was introduced, the temperature inside the furnace was raised to 570 ° C., and the state was maintained for 3 hours for nitriding. Inconel 600, Inconel 751, and Hastelloy C thus nitrided
As shown in FIGS. 3, 4, and 5, the surfaces of the three types of nickel alloy plate materials of 15 μm and 12 μm, respectively, are formed.
The surface hardened layer B made of a nitrided layer having a thickness of 10 μm was formed. A is a base material of nickel alloy. And the surface hardness of these surface hardened layers B is Hv = 800-
It was 1000.

【0020】[0020]

【実施例2】インコネル600(Ni:76,Cr:1
6,Fe:8)およびインコネル751(Ni:73,
Cr16,Ti:2.5)ならびにハステロイC(N
i:56,Cr:16,Mo:7)からなる3種類のニ
ッケル合金製板材を用意し、これを図1に示す炉内に入
れて、炉内を充分に真空パージした後、350℃に昇温
した。そして、その状態でフッ素系ガス(NF3 10V
ol%+N2 90Vol%)を入れて炉内を大気圧の状
態にし、その状態で30分間保持した。つぎに、上記フ
ッ素系ガスを炉内から排出した後、窒化ガス(NH3
0Vol%+RX50Vol%)を導入し、炉内を53
0℃まで昇温させ、その状態で5時間保持して窒化し
た。このようにして窒化処理のなされたインコネル60
0,インコネル751,ハステロイCの3種類のニッケ
ル合金製の板材の表面には、それぞれ厚み12μm,1
2μm,10μmの窒化層からなる表面硬化層が形成さ
れていた。そして、これらの表面硬化層の表面硬度はい
ずれもHv=650〜1050であった。
Example 2 Inconel 600 (Ni: 76, Cr: 1
6, Fe: 8) and Inconel 751 (Ni: 73,
Cr16, Ti: 2.5) and Hastelloy C (N
i: 56, Cr: 16, Mo: 7) three kinds of nickel alloy plate materials are prepared, put into the furnace shown in FIG. 1, and after the inside of the furnace is sufficiently vacuum-purged, the temperature is raised to 350 ° C. The temperature was raised. Then, in that state, a fluorine-based gas (NF 3 10V
ol% + N 2 90Vol%) Put the furnace in a state of atmospheric pressure was maintained in that state for 30 minutes. Next, after discharging the fluorine-based gas from the furnace, the nitriding gas (NH 3 5
0 Vol% + RX50 Vol%) is introduced and the inside of the furnace is set to 53
The temperature was raised to 0 ° C., and the state was maintained for 5 hours for nitriding. Inconel 60 thus nitrided
0, Inconel 751, Hastelloy C, and the thickness of 12 μm, 1
A surface-hardened layer composed of a nitride layer having a thickness of 2 μm and 10 μm was formed. The surface hardness of each of these surface-hardened layers was Hv = 650 to 1050.

【0021】[0021]

【実施例3】インコネル600(Ni:76,Cr:1
6,Fe:8),インコネル751(Ni:73,Cr
16,Ti:2.5)ならびにハステロイC(Ni:5
6,Cr:16,Mo:7)からなる3種類のニッケル
合金製板材を対象とし、実施例1と同様にしてフッ化処
理をした。つぎに、窒化ガスとして、NH3 50Vol
%+N2 50Vol%の混合ガスを用い、温度620℃
で窒化処理を3時間行った。そして、窒化処理を終えた
ものに、さらに実施例1と同様のフッ素系ガスを用い6
20℃で3時間フッ化処理をし、さらに上記と同様の窒
化ガスを用い620℃で3時間窒化処理を行った。この
ようにしてフッ化処理と窒化処理を2回づつ行った3種
類のニッケル合金について、その表面に形成された窒化
層からなる硬化層の厚みを測定した。その結果、インコ
ネル600,インコネル751,ハステロイCの3種類
のニッケル合金製板材の硬化層の厚みは、それぞれ25
μm, 20μm, 18μmであり、表面硬度は実施例1
と同様の硬度になっていた。
Example 3 Inconel 600 (Ni: 76, Cr: 1
6, Fe: 8), Inconel 751 (Ni: 73, Cr
16, Ti: 2.5) and Hastelloy C (Ni: 5)
Fluorination treatment was carried out in the same manner as in Example 1 with respect to three kinds of nickel alloy plate materials composed of 6, Cr: 16, and Mo: 7). Next, as the nitriding gas, NH 3 50 Vol
% + N 2 50 Vol% mixed gas, temperature 620 ° C.
The nitriding treatment was performed for 3 hours. Then, the same fluorinated gas as that used in Example 1 was used for the nitriding treatment.
Fluorination treatment was performed at 20 ° C. for 3 hours, and further nitriding treatment was performed at 620 ° C. for 3 hours using the same nitriding gas as described above. In this way, the thickness of the hardened layer formed of the nitrided layer formed on the surface of each of the three kinds of nickel alloys subjected to the fluorination treatment and the nitriding treatment twice was measured. As a result, the thickness of the hardened layer of each of the three types of nickel alloy plate materials of Inconel 600, Inconel 751, and Hastelloy C is 25.
μm, 20 μm, 18 μm, and the surface hardness of Example 1
It had the same hardness as.

【0022】[0022]

【実施例4】フッ素系ガスとして、F2 10Vol%+
2 90Vol%の混合ガスを用いた。それ以外は実施
例1と同様の3種類のニッケル合金製板材についてフッ
化処理と窒化処理を行った。その結果、処理後の3種類
の板材の表面には実施例1と同様の窒化硬化層が形成さ
れており、その表面硬度は実施例1と同様であった。
Example 4 As a fluorine-based gas, F 2 10 Vol% +
A mixed gas of 90 Vol% N 2 was used. Otherwise, the same three types of nickel alloy plate materials as in Example 1 were subjected to fluorination treatment and nitriding treatment. As a result, the nitriding hardened layer similar to that in Example 1 was formed on the surfaces of the three types of plate materials after the treatment, and the surface hardness was similar to that in Example 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の窒化処理に用いる炉構成図である。FIG. 1 is a configuration diagram of a furnace used for nitriding treatment of the present invention.

【図2】他の炉の構成図である。FIG. 2 is a configuration diagram of another furnace.

【図3】窒化処理のなされたニッケル合金製板(インコ
ネル600)の拡大断面図である。
FIG. 3 is an enlarged cross-sectional view of a nickel alloy plate (Inconel 600) subjected to a nitriding treatment.

【図4】窒化処理のなされたニッケル合金板(インコネ
ル751)の拡大断面図である。
FIG. 4 is an enlarged cross-sectional view of a nickel alloy plate (Inconel 751) that has been subjected to a nitriding treatment.

【図5】窒化処理のなされたニッケル合金板(ハステロ
イC)の拡大断面図である。
FIG. 5 is an enlarged cross-sectional view of a nickel alloy plate (Hastelloy C) subjected to nitriding treatment.

【符号の説明】[Explanation of symbols]

A ニッケル合金母材 B 表面硬化層 A Nickel alloy base material B Surface hardened layer

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ素系ガス雰囲気下においてニッケル
合金を加熱状態で保持し、ついで、これを窒化雰囲気下
において加熱状態で保持してニッケル合金の表面層を窒
化層に形成することを特徴とするニッケル合金の窒化方
法。
1. A nickel alloy is kept in a heated state in a fluorine-based gas atmosphere, and then kept in a heated state in a nitriding atmosphere to form a surface layer of the nickel alloy as a nitride layer. Nitriding method for nickel alloys.
【請求項2】 フッ素系ガス雰囲気をつくるガスが、下
記の(a),(b)および(c)の少なくとも一種と、
これを希釈する不活性ガスとからなる請求項1記載のニ
ッケル合金の窒化方法。 (a)NF3 ,BF3 ,CF4 ,HF,SF6 ,C2
6 ,WF6 ,CHF3 およびSiF4 からなる群から選
択された少なくとも一種のフッ素化合物ガス。 (b)上記(a)のフッ素化合物ガスを熱分解して生成
したF2 ガス。 (c)予めつくられたF2 ガス。
2. A gas that creates a fluorine-based gas atmosphere is at least one of the following (a), (b) and (c):
The method for nitriding a nickel alloy according to claim 1, comprising an inert gas for diluting the nickel alloy. (A) NF 3 , BF 3 , CF 4 , HF, SF 6 , C 2 F
At least one fluorine compound gas selected from the group consisting of 6 , WF 6 , CHF 3 and SiF 4 . (B) F 2 gas produced by thermally decomposing the fluorine compound gas of (a) above. (C) Pre-made F 2 gas.
【請求項3】 フッ素系ガス雰囲気下におけるニッケル
合金の加熱状態での保持が、ニッケル合金を350〜6
00℃の範囲内に加熱して行われる請求項1記載のニッ
ケル合金の窒化方法。
3. Maintaining a nickel alloy in a heated state under a fluorine-based gas atmosphere is performed by using a nickel alloy of 350 to 6
The method for nitriding a nickel alloy according to claim 1, which is carried out by heating within a range of 00 ° C.
【請求項4】 窒化雰囲気をつくるガスが、NH3 のみ
からなる単体ガス,NH3 とRXガスとの混合ガス、も
しくは上記単体ガス,混合ガスのいずれか一つに不活性
ガスを混合した不活性ガス混合ガスまたはこの不活性ガ
ス混合ガスにH2 ガスを混合した混合ガスである請求項
1記載のニッケル合金の窒化方法。
4. A gas making nitriding atmosphere, mixed single gas consisting only of NH 3, a mixed gas of NH 3 and RX gas, or the simple gas, any one inert gas in the mixed gas- 2. The method for nitriding a nickel alloy according to claim 1, wherein the active gas mixed gas or a mixed gas obtained by mixing the inert gas mixed gas with H 2 gas.
【請求項5】 窒化雰囲気下におけるニッケル合金の加
熱状態での保持が、ニッケル合金を500〜700℃の
範囲内に加熱して行われる請求項1記載のニッケル合金
の窒化方法。
5. The method for nitriding a nickel alloy according to claim 1, wherein the nickel alloy is held in a heated state in a nitriding atmosphere by heating the nickel alloy within a range of 500 to 700 ° C.
JP4024763A 1989-07-10 1992-01-14 Nitriding method of nickel alloy Expired - Fee Related JP2501062B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4024763A JP2501062B2 (en) 1992-01-14 1992-01-14 Nitriding method of nickel alloy
US07/845,080 US5252145A (en) 1989-07-10 1992-03-03 Method of nitriding nickel alloy
EP92302169A EP0551702B1 (en) 1992-01-14 1992-03-13 Method of nitriding nickel alloy
DE69225880T DE69225880T2 (en) 1992-01-14 1992-03-13 Process for nitriding a nickel alloy
KR1019920004456A KR100247657B1 (en) 1992-01-14 1992-03-17 Method for nitriding nickel alloy
CN92102171A CN1032264C (en) 1992-01-14 1992-03-30 Method of nitriding nickel alloy
TW081102766A TW198070B (en) 1992-01-14 1992-04-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4024763A JP2501062B2 (en) 1992-01-14 1992-01-14 Nitriding method of nickel alloy

Publications (2)

Publication Number Publication Date
JPH05195193A JPH05195193A (en) 1993-08-03
JP2501062B2 true JP2501062B2 (en) 1996-05-29

Family

ID=12147193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4024763A Expired - Fee Related JP2501062B2 (en) 1989-07-10 1992-01-14 Nitriding method of nickel alloy

Country Status (6)

Country Link
EP (1) EP0551702B1 (en)
JP (1) JP2501062B2 (en)
KR (1) KR100247657B1 (en)
CN (1) CN1032264C (en)
DE (1) DE69225880T2 (en)
TW (1) TW198070B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445683A (en) * 1992-05-13 1995-08-29 Daidousanso Co., Ltd. Nickel alloy products with their surfaces nitrided and hardened
US5447181A (en) * 1993-12-07 1995-09-05 Daido Hoxan Inc. Loom guide bar blade with its surface nitrided for hardening
JP2881111B2 (en) * 1994-06-17 1999-04-12 大同ほくさん株式会社 Steel nitriding method
DE4429943C1 (en) * 1994-08-24 1996-02-22 Dornier Gmbh Lindauer Drop wire surface hardening
SE511082C2 (en) * 1996-12-20 1999-08-02 Btg Eclepens Sa coating Sheet
US6165597A (en) * 1998-08-12 2000-12-26 Swagelok Company Selective case hardening processes at low temperature
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
US6547888B1 (en) 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
JP4947932B2 (en) * 2005-07-26 2012-06-06 エア・ウォーターNv株式会社 Metal gas nitriding method
JP4881049B2 (en) * 2006-04-11 2012-02-22 新日本製鐵株式会社 Conductor roll for electroplating
JP2009197254A (en) * 2008-02-19 2009-09-03 Osaka Industrial Promotion Organization SURFACE TREATMENT METHOD FOR DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY, AND SURFACE-TREATED DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY
JP2010070844A (en) * 2009-02-24 2010-04-02 Air Water Inc Method for using heat treatment furnace, method of heat treatment, and heat treatment furnace
US8377234B2 (en) 2010-04-26 2013-02-19 King Fahd University Of Petroleum And Minerals Method of nitriding nickel-chromium-based superalloys
CN102330062B (en) * 2011-10-18 2013-01-02 沈阳大学 Preparation method of titanium/nickel nitride nano multilayer film
CN102943231B (en) * 2012-10-30 2015-07-08 江苏大学 Surface three-step nitridation method of aluminium and aluminium alloy
CN103074574A (en) * 2012-12-14 2013-05-01 四川大学 Low temperature salt-bath nitridation technology of Ni-based alloy workpiece
DE102013218303A1 (en) * 2013-09-12 2015-03-12 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger with turbine
CN106884134B (en) * 2015-12-16 2020-07-03 中国科学院上海应用物理研究所 Surface passivation treatment method of nickel-based alloy
CN105944746B (en) * 2016-05-18 2018-09-14 中国科学院理化技术研究所 A kind of carbon load nitridation Raney nickel and its preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129124A (en) * 1959-12-30 1964-04-14 Gen Electric Process for producing interlaminar insulation for electrical apparatus
DE68918365T2 (en) * 1988-07-20 1995-05-04 Hashimoto Chemical Ind Co Metallic material with film passivated by fluorination and system consisting of the metallic material.
EP0408168B1 (en) * 1989-07-10 1994-06-08 Daidousanso Co., Ltd. Method of pretreating metallic works and method of nitriding steel

Also Published As

Publication number Publication date
KR930016559A (en) 1993-08-26
CN1074489A (en) 1993-07-21
DE69225880D1 (en) 1998-07-16
KR100247657B1 (en) 2000-04-01
EP0551702B1 (en) 1998-06-10
CN1032264C (en) 1996-07-10
EP0551702A1 (en) 1993-07-21
TW198070B (en) 1993-01-11
JPH05195193A (en) 1993-08-03
DE69225880T2 (en) 1998-12-17

Similar Documents

Publication Publication Date Title
JP2501062B2 (en) Nitriding method of nickel alloy
JP2501925B2 (en) Pretreatment method for metal materials
JP3161644B2 (en) Method of nitriding austenitic stainless steel products
US5252145A (en) Method of nitriding nickel alloy
JP2010121217A (en) Low temperature case hardening process
EP1707646B1 (en) Method for activating surface of metal member
JP2011195947A (en) Color austenitic stainless steel material having corrosion resistance and high hardness and method of manufacturing the same
KR100245361B1 (en) Method and apparatus for producing an anticorrosion layer and an abrasion resistant layer on iron-basis material
US5372655A (en) Method for the treatment of alloy steels and refractory metals
US5254181A (en) Method of nitriding steel utilizing fluoriding
KR100247658B1 (en) Nickel alloy products
EP0010484B1 (en) Improvement in the chromising of steel in the gaseous phase
JP3064907B2 (en) Carburizing hardening fasteners and their manufacturing method
FR2822851A1 (en) Formation of a chromium rich layer on the surface of a nickel based alloy component containing chromium by heating to chromium oxidising temperature and exposing it to a controlled oxidising gas mixture
US6090223A (en) Chromium nitride film and method for forming the same
JPH0466657A (en) Corrosion-resistant aluminum alloy material and its manufacture
CN1032375C (en) Steel nitriding method
JPH0790541A (en) Mixed gas penetration modifying method and device therefor
JP3114973B1 (en) Gas nitriding method for maraging steel
JP3064908B2 (en) Carburized and hardened watch parts or accessories and their methods of manufacture
JP3064909B2 (en) Carburized hardware and its manufacturing method
JP2918765B2 (en) Nickel alloy products whose surface is nitrided and hardened
JPS60165370A (en) Nitriding treatment of stainless steel
FR2483468A2 (en) IMPROVEMENT IN THE CHROMIZATION OF STEELS BY GAS
JPS6362862A (en) Ceramic coated ti and ti alloy product and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees