KR100244630B1 - The manufacturing method for steel strip and same product with coil unity - Google Patents

The manufacturing method for steel strip and same product with coil unity Download PDF

Info

Publication number
KR100244630B1
KR100244630B1 KR1019950031683A KR19950031683A KR100244630B1 KR 100244630 B1 KR100244630 B1 KR 100244630B1 KR 1019950031683 A KR1019950031683 A KR 1019950031683A KR 19950031683 A KR19950031683 A KR 19950031683A KR 100244630 B1 KR100244630 B1 KR 100244630B1
Authority
KR
South Korea
Prior art keywords
steel
less
coil
temperature range
temperature
Prior art date
Application number
KR1019950031683A
Other languages
Korean (ko)
Other versions
KR970015774A (en
Inventor
정우창
황현규
장삼규
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950031683A priority Critical patent/KR100244630B1/en
Publication of KR970015774A publication Critical patent/KR970015774A/en
Application granted granted Critical
Publication of KR100244630B1 publication Critical patent/KR100244630B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 인성이 우수한 코일 결속용 대강 및 그 제조방법에 관한 것으로, 강의 성분및 제조공정상의 제조건들은 적절히 제어하므로서 인장강도 90kgf/㎟이상 및 연신율 9.0%이상의 고인성 코일 결속용 대강을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a coil for binding a coil having excellent toughness and a method for manufacturing the same, wherein the steel component and the manufacturing conditions in the manufacturing process are appropriately controlled to produce a coil for binding a high toughness coil having a tensile strength of 90 kgf / mm 2 or more and an elongation of 9.0% or more. The purpose is to provide a method.

상기한 본 발명의 목적은 중량%로, C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, 가용성 Al:0.02-0.08%, N:0.006%이하, Ti:0.12-0.18%, 나머지: Fe및 불가피하게 함유되는 불순물로 조성되는 강의 스라브를 1200-1250℃의 온도범위에서 균질화 처리한후, Ar3온도 이상인 900-950℃의 온도범위에서 마무리 열간압연하고, 550-650℃의 온도범위에서 권취한 다음 45-65%의 압하율로 최종두께까지 냉간압연하여, 540-600℃의 온도범위의 상소둔로에서 회복소둔한후 430-470℃의 온도범위에서 블루잉하여 고인성의 코일 결속용 대강을 제조하는 방법에 관한 것을 그 요지로 한다.The object of the present invention described above is by weight, C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less, S: 0.02% or less, Soluble Al: 0.02-0.08%, N: 0.006% or less, Ti: 0.12-0.18%, remainder: After homogenizing the slab of steel composed of Fe and inevitably contained impurities in the temperature range of 1200-1250 ° C, Ar Finishing hot rolling in the temperature range of 900-950 ° C. above 3 temperatures, winding in the temperature range of 550-650 ° C., and then cold rolling to the final thickness at a rolling reduction rate of 45-65%, in the temperature range of 540-600 ° C. The gist of the present invention relates to a method for producing a high toughness coil binding steel by recovering annealing in an annealing furnace and bluing in a temperature range of 430-470 ° C.

Description

고인성 코일 결속용 대강 및 그 제조방법High toughness coil binding steel and manufacturing method

제1도는 본 발명에 따른 발명강과 비교강을 블루잉 처리한 후 인장시험하여 얻은 인장강도-연신율의 비교 그래프.1 is a comparative graph of tensile strength-elongation obtained by tensile test after bluing the inventive steel and the comparative steel according to the present invention.

본 발명은 인성이 우수한 코일 결속용 대강 및 그 제조방법에 관한 것으로서, 보다 상세하게는, Mn을 함유하는 저탄소 Al킬드강(killed강)에 Ti와 Ni를 미량 첨가한 강으로부터 제조한 냉간압연강판을 블루잉 처리전에 상소둔방법에 의하여 회복소둔을 실시함으로서 90kgf/㎟이상의 인장강도 9.0%이상의 연신율을 가지는 고인성의 코일 결속용 대강을 제조하는 방법에 관한 것이다.The present invention relates to a coil binding steel having excellent toughness and a method for manufacturing the same, and more particularly, to a cold-rolled steel sheet manufactured from a steel in which a small amount of Ti and Ni are added to a low carbon Al-killed steel containing Mn. The present invention relates to a method for manufacturing a high toughness coil binding steel having an elongation of 9.0% or more of tensile strength of 90 kgf / mm 2 or more by performing recovery annealing by an annealing method before bluing treatment.

냉연, 열연 및 선재의 결속용으로 사용되는 포장용 대강은 코일에 걸리는 큰 부하나 외부충격등에 의해 변형되거나 파손될수 있으므로, 충분한 인장강도와 연성의 조합, 즉 고인성이 요구되고 있다. 이러한 포장용 대강은 통상 0.1-0.5% C, 0.5-1.5% Mn을 함유간 강(SAE 1527, SAE 1022등)의 냉간압연강판을 원하는 폭으로 슬릿팅(slitting)한후 430-470℃의 온도로 유지된 납탕(lead bath)에서 블루잉(blueing)처리하여 제조하게 된다. 블루잉 공정에서는 원하는 색상의 산화피막을 형성시켜 대강에 요구되는 방청성을 부여함과 동시에 대강에 요구되는 적정 강도와 연성을 확보하게 된다.Packaging steel used for bonding cold rolled steel, hot rolled steel, and wire rod may be deformed or damaged by a large load or external impact applied to the coil, and thus a sufficient combination of tensile strength and ductility, that is, high toughness, is required. Such packing steels are usually slitting cold rolled steel sheets containing 0.1-0.5% C, 0.5-1.5% Mn (SAE 1527, SAE 1022, etc.) to the desired width and then maintained at a temperature of 430-470 ° C. It is prepared by blueing in the lead bath (lead bath). In the bluing process, an oxide film having a desired color is formed to impart anti-corrosion properties required for roughing, and at the same time, appropriate strength and ductility required for roughing are obtained.

이때 강종이 SAE 1527등과 같이 탄소함량이나 Mn함량이 높은 고탄소, 고망간 강일 경우에는 블루잉전에 오스템퍼링(austempering)열처리를 하면 강도와 연신율을 더욱 향상시킬 수 있다. 그러나 이 경우 오스템퍼링 처리를 위한 고가의 유도 가열로 설치가 필요하며, 이 결과 제품의 가격이 현저하게 상승하므로 코일 대강의 수요가에게는 가격부담의 요인으로 작용하는 문제점이 있다.In this case, when the steel is a high carbon or high manganese steel with high carbon content or Mn content, such as SAE 1527, an austempering heat treatment before bluing can further improve the strength and elongation. However, in this case, the installation of expensive induction heating furnace for ostempering treatment is required, and as a result, the price of the product rises significantly, and thus there is a problem in that the demand for the coil coil acts as a cost burden.

상기 문제점외에도 강종이 SAE 1527강과 같이 고탄소, 고Mn을 함유하는 강일 경우에는 냉간압연시 생산성이 높은 연속식(tandem) 냉간압연기의 적용이 곤란하여 가역식 냉간압연기를 적용해야 하는 문제점이 있다. 이는 열간압연시 표면에 형성된 스케일 제거를 위해 통과하는 산세란인에서 연속작업을 위해 맞대기 용점을 해야하는데, 탄소와 Mn함량이 높아지면 용접특성이 악화되어 용접이 곤란하기 때문이다.In addition to the above problems, when the steel grade contains high carbon and high Mn, such as SAE 1527 steel, it is difficult to apply a high productivity tandem cold rolling mill during cold rolling, and thus, a reversible cold rolling mill has to be applied. This is because the butchering point should be used for continuous operation in the sanserin which passes to remove the scale formed on the surface during hot rolling. If the carbon and Mn content are high, the welding property is deteriorated and welding is difficult.

따라서 SAE 1527강과 같은 고탄소, 고 Mn강을 이용하여 코일 결속용 대강을 제조할 때에는 산세라인, 가역식 냉간압연기, 유도가열로 등, 고가의 장비를 필수적으로 설치해야 한다.Therefore, when manufacturing high carbon and high Mn steel such as SAE 1527 steel for binding the coil, it is essential to install expensive equipment such as pickling lines, reversible cold rolling mills and induction furnaces.

또한 강종이 SAE 1527강과 같은 고탄소, 고Mn강이 아닌 SAE 1022강등과 같은 경우에는 냉간압연강판을 오스템퍼링 공정을 거치지 않고 직접 블루잉처리를 하여 코일결속용 대강을 제조하게 되는데, 이때의 연신율은 6-8%로 연성증가에는 한계가 있다.In addition, in case of steel grade such as SAE 1022 steel, which is not high carbon and high Mn steel such as SAE 1527 steel, cold rolled steel sheet is directly blued without undergoing an ostampering process to produce coil binding steel. Is 6-8% and there is a limit to the increase.

이에, 본 발명자는 상기한 문제점을 해결하여 인장강도 90kgf/㎟이상, 연신율 9.0%이상의 고인성 코일 결속용 대강을 제조하기 위하여 연구와 실험을 행하고,그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본발명은 강의 성분및 제조공정상의 조건들을 적절히 제어하므로서 인장강도 90kgf/㎟이상 및 연신율 9.0%이상의 고인성 코일 결속용 대강을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted the research and experiment to solve the above problems to produce a high toughness coil binding steel with a tensile strength of 90kgf / ㎜ or more, elongation of 9.0% or more, based on the results, to propose the present invention It is an object of the present invention to provide a method for manufacturing a high toughness coil binding steel having a tensile strength of 90 kgf / mm 2 or more and an elongation of 9.0% or more by appropriately controlling the composition of steel and the conditions of the manufacturing process.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, 가용성(Soluble)Al:0.02-0.08%, N:0.006%이하, Ti:0.12-0.18%, 나머지:Fe및 불가피하게 함유되는 불순물로 조성되는 고인성 코일 결속용 대강에 관한 것이다.In the present invention, by weight, C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less, S: 0.02% or less, Soluble The present invention relates to a high toughness coil binding composition composed of Al: 0.02-0.08%, N: 0.006% or less, Ti: 0.12-0.18%, remaining: Fe, and inevitably contained impurities.

또한, 본 발명은 중량%(이하 단지'%'라고 한다)로 C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, Soluble Al:0.02-0.08%, N:0.006%이하, Ti:0.12-0.18%, 나머지: Fe및 불가피하게 함유되는 불순물로 조성되는 강의 슬리브를 1200-1250℃의 온도범위에서 균질화 처리한후 Ar3온도 이상인 900-950℃의 온도범위에서 마무리 열간압연하고, 550-650℃의 온도범위에서 권취한 다음 45-65%의 압하율로 최종두께까지 냉간압연하여, 540-600℃의 온도범위의 상소둔로에서 회복소둔한후 430-470℃의 온도범위에서 블루잉하여 고인성의 코일 결속용 대강을 제조하는 방법에 관한 것이다.In the present invention, C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less by weight% (hereinafter referred to simply as '%'), S: 0.02% or less, Soluble Al: 0.02-0.08%, N: 0.006% or less, Ti: 0.12-0.18%, remainder: A sleeve of steel composed of Fe and an unavoidable impurity in the temperature range of 1200-1250 ° C. After homogenization, finish hot rolling in the temperature range of 900-950 ° C above the Ar 3 temperature, winding in the temperature range of 550-650 ° C, and cold rolling to the final thickness at a rolling reduction of 45-65%, 540-600 The present invention relates to a method for producing a high toughness coil binding steel by recovering annealing in an ordinary annealing furnace in a temperature range of ℃ and bluing in a temperature range of 430-470 ℃.

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 본 발명의 목적, 즉 인장강도 90kgf/㎟이상, 연신율 9.0%이상의 코일 결속용 대강을 제조하기 위해서는 우선 강을 상기한 바와같이 조성되도록 함이 바람직한데, 그 이유는 다음과 같다.In order to manufacture the above-mentioned object of the present invention, that is, a coil binding steel having a tensile strength of 90 kgf / mm 2 or more and an elongation of 9.0% or more, it is preferable to first prepare the steel as described above, for the following reasons.

본 발명강은 탄소외에 다량의 Mn을 함유하고 있기 때문에 탄소함량이 0.13%이상이 되면 용접성이 악화되어 산세라인에서의 용접이 어렵게 될 뿐만아니라 연속냉간압연시 판파단의 우려가 있으며, 탄소함량이 0.05%이하로 되면 강도가 부족하게 되므로 탄소함량을 0.05-0.13%로 제한하였다.Since the present invention steel contains a large amount of Mn in addition to carbon, when the carbon content is 0.13% or more, the weldability deteriorates and welding in pickling lines becomes difficult, and there is a fear of breakage during continuous cold rolling, and the carbon content If it is less than 0.05%, the strength is insufficient, so the carbon content is limited to 0.05-0.13%.

망간은 강중에 첨가되어 열연판의 조직을 페라이트와 퍼얼라이트의 혼합조직으로 만들며 이때 퍼얼라이트 층상구조를 구성하는 시멘타이트에 고용되어 재질을 경화시키는 작용을 하므로 0.5%이상 첨가되어야 하나, 1.5%이상으로 첨가되면 강화효과가 완만해지고 연성을 해치게 되며, 또한 용접성 악화로 산세라인 및 연속식 냉간 압연기에의 적용이 어렵게 되는 문제가 있다.Manganese is added to the steel to make the structure of the hot rolled sheet into a mixed structure of ferrite and perlite. At this time, it is added to 0.5% or more because it is dissolved in cementite constituting the layer of perlite to harden the material. When added, the reinforcing effect is slowed down and the ductility is deteriorated, and also, it is difficult to apply to pickling lines and continuous cold rolling mill due to deterioration of weldability.

Ni는 강중에 첨가되어 석출물의 분포를 미세하게 하여 결정립을 미세화시키는 작용을 하므로 0.1%이상 첨가시키는 것이 바람직하나, 0.3%이상으로 첨가하면 블루잉 회복과정을 지연시켜 블루잉 과정중 효과적인 연성회복이 어려울뿐 아니라 가격을 상승시키는 요인으로 된다.Ni is added in the steel to make the distribution of precipitates finer, which makes the grains finer. Therefore, it is preferable to add Ni more than 0.1%, but adding more than 0.3% delays the blueing recovery process, so that effective soft recovery during the blueing process is achieved. Not only is it difficult, but it also raises the price.

인은 고용경화효과가 가장 큰 치환형 합금원소이므로 0.02%이상으로 첨가하면 강을 경화시켜 블루잉 처리후의 연성을 악화시키게 된다. 또한 실리콘은 용접성과 표면특성을 악화시키는 작용을 하므로 0.03%이하로 제한하였다. 한편 황은 황화물계개재물을 형성하여 강의 인성을 저해하는 요인으로 작용하므로 0.02%이하로 제한하는 것이 바람직하다.Phosphorus is the substitution type alloy element with the largest hardening effect, so adding more than 0.02% will harden the steel and worsen the ductility after bluing treatment. In addition, silicon is limited to less than 0.03% because it serves to deteriorate the weldability and surface properties. On the other hand, since sulfur acts as a factor to inhibit the toughness of the steel to form a sulfide-based inclusions it is preferably limited to 0.02% or less.

알루미늄은 강의 탈산을 위한 목적으로 첨가되나 0.02%이하로 되면 탈산효과가 적고 0.08%이상으로 과다하게 첨가하면 오히려 재질경화의 요인으로 된다.Aluminum is added for the purpose of deoxidation of steel, but when it is less than 0.02%, the deoxidation effect is small and when excessively added to more than 0.08%, it becomes a factor of material hardening.

질소는 0.006% 이상 첨가하면 AIN양의 증가 혹은 고용 질소양의 증가에 의해 블루잉 처리후의 인장강도는 증가시키거나 연성이 저하되므로 그 상한을 0.006%로 제한하는게 바람직하다.When nitrogen is added at least 0.006%, the tensile strength after bluing is increased or the ductility is deteriorated due to the increase in the amount of AIN or the amount of solid solution nitrogen. Therefore, the upper limit is preferably limited to 0.006%.

한편, Ti은 냉간압연된 소재의 회복소둔을 위해 실시하는 회복소둔과정에서 회복소둔이 가능한 온도를 넓게 하는 역할과 열연판에 TiC등의 미세한 석출물을 형성시켜 강도를 증가시키는 역활을 하기 때문에 0.12%이상으로 첨가하는게 바람직하다. 그러나 Ti을 0.18%이상으로 첨가하면 과다한 Ti계 산화물이 형성되어 제강-연주공정에서 노즐 막힘등의 작업성 악화가 발생된다.On the other hand, Ti plays a role of widening the temperature at which recovery annealing is performed in the recovery annealing process for cold annealing and increasing the strength by forming fine precipitates such as TiC on the hot rolled plate. It is preferable to add more than that. However, when Ti is added in an amount of 0.18% or more, excessive Ti-based oxides are formed and workability deterioration, such as clogging of nozzles, occurs in the steelmaking-casting process.

본 발명에서는 상기와 같이 강을 조성한 후에는 전로를 이용하여 용제한 후 연속주조한 슬라브를 열간압연전의 오스테나이트 조직이 충분히 균질화 될수 있는 온도인 1200-1250℃의 범위에서 가열한후 Ar3온도 직상인 900-950℃의 온도범위에서 열간 압연을 마무리하는 것이 바람직한데, 그 이유는 다음과 같다.In the present invention, after the steel is formed as described above, the slab that is continuously cast after melting using a converter is heated in the range of 1200-1250 ° C., which is a temperature where the austenitic structure before hot rolling can be sufficiently homogenized, and is directly above the Ar 3 temperature. It is preferable to finish the hot rolling in the temperature range of 900-950 ° C, which is as follows.

열연 마무리온도가 900℃이하로 되면 열연코일의 상(top), 하(tail)부 및 가장자리가 Ar3이하로 되어 재질을 불균일하게 하는 요인으로 되며, 950℃이상으로 되면 열연판의 결정립을 조대하게 하여 블루잉후의 강도, 연성의 조합을 해치게 되기 때문이다.When the hot rolling finish temperature is below 900 ℃, the top, tail and edges of the hot rolled coil become less than Ar 3 , which causes non-uniformity of material. This is because the combination of strength and ductility after bluing is spoiled.

열간압연된 강판은 550-650℃의 온도범위에서 권취하는 것이 바람직한데, 그이유는 권취온도가 650℃이상으로 되면 열연판의 결정립을 조대하게 하여 블루잉후의 강도 및 연성의 조합을 해치게 되므로 열연판의 권취온도는 낮을수록 좋으나, 550℃이하로 너무 낮아지게 되면 열연권취 온도의 적중율이 떨어져 재질 편차의 요인으로 되기 때문이다.Hot-rolled steel sheet is preferably wound in the temperature range of 550-650 ℃, because the reason is that when the coiling temperature is 650 ℃ or more, the grains of the hot rolled sheet is coarse to damage the combination of strength and ductility after bluing The lower the winding temperature of the plate is, the better, but if it becomes too low below 550 ° C, the hit ratio of the hot rolled winding temperature is lowered, which is a factor of material variation.

권취후 산세를 거친 열간압연판은 45-65%의 냉간압하율을 적용하여 생산성이 좋은 연속식 냉간압연기에서 냉간압연함이 바람직하다. 물론 냉간압연은 가역식 압연기의 적용도 가능하다. 이때 냉간압하율은 원하는 제품의 두께에 대응하여 적용하게 되나, 냉간압하율이 낮을수록 블루잉후의 연성이 우수하게 된다. 그러나 냉간압하율이 45%이하로 너무 낮아지면 열간압연판의 두께를 낮추어야 할 뿐만아니라, 또한 조직의 회복온도를 높여 블루잉 온도를 고온쪽으로 이동시켜 블루잉에 필요한 열에너지증가는 물론 산화피막의 색상악화도 초래하게 된다. 반면에 냉간압하율이 65%이상으로 되면 냉간압연시 압연부하가 초래되며, 또한 블루잉후에 연성이 악화되므로 냉간압하율은 45-65%의 범위로 제한함이 바람직하다.The hot rolled plate subjected to pickling after winding is preferably cold rolled in a continuous cold rolling mill having good productivity by applying a cold reduction rate of 45-65%. Of course, cold rolling is also possible to apply a reversible rolling mill. In this case, the cold reduction rate is applied according to the thickness of the desired product, but the lower the cold reduction rate, the better the ductility after blueing. However, if the cold reduction rate is too low below 45%, not only the thickness of the hot rolled sheet should be lowered, but also the heat recovery temperature of the tissue is increased and the bluing temperature is moved to the high temperature to increase the heat energy required for bluing, as well as the color of the oxide film. It will also cause deterioration. On the other hand, if the cold reduction rate is 65% or more, the rolling load is caused during cold rolling, and since the ductility deteriorates after bluing, the cold reduction rate is preferably limited to the range of 45-65%.

냉간압연된 강판은 540-600℃의 온도범위의 상소둔로에서 회복소둔한후, 430-470℃의 온도범위에서 블루잉함이 바람직한데, 그 이유는 다음과 같다.The cold rolled steel sheet is preferably annealed in a temperature range of 430-470 ° C after recovery and annealing in an ordinary annealing furnace in a temperature range of 540-600 ° C, for the following reasons.

상소둔의 목적은 냉간압연된 소재를 재결정 직전의 회복조직 상태까지 조직을 회복시켜 필요한 연성을 회복하는 것이다. 따라서 회복소둔온도가 540℃이하로 너무 낮게 되면 회복이 일어나지 않아 냉간압연상태의 재질이 잔존하게 되고 600℃이상이 되면 회복후 재결정이 진행되는 상태로 되어 연성은 증가되나 강도가 급격히 감소하는 문제점이 있어 회복소둔온도를 540℃-600℃로 제한하는 것이 바람직하다. 이때 회복 소둔을 위해 상소둔이 아닌 연속소둔을 이용할수도 있으나 이경우는 통상의 작업온도보다 낮게 소둔온도를 관리해야 하는 본 발명의 속성으로 인해 생산성을 저하시키는 요인으로 작용될수 있다.The purpose of the annealing is to recover the necessary ductility by restoring the tissue from the cold rolled material to the state of recovery tissue immediately before recrystallization. Therefore, if the recovery annealing temperature is too low below 540 ℃, recovery does not occur and the material in the cold rolled state remains. If the recovery annealing temperature is over 600 ℃, the recrystallization proceeds after recovery, the ductility increases but the strength decreases rapidly. Therefore, it is desirable to limit the recovery annealing temperature to 540 ° C-600 ° C. In this case, the continuous annealing may be used for recovery annealing instead of the annealing, but in this case, the annealing temperature may be lowered than the normal working temperature.

일반적으로 블루잉 공정의 주요 목적은 방청성 확보를 위한 청색의 산화피막 형성과 조직의 회복과정을 통해 연성을 향상시키는 것이나, 본 발명에서는 주로 전자가 목적이고 후자의 경우는 큰 역활을 하지 않는다. 이는 본 발명의 경우 이미 회복 소둔과정에서 연성이 충분히 회복되었기 때문이다. 방청성 확보를 위한 산화피막 형성의 측면에서 블루잉 온도는 430-470℃범위가 적당하다.In general, the main purpose of the bluing process is to improve the ductility through the formation of blue oxide film and tissue recovery process to secure the rust resistance, but in the present invention, the former is mainly the purpose and the latter does not play a large role. This is because, in the case of the present invention, the ductility is sufficiently recovered in the recovery annealing process. In terms of oxide film formation to ensure rust resistance, the bluing temperature is in the range of 430-470 ° C.

이상과 같이 강을 조성하고 제조조건을 제어하여 코일결속용 대강을 제조하게 되면 본 발명에서 목적하는 인장강도 90kgf/㎟이상과 연신율 9.0%이상의 고인성의 코일결속용 대강의 제조가 가능하다.When the steel is formed as described above and the manufacturing conditions are controlled to manufacture the steel coil binding steel, it is possible to manufacture the steel coil binding steel having a high tensile strength of 90 kgf / mm 2 and an elongation of 9.0% or more.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기표 1과 같이 강을 조성하였다. 하기표 1에서(1-3)번 강이 발명강으로서 블루잉 처리전에 회복소둔을 적용한 강이면, 반면(4-15)번 강은 비교강으로서(4-6)번강이 회복소둔후 블루잉 처리한 강이고(7-15)번 강은 회복소둔처리없이 직접 블루잉 처리한 강에 해당된다. (4)번 강은 Mn함량을 0.5%이하로 줄이고 Ti를 0.2%이상 첨가한 강이며, (5)번강은 Mn함량을 0.5%로 이하로 줄인대신 Si를 0.5%첨가하고 다시 Ti를 0.2%이상으로 첨가한 강이다. (4-5)번강은 모두 Ni이 첨가되지 않았다. 반면(6)번 강은 SAE 1022 상당강에 Nb를 미량 첨가한 강이고(7-9)번강은 SAE 1022강에 Ni를 미량 함유한 강이며, (10-11)번 강은 기존 SAE 1022강에 해당된다. (12-15)번 강은 SAE 1022강에 Ti, V, Mo및 Nb가 각각 미량으로 첨가된 강이다.Steel was formed as shown in Table 1 below. In Table 1, if steel (1-3) is steel to which recovery annealing is applied before blueing treatment as invention steel, steel (4-15) is comparative steel (4-6) steel after recovery annealing Steels treated (7-15) correspond to steels directly blued without recovery annealing. Steel (4) is steel with Mn content lower than 0.5% and Ti is added 0.2% or more. (5) Steel is added with 0.5% Si and 0.2% Ti instead of reducing Mn content to 0.5% or less. It is the steel added above. In the (4-5) steel, all of Ni was not added. On the other hand, steel (6) is a steel with a small amount of Nb added to SAE 1022 equivalent steel (7-9), steel with a small amount of Ni in SAE 1022 steel, and steel (10-11) is an existing SAE 1022 steel. Corresponds to Steel (12-15) is a steel in which a small amount of Ti, V, Mo and Nb are added to SAE 1022 steel.

상기 표1과 같이 조성되는 강을 하기표2와 같은 제조공정에 따라 코일 결속용 대강을 제조한후 블루잉 처리한 상태에서 인장강도와 연신율을 측정하였으며, 그 결과를 하기 표 2및 제 1도에 나타내었다.Tensile strength and elongation were measured in the state of bluing the steel formed as shown in Table 1 according to the manufacturing process as shown in Table 2 below, and the results are shown in Tables 2 and 1 below. Shown in

* SRT : 슬라브 재가열온도, FT : 열연 마무리 온도, CT :권취온도* SRT: Slab reheating temperature, FT: Hot rolled finishing temperature, CT: Winding temperature

상기표 2및 제 1도에서 알수 있는 바와같이, 강의 성분이 C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, 가용성 Al:0.02-0.8%, N:0.006%이하, Ti:0.12-0.18%로 제어된 (1-3)번의 발명강을 1210-1240℃정도에서 균질화 처리한후 Ar3온도 이상인 910-930℃에서 마무리 열간 압연하고, 600-630℃에서 권취한 다음 약 52-61%의 압하율로 최종두께까지 냉간압연 한후 540-600℃의 상소둔로에서 회복소둔하여 450-460℃에서 블루잉 처리한 발명재(a~i)는 인장강도 90kgf/㎟이상, 연신율 9.0%이상의 매우 우수한 재질을 나타내고 있음을 알수 있다.As can be seen from Table 2 and Figure 1, the steel component is C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less, S The temperature of Ar 3 after homogenization treatment of (1-3) steels of (1-3) controlled to: 0.02% or less, soluble Al: 0.02-0.8%, N: 0.006% or less, Ti: 0.12-0.18% Finished hot rolling at above 910-930 ° C, wound at 600-630 ° C, cold rolled to final thickness at a reduction ratio of about 52-61%, and then recovered and annealed in an annealing furnace at 540-600 ° C to 450-460 ° C. Inventive material (a ~ i) bluing in the exhibits a very good material with a tensile strength of 90kgf / mm2 or more, elongation of 9.0% or more.

반면에 강의 성분은 본 발명의 범위를 만족하는 발명강(1-3)이나 회복소둔온도가 본 발명의 범위를 벗어나 540℃이하인 비교재(1,2,4,5)의 경우에는 강도가 높은대신 블루잉 처리시 회복이 부족하게 되고, 600℃이상인 비교재(3,6)의 경우에는 연성은 우수한 반면 강도의 감소가 현저한 문제점이 나타남을 알 수 있다.On the other hand, the steel component is high in the case of the inventive steel (1-3) satisfying the scope of the present invention or the comparative material (1, 2, 4, 5) whose recovery annealing temperature is out of the scope of the present invention or less than 540 ° C. Instead, the lack of recovery during the bluing process, the comparative materials (3,6) of more than 600 ℃ can be seen that the ductility is excellent while the decrease in strength is a significant problem.

비교강인(4-5)번강은 비교재(7,8)에서 알수있듯이 발명강(1-3)에 비해 Mn함량이 낮고 Ni이 첨가되지 않아 회복소둔후 블루잉하여도 연성은 9%이하에 불과하였다. 비교강인 (6)번강은 SAE 1022강에 Nb를 미량 첨가한 강으로 비교재(a)에서 알수 있듯이 냉간압연후 상소둔로에서 회복소둔시켜 블루잉 처리한 강으로서 91-96kgf/㎟의 인장강도와 7.3-8.2%의 낮은 연신율을 나타내어 회복소둔을 적용해도 높은 연신율을 얻을수가 없었다. 반면 SAE 1022강에 Ni을 미량 첨가한 비교강(7-9)번강은 비교재(10-18)에서 알수 있듯이 인장강도는 93-99kgf/㎟로 우수한 반면 연신율은 9.0%에 다수 못미치는 결과를 나타내었다. 상기 비교강(7-9)번강이 회복소둔을 적용하지 않은 강임에도 불구하고 9.0% 가까운 상당히 우수한 연성을 나타낸것은 본강에 함유된 Ni의 효과로 생각된다. 반면 Ni을 함유하지 않은 비교강(10-11)번 강의 경우, 비교재(19, 10)에서 알수 있듯이 인장강도와 연신율은 86-95kgf/㎟, 연신율 7.0-7.5%로서 강도는 우수하나 연신율에 9.0%에도 미치지 못하였다.Comparative steel (4-5), as shown in comparative steel (7,8), has a lower Mn content and no added Ni compared to invention steel (1-3), so ductility is less than 9% even when blueing after recovery annealing. It was only. The comparative steel (6) is a steel in which a small amount of Nb is added to SAE 1022 steel, and as shown in the comparative material (a), it is recovered and annealed in an annealing furnace after cold rolling, and has a tensile strength of 91-96kgf / mm2. And low elongation of 7.3-8.2%, the high elongation could not be obtained by applying recovery annealing. On the other hand, the comparative steel (7-9) grade steel with a small amount of Ni added to SAE 1022 steel showed excellent tensile strength of 93-99kgf / mm2 while the elongation was less than 9.0%, as shown by the comparative material (10-18). Indicated. Although the comparative steels (7-9) were steels not subjected to recovery annealing, the comparatively excellent ductility close to 9.0% was considered to be an effect of Ni contained in the main steel. On the other hand, in the case of comparative steel (10-11) that does not contain Ni, tensile strength and elongation are 86-95kgf / mm2 and elongation 7.0-7.5% as can be seen in the comparative materials (19, 10). It was less than 9.0%.

한편 SAE 1022강에 Ni대신, Ti, V, Mo및 Nb를 각각 미량으로 첨가한 비교강(12-15)번 강을 서로 유사한 조건으로 제조하여 블루잉 처리하면 비교재(21-24)에서 알수 있듯이 인장강도는 강종에 관계없이 90kgf/㎟이상으로 되었으나, 연신율은 4.2-6.2%에 거쳐 매우 작은 연성을 나타내었다. 이러한 결과는 Ti, V, Mo 및 Nb모두 석출물 혹은 융질원소 드래그 효과(solute drag effect)에 의해 블루잉 처리시 조직의 회복과정을 지연시키는 원소이기 때문에 조직의 회복이 불충분했던것에 기인한다.On the other hand, if the comparative steel (12-15) steels prepared under similar conditions were added to the SAE 1022 steel with a small amount of Ti, V, Mo, and Nb added instead of Ni, the blue material was found in the comparative material (21-24). As shown, the tensile strength was over 90kgf / mm2 regardless of the steel grade, but the elongation was 4.2-6.2%, showing very small ductility. These results are due to insufficient recovery of tissues because Ti, V, Mo, and Nb are all elements that delay the recovery of tissues during the bluing process by the precipitate or the solute drag effect.

상술한 바와같이, 본 발명은 강의 성분 조정및 제반 제조조건들, 특히 회복소둔온도와 블루잉온도를 적절히 제어하므로서 인장강도 90kgf/㎟이상이고 연신율 9.0%이상인 고인성의 코일 결속용 대강을 제조할수 있는 효과가 있다.As described above, the present invention can manufacture a high toughness coil binding steel having a tensile strength of 90 kgf / mm2 or more and an elongation of 9.0% or more by appropriately controlling the composition of steel and general manufacturing conditions, especially recovery annealing temperature and bluing temperature. It works.

뿐만 아니라 본 발명에서는 탄소, Mn등의 첨가원소의 함량이 높지 않아 기존 일관 제철소의 산세라인에서 용접이 가능하여 생산성이 높은 연속식 냉간압연기의 사용이 가능하며, 기존에 SAE 1527강을 코일 결속용 대강으로 사용할 경우 대강 제조업체에 갖추어야 하는 산세설비, 가열식 냉간압연설비 및 유도가열로등의 필요없이 단지 블루잉 처리 설비만으로도 인장강도 90kgf/㎟이상, 연신율 9.0%이상의 고인성 코일결속용 대상을 제조할수 있는 효과가 있다.In addition, the present invention is not high in the content of added elements such as carbon, Mn can be welded in the pickling line of the existing integrated steel mill, it is possible to use a high productivity continuous cold rolling mill, and the existing SAE 1527 steel for coil binding When used as a rough steel, high toughness coil binding objects with a tensile strength of 90kgf / mm2 and elongation of 9.0% or more can be manufactured using only bluing equipment without the need of pickling equipment, heated cold rolling equipment, and induction heating furnace. It has an effect.

Claims (2)

중량%로, C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, 가용성 Al:0.02-0.8%, N:0.006%이하, Ti:0.12-0.18%, 나머지: Fe및 불가피하게 함유되는 불순물로 조성되는 고인성 코일 결속용 대강.By weight%, C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less, S: 0.02% or less, Soluble Al: 0.02-0.8% , N: 0.006% or less, Ti: 0.12-0.18%, remainder: Fe roughness for binding a high toughness coil composed of Fe and inevitable impurities. 중량%로, C:0.05-0.13%, Mn:0.5-1.5%, Ni:0.1-0.3%, Si:0.03%이하, P:0.02% 이하, S:0.02%이하, 가용성 Al:0.02-0.08%, N:0.006%이하, Ti:0.12-0.18%, 나머지: Fe및 불가피하게 함유되는 불순물로 조성되는 강의 스라브를 1200-1250℃의 온도범위에서 균질화 처리한후, Ar3온도 이상인 900-950℃의 온도범위에서 마무리 열간압연하고, 550-650℃의 온도범위에서 권취한 다음 45-65%의 압하율로 최종두께까지 냉간압연하여, 540-600℃의 온도범위의 상소둔로에서 회복소둔한후 430-470℃의 온도범위에서 블루잉하는 것을 포함하여 이루어짐을 특징으로 하는 고인성 코일결속용 대강의 제조방법.By weight%, C: 0.05-0.13%, Mn: 0.5-1.5%, Ni: 0.1-0.3%, Si: 0.03% or less, P: 0.02% or less, S: 0.02% or less, Soluble Al: 0.02-0.08% , N: 0.006% or less, Ti: 0.12-0.18%, remainder: after homogenizing the slab of steel composed of Fe and inevitably contained impurities in the temperature range of 1200-1250 ° C, 900-950 ° C above the Ar 3 temperature Finished hot rolling in the temperature range of, rolled up in the temperature range of 550-650 ° C, cold-rolled to the final thickness at a rolling rate of 45-65%, and then recovered and annealed in an annealing furnace in the temperature range of 540-600 ° C. After 430-470 ℃ high toughness coil binding method characterized in that it comprises blueing in the temperature range.
KR1019950031683A 1995-09-25 1995-09-25 The manufacturing method for steel strip and same product with coil unity KR100244630B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950031683A KR100244630B1 (en) 1995-09-25 1995-09-25 The manufacturing method for steel strip and same product with coil unity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950031683A KR100244630B1 (en) 1995-09-25 1995-09-25 The manufacturing method for steel strip and same product with coil unity

Publications (2)

Publication Number Publication Date
KR970015774A KR970015774A (en) 1997-04-28
KR100244630B1 true KR100244630B1 (en) 2000-03-02

Family

ID=19427769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950031683A KR100244630B1 (en) 1995-09-25 1995-09-25 The manufacturing method for steel strip and same product with coil unity

Country Status (1)

Country Link
KR (1) KR100244630B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544539B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Cold-Rolled Steel Sheet with Good Toughness for Coil Packaging Band and A Method for Manufacturing Thereof
KR100544540B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Cold-Rolled Steel Sheet with Good Elongation for Coil Packaging Band And A Method for Manufacturing Thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001579A (en) * 1995-06-29 1997-01-24 김종진 Coil binding steel with excellent ductility and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970001579A (en) * 1995-06-29 1997-01-24 김종진 Coil binding steel with excellent ductility and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544539B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Cold-Rolled Steel Sheet with Good Toughness for Coil Packaging Band and A Method for Manufacturing Thereof
KR100544540B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Cold-Rolled Steel Sheet with Good Elongation for Coil Packaging Band And A Method for Manufacturing Thereof

Also Published As

Publication number Publication date
KR970015774A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
EP0061503B1 (en) Process for manufacturing hot-rolled dual-phase high-tensile steel plate
JPH0681037A (en) Production of hot rolled strip of dual phase stainless steel
KR100244630B1 (en) The manufacturing method for steel strip and same product with coil unity
KR0143478B1 (en) The making method of coil strip with ductile
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
KR0151989B1 (en) Method for manufacturing tying steels for high-tenacity iron coil
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH0582458B2 (en)
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JPH0768601B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JPS6367524B2 (en)
KR100398383B1 (en) Manufacturing method of high strength cold rolled steel sheet with excellent formability
JP2000212690A (en) High strength hot rolled steel sheet excellent in formability and surface property and its production
JP2689810B2 (en) Method for manufacturing high strength hot rolled steel sheet with excellent surface properties
JP2001335893A (en) Hot rolled steel sheet excellent in surface characteristics and workability, and its production method
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3363930B2 (en) Thin steel sheet with excellent strength-ductility balance
KR100530058B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Elongation and Drawability
JP3596193B2 (en) Method for manufacturing hot-rolled steel sheet with excellent ductility and uniform elongation in the length direction of steel strip
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031103

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee