KR100236185B1 - Particulate lead titanate ceramic and method thereof - Google Patents

Particulate lead titanate ceramic and method thereof Download PDF

Info

Publication number
KR100236185B1
KR100236185B1 KR1019960071547A KR19960071547A KR100236185B1 KR 100236185 B1 KR100236185 B1 KR 100236185B1 KR 1019960071547 A KR1019960071547 A KR 1019960071547A KR 19960071547 A KR19960071547 A KR 19960071547A KR 100236185 B1 KR100236185 B1 KR 100236185B1
Authority
KR
South Korea
Prior art keywords
pbtio
powder
lead titanate
calcination
temperature
Prior art date
Application number
KR1019960071547A
Other languages
Korean (ko)
Other versions
KR19980052540A (en
Inventor
최병철
김선욱
김남홍
윤만순
Original Assignee
홍상복
포스코신기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍상복, 포스코신기술연구조합 filed Critical 홍상복
Priority to KR1019960071547A priority Critical patent/KR100236185B1/en
Publication of KR19980052540A publication Critical patent/KR19980052540A/en
Application granted granted Critical
Publication of KR100236185B1 publication Critical patent/KR100236185B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 티타산납(PbTiO3) 제조방법에 관한 것이며, 그 목적은 단단하고 균열이 없는 단상 티탄산 납(PbTiO3) 세라믹스 제조방법을 제공함에 있다.The invention tea calculation lead (PbTiO 3) relates to the production method, and an object thereof is to provide a hard, non-cracking phase lead titanate (PbTiO 3) ceramic manufacturing method to provide.

상기 목적을 달성하기 위한 본 발명은 티탄산납(PbTiO3)의 제조방법에 있어서, PbO분말과 TiO2분말을 동일 몰비로 평량한 후, 이를 분쇄하고 혼합한 다음, 혼합물을 하소하는 단계; 상기 분쇄 및 하소 공정을 수회 반복하는 단계; 및 재하소된 분말을 성형후 1200℃이상의 온도에서 소결하는 단계;를 포함하여 구성되는 단상 티탄산납 세라믹스 제조방법에 관한 것을 그 기술적 요지로 한다.In order to achieve the above object, the present invention provides a method for producing lead titanate (PbTiO 3 ), after weighing PbO powder and TiO 2 powder in the same molar ratio, pulverizing and mixing them, and then calcining the mixture; Repeating the grinding and calcining process several times; And a step of sintering the calcined powder at a temperature of 1200 ° C. or higher after molding. The technical subject matter relates to a method for manufacturing single-phase lead titanate ceramics, including:

Description

단상 티탄산납(PbTiO3)세라믹스 제조방법Manufacturing method of single phase lead titanate (PbTiO3) ceramics

본 발명은 티탄산납(이하, 'PbTiO3'라 한다) 제조방법에 관한 것으로써, 보다 상세하게는 단단하고 균열이 없는 단상 PbTiO3세라믹스 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lead titanate (hereinafter referred to as 'PbTiO 3 '), and more particularly, to a method for producing hard, crack-free single-phase PbTiO 3 ceramics.

PbTiO3은 대표적인 페로브스카이트형 강유전체로서 상온에서 정방정 결정구조를 가지며, 490℃이상에서 입방정 결정 구조를 갖는다. 또한 490℃이하에서 결정 격자 상수비(c/a)가 1.063으로 매우 높은 구조적 이방성을 가진다.PbTiO 3 is a typical perovskite ferroelectric and has a tetragonal crystal structure at room temperature and a cubic crystal structure at 490 ° C. or higher. In addition, the crystal lattice constant ratio (c / a) is 1.063 or less at 490 ° C. or less and has a very high structural anisotropy.

이와 같은 결정 구조상의 특성을 갖는 PbTiO3은 단단한 소결체로 제조하기 어려운 것으로 알려져 있다. 그 이유는 입방정에서 정방정으로의 상전이시에 결정구조의 높은 이방성에 기인한 큰 체적 변화가 일어나므로 소결체 내부에 응력이 발생하여 이로 인하여 미세 균열이 소결체 전체에 발생하기 때문이다. (J.Am.Ceram.Soc., Vo149, No.4, pp.229, 1966)It is known that PbTiO 3 having such crystal structure characteristics is difficult to manufacture into a rigid sintered body. This is because a large volume change occurs due to the high anisotropy of the crystal structure during the phase transition from the cubic to the tetragonal crystal, so that stresses are generated in the sintered body, and thus microcracks occur throughout the sintered body. (J.Am.Ceram.Soc., Vo149, No.4, pp.229, 1966)

그러나, PbTiO3은 다른 강유전체에 비하여 강유전성, 압전성, 초전성 등이 우수할 뿐만 아니라 큐리온도(상전이 온도)가 높고 물성의 경시 변화가 작다는 장점을 가지고 있어서, 상용화하기 위한 여러 가지 방법들이 제안되었다. 종래, 상용화되어 이용되고 있는 제품을 예를 들면, PbTiO3에 소결조제로 천이금속, 알카리, 희토류 이온 등을 첨가하여 구조적 이방성이 비교적 작은 단단한 소결체로 제조하여 압전 진동자나 표면 탄성파용 소자 등 고주파수에 사용되는 소자로 개발되어 왔다. 또한 고무, 플라스틱, 에폭시 등과 같은 유기 고분자와 혼합하여 복합체로 제조하여 주로 수중 음파 탐지용 소자로 활용되어 왔다.(압전재료의 제조 및 응용, CMC Series, 1984).However, PbTiO 3 has superior ferroelectricity, piezoelectricity, and pyroelectricity compared to other ferroelectrics, and has a high Curie temperature (phase transition temperature) and a small change in physical properties over time. Therefore, various methods have been proposed for commercialization. . Conventionally, products commercially used and used, for example, transition metals, alkalis, and rare earth ions are added to PbTiO 3 as a sintering aid to make a rigid sintered body having relatively low structural anisotropy, and to high frequency such as piezoelectric vibrator or surface acoustic wave device. It has been developed as an element to be used. In addition, it is mixed with organic polymers such as rubber, plastic, epoxy, etc. to produce a composite, and has been mainly used as a sonar detection device (piezoelectric material manufacturing and application, CMC Series, 1984).

한편, 최근에 박막 PbTiO3이 개발되어 불휘발성 기억소자, 적외선 센서 등의 소재로 가광받고 있으며, 이러한 박막은 주로 스퍼터링(Sputtering)으로 제조하고 있다. 그러나, 순수한 PbTiO3타겟의 제조가 어렵기 때문에, PbO와 TiO2분말의 혼합체 또는 PbTiO3분말의 성형체를 타겟으로 사용하거나, 산소 분위기에서 Pb와 Ti 금속 타겟을 다중으로 사용하고 있지만, 타겟의 수명이 짧고, 취급이 힘들며, 균일화학 조성과 재현성 있는 박막을 제조하기가 매우 어려운 실정이다.On the other hand, recently, a thin film PbTiO 3 has been developed and received as a material such as nonvolatile memory device, infrared sensor, etc., and the thin film is mainly manufactured by sputtering. However, since the production of pure PbTiO 3 targets is difficult, a mixture of PbO and TiO 2 powders or a molded body of PbTiO 3 powders is used as the target, or multiple Pb and Ti metal targets are used in an oxygen atmosphere. This short, difficult to handle, it is very difficult to produce a uniform chemical composition and reproducible thin film.

따라서, 본 발명자는 상기 종래 문제를 해결하기 위하여 PbTiO3의 상전이점 통과시 높은 구조적 이방성에 의해 미세 균열 및 파괴가 일어나는 PbTiO3의 자체 특성에 착안하여 본 발명을 제안하게 된 것으로서, 본 발명은 PbTiO3분말의 하소 및 분쇄공정을 반복하여 소결이 용이한 입도 분포의 PbTiO3분말을 합성하고 이분말을 이용하여 단단하고 균열이 없는 단상 PbTiO3소결체를 제조하는 방법을 제공하는데, 그 목적이 있다.Accordingly, the present inventors have proposed the present invention by paying attention to its own characteristics of PbTiO 3 in which micro cracks and fractures occur due to high structural anisotropy when PbTiO 3 passes through the phase transition point in order to solve the conventional problem. It is an object of the present invention to synthesize a PbTiO 3 powder having a particle size distribution that is easy to sinter by repeating the calcination and pulverization process of 3 powder, and to prepare a hard, crack-free single-phase PbTiO 3 sintered body by using this powder.

제1도는 원료분말의 하소-분쇄 공정 반복 횟수에 따른 소결 밀도의 변화거동을 나타낸 그래프.1 is a graph showing the change behavior of the sintered density according to the number of repeated calcination-crushing process of the raw material powder.

제2도는 원료 분말의 하소분쇄 공정 반복 횟수에 따른 소결체의 미세 비커스 경도 변화거동을 나타낸 그래프.FIG. 2 is a graph showing the change behavior of the fine Vickers hardness of the sintered compact according to the number of repeated calcination processes of the raw material powder.

상기 목적을 달성하기 위한 본 발명은 티탄산납(PbTiO3)의 제조방법에 있어서, PbO분말과 TiO2분말을 동일 몰비로 평량한 후, 이를 분쇄하고 혼합한 다음, 혼합물을 하소하는 단계; 상기 분쇄 및 하소 공정을 수회 반복하는 단계; 및 재하소된 분말을 성형후 1200℃이상의 온도에서 소결하는 단계;를 포함하여 구성되는 단상 티탄산납 세라믹스 제조방법에 관한 것이다.In order to achieve the above object, the present invention provides a method for producing lead titanate (PbTiO 3 ), after weighing PbO powder and TiO 2 powder in the same molar ratio, pulverizing and mixing them, and then calcining the mixture; Repeating the grinding and calcining process several times; And a step of sintering the calcined powder at a temperature of 1200 ° C. or higher after the molding.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 분말의 분쇄 및 하소공정을 수회 반복하여 얻은 적절한 입도 분포의 미세한 PbTiO3분말을 이용하여 성형후 소결함으로서, 소결 과정에서 상전이점 통과시 소결체 내부에 발생하는 응력을 억제 또는 최소화하는데, 그 특징이 있다.The present invention sinters after molding using fine PbTiO 3 powder of appropriate particle size distribution obtained by repeating the pulverization and calcining process of the powder several times, thereby suppressing or minimizing the stress generated in the sintered body when passing the phase transition point in the sintering process. There is a characteristic.

이를 위해 우선, 상용 시판되고 있는 고순도 PbO와 TiO2분말을 동일 몰비로 평량한 후 이를 분쇄하고 혼합한 다음, 혼합체를 PbTiO3합성온도 범위에서 하소한다. 이후, 상기 분쇄 및 하소공정을 수회 반복하는 것이 바람직한데, 그 이유는 분말을 하소하여 PbTiO3을 합성한 후, 냉각하면 합성된 PbTiO3은 냉각 과정에서 상전이점 통과시에 높은 구조적 이방성에 의해 내부에 무수히 많은 미세 균열 및 파괴가 일어나게 되는데, 이를 재분쇄 하면 적절한 입도 분포의 미세한 PbTiO3분말을 얻을 수가 있고, 상기과정을 수회 반복하면 그 효과가 커지기 때문이다. 또한, 반복 되는 하소과정에서 Pb의 확산에 의해 조성분포가 균일하게 되고, 반복되는 분쇄 과정에서 물리적으로 조성이 균일하게 되어 소결과정중에 Pb의 편석 때문에 발생되는 입자의 과잉성장에 의한 국부적인 응력이 방지되어 단단한 소결체를 제조할 수 있게 된다. 이때, 상기 분쇄 및 하소 공정의 반복횟스는 2∼5회가 보다 바람직하다.To this end, first, commercially available high purity PbO and TiO 2 powders are weighed in the same molar ratio, pulverized and mixed, and then the mixture is calcined in the PbTiO 3 synthesis temperature range. Thereafter, it is preferable to repeat the pulverization and calcination process several times, because the powder is calcined to synthesize PbTiO 3 , and then cooled, the synthesized PbTiO 3 has high structural anisotropy when passing through the phase transition point in the cooling process. There are a myriad of fine cracks and breakages in the sintering process. Regrinding can yield fine PbTiO 3 powders with an appropriate particle size distribution. In addition, the composition distribution becomes uniform due to the diffusion of Pb in the repeated calcination process, and the physical stress is uniform in the repeated grinding process, so that the local stress due to excessive growth of particles generated due to segregation of Pb during the sintering process It can be prevented and a hard sintered compact can be manufactured. At this time, the repetition frequency of the grinding and calcining process is more preferably 2 to 5 times.

이와 같이 반복되는 상기 하소 조건은 PbTiO3합성온도범위이면 가능하나, 보다 바람직하게는 1000∼1200℃의 온도범위에서 1∼4시간 동안 불활성 분위기로 행하는 것이다. 상기와 같이 재하소된 분말을 냉각한 후 분쇄하고 성형한 다음, 상기 성형체를 아루미나 도가니에 담고 앞서 하소공정에서 제조한 PbTiO3분말을 사용하여 밀페시킨 후, 통상의 방법으로 1200℃까지 5∼20℃/min으로 승온시켜 그 온도에서 0.5∼2시간 동안 공기분위기에서 소결한다.The repeated calcination conditions may be performed in the PbTiO 3 synthesis temperature range, but more preferably in an inert atmosphere for 1 to 4 hours at a temperature range of 1000 to 1200 ° C. After cooling the powder calcined as described above, pulverized and molded, the molded body was placed in an alumina crucible and sealed using PbTiO 3 powder prepared in the calcination process beforehand, and then, to a temperature of 5 to 1200 ° C. in a conventional manner. The temperature is raised to 20 ° C./min and sintered in an air atmosphere at that temperature for 0.5 to 2 hours.

이와 같은 공정으로 비교적 단단하고 균열이 없는 단상 페로브스카이트의 PbTiO3세라믹스를 얻을 수 있다.In such a process, a relatively hard and crack-free single phase perovskite PbTiO 3 ceramics can be obtained.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

PbO와 TiO3분말을 동일 몰비(molar ratio)로 평량한 후, 이들 분말을 지르코니아 볼과 에타올을 분산매로하여 24시간동안 볼-미링법으로 혼합 및 분쇄시켰다. 볼-밀링을 행한 혼합 분말을 건조시킨 후, 알루미나 도가니에 담아 5℃/min으로 승온시킨후 하기 표 1의 하소온도 조건으로 2시간동안 질소분위기에서 하소하였다.After PbO and TiO 3 powders were weighed in the same molar ratio, these powders were mixed and pulverized by a ball-mirror method for 24 hours using zirconia balls and ethanol as a dispersion medium. After the ball-milling mixed powder was dried, it was placed in an alumina crucible, heated to 5 ° C / min, and calcined in a nitrogen atmosphere for 2 hours under the calcination temperature conditions shown in Table 1 below.

[표 1]TABLE 1

이 하소 분말을 공기 중에서 상온으로 급랭시킨 후 볼-밀링법으로 24시간 동안 재분쇄하였다.The calcined powder was quenched to room temperature in air and then regrind by ball-milling for 24 hours.

이 분말을 다시 앞에서 행한 공정과 동일한 조건으로 재하소한 후 급랭시키고 재분쇄를 행하였다. 이 과정을 1∼5회 이상 반복하여 최종 PbTiO3분말을 제조하였다. 상기 분말을 사용하여 2ton/cm2의 압력으로 냉간 정수압 성형으로 성형체를 제조한 다음, 이 성형체를 알루미나 도가니에 담고 분위기 분말로 PbTiO3분말을 사용하여 밀폐시킨 후, 1200℃까지 5℃/min으로 승온시켜 그 온도에서 1시간 동안 공기분위기에서 소결한 후 소결밀도와 미세경도를 측정하고, 그 결과를 제1도와 제2도에 각각 나타내었다.The powder was again calcined under the same conditions as the above-described step, followed by quenching and regrinding. This process was repeated 1 to 5 times to prepare a final PbTiO 3 powder. After using the powder to prepare a molded body by cold hydrostatic molding at a pressure of 2ton / cm 2 , the molded body was placed in an alumina crucible and sealed using PbTiO 3 powder as an atmosphere powder, and then to 5 ℃ / min to 1200 ℃ After heating up and sintering in an air atmosphere at that temperature for 1 hour, the sintered density and microhardness were measured, and the results are shown in FIGS. 1 and 2, respectively.

상기와 같은 공정으로 제조한 발명예(1,2)의 PbTiO3세라믹스 X-선 회절분석을 통하여 확인한 결과, 일부를 제외하고 페로브스카이트 단상으로만 존재하였으며 제 2상(PbTi3O7, PbO, TiO2등)들은 존재하지 않았다. 그 일부는 하소 온도가 1200℃이고 하소-분쇄 반복 횟수가 5회 이상인 경우로, 이 경우는PbTiO3외에 소량의 TiO2가 함께 관찰되었다. 하소-분쇄 공정을 1회 혹은 6회 이상 반복한 경우는 하소 온도에 상관없이 최종 소결체에 균열이 발생하였으며 2회 혹은 5회 반복할 경우는 재현성 확인 실험에서 일부 균열이 관찰되기도 하였다. 반면에 3∼4회 반복할 경우는 육안뿐만 아니라 광학 현미경으로도 미세 균열을 관찰할 수 없었다.As a result of the PbTiO 3 ceramics X-ray diffraction analysis of Inventive Example (1,2) prepared by the above-described process, except for a part, only the perovskite single phase existed and the second phase (PbTi 3 O 7 , PbO, TiO 2, etc.) did not exist. Some of them had a calcination temperature of 1200 ° C. and a calcination-milling repetition frequency of 5 or more, in which case a small amount of TiO 2 was observed in addition to PbTiO 3 . When the calcination-grinding process was repeated one or six times, cracks occurred in the final sintered body regardless of the calcination temperature. Some cracks were observed in the reproducibility test when repeated two or five times. On the other hand, in the case of repeating 3 to 4 times, micro cracks could not be observed by the optical microscope as well as the naked eye.

한편, 제1도에 도시된 바와 같이, PbTiO3세라믹스의 소결밀도는 하소-분쇄 반복횟수에 따라 PbTiO3의 이론밀도(8.01/cm3)에 대하여 약 94∼96%정도의 상대밀도를 보였다. 최고 소결밀도는 발명예(1)의 경우로 하소온도가 1000℃이고 하소-분쇄 반복횟수가 4회인 경우로 이론밀도의 96.5%이었다. 또한, 제2도에 도시된 바와 같이, PbTiO3세라믹스의 미세 비이커스 경도는 하소-분쇄 반복횟수에 따라 330-600kg/mm2정도이었다. 최고 경도값은 발명예(1)의 경우로 하소온도가 1000℃이고 하소-분쇄 반복 횟수가 4회인 경우로 최고 소결밀도를 나타낸 조건과 동일하였다. 일반 Pb계 세라믹스중, 소결이 아주 잘 되는 재료로 알려진 Pb(Zr0.65Ti0.35)O3세라믹스의 미세 비이커스 경도값은 430∼520kg/mm2정도이며 파괴이성(KIC)값은 1.0∼1.5MN/m3/2정도이다.(압전/전왜 액튜에이터, 일본공업기술센터, pp.68, 1986). 이것과 본 발명에서 하소 온도가 1000℃이고 하소-분쇄 반복 횟수가 3∼4회인 조건에서 제조한 PbTiO3세라믹스의 경도값을 비교하면, 본 발명의 PbTiO3세라믹스는 단단하고 비교적 치밀한 세라믹스로서 일반 Pb계 세라믹스에 거의 필적하는 특성을 가지는 것으로 판단할 수 있다.On the other hand, as shown in Figure 1, the sintered density of PbTiO 3 ceramics showed a relative density of about 94 ~ 96% with respect to the theoretical density (8.01 / cm 3 ) of PbTiO 3 according to the number of calcination-milling iterations. The highest sintered density was 96.5% of the theoretical density in the case of Inventive Example (1) when the calcination temperature was 1000 ° C. and the calcination-milling repetition frequency was four times. In addition, as shown in FIG. 2, the fine Vickers hardness of PbTiO 3 ceramics was about 330-600 kg / mm 2 depending on the number of calcination-milling repetitions. The maximum hardness value was the same as the condition showing the highest sintered density in the case of Inventive Example (1) when the calcination temperature was 1000 ° C. and the calcination-milling repetition frequency was four times. Among the general Pb-based ceramics, the fine Vickers hardness value of Pb (Zr 0.65 Ti 0.35 ) O 3 ceramics, which is known as a very sintering material, is about 430-520kg / mm 2 , and the fracture resistance (K IC ) value is 1.0-1.5 MN / m 3/2 (Piezoelectric / electric distortion actuator, Japan Industrial Technology Center, pp.68, 1986). This and the calcination temperature 1000 ℃ in the present invention is a calcined-crushed if the number of iterations is compared to the hardness value of PbTiO 3 ceramic prepared in 3-4 hoein conditions, PbTiO 3 ceramic of the present invention on a plain Pb as a solid, relatively dense ceramic It can be judged to have a characteristic almost comparable to the ceramics.

한편, 비교예의 경우 PbTiO3분말 합성시, 일반적인 하소 온도로 알려진 800∼900℃의 하소온도 조건에서 발명예와 동일한 조건으로 PbTiO3세라믹스를 제조하였다. 제 1,2도에 나타난 바와 같이 소결밀도는 이론밀도의 90∼93% 정도로 발명예(1,2)의 경우보다 낮았으며, 기계적인 강도를 대변하는 소결체의 미세 비이커스 경도는 180∼250kg/mm2정도로 발명예(1,2)의 경우보다 훨씬 낮은 값들을 나타내었다. 또한 하소-분쇄 반복 횟수에 상관없이 대부분의 소결체에서 균열들이 관찰되었다.On the other hand, in the case of Comparative Example PbTiO 3 powder synthesis, PbTiO 3 ceramics were prepared under the same conditions as the invention example at the calcination temperature conditions of 800 ~ 900 ℃ known as a general calcination temperature. As shown in FIG. 1 and 2, the sintered density was lower than that of Inventive Example (1, 2) by 90 to 93% of the theoretical density, and the fine Vickers hardness of the sintered body representing the mechanical strength was 180 to 250 kg / The values much lower than those of Inventive Example (1, 2) were shown in mm 2 . In addition, cracks were observed in most sintered bodies regardless of the number of calcination-grinding repetitions.

상술한 바와 같이, 본 발명은 종래재와 비교하여 순수한 페로브스카이트 단상인 동시에 균열이 없으며, 또한 종래 일반 Pb계 세라믹스와 거의 유사한 기계적 강도를 가지는 단상 PbTiO3세라믹스를 제공할 수 있고, 상기 제공된 세라믹스는 고주파용 압전소자의 제조뿐만 아니라, 최근에 Pb계 박막제조에 있어서 그 필요성이 급증하고 있는 스퍼터링 타겟용 PbTiO3세라믹스의 제조방법으로도 훌륭히 활용될 수 있다.As described above, the present invention can provide single-phase PbTiO 3 ceramics which are pure perovskite single phase and no cracking, and also have a mechanical strength almost similar to that of conventional general Pb-based ceramics as compared with the conventional materials, Ceramics can be used not only for the production of high-frequency piezoelectric elements, but also for the production of PbTiO 3 ceramics for sputtering targets, which has recently increased rapidly in Pb-based thin film manufacturing.

Claims (3)

티탄산납( PbTiO3) 의 제조방법에 있어서, PbO분말과 TiO2분말을 동일 몰비로 평량한 후, 이를 분쇄하고 혼합한 다음, 혼합물을 하소 하는 단계; 상기 분쇄 및 하소 공정을 수회 반복하는 단계; 및 재하소된 분말을 성형후 1200℃이상의 온도에서 소결하는 단계;를 포함하여 구성되는 단상 티탄산납 세라믹스 제조방법.In the manufacturing method of lead titanate (PbTiO 3 ), after weighing the PbO powder and TiO 2 powder in the same molar ratio, pulverizing and mixing it, and then calcining the mixture; Repeating the grinding and calcining process several times; And sintering the calcined powder at a temperature of 1200 ° C. or higher after molding. 제1항에 있어서, 상기 분쇄 및 하소공정의 반복은 2∼5회 행함을 특징으로 하는 제조방법.The method according to claim 1, wherein the pulverizing and calcining step is repeated 2 to 5 times. 제1항 또는 제2항에 있어서, 상기하소는 1000∼1200℃의 온도범위에서 1∼4시간 동안 불활성 분위기로 행함을 특징으로 하는 제조방법.The method according to claim 1 or 2, wherein the calcination is performed in an inert atmosphere for 1 to 4 hours in a temperature range of 1000 to 1200 ° C.
KR1019960071547A 1996-12-24 1996-12-24 Particulate lead titanate ceramic and method thereof KR100236185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071547A KR100236185B1 (en) 1996-12-24 1996-12-24 Particulate lead titanate ceramic and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071547A KR100236185B1 (en) 1996-12-24 1996-12-24 Particulate lead titanate ceramic and method thereof

Publications (2)

Publication Number Publication Date
KR19980052540A KR19980052540A (en) 1998-09-25
KR100236185B1 true KR100236185B1 (en) 1999-12-15

Family

ID=19490729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071547A KR100236185B1 (en) 1996-12-24 1996-12-24 Particulate lead titanate ceramic and method thereof

Country Status (1)

Country Link
KR (1) KR100236185B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469170B1 (en) * 2013-03-20 2014-12-04 인하대학교 산학협력단 Preparing method of polycrystal lead titanate thick film and the polycrystal lead titanate thick film thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132357A (en) * 1991-11-12 1993-05-28 Toyota Motor Corp Production of lead titanate porcelain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132357A (en) * 1991-11-12 1993-05-28 Toyota Motor Corp Production of lead titanate porcelain

Also Published As

Publication number Publication date
KR19980052540A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of undoped lead titanate ceramics via sol‐gel processing
Duan et al. High curie temperature perovskite BiInO3–PbTiO3 ceramics
WO2009116683A1 (en) Piezoelectric material
Kim et al. Fabrication of fine-grain piezoelectric ceramics using reactive calcination
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
Zhu et al. Preparation and characterisation of Pb (Fe1/2Ta1/2) O3 relaxor ferroelectric
Duran et al. Processing and electrical properties of 0.5 Pb (Yb 1/2 Nb 1/2) O 3-0.5 PbTiO 3 ceramics
CN108117387B (en) Co and Fe Co-doped Bi4Ti3O12Multiferroic and magneto-dielectric ceramic material and preparation method thereof
KR100236185B1 (en) Particulate lead titanate ceramic and method thereof
KR100801477B1 (en) Lead free ceramics and the manufacturing method thereof
US5192723A (en) Method of phase transition, method for producing lead niobate-based complex oxide utilizing said phase transition method, and lead niobate-based complex oxide produced by said method
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
KR100896966B1 (en) Piezoelectric material and method of manufacturing the same
CN115849905A (en) High-temperature piezoelectric ceramic material, preparation method and application
Winfield et al. DiP224: Neodymium titanate (Nd2Ti2O7) ceramics
Ray et al. Manufacturing and characterization of piezoceramic lead metaniobate PbNb2O6
Ullah et al. Dielectric, Ferroelectric and Strain Properties of (Bi 0.5 Na 0.5) 0.935 Ba 0.065 Ti 1− x (Al 0.5 Nb 0.5) x O 3 Lead-free Piezoelectric Ceramics
Wang et al. Sintering and piezoelectric properties of Pb (Ni 1/3 Sb 2/3) O 3-PbZrO 3-PbTiO 3 ceramics
JP2004359539A (en) Method of manufacturing potassium niobate sintered compact
Takeuchi et al. Rapid preparation of lead titanate sputtering target using spark‐plasma sintering
Lu Perovskite phase formation and microstructural evolution of lead magnesium tungstate-lead titanate ceramics
Singh et al. Dilatometric and dielectric behaviour of Sm modified PCT ceramics
JPH0797260A (en) Manufacture of piezoelectric ceramics
CN116477938B (en) Barium titanate-based leadless piezoelectric ceramic and preparation method thereof
JP2002121069A (en) Sintered compact of bismuth layered compound and method of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030929

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee