KR100234954B1 - Positive-electrode thin film manufacturing method for electrolytic condenser - Google Patents

Positive-electrode thin film manufacturing method for electrolytic condenser Download PDF

Info

Publication number
KR100234954B1
KR100234954B1 KR1019970029893A KR19970029893A KR100234954B1 KR 100234954 B1 KR100234954 B1 KR 100234954B1 KR 1019970029893 A KR1019970029893 A KR 1019970029893A KR 19970029893 A KR19970029893 A KR 19970029893A KR 100234954 B1 KR100234954 B1 KR 100234954B1
Authority
KR
South Korea
Prior art keywords
heat treatment
thin film
electrolytic capacitor
aluminum
intermediate heat
Prior art date
Application number
KR1019970029893A
Other languages
Korean (ko)
Other versions
KR19990005678A (en
Inventor
김석종
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019970029893A priority Critical patent/KR100234954B1/en
Publication of KR19990005678A publication Critical patent/KR19990005678A/en
Application granted granted Critical
Publication of KR100234954B1 publication Critical patent/KR100234954B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 전해콘덴서에 사용되는 양극박막의 제조방법에 관한 것이며; 그 목적은 입방체 집합조직(cube texture)의 발달로 에칭정도가 향상된 전해콘덴서용 알루미늄 양극 박막의 제조방법을 제공함에 있다.The present invention relates to a method for producing a cathode thin film used in an electrolytic capacitor; The purpose is to provide a method for producing an aluminum anode thin film for an electrolytic capacitor with improved etching by the development of a cube texture (cube texture).

상기 목적달성을 위한 본 발명은 99.99중량%이상의 순도를 가진 알루미늄 주괴 또는 슬라브를 1차냉간압연하고, 1차냉간압연재를 상기 알루미늄의 회복직상온도에서 중간열처리한 다음, 중간열처리된 냉연재를 다시 97%이상의 압하율로 2차냉간압연을 행하고, 이어서 최종열처리한 후 에칭하는 전해콘덴서용 양극박막의 제조방법에 관한 것을 그 기술적 요지로 한다.The present invention for achieving the above object is the primary cold-rolled aluminum ingot or slab having a purity of 99.99% by weight or more, the first cold-rolled material in the intermediate heat treatment at the recovery direct temperature of the aluminum, and then the intermediate heat-treated cold rolled material The technical gist of the present invention relates to a method for producing an anode thin film for an electrolytic capacitor which is further subjected to secondary cold rolling at a reduction ratio of 97% or more, followed by final heat treatment.

Description

전해콘덴서용 양극박막의 제조방법Manufacturing method of anode thin film for electrolytic capacitor

본 발명은 전해콘덴서에 사용되는 양극박막의 제조방법에 관한 것으로, 보다 상세하게는 입방체 집합조직(cube texture)의 발달로 에칭정도가 향상된 전해콘덴서용 알루미늄 양극 박막의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a cathode thin film used in an electrolytic capacitor, and more particularly, to a method for manufacturing an aluminum anode thin film for an electrolytic capacitor having improved etching degree by the development of a cube texture.

일반적으로 전해콘덴서의 정전용량은 여러가지 요인에 의해 좌우된다. 그 중 하나가 전해콘덴서의 양극박에 대한 에칭성이다. 즉, 전해콘덴서의 양극박에 대한 에칭정도가 향상되면 양극박의 표면적이 증대되기 때문에 정전용량이 크게 증대된다.In general, the capacitance of an electrolytic capacitor depends on several factors. One of them is the etching property of the anode foil of the electrolytic capacitor. That is, when the etching degree of the anode foil of the electrolytic capacitor is improved, the surface area of the cathode foil is increased, so that the capacitance is greatly increased.

그리고, 전해콘덴서의 양극박의 에칭성 향상을 위해서 양극박으로 사용되는 고순도(99.99중량%이상) 알루미늄박을 특정한 결정방위({100}<001>)를 갖도록 하는데, 이러한 알루미늄의 특정결정방위를 ‘입방체 집합조직(cube texture)’라 한다. 특히, 약 200V 이상의 고압용 전해콘덴서의 경우 양극박의 에칭성 향상을 위해서는 양극박내에 입방체 집합조직을 발달시키는 것이 매우 중요하다.In order to improve the etching property of the anode foil of the electrolytic capacitor, the high purity (99.99% by weight or more) aluminum foil used as the anode foil has a specific crystal orientation ({100} <001>). It is called 'cube texture'. In particular, in the case of the high-pressure electrolytic capacitor of about 200V or more, it is very important to develop a cube texture in the anode foil in order to improve the etching property of the anode foil.

한편, 전해콘덴서의 양극박은 열간가공, 중간처리를 낀 2회의 냉간가공, 최종열처리 및 에칭과정으로 제조된다. 구체적으로 이러한 제조과정에 있어 종래에는 상기 중간열처리를 생략하거나 약 180-350℃ 정도의 온도범위에서 행하였다. 즉, 종래에는 양극박의 미세조직의 변화에는 커다란 관심을 두지 않았다. 이로인해 종래의 제조공정으로 제조되는 전해콘덴서용 알루미늄 양극박내에는 입방체 집합조직의 발달이 크게 떨어져 결국 양극박의 에칭성이 저하되는 경향이 있었다.On the other hand, the anode foil of the electrolytic capacitor is manufactured by hot working, two cold working with intermediate processing, final heat treatment and etching process. Specifically, in the manufacturing process, conventionally, the intermediate heat treatment was omitted or performed in a temperature range of about 180-350 ° C. That is, in the prior art, great attention has not been given to changes in the microstructure of the positive electrode foil. As a result, in the aluminum anode foil for an electrolytic capacitor manufactured by a conventional manufacturing process, the development of a cube aggregate was greatly deteriorated, so that the etching property of the cathode foil tended to be lowered.

따라서, 본 발명은 전해콘덴서용 알루미늄 양극박내의 입방체 집합조직을 크게 발달시킬 수 있는 전해콘덴서용 알루미늄 양극박막의 제조방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing an aluminum anode thin film for an electrolytic capacitor, which can greatly develop a cube aggregate in the aluminum anode foil for an electrolytic capacitor.

제1도는 종래 및 본 발명에 따라 제조된 양극박의 XRD분석결과를 비교한 그래프.1 is a graph comparing the XRD analysis results of the positive electrode foil prepared according to the prior art and the present invention.

제2도는 종래의 중간열처리과정을 거친 양극박의 미세조직사진.2 is a microstructure photograph of a positive electrode foil subjected to a conventional intermediate heat treatment process.

제3도는 본 발명의 중간열처리과정을 거친 양극박의 미세조직사진.3 is a microstructure photograph of the positive electrode foil subjected to the intermediate heat treatment process of the present invention.

상기 목적달성을 위한 본 발명은 전해콘덴서용 알루미늄 양극박막의 제조방법에 있어서, 99.99중량%이상의 순도를 가진 알루미늄 주괴 또는 슬라브를 1차냉간압연하고, 1차냉간압연재를 상기 알루미늄의 회복직상온도에서 중간열처리한 다음, 중간열처리된 냉연재를 다시 97%이상의 압하율로 2차냉간압연을 행하고, 이어서 최종열처리한 후 에칭하는 전해콘덴서용 양극박막의 제조방법에 관한 것이다.In order to achieve the above object, the present invention provides a method for manufacturing an aluminum anode thin film for an electrolytic capacitor, comprising: primary cold rolling of an aluminum ingot or slab having a purity of 99.99% by weight or more, and a primary cold rolling material of a recovery direct temperature of the aluminum. After the intermediate heat treatment in the secondary heat treatment, the cold rolled material is subjected to secondary cold rolling again at a reduction ratio of 97% or more, and then, after the final heat treatment, a method for producing an anode thin film for an electrolytic capacitor.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

보통 전해콘덴서용 알루미늄 양극박막을 제조하기 위해서는 약 99.99중량%이상의 순도를 가진 알루미늄 주괴 또는 슬라브를 사용한다. 본 발명은 이러한 알루미늄 주괴 또는 슬라브를 이용하여 전해콘덴서의 양극박막을 제조할 때 중간열처리조건 및 2차냉간압연조건을 제어하므로써, 전해콘덴서용 양극박막의 입방체 집합조직을 크게 발달시킴에 특징이 있다.Usually, in order to manufacture an aluminum anode thin film for an electrolytic capacitor, an aluminum ingot or slab having a purity of about 99.99% by weight or more is used. The present invention is characterized by greatly developing the cubic aggregate structure of the anode thin film for the electrolytic capacitor by controlling the intermediate heat treatment condition and the secondary cold rolling condition when manufacturing the anode thin film of the electrolytic capacitor using the aluminum ingot or slab. .

본 발명에서는 먼저 상기 알루미늄 소재를 1차냉간압연하여 최종 냉간압연을 하기 위한 적절한 두께로 준비한다. 1차냉간압연율은 최종냉간압연되는 양극박막의 두께에 따라 영향을 받을 수 있는데, 1차냉간압연은 70%미만에서 실시함이 적당하다. 1차 냉간압연율이 과도하면 중간열처리시 충분한 회복이 일어나기 힘들다.In the present invention, the aluminum material is first cold rolled to prepare an appropriate thickness for final cold rolling. The primary cold rolling rate may be affected by the thickness of the anode thin film to be finally cold rolled, but the primary cold rolling may be performed at less than 70%. If the primary cold rolling rate is excessive, it is difficult for sufficient recovery to occur during intermediate heat treatment.

상기 냉간압연된 소재는 이후 회복이 일어나는 온도직상에서 중간열처리를 행한다.The cold rolled material is then subjected to an intermediate heat treatment directly above the temperature at which recovery takes place.

구체적으로 중간열처리는 약 200-250℃의 온도범위에서 행함이 바람직하다. 또한, 그 유지시간은 열처리온도가 높으면 짧게, 그리고 열처리온도가 낮으면 길게하는데, 상기 열처리온도범위에서는 약 12-24시간이 적당하다.Specifically, the intermediate heat treatment is preferably performed at a temperature range of about 200-250 ° C. In addition, the holding time is short when the heat treatment temperature is high, and long when the heat treatment temperature is low, and about 12-24 hours are suitable in the heat treatment temperature range.

상기와 같이 중간열처리된 냉연재는 다시 97%이상의 압하율로 2차냉간압연을 행하여 양극박막을 제조한다. 만일 2차 냉간압연이 97%이하의 압하율로 진행되면 양극박막에서 입방체 집합조직 형성을 위한 핵생성 사이트(site)가 적어 바람직하지 않다. 상기 양극박막은 이어서 최종열처리한다. 최종열처리는 약 480-550℃가 바람직한데, 최종열처리온도가 480℃미만이면 양극박막내에 입방체 집합조직의 완전한 재결정이 이루어지기 어렵고, 최종열처리온도가 550℃이상이면 알루미늄의 용융점에 근접하여 재료의 열화를 초래할 수 있어 바람직하지 않다. 이렇게 최종열처리된 양극박막을 에칭처리하면 에칭피트(ertching pit)가 균일하고 조밀하게 분포되어 전해 콘덴서의 정전용량이 크게 증대될 수 있다.The cold rolled material subjected to the intermediate heat treatment as described above is subjected to secondary cold rolling at a rolling reduction ratio of 97% or more to produce an anode thin film. If the secondary cold rolling is performed at a reduction ratio of 97% or less, the nucleation site for forming a cube aggregate in the bipolar membrane is small, which is not preferable. The anode thin film is then subjected to final heat treatment. The final heat treatment is preferably about 480-550 ° C. If the final heat treatment temperature is less than 480 ° C., it is difficult to completely recrystallize the cube texture in the anode thin film. If the final heat treatment temperature is 550 ° C. or higher, the material is close to the melting point of aluminum. It is not preferable because it may cause deterioration. The etching of the final heat-treated anode thin film allows the etching pit to be uniformly and densely distributed, thereby greatly increasing the capacitance of the electrolytic capacitor.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

순도가 99.99%이상, 두께: 16㎜, 폭: 40㎜인 알루미늄 슬라브를 각각 하기표 1과 같은 조건으로 1차냉간압연, 중간열처리, 2차냉간압연하여 최종두께가 0.16㎜인 양극박막을 제조하고, 제조된 각각의 양극박을 모두 500℃의 수소분위기에서 약 1시간 동안 최종열처리하였다. 이때 중간열처리는 모두 수소분위기에서 약 18시간동안 행하였다. 상기와 같이 제조된 양극박에 대하여 XRD분석을 실시하여 2차냉연율에 따른 {200}면의 회절강도를 측정하고, 그 결과를 제1도에 나타내었다.An aluminum slab having a purity of 99.99% or more, a thickness of 16 mm, and a width of 40 mm was subjected to primary cold rolling, intermediate heat treatment, and secondary cold rolling, respectively, under the conditions shown in Table 1 below, to prepare an anode thin film having a final thickness of 0.16 mm. And, each of the prepared positive electrode foil was subjected to a final heat treatment for about 1 hour in a hydrogen atmosphere of 500 ℃. At this time, all the intermediate heat treatments were performed for about 18 hours in a hydrogen atmosphere. XRD analysis was performed on the anode foil prepared as described above to measure the diffraction intensity of the {200} plane according to the secondary cold rolling rate, and the results are shown in FIG. 1.

또한, 발명재와 비교재1에 대하여 중간열처리만을 한 상태에서 양극박을 투과전자 현미경(TEM)으로 촬영하고, 각각의 결과를 제2도와 제3도에 나타내었다.In addition, the anode and foil were photographed with a transmission electron microscope (TEM) with only intermediate heat treatment for the inventive material and the comparative material 1, and the results are shown in FIG. 2 and FIG.

Figure kpo00002
Figure kpo00002

제1도에도 나타난 바와 같이, 중간열처리온도가 회복온도직상인 230℃이고, 또한 2차 냉간압연율이 97%이상인 본 발명재의 경우 {200}면강조가 현저하게 높음을 보여주고 있다. 즉, 본 발명재의 경우 양극박내의 입방체 집합조직이 가장 크게 발달되어 있슴을 알 수 있었다.As shown in FIG. 1, the {200} surface emphasis is remarkably high in the case of the present invention in which the intermediate heat treatment temperature is 230 ° C, which is directly above the recovery temperature, and the secondary cold rolling rate is 97% or more. That is, in the case of the present invention it can be seen that the largest cube assembly in the positive electrode foil is developed.

이에 반하여 중간열처리온도가 회복온도이상이거나 2차냉연율이 97%미만인 비교재(1-5)의 경우 본 발명재에 비하여 입방체 집합조직의 발달정도가 매우 미흡함을 알 수 있었다.On the contrary, in the case of the comparative material (1-5) having an intermediate heat treatment temperature of more than the recovery temperature or a secondary cold rolling rate of less than 97%, it was found that the degree of development of the cubical aggregates was much less than that of the present invention.

이는 발명재의 경우 중간열처리단계에서 아직 양극박이 완전재결정이 되지 않고 회복이 일어나는 반면 비교재의 경우에는 중간열처리단계에서 이미 완전한 재결정이 이루어지기 때문이다. 이러한 결과는 발명재 및 비교재(1)의 중간열처리후의 미세조직을 나타내고 있는 2도 내지 제3도를 통해서도 알 수 있었다.This is because, in the case of the inventive material, the cathode foil is not completely recrystallized in the intermediate heat treatment step, but recovery occurs, while in the case of the comparative material, the complete recrystallization is already performed in the intermediate heat treatment step. These results can also be seen from 2 to 3 showing the microstructure after the intermediate heat treatment of the inventive material and the comparative material (1).

상술한 바와 같이, 본 발명은 알루미늄 소재를 회복온도직상에서 중간열처리하고, 2차냉간압연을 제어하여 양극박막내의 입방체 집합조직을 크게 발달시키므로써, 양극박막의 에칭성이 향상되어 양극박막의 유전체 표면의 증가로 전해콘덴서의 정전용량이 월등히 증가될 수 있다.As described above, the present invention by the intermediate heat treatment of the aluminum material directly at the recovery temperature, by controlling the secondary cold rolling to greatly improve the cube texture in the anode thin film, the etching property of the anode thin film is improved to improve the dielectric of the anode thin film Increasing the surface can significantly increase the capacitance of the electrolytic capacitor.

Claims (4)

전헤콘덴서용 알루미늄 양극박막의 제조방법에 있어서, 99.99중량%이상의 순도를 가진 알루미늄 주괴 또는 슬라브를 1차냉간압연하고, 1차 냉간압연재를 상기 알루미늄의 회복직상온도에서 중간열처리한 다음, 중간열처리된 냉연재를 다시 97%이상의 압하율로 2차냉간압연을 행하고, 이어서 최종열처리한 후 에칭함을 특징으로 하는 전해콘덴서용 양극박막의 제조방법.In the manufacturing method of the aluminum anode thin film for all-hecondenser, the primary primary cold rolled aluminum ingot or slab having a purity of 99.99% by weight or more, the primary cold rolled material is subjected to the intermediate heat treatment at the recovery direct temperature of the aluminum, and then the intermediate heat treatment. The cold rolled material is subjected to secondary cold rolling again at a reduction ratio of 97% or more, and then subjected to final heat treatment to be etched, thereby producing an anode thin film for an electrolytic capacitor. 제1항에 있어서, 상기 1차냉간압연은 70%미만의 압하율로 행함을 특징으로 하는 제조방법.The method according to claim 1, wherein the primary cold rolling is performed at a reduction ratio of less than 70%. 제1항에 있어서, 상기 중간열처리는 200-240℃의 온도범위에서 12-24시간 행함을 특징으로 하는 제조방법.The method of claim 1, wherein the intermediate heat treatment is performed for 12 to 24 hours in the temperature range of 200-240 ℃. 제1항에 있어서, 상기 최종열처리는 480℃이상 550℃미만의 온도범위에서 행함을 특징으로 하는 제조방법.The method according to claim 1, wherein the final heat treatment is performed at a temperature range of 480 ° C or higher and less than 550 ° C.
KR1019970029893A 1997-06-30 1997-06-30 Positive-electrode thin film manufacturing method for electrolytic condenser KR100234954B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970029893A KR100234954B1 (en) 1997-06-30 1997-06-30 Positive-electrode thin film manufacturing method for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970029893A KR100234954B1 (en) 1997-06-30 1997-06-30 Positive-electrode thin film manufacturing method for electrolytic condenser

Publications (2)

Publication Number Publication Date
KR19990005678A KR19990005678A (en) 1999-01-25
KR100234954B1 true KR100234954B1 (en) 1999-12-15

Family

ID=19512788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970029893A KR100234954B1 (en) 1997-06-30 1997-06-30 Positive-electrode thin film manufacturing method for electrolytic condenser

Country Status (1)

Country Link
KR (1) KR100234954B1 (en)

Also Published As

Publication number Publication date
KR19990005678A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
KR100234954B1 (en) Positive-electrode thin film manufacturing method for electrolytic condenser
KR100497769B1 (en) Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance
JPH02146718A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JPS6356301B2 (en)
JPH02270928A (en) Aluminum foil for anode of chemical condenser and its manufacture
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP2602357B2 (en) Aluminum alloy foil for electrolytic capacitor electrodes
JP3776788B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP2002173748A (en) Method for producing high purity aluminum foil
JPH0466204A (en) Manufacture of aluminum foil for electrolytic condenser
JPH0462820A (en) Aluminum foil for electrolytic capacitor electrode
JPS6063359A (en) Manufacture of aluminum foil for anode of electrolytic capacitor
JPH0567695B2 (en)
JPH03183749A (en) Production of anode foil for electrolytic capacitor
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JPH0488153A (en) Manufacture of aluminum foil for electrolytic capacitor
JPS6063360A (en) Manufacture of aluminum foil for anode of electrolytic capacitor
KR100490760B1 (en) Al ALLOY MATERIAL FOR BUILDING AND METHOD FOR PRODUCING THE SAME
JP3359408B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JPS63137505A (en) Production of aluminum foil for electrolytic capacitor cathode
JPS63265416A (en) Aluminum alloy foil for electrolytic capacitor electrode
JPH0192347A (en) Manufacture of aluminum foil for electrolytic capacitor anode
JPH0462819A (en) Aluminum foil for electrolytic capacitor electrode
JPH108225A (en) Production of aluminum foil for electrolytic capacitor electrode
JPH032335B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110919

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee