KR100204424B1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR100204424B1
KR100204424B1 KR1019960026317A KR19960026317A KR100204424B1 KR 100204424 B1 KR100204424 B1 KR 100204424B1 KR 1019960026317 A KR1019960026317 A KR 1019960026317A KR 19960026317 A KR19960026317 A KR 19960026317A KR 100204424 B1 KR100204424 B1 KR 100204424B1
Authority
KR
South Korea
Prior art keywords
oxide film
film
gate electrode
forming
layer
Prior art date
Application number
KR1019960026317A
Other languages
Korean (ko)
Other versions
KR980006235A (en
Inventor
이희승
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019960026317A priority Critical patent/KR100204424B1/en
Publication of KR980006235A publication Critical patent/KR980006235A/en
Application granted granted Critical
Publication of KR100204424B1 publication Critical patent/KR100204424B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 반도체 소자의 제조방법이 개시된다. 개시된 본 발명은 필드 산화막 및 액티브 영역을 구비한 반도체 기판 상부에 제1산화막, 제1폴리실리콘막, 제2산화막, 제2폴리실리콘막을 순차적으로 형성하는 단계; 제2폴리실리콘막과 제2산화막을 액티브 영역의 소정 부분과 필드 산화막 상부의 소정 부분에 존재하도록 식각하여 제1게이트 전극 및 캐패시터 상부 전극을 형성하는 단계; 제1게이트 전극 양측의 액티브 영역에 저농도 불순물층을 형성하는 단계; 필드 산화막 영역상의 구조물 전면에 제3산화막을 형성하는 단계; 제3산화막이 형성되지 않은 액티브 영역상에만 전이 금속막을 형성하는 단계; 제1게이트의 전극 및 캐패시터 상부 전극을 감싸도록 전이금속막과, 제3산화막 및 제1폴리실리콘막을 패터닝하여 게이트 전극 및 캐패시터를 형성하는 단계를 포함하며, 게이트 전극은 양측의 저농도 불순물층과 일정폭만큼 오버랩되는 것을 특징으로 한다.The present invention discloses a method for manufacturing a semiconductor device. The present invention includes sequentially forming a first oxide film, a first polysilicon film, a second oxide film, and a second polysilicon film on a semiconductor substrate having a field oxide film and an active region; Etching the second polysilicon film and the second oxide film so as to exist on the predetermined portion of the active region and the upper portion of the field oxide layer to form a first gate electrode and a capacitor upper electrode; Forming a low concentration impurity layer in active regions on both sides of the first gate electrode; Forming a third oxide film over the entire structure on the field oxide region; Forming a transition metal film only on an active region in which the third oxide film is not formed; Patterning the transition metal film, the third oxide film, and the first polysilicon film so as to surround the electrode of the first gate and the capacitor upper electrode to form a gate electrode and a capacitor, wherein the gate electrode is fixed with a low concentration impurity layer on both sides. It is characterized by overlapping by the width.

Description

반도체 소자의 제조방법Manufacturing method of semiconductor device

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보아 구체적으로는 아날로그 회로에 이용되는 모스 트랜지스터와 캐패시터의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a MOS transistor and a capacitor used in an analog circuit.

종래의 아날로그 회로에 이용되는 모스 트랜지스터 및 캐패시터의 제조방법은 제1도에 도시된 바와 같이, 반도체 기판(1)의 소자 분리 예정 영역 상부에 공지된 선택적 산화 방식에 의하여, 필드 산화막(2)이 형성된다.In the method of manufacturing a MOS transistor and a capacitor used in a conventional analog circuit, as shown in FIG. 1, the field oxide film 2 is formed by a known selective oxidation method on the device isolation region of the semiconductor substrate 1. Is formed.

이어서, 전체 구조물 상부에 게이트 산화막(3)과, 게이트 전극 및 캐패시터의 하부 전극을 형성하기 위한 폴리실리콘막이 순차적으로 형성되고, 그 후에, 캐패시터 영역만이 패턴 형성되도록 마스크 패턴(도시되지 않음)이 형성되고, 노출된 캐패시터 영역에 유전체 산화막(5), 상부 전극용 폴리실리콘막이 순차적으로 형성된 후, 유전체 산화막(5)과 상부 전극용 폴리실리콘막은 캐패시터의 하부 전극상의 소정부분에 존재하도록 패터닝되어, 캐패시터의 상부 전극(6)이 형성된다. 그리고, 적층된 폴리실리콘막과 게이트 산화막(1)은, 반도체 기판(1)의 소정 영역 및 필드 산화막(2)의 소정 영역에 위치하도록 패터닝되어, 게이트 전극(4A)과 캐패시터의 하부 전극(4B)이 형성된다. 그리고나서, 마스크 패턴이 공지의 방법에 의하여 제거되고, LDD 구조를 갖는 모스 트랜지스터를 형성하기 위하여, 노출된 반도체 기판(1)에 저농도 불순물층(5)이 형성된다. 이어서, 결과물 전면에 산화막이 형성되고, 이방성블랭킷 식각을 진행하여 게이트 전극(4A)과, 하부 전극(4B) 및 상부 전극(6)의 양측벽에 스페이서(8)가 형성된다. 그리고나서, 게이트 전극(4A)과 스페이서(8)로 노출된 반도체 기판에 고농도 불순물을 이온 주입하여 소오스, 드레인 영역(9)이 형성된다.Subsequently, the gate oxide film 3 and the polysilicon film for forming the gate electrode and the lower electrode of the capacitor are sequentially formed on the entire structure, and then a mask pattern (not shown) is formed so that only the capacitor region is patterned. After the dielectric oxide film 5 and the polysilicon film for the upper electrode are sequentially formed in the exposed capacitor region, the dielectric oxide film 5 and the polysilicon film for the upper electrode are patterned so as to exist in a predetermined portion on the lower electrode of the capacitor. The upper electrode 6 of the capacitor is formed. The stacked polysilicon film and the gate oxide film 1 are patterned so as to be located in the predetermined region of the semiconductor substrate 1 and the predetermined region of the field oxide film 2, and the gate electrode 4A and the lower electrode 4B of the capacitor are patterned. ) Is formed. Then, the mask pattern is removed by a known method, and a low concentration impurity layer 5 is formed on the exposed semiconductor substrate 1 to form a MOS transistor having an LDD structure. Subsequently, an oxide film is formed on the entire surface of the resultant, and anisotropic blanket etching is performed to form spacers 8 on both side walls of the gate electrode 4A, the lower electrode 4B, and the upper electrode 6. Then, the source and drain regions 9 are formed by ion implanting high concentration impurities into the semiconductor substrate exposed by the gate electrode 4A and the spacer 8.

그러나, 상기와 같은 종래의 방법에 의하면, 게이트 전극의 폭이 미세해짐에 따라, 강한 에너지를 갖는 핫 캐리어가 발생하게 되어 모스 트랜지스터의 특성을 열화시키고, 더구나, 소자의 집적밀도가 증가될수록 저농도 불순물 영역이 게이트 전극과 오버랩 되는 폭이 적어지므로 인하여, 핫 캐리어 현상이 더욱더 증폭되게 되어, 소자의 특성을 유지하는데 많은 어려움이 존재하였다.However, according to the conventional method as described above, as the width of the gate electrode becomes smaller, hot carriers having strong energy are generated to deteriorate the characteristics of the MOS transistor. Moreover, as the integrated density of the device increases, low concentration impurities Since the width of the region overlaps with the gate electrode is reduced, the hot carrier phenomenon is further amplified, and there are many difficulties in maintaining the characteristics of the device.

따라서, 본 발명은, 상기한 종래의 문제점을 해결하기 위한 것으로, 반도체 소자의 제조방법에 있어서, 게이트 전극과 저농도 불순물의 오버랩되는 폭을 늘리어, 핫 캐리어 현상을 방지하고, 더불어 게이트 전극의 전도 특성을 개선하여, 모스 트랜지스터의 특성 및 동작 속도를 향상시킬 수 있는 반도체 소자의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above-described conventional problems, and in the method of manufacturing a semiconductor device, the overlapping width of the gate electrode and the low concentration impurity is increased to prevent hot carrier phenomenon and at the same time conduction of the gate electrode. An object of the present invention is to provide a method of manufacturing a semiconductor device capable of improving the characteristics and improving the characteristics and operating speed of the MOS transistor.

제1도는 종래의 반도체 소자의 제조방법에 따라 형성된 반도체 소자의 단면도.1 is a cross-sectional view of a semiconductor device formed according to a conventional method for manufacturing a semiconductor device.

제2a도 내지 제2g도는 본 발명에 따른 반도체 소자의 제조방법을 각 공정 순서별로 나타낸 단면도.2A to 2G are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention for each process sequence.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 반도체 기관 11 : 필드 산화막10 semiconductor organ 11: field oxide film

12 : 제1산화막 13 : 제1폴리실리콘막12: first oxide film 13: first polysilicon film

14 : 제2산화막 15 : 제2폴리실리콘막14 second oxide film 15 second polysilicon film

16, 19 : 마스크 패턴 17 : 저농도 불순물층16, 19: mask pattern 17: low concentration impurity layer

18 : 제3산화막 20 : 텅스텐막18: third oxide film 20: tungsten film

21 : 게이트 전극 22 : 캐패시터21 gate electrode 22 capacitor

23 : 소오스, 드레인23: source, drain

상기한 본 발명의 목적을 달성하기 위한 것으로, 본 발명은, 필드 산화막 및 액티브 영역을 구비한 반도체 기판 상부에 제1산화막, 제1폴리실리콘막, 제2산화막, 제2폴리실리콘막을 순차적으로 형성하는 단계; 상기 제2폴리실리콘막과 제2산화막을 액티브 영역의 소정 부분과 필드 산화막 상부의 소정 부분에 존재하도록 식각하여 제1게이트 전극 및 캐패시터 상부 전극을 형성하는 단계; 제1게이트 전극 양측의 액티브 영역에 저농도 불순물층을 형성하는 단계; 상기 필드 산화막 영역상의 구조물 전면에 제3산화막을 형성하는 단계; 제3산화막이 형성되지 않은 액티브 영역상에만 전이 금속막을 형성하는 단계; 제1게이트의 전극 및 캐패시터 상부 전극을 감싸도록 전이금속막과, 제3산화막 및 제1폴리실리콘막을 패터닝하여 게이트 전극 및 캐패시터를 형성하는 단계를 포함하며, 상기 게이트 전극은 양측의 저농도 불순물층과 일정폭만큼 오버랩되는 것을 특징으로 한다.SUMMARY OF THE INVENTION In order to achieve the above object of the present invention, the present invention sequentially forms a first oxide film, a first polysilicon film, a second oxide film, and a second polysilicon film on a semiconductor substrate having a field oxide film and an active region. Doing; Etching the second polysilicon layer and the second oxide layer so as to exist on a predetermined portion of the active region and a predetermined portion of the field oxide layer to form a first gate electrode and a capacitor upper electrode; Forming a low concentration impurity layer in active regions on both sides of the first gate electrode; Forming a third oxide film on the entire structure of the field oxide film region; Forming a transition metal film only on an active region in which the third oxide film is not formed; Patterning the transition metal film, the third oxide film, and the first polysilicon film to surround the electrode of the first gate and the capacitor upper electrode to form a gate electrode and a capacitor, wherein the gate electrode comprises a low concentration impurity layer on both sides; It overlaps by a predetermined width.

본 발명에 의하면, 게이트 전극과 저농도 불순물의 오버랩되는 폭을 늘리어, 핫 캐리어 현상을 방지하고, 게이트 전극 상부에 선택적 텅스텐을 형성하여, 게이트 전극의 동작 속도를 증대시키므로써, 반도체 소자의 특성 및 동작 속도가 개선된다.According to the present invention, the width of overlapping gate electrode with low concentration of impurities is increased to prevent hot carrier phenomenon, and selective tungsten is formed on the gate electrode to increase the operation speed of the gate electrode, thereby improving the characteristics of the semiconductor device and Operation speed is improved.

[실시예]EXAMPLE

이하 첨부한 도면에 의거하면 본 발명의 바람직한 실시예를 자세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도면 제2a도 내지 제2g도는 본 발명에 따른 반도체 소자의 제조방법을 각 공정 순서별로 나타낸 단면도이다.2A to 2G are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention for each process order.

먼저, 제2a도에 도시된 바와 같이, 반도체 기판(10) 예를 들어, N 또는 P형의 불순물 타입을 갖는 실리콘 기판의 소자 분리 예정 영역에 공지된 선택적 산화 방식에 의하여 필드 산화막(11)이 형성되어, 액티브 영역이 한정된다. 이어서, 결과물 상부에 게이트 산화막용 제1산화막(12) 제1폴리실리콘막(13), 캐패시터용 제2산화막(14) 및 캐패시터의 상부 전극용 제2폴리실리콘막(14)이 순간적으로 적층된다.First, as shown in FIG. 2A, the field oxide film 11 is formed by a selective oxidation method known in the semiconductor substrate 10, for example, an element isolation region of a silicon substrate having an N or P type impurity type. The active region is defined. Subsequently, the first oxide film 12 for the gate oxide film 12, the first polysilicon film 13 for the gate oxide film, the second oxide film 14 for the capacitor, and the second polysilicon film 14 for the upper electrode of the capacitor are stacked on top of the resultant product. .

이어서, 제2산화막(14) 및 캐패시터의 상부 전극용 제2폴리실리콘막(14)은 제2B도에 도시된 바와 같이, 액티브 영역의 게이트 전극 예정 위치 및 필드 산화막 부분에 존재하도록 패터닝되어 제1게이트 전극(A)과 캐패시터의 상부 전극(B)이 형성된다.Subsequently, as shown in FIG. 2B, the second oxide film 14 and the second polysilicon film 14 for the upper electrode of the capacitor are patterned so as to be present in the gate electrode predetermined position and the field oxide film portion of the active region. The gate electrode A and the upper electrode B of the capacitor are formed.

이어서, 전체 구조물 상부에 감광막이 도포되고, 제2c도에 도시된 바와 같이, 액티브 영역이 노출되도록 노광 및 현상되어, 제1마스크 패턴(16)이 형성된 후, 노출된 액티브 영역에 저농도 불순물이 이온 주입되고, 확산되어 저농도 불순물층(17)이 형성된다. 이때 저농도 불순물은 제1폴리실리콘막 및 게이트 산화막을 통과하여 반도체 기판내에 형성될 수 있을만큼의 에너지 투사 범위로 이온 주입됨이 바람직하다.Subsequently, a photoresist is applied over the entire structure, and exposed and developed so as to expose the active region as shown in FIG. 2C. After the first mask pattern 16 is formed, low concentration impurities are ionized in the exposed active region. It is implanted and diffused, and the low concentration impurity layer 17 is formed. At this time, the low concentration impurity is preferably implanted into the energy projection range enough to be formed in the semiconductor substrate through the first polysilicon film and the gate oxide film.

그 후에, 제1마스크 패턴(16)이 제거되고, 결과물 상부에는 선택적 금속 증착을 위한 제3산화막(18)이 결과물 상부에 고르게 증착된후, 제2D 도에 도시된 바와 같이, 제3산화막 상부에 제2마스크 패턴(19)을 형성하는데, 이 패턴은 아날로그 캐패시터 형성 부분이 가려지도록 형성된다.Thereafter, the first mask pattern 16 is removed, and a third oxide film 18 for selective metal deposition is evenly deposited on the resultant, and then, as shown in FIG. A second mask pattern 19 is formed in the pattern, which is formed so that the analog capacitor forming portion is covered.

그런다음, 제2e도에서와 같이, 제2마스크 패턴(19)으로부터 노출된 액티브 영역상부의 산화막(18)이 습식 식각 방식에 의하여 제거된 다음, 산화막(18)이 제거된 액티브 영역에 선택적 증착 방식에 따라 전이 금속막 바람직하게는 텅스텐막(20)이 형성된다. 이때, 액티브 영역상부의 산화막(18)을 제거하는 것은, 액티브 영역 상부에만 전이 금속만을 선택적 증착시키기 위함이다. 부가하자면, 텅스텐은 산화막이 형성된 영역에서는 선택적 증착이 이루어지지 않으므로, 이러한 성질을 이용하여 액티브 영역상부에만 증착하기 위함이다. 그 후, 제2마스크 패턴(19)이 제거된다. 그러면, 상기 전이 금속막(20)과 제3산화막(18)은 거의 동일선상에 위치하게 된다.Then, as shown in FIG. 2E, the oxide film 18 on the active region exposed from the second mask pattern 19 is removed by a wet etching method, and then the selective deposition on the active region where the oxide film 18 is removed. According to the method, a transition metal film, preferably a tungsten film 20 is formed. At this time, the removal of the oxide film 18 over the active region is to selectively deposit only the transition metal only on the active region. In addition, since tungsten is not selectively deposited in the region where the oxide film is formed, this is to deposit only on the active region using this property. Thereafter, the second mask pattern 19 is removed. As a result, the transition metal film 20 and the third oxide film 18 are almost in the same line.

제2f도에 도시된 바와 같이, 상기 텅스텐막 및 산화막 상부에 게이트 전극 및 캐패시터를 형성하기 위한 제3마스크 패턴(도시되지 않음)이 형성되고, 이 마스크 패턴의 형태로 전이 금속막(20), 산화막(18), 제1폴리실리콘막(13)이 식각되어, 게이트 전극(21)과 캐패시터(22)가 형성된다. 이때, 제3마스크 패턴(도시되지 않음)의 폭은, 제1게이트 전극의 폭 및 캐패시터의 상부 전극 폭보다 크도록 형성되고, 특히, 제3마스크 패턴은, 기관하부에 형성된 저농도 불순물층(17)이 소정 크기 만큼 오버랩 될 수 있도록 형성됨이 바람직하며, 텅스텐막(19)과 산화막(18)은 동일한 식각 속도를 갖도록하여 조절하여 식각한다.As shown in FIG. 2F, a third mask pattern (not shown) for forming a gate electrode and a capacitor is formed on the tungsten film and the oxide film, and the transition metal film 20 in the form of this mask pattern, The oxide film 18 and the first polysilicon film 13 are etched to form the gate electrode 21 and the capacitor 22. At this time, the width of the third mask pattern (not shown) is formed to be larger than the width of the first gate electrode and the width of the upper electrode of the capacitor. In particular, the third mask pattern is a low concentration impurity layer 17 formed in the lower part of the engine. ) Is preferably formed so as to overlap by a predetermined size, and the tungsten film 19 and the oxide film 18 are etched by adjusting to have the same etching rate.

이에 따라, 반도체 기판 영역에서의 게이트 전극(21)은 텅스텐막 및 제1폴리실리콘막에 의하여 둘려싸여 있으므로, 게이트 전극의 전도 특성이 개선될 뿐만 아니라, 스페이서 형성공정이 배제되어, 공정이 단순화되고, 무엇보다도 다층의 게이트 전극의 형성에 의하여, 게이트 전극 하부에 충분한 폭의 저농도 불순물이 형성되므로, 단채널로 인한 핫 캐리어 현상을 방지 할 수 있다.Accordingly, since the gate electrode 21 in the semiconductor substrate region is surrounded by the tungsten film and the first polysilicon film, not only the conduction characteristics of the gate electrode are improved, but also the spacer forming process is excluded, thereby simplifying the process. First of all, since a low concentration impurity having a sufficient width is formed under the gate electrode by forming a multilayer gate electrode, hot carrier phenomenon due to a short channel can be prevented.

그후, 제2g도에 도시된 바와 같이, 모스 트랜지스터 부위가 노출되도록 제4마스크 패턴(도시되지 않음)이 형성되고, 노출된 반도체 기판(10)에 고농도 불순물이 이은 주입된 후, 소정의 열공정이 의하여 소오스/드레인(23)이 형성된 다음 제4마스크 패턴이 제거된다.Thereafter, as shown in FIG. 2G, a fourth mask pattern (not shown) is formed to expose the MOS transistor portions, and a high concentration of impurities are subsequently injected into the exposed semiconductor substrate 10, and then a predetermined thermal process is performed. As a result, the source / drain 23 is formed and then the fourth mask pattern is removed.

이상에서 자세히 설명한 바와 같이 본 발명에 의하면, 캐패시터 형성공정과 더불어, 게이트 전극을 폭이 다른 이중층으로 형성한 다음, 텅스텐막을 감싸도록 형성하여, 접합 영역의 저농도 불순물의 오버랩되는 폭을 늘리어, 핫 캐리어 현상을 방지하고, 텅스텐막에 의하여 게이트 전극의 동작 속도가 향상되어, 반도체 소자의 특성 및 동작 속도가 개선된다.As described in detail above, according to the present invention, in addition to the capacitor forming step, the gate electrode is formed of a double layer having a different width, and then formed to surround the tungsten film, thereby increasing the overlapping width of the low concentration impurities in the junction region, The carrier phenomenon is prevented, and the operation speed of the gate electrode is improved by the tungsten film, so that the characteristics and the operation speed of the semiconductor element are improved.

또한, 본 발명은 별도의 스페이서 공정없이, LDD 구조의 트랜지스터를 형성할 수 있으므로, 제조 공정 시간이 감소된다.In addition, the present invention can form the transistor of the LDD structure without a separate spacer process, the manufacturing process time is reduced.

Claims (5)

필드 산화막 및 액티브 영역을 구비한 반도체 기판 상부에 제1산화막, 제1폴리실리콘막, 제2산화막, 제2폴리실리콘막을 순차적으로 형성하는 단계; 상기 제2폴리실리콘막과 제2산화막을 액티브 영역의 소정 부분과 필드 산화막 상부의 소정 부분에 존재하도록 식각하여 제1게이트 전극 및 캐패시터 상부 전극을 형성하는 단계; 제1게이트 전극 양측의 액티브 영역에 저농도 불순물층을 형성하는 단계; 상기 필드 산화막 영역상의 구조물 전면에 제3산화막을 형성하는 단계; 제3산화막이 형성되지 않은 액티브 영역상에만 전이 금속막을 형성하는 단계; 상기 제1게이트의 전극 및 캐패시터 상부 전극을 감싸도록 전이금속막과, 제3산화막 및 제1폴리실리콘막을 패터닝하여 게이트 전극 및 캐패시터를 형성하는 단계를 포함하며, 상기 게이트 전극은 양측의 저농도 불순물층과 일정폭만큼 오버랩되는 것을 특징으로 하는 반도체 소자의 제조방법.Sequentially forming a first oxide film, a first polysilicon film, a second oxide film, and a second polysilicon film on a semiconductor substrate having a field oxide film and an active region; Etching the second polysilicon layer and the second oxide layer so as to exist on a predetermined portion of the active region and a predetermined portion of the field oxide layer to form a first gate electrode and a capacitor upper electrode; Forming a low concentration impurity layer in active regions on both sides of the first gate electrode; Forming a third oxide film on the entire structure of the field oxide film region; Forming a transition metal film only on an active region in which the third oxide film is not formed; Patterning the transition metal layer, the third oxide layer, and the first polysilicon layer to surround the electrode of the first gate and the capacitor upper electrode to form a gate electrode and a capacitor, wherein the gate electrode has a low concentration impurity layer on both sides And overlapping by a predetermined width. 제1항에 있어서, 상기 전이 금속막은 산화막 형성되지 않는 영역에서 선택적 증착되는 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the transition metal film is selectively deposited in a region where an oxide film is not formed. 제1항 또는 제2항에 있어서, 상기 전이 금속막은 텅스텐인 것을 특징으로 하는 반도체 소자의 제조방법.The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the transition metal film is tungsten. 제1항 있어서, 상기 필드 산화막 영역상의 구조를 전면에 제3산화막을 형성하는 단계는, 결과물 전면에 제3산화막을 증착하는 단계; 제3산화막 상부에 액티브 영역이 노출되도록 마스크 패턴을 형성하는 단계; 노출된 액티브 영역 상부의 제3산화막을 습식 식각하는 단계; 상기 마스크 패턴을 제거하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the forming of the third oxide film on the entire surface of the field oxide layer region comprises: depositing a third oxide film on the entire surface of the resultant; Forming a mask pattern on the third oxide layer to expose the active region; Wet etching the third oxide layer over the exposed active region; And removing the mask pattern. 제1항에 있어서, 상기 게이트 전극 및 캐패시터를 형성하는 단계,는 전이 금속막과 제3산화막 상부에 상기 제1게이트 전극의 폭 및 캐패시터 상부 전극의 폭보다 넓은 폭을 갖는 마스크 패턴을 형성하는 단계; 마스크 패턴에 의하여 전이 금속막과, 산화막 및 제1폴리실리콘막을 패터닝하는 단계; 상기 마스크 패턴을 제거하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the forming of the gate electrode and the capacitor comprises: forming a mask pattern having a width greater than the width of the first gate electrode and the width of the capacitor upper electrode on the transition metal layer and the third oxide layer; ; Patterning the transition metal film, the oxide film, and the first polysilicon film by a mask pattern; And removing the mask pattern.
KR1019960026317A 1996-06-29 1996-06-29 Method for manufacturing semiconductor device KR100204424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960026317A KR100204424B1 (en) 1996-06-29 1996-06-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960026317A KR100204424B1 (en) 1996-06-29 1996-06-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR980006235A KR980006235A (en) 1998-03-30
KR100204424B1 true KR100204424B1 (en) 1999-06-15

Family

ID=19465068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960026317A KR100204424B1 (en) 1996-06-29 1996-06-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100204424B1 (en)

Also Published As

Publication number Publication date
KR980006235A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US6204105B1 (en) Method for fabricating a polycide semiconductor device
JPH0846201A (en) Semiconductor element and its preparation
KR0177785B1 (en) Transistor with offset structure and method for manufacturing the same
JP2780162B2 (en) Method for manufacturing semiconductor device
KR100204424B1 (en) Method for manufacturing semiconductor device
KR100260043B1 (en) Method for fabricating semiconductor device
JPH06140421A (en) Manufacture of thin film transistor
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
KR100235620B1 (en) Mosfet and method of manufacturing the same
KR100280527B1 (en) MOS transistor manufacturing method
KR100319601B1 (en) Electrostatic discharge prevention transistor and its manufacturing method
KR100243738B1 (en) Method for manufacturing semiconductor device
KR100226259B1 (en) Semiconductor device and method for manufacturing the same
KR100202642B1 (en) Method for manufacturing mos transistor
KR100280537B1 (en) Semiconductor device manufacturing method
KR100256259B1 (en) Method of preparing common gate in semiconductor device
KR0170891B1 (en) Method of manufacturing semiconductor mosfet
KR100362933B1 (en) Metal oxide semiconductor field effect transistor and method for manufacturing the same
KR0127691B1 (en) Method of manufacturing transistor
KR970011503B1 (en) Method for manufacturing mos transitor
KR0170513B1 (en) Mos transistor and its fabrication
KR100422823B1 (en) Method for fabricating mos transistor
KR100215836B1 (en) Fabrication process of semiconductor device
KR0152936B1 (en) Method of fabricating semiconductor device
KR100235864B1 (en) Triangle buried gate cell and manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050221

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee