KR0183772B1 - Forming method of titanium nitride thin film - Google Patents

Forming method of titanium nitride thin film Download PDF

Info

Publication number
KR0183772B1
KR0183772B1 KR1019950050679A KR19950050679A KR0183772B1 KR 0183772 B1 KR0183772 B1 KR 0183772B1 KR 1019950050679 A KR1019950050679 A KR 1019950050679A KR 19950050679 A KR19950050679 A KR 19950050679A KR 0183772 B1 KR0183772 B1 KR 0183772B1
Authority
KR
South Korea
Prior art keywords
titanium nitride
thin film
film
titanium
forming
Prior art date
Application number
KR1019950050679A
Other languages
Korean (ko)
Other versions
KR970043359A (en
Inventor
이현덕
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019950050679A priority Critical patent/KR0183772B1/en
Publication of KR970043359A publication Critical patent/KR970043359A/en
Application granted granted Critical
Publication of KR0183772B1 publication Critical patent/KR0183772B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 화학기상증착방법을 이용한 티타늄 질화물 박막의 형성방법에 있어서, (a) 반도체 기판상에 티탄과 질소를 함유하는 금속유기 공급원을 사용하여 제1티타늄 질화막을 형성하는 단계; (b) 상기 결과물상에 티탄과 질소를 함유하는 금속 유기 공급원과 암모니아 가스를 함께 사용하여 제2티타늄 질화막을 형성하는 단계를 교대로 반복하는 것을 특징으로 하는 티타늄 질화물 박막의 형성방법을 제공한다. 본 발명에 따르면, 우수한 단차도포성, 비저항 및 안정성을 갖는 티타늄 질화물 박막을 얻을 수 있다.A method of forming a titanium nitride thin film using a chemical vapor deposition method, the method comprising: (a) forming a first titanium nitride film on a semiconductor substrate using a metal organic source containing titanium and nitrogen; (b) forming a second titanium nitride film by alternately using a metal organic source containing titanium and nitrogen and ammonia gas on the resultant in turn to provide a method of forming a titanium nitride thin film. According to the present invention, a titanium nitride thin film having excellent step coverage, specific resistance and stability can be obtained.

Description

티타늄 질화물 박막의 형성방법 및 그 방법에 따라 형성된 티타늄 질화물 박막Formation method of titanium nitride thin film and titanium nitride thin film formed according to the method

제1도는 본 발명에 따라 반도체 기판 상부에 형성된 티타늄 질화물 박막의 구조를 나타낸 도면이고, 제2도는 제1티타늄 질화막과 제2티타늄 질화막이 반복적으로 적층되어 있는 티타늄 질화물 박막의 구조를 나타낸 도면이다.1 is a view showing a structure of a titanium nitride thin film formed on the semiconductor substrate according to the present invention, and FIG. 2 is a view showing a structure of a titanium nitride thin film in which the first titanium nitride film and the second titanium nitride film are repeatedly stacked.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체 기판 2 : 제1티타늄 질화막DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2: 1st titanium nitride film

3 : 제2티타늄 질화막3: second titanium nitride film

본 발명은 티타늄 질화물 박막의 제조방법 및 그 방법에 따라 형성된 티타늄 질화물 박막에 관한 것으로서, 상세하기로는 대기 노출시막의 열화현상이 저하되고 단차 도포성(step coverage) 및 비저항이 우수한 티타늄 질화물 박막의 형성방법 및 그 방법에 따라 형성된 티타늄 질화물 박막에 관한 것이다.The present invention relates to a method for manufacturing a titanium nitride thin film and a titanium nitride thin film formed according to the method, and more particularly, to the formation of a titanium nitride thin film having excellent step coverage and specific resistance, which degrades the atmospheric exposure film. A method and a titanium nitride thin film formed according to the method.

고집적회로, 특히 높은 어스펙트비를 갖는 콘택과 비아(via)의 제조에 있어서 안정적이고 신뢰성있는 금속배선공정이 점차 중요해지고 있다. 다층 금속배선공정은 낮은 콘택저항과 신뢰성있는 도전선을 제공한다. 현재는, TiN과 같은 장벽층(barrier layer)과 티타늄(Ti)층이 형성된 콘택이 상부에 스퍼터된 알루미늄 합금이나 화학기상증착(CVD)된 텅스텐을 형성하여 금속배선공정을 진행한다. 상기 TiN층은 알루미늄과 실리콘사이의 상호확산을 방지하거나 텅스텐을 증착시키는 동안 실리콘상에 텅스텐 헥사플로라이드(WF6)가 침투하는 것을 방지하는 역할을 한다.Stable and reliable metallization processes are becoming increasingly important in the manufacture of highly integrated circuits, particularly contacts and vias with high aspect ratios. The multi-layer metallization process provides low contact resistance and reliable conductors. At present, a metallization process is performed by forming a sputtered aluminum alloy or a chemical vapor deposition (CVD) tungsten on top of which a barrier layer such as TiN and a titanium (Ti) layer are formed. The TiN layer prevents interdiffusion between aluminum and silicon or prevents tungsten hexafluoride (WF 6 ) from penetrating on silicon during deposition of tungsten.

높은 어스펙트비를 갖는 콘택홀이나 비아홀과 같은 미세 형상의 코너나 엣지(edge)에서 장벽층 특성의 저하가 유발되는데, 이를 방지하기 위하여 낮은 저항과 우수한 장벽 특성을 갖는 TiN 박막을 균일하게 증착하는 것이 요구된다. CVD 방법은 서브마이크론(sub-micron)급의 형성에서도 우수한 종착균일성을 갖는 막을 형성할 수 있는 기술이다. 특히, 플라즈마증대 CVD (Plasma Enhanced CVD : 이하 FECVD)공정이나 전자사이클론 공명 CVD (Electron Cyclotron Resonance CVD : 이하 ECRCVD )공정은 양질의 TiN 박막을 낮은 기판 온도에서 형성하기 위하여 널리 사용되어지는 기술이다.Degradation of barrier layer properties occurs at the corners or edges of fine shapes such as contact holes or via holes with high aspect ratios. In order to prevent this, a TiN thin film having low resistance and excellent barrier properties is uniformly deposited. Is required. The CVD method is a technique capable of forming a film having excellent uniformity even in the form of sub-micron class. In particular, plasma enhanced CVD (FECVD) or electron cyclone resonance CVD (ECRCVD) processes are widely used to form high quality TiN thin films at low substrate temperatures.

상기 공정을 이용하여 TiN 박막을 형성하는 경우, 사용되는 프리커서(Precusor)에 따라 박막 형성조건에 큰 변화가 있다. 예를 들면 프리커서로서 사염화티타늄(TiCl4)을 사용하면 박막 증착 온도가 높고, 충분한 박막 형성 에너지가 제공되지 않을 경우에는 박막내에 염소기가 포함되어 후속공정에서 부식의 원인이 된다. 또한 높은 박막 형성온도는 소자 및 회로의 신뢰성을 저하시키는 요인이 된다.When the TiN thin film is formed using the above process, there is a large change in the thin film forming conditions depending on the precursor used. For example, when titanium tetrachloride (TiCl 4 ) is used as a precursor, when the thin film deposition temperature is high and sufficient thin film formation energy is not provided, chlorine groups are included in the thin film to cause corrosion in subsequent processes. In addition, the high thin film formation temperature is a factor that lowers the reliability of the device and the circuit.

최근에는 이러한 문제점을 해결하기 위하여 금속유기 공급원(matalorganic source)를 사용하는 연구가 활발히 진행되고 있다. 금속유기 공급원으로 테트라키스디메틸아미노 티타늄(TetrakisDiMethylamino Titanium:이하 TDMAT), 테트라키스디에틸아미노 티타늄(TetrakisDiEthylamino Titanium : 이하 TDEAT)등을 사용한다. 이러한 물질을 이용하여 TiN 박막을 형성하는 경우 파티클(particle) 생성이 거의 없고 단차 도포성은 우수하지만, 막질의 다공성이고 카본이 박막으로 침투하여 박막의 비저항이 증가한다. 또한 이러한 박막이 공기중에 노출되면 공기중의 수분이나 산소를 흡수하여 박막이 여화되는 단점을 가지고 있다.Recently, researches using metalorganic sources have been actively conducted to solve these problems. Tetrakis DiMethylamino Titanium (TDMAT), Tetrakis DiEthylamino Titanium (TDEAT) and the like are used as metal organic sources. When the TiN thin film is formed using such a material, there is almost no particle generation and excellent coating property. However, the film has a high porosity and carbon penetrates into the thin film, thereby increasing the specific resistance of the thin film. In addition, when such a thin film is exposed to air, the thin film absorbs moisture or oxygen in the air and thus has a disadvantage of being thinned.

이러한 단점을 억제하기 위하여 상기 금속유기 공급원과 암모니아 가스를 이용하여 TiN 박막을 형성하는 방법이 알려져 있다. 이 방법에 따라 형성된 TiN 박막은 막질이 조밀하고 카본 등의 불순물 함량을 낮출 수 있고 대기노출에 따른 막질의 열화가 없다는 장점을 가지고 있지만, 파티클 생성이 용이하고 물질이동(mass transfer) 제한영역에서의 공정이기 때문에 단차 도포성이 불량하다는 문제점을 가지고 있다.In order to suppress this disadvantage, a method of forming a TiN thin film using the metal organic source and ammonia gas is known. The TiN thin film formed by this method has the advantages of compact film quality, low impurity content such as carbon, and no deterioration of film quality due to air exposure, but it is easy to generate particles and is limited in mass transfer. Since it is a process, there exists a problem that a level | step difference coating property is bad.

이에 본 발명은 상기 문제점을 해결하기 위하여 상기 CVD방법의 단점을 상호보완하고 장점을 취하여 대기 노출시 막의 열화현상이 저하되고 단차 도포성(step coverage) 및 비저항이 우수한 티타늄 질화물 박막의 형성방법을 제공함에 그 목적을 두고 있다.In order to solve the above problems, the present invention complements the disadvantages of the CVD method and takes an advantage to provide a method of forming a titanium nitride thin film having excellent step coverage and specific resistance when deteriorating the film when exposed to air. The purpose is to.

본 발명의 다른 목적은 상기 방법에 따라 제조된 티타늄 질화물 박막을 제공하는 것이다.Another object of the present invention is to provide a titanium nitride thin film prepared according to the above method.

상기 목적을 달성하기 위하여 본 발명에서는 화학기상증착방법을 이용한 티타늄 질화물 박막의 형성방법에 있어서, (a) 반도체 기판상에 티탄과 질소를 함유하는 금속유기 공급원을 사용하여 제1티타늄 질화막을 형성하는 단계; (b) 상기 결과물상에 티탄과 질소를 함유하는 금속 유기 공급원과 암모니아 가스를 함께 사용하여 제2티타늄 질화막을 형성하는 단계를 교대로 반복하는 것을 특징으로 하는 티타늄 질화물 박막의 형성방법을 제공한다.In order to achieve the above object, the present invention provides a method for forming a titanium nitride thin film using a chemical vapor deposition method, comprising: (a) forming a first titanium nitride film on a semiconductor substrate using a metal organic source containing titanium and nitrogen; step; (b) forming a second titanium nitride film by alternately using a metal organic source containing titanium and nitrogen and ammonia gas on the resultant in turn to provide a method of forming a titanium nitride thin film.

본 발명은 다른 목적은 상기 방법에 따라 형성된 티타늄 질화물 박막을 제공하는 것이다.Another object of the present invention is to provide a titanium nitride thin film formed according to the above method.

상기 금속유기 공급원으로는 TDMAT 및 TDEAT중에서 선택되며, 상기 티타늄 질화물의 박막 특성은 제1티타늄 질화막과 제2티타늄 질화막의 두께를 조절함으로써 변화시킬 수 있다.The metal organic source is selected from TDMAT and TDEAT, and the thin film characteristics of the titanium nitride can be changed by adjusting the thicknesses of the first titanium nitride film and the second titanium nitride film.

본 발명에서는 TDMAT 또는 TDEAT 공급원을 이용한 CVD 방법과 TDMAT 또는 TDEAT 공급원과 질소가스를 이용한 CVD방법을 함께 사용하여 티타늄 질화물 박막을 형성한 것이다. 이러한 방법을 형성된 티타늄 질화물 박막의 구조는 제1도에 도시되어 있고, 이러한 막이 반복적으로 적층되어 있는 티타늄 질화물 박막의 구조가 제2도에 도시되어 있다.In the present invention, a titanium nitride thin film is formed using a CVD method using a TDMAT or TDEAT source and a CVD method using a TDMAT or TDEAT source and nitrogen gas. The structure of the titanium nitride thin film in which this method is formed is shown in FIG. 1, and the structure of the titanium nitride thin film in which such films are repeatedly stacked is shown in FIG.

제2도로부터 티타늄 질화물 박막은 반도체 기판 (1) 상부에 티탄과 질소를 함유하고 있는 금속유기 공급원을 사용한 CVD방법을 이용하여 형성된 제1티타늄 질화막(2)과 티탄과 질소를 함유하고 있는 금속유기 공급원과 암모니아 가스를 사용한 CVD 방법을 이용하여 형성된 제2티타늄 질화막(3)이 반복되어 형성되어 있는 구조를 가지고 있다. 이때 제1티타늄 질화막(1)은 무정형(amorphous phase)의 티타늄 질화물로 이루어져 있으며, 이 막은 단차 도포성 및 장벽 특성이 우수하다. 또한 제2티타늄 질화막(3)은 주형(columar) 다결정(polycrystalline)의 티타늄 질화물로 이루어져 있으며, 이 막은 비저항이 낮고 대기 노출시 막 열화가 거의 없는 특성을 가지고 있다. 이러한 티타늄 질화막(2)및 (3)를 반복적으로 형성하고, 특히 대기중에서 안정한 제2티타늄 질화막을 최상부에 캡핑(capping)함으로 전체적인 막의 안정성을 도모한다.From FIG. 2, the titanium nitride thin film is formed of a first titanium nitride film 2 and a metal organic compound containing titanium and nitrogen formed by a CVD method using a metal organic source containing titanium and nitrogen on the semiconductor substrate 1. The second titanium nitride film 3 formed by the CVD method using a source and ammonia gas has a structure in which it is formed repeatedly. At this time, the first titanium nitride film 1 is made of titanium nitride in an amorphous phase, and the film has excellent step coating property and barrier property. In addition, the second titanium nitride film 3 is formed of a titanium nitride of a mold (columar), and has a characteristic of low resistivity and almost no film degradation upon exposure to air. Such titanium nitride films 2 and 3 are formed repeatedly, and the overall film stability is achieved by capping a second titanium nitride film that is stable in the air at the top.

티타늄 질화물 박막의 단차 도포성 및 비저항은 제1티타늄 질화막(3)과 제2티타늄 질화막(4)의 두께를 조절함으로써 최적화시킬 수 있다.The step coatability and specific resistance of the titanium nitride thin film can be optimized by adjusting the thicknesses of the first titanium nitride film 3 and the second titanium nitride film 4.

이상, 전술한 바와 같이 본 발명에 따르면, TDMAT 또는 TDEAT 중에서 선택된 금속유기 공급원을 사용한 CVD방법과 상기 금속유기 공급원과 암모니아 가스를 사용한 CVD방법을 교대로 실시하여 티타늄 질화물 박막을 형성하고, 이때 각 방법을 형성된 티타늄 질화막의 두께를 조절함으로써 우수한 단차도포성, 비저항 및 안정성을 갖는 티타늄 질화물 박막을 얻을 수 있다.As described above, according to the present invention, a titanium nitride thin film is formed by alternately performing a CVD method using a metal organic source selected from TDMAT or TDEAT and a CVD method using the metal organic source and ammonia gas, wherein each method By controlling the thickness of the formed titanium nitride film can be obtained a titanium nitride thin film having excellent step coverage, specific resistance and stability.

Claims (2)

화학기상증착방법을 이용한 티타늄 질화물 박막의 형성방법에 있어서, (a) 반도체 기판상에, 테트라키스디메틸아미노티타늄(TDMAT)과 데트라키스디에틸아미노티타늄(TDEAT)중에서 선탤된 티탄과 질소 함유 금속 유기 공급원을 사용하여 제1티나늄 질화막을 형성하는 단계; 및 (b) 상기 제1티타늄 질화막 상부에, 테트라키스디메틸아미노노티타늄(TDMAT)과 데트라키스디에틸아미노티타늄(TDEAT)중에서 선택된 티탄과 질소 함유 금속 유기 공급원과 암모니아 가스를 함께 사용하여 제2티타늄 질화막을 형성하는 단계; 를 교대로 반복하는 것을 특징으로 하는 티타늄 질화물 박막의 형성방법.In the method of forming a titanium nitride thin film using a chemical vapor deposition method, (a) titanium and nitrogen-containing metal organics selected from tetrakisdimethylaminotitanium (TDMAT) and detrakis diethylaminotitanium (TDEAT) on a semiconductor substrate; Forming a first titanium nitride film using a source; And (b) a second titanium on the first titanium nitride film by using titanium, a nitrogen-containing metal organic source selected from tetrakisdimethylaminotitanium (TDMAT) and detrakisdiethylaminotitanium (TDEAT) together with ammonia gas. Forming a nitride film; Method of forming a titanium nitride thin film, characterized in that for repeating alternately. 제1항의 방법에 따라 형성된 티타늄 질화물 박막.A titanium nitride thin film formed according to the method of claim 1.
KR1019950050679A 1995-12-15 1995-12-15 Forming method of titanium nitride thin film KR0183772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950050679A KR0183772B1 (en) 1995-12-15 1995-12-15 Forming method of titanium nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950050679A KR0183772B1 (en) 1995-12-15 1995-12-15 Forming method of titanium nitride thin film

Publications (2)

Publication Number Publication Date
KR970043359A KR970043359A (en) 1997-07-26
KR0183772B1 true KR0183772B1 (en) 1999-04-15

Family

ID=19440581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950050679A KR0183772B1 (en) 1995-12-15 1995-12-15 Forming method of titanium nitride thin film

Country Status (1)

Country Link
KR (1) KR0183772B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318113B1 (en) * 1999-10-25 2002-01-18 정덕영 Patterning method of titanium oxide thin film by combining microcontact printing method and selective chemical vapor deposition
KR100709919B1 (en) * 2000-08-11 2007-04-24 주성엔지니어링(주) Apparatus for forming a TiN thin film and method of forming a MOCVD-TiN thin film using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318113B1 (en) * 1999-10-25 2002-01-18 정덕영 Patterning method of titanium oxide thin film by combining microcontact printing method and selective chemical vapor deposition
KR100709919B1 (en) * 2000-08-11 2007-04-24 주성엔지니어링(주) Apparatus for forming a TiN thin film and method of forming a MOCVD-TiN thin film using the same

Also Published As

Publication number Publication date
KR970043359A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
US6399490B1 (en) Highly conformal titanium nitride deposition process for high aspect ratio structures
KR100274603B1 (en) Method and apparatus for fabricating semiconductor device
US8409985B2 (en) Methods for growing low-resistivity tungsten for high aspect ratio and small features
KR102036245B1 (en) Doped tantalum nitride for copper barrier applications
US6475912B1 (en) Semiconductor device and method and apparatus for fabricating the same while minimizing operating failures and optimizing yield
US7276443B2 (en) Method for forming metal wiring in semiconductor device
US6225213B1 (en) Manufacturing method for contact hole
US6410986B1 (en) Multi-layered titanium nitride barrier structure
KR0148325B1 (en) Formation method of metal layer in semiconductor device
US8519541B2 (en) Semiconductor device having plural conductive layers disposed within dielectric layer
JPH09186102A (en) Manufacture of semiconductor device
JP4804725B2 (en) Method for forming conductive structure of semiconductor device
US6120842A (en) TiN+Al films and processes
KR0183772B1 (en) Forming method of titanium nitride thin film
US20040082167A1 (en) Methods of forming aluminum structures in microelectronic articles and articles fabricated thereby
US6673718B1 (en) Methods for forming aluminum metal wirings
US5880526A (en) Barrier metal layer
US20030186498A1 (en) Method for fabricating metal interconnection with reliability using ionized physical vapor deposition
KR0161889B1 (en) Formation method of wiring in semiconductor device
EP0839927A2 (en) Method of forming films comprising TiN and Al
CN1222014C (en) Method of forming TiN barrier by chemical rapour phase deposition
US20050181600A1 (en) Method of forming a semiconductor device having a Ti/TiN/Ti<002>/a1<111> laminate
KR100215540B1 (en) Method for forming metal film in semiconductor device
KR0150989B1 (en) Formation wiring method for semiconductor device
US6316355B1 (en) Method for forming metal wire using titanium film in semiconductor device having contact holes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061128

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee