KR0183123B1 - Method of manufacturing biodegradable loose-fill - Google Patents

Method of manufacturing biodegradable loose-fill Download PDF

Info

Publication number
KR0183123B1
KR0183123B1 KR1019950042196A KR19950042196A KR0183123B1 KR 0183123 B1 KR0183123 B1 KR 0183123B1 KR 1019950042196 A KR1019950042196 A KR 1019950042196A KR 19950042196 A KR19950042196 A KR 19950042196A KR 0183123 B1 KR0183123 B1 KR 0183123B1
Authority
KR
South Korea
Prior art keywords
starch
packaging buffer
biodegradable
biodegradable packaging
mixture
Prior art date
Application number
KR1019950042196A
Other languages
Korean (ko)
Other versions
KR970027178A (en
Inventor
유영수
전영승
정만곤
김쌍옥
Original Assignee
이삼우
주식회사세원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이삼우, 주식회사세원 filed Critical 이삼우
Priority to KR1019950042196A priority Critical patent/KR0183123B1/en
Publication of KR970027178A publication Critical patent/KR970027178A/en
Application granted granted Critical
Publication of KR0183123B1 publication Critical patent/KR0183123B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/68Plasticizers; Solvents

Abstract

본 발명은 생분해성 포장용 완충재의 제조방법에 관한 것으로 천연고분자인 전분 및 이의 글라이신(glycine) 유도체에 물성 보강제, 가소제, 압출윤활제 및 발포 조절제를 단독 또는 2종 이상 혼합하여 압출기로 직접 발포시킨 제품으로 외관이 양호하고 기계적물성(압축강도 및 복원력)이 우수할 뿐만 아니라 자연 미생물에 의해 완전 생분해되는 포장용 완충재를 제조하는 방법이다.The present invention relates to a method for producing a biodegradable packaging buffer material as a product directly foamed by an extruder by mixing a single or two or more of a physical reinforcing agent, a plasticizer, an extrusion lubricant and a foam control agent to starch and glycine derivatives thereof. It has a good appearance and excellent mechanical properties (compressive strength and restoring force) as well as a method for producing a packaging buffer material that is completely biodegradable by natural microorganisms.

즉, 포장용 완충재의 압축강도 및 복원력을 개선하기 위하여 첫째, 가소제인 글라이신을 전분에 화학적으로 에스테르결합시켜 전분에 가소성을 부여한 변성전분을 단독으로 사용하거나 순수한 전분을 혼합하여 제조하는 방법 둘째, 물성 보강제로 리그노설포네이트(lignosulfonate)를 첨가하여 제조하는 방법 셋째, 고분자성 가소제 중 폴리비닐알코올(polyvinylalcohol, PVA)을 첨가함에 있어 기존의 호모폴리머(homopolymer)를 사용하는 방법 외에 코폴리머(copplumer)를 첨가하여 제조하는 방법, 넷째, 전분 및 전분-글라이신 유도체에 발포 조절제로 무기염을 사용하여 발포율(expansion rate)을 조절하여 생분해성 포장용 완충재를 제조하는 방법을 특징으로 한다.That is, in order to improve the compressive strength and the restoring force of the buffer for packaging, firstly, a modified starch which is plasticized to starch by chemically esterifying glycine as a plasticizer, or using pure starch alone or a mixture of pure starches. Third, a method of manufacturing by adding a lignosulfonate to the furnace, and third, in addition to the method of using a homopolymer in the addition of polyvinyl alcohol (polyvinylalcohol (PVA) of the polymeric plasticizer, a copolymer (copplumer) is used. Fourth, characterized in that the method for producing a biodegradable packaging buffer by controlling the expansion rate (expansion rate) using an inorganic salt as a foaming regulator in the starch and starch-glycine derivatives.

본 발명에 의하여 제조한 포장용 완충재는 외관이 양호하고 조직이 치밀하여 기계적물성이 우수할 뿐만 아니라 자연 미생물에 의하여 완전히 생분해되는 제품으로 최근 문제가 되고 있는 플라스틱 폐기물을 효과적으로 감량할 수 있는 제품이다.The packaging buffer prepared by the present invention has a good appearance and has a dense structure and excellent mechanical properties, and is a product that can effectively reduce plastic waste, which is a problem recently, by being completely biodegraded by natural microorganisms.

Description

생분해성 포장용 완충재의 제조방법Manufacturing method of biodegradable packaging buffer

본 발명은 천연고분자인 전분 및 이의 글라이신(glycine) 유도체를 이용하여 발포성, 치밀한 조직성, 저밀도, 압축강도 및 복원력 등 기존의 발포성 폴리스티렌(expand polystyrene, EPS, 일명 루즈-필, loose-fill)과 비슷한 외관 및 기계적 특성을 지닌 동시에 자연 미생물에 의하여 완전히 생분해되는 포장용 완충재의 제조방법에 관한 내용이다.The present invention is a natural polymer using starch and its glycine derivatives (glycine derivatives), such as foaming, dense organization, low density, compressive strength and restoring power of existing expanded polystyrene (expand polystyrene, EPS, aka loose-fill, loose-fill) and The present invention relates to a method for preparing a packaging buffer material having similar appearance and mechanical properties and completely biodegraded by natural microorganisms.

플라스틱은 여러 가지 우수한 장점으로 인하여 사용량이 매년 증가하고 있으며, 이에 비례하여 사용 후 버려진 플라스틱 폐기량도 증가하고 있는 실정으로 전체 플라스틱 사용량의 약 25%를 차지하고 있으며 환경오염도 가중되고 있다.Plastics are used every year due to various advantages, and in proportion to this, the amount of plastic discarded after use is increasing, accounting for about 25% of the total plastic use and environmental pollution.

즉, 사용 후 버려진 플라스틱 폐기물의 처리방법은 각종 쓰레기와 같이 소각되어지거나 매립되어지는데 매립의 경우 토양에 존재하는 전이금속이나 미생물에 의해 거의 분해되지 않으며, 소각의 경우 유독가스(다이옥신, 일산화탄소 등)를 대량 발생하여 지구 온난화는 물론 인체에 유해한 영향을 미치는 것으로 알려져 있다.In other words, the disposal method of plastic waste discarded after use is incinerated or landfilled like various wastes, and in the case of landfilling, it is hardly decomposed by transition metals or microorganisms present in the soil. It is known that it causes a large amount of gas and causes a global warming as well as a harmful effect on the human body.

현재 플라스틱 폐기물을 효과적으로 처리하기 위하여 기존 플라스틱의 성질과 유사하면서 자연계 미생물에 의해 분해될 수 있는 소재 연구가 활발히 진행되고 있다. 즉, 유기합성을 통한 지방족 폴리에스테르(aliphatic polyester) 및 미생물 발효에 의한 폴리히드록시알카노에이트[poly(hydroxy-alkanoate), PHA], 폴리히드록시부틸레이트[poly(hydroxy-butyrate), PHB], 이들과 천연고분자인 셀룰로스 또는 전분의 복합물 등의 생분해성 플라스틱, 무극성 폴리올레핀계 수지에 금속성 라디칼 촉매를 첨가하여 제조한 광분해성 플라스틱 및 무극성 폴리올레핀계 수지에 셀룰로스 또는 전분 등을 첨가하여 제조하는 생붕괴성 플라스틱으로 대별할 수 있다.In order to effectively dispose of plastic waste, research on materials that are similar to those of existing plastics and can be decomposed by natural microorganisms is being actively conducted. That is, aliphatic polyester through organic synthesis and polyhydroxyalkanoate by microbial fermentation (poly (hydroxy-alkanoate), PHA], polyhydroxybutylate [poly (hydroxy-butyrate), PHB] Biodegradable plastics prepared by adding a metal radical catalyst to a biodegradable plastic such as a composite of cellulose or starch, a natural polymer, and a nonpolar polyolefin resin, and a cellulose or starch added to a photodegradable plastic and a nonpolar polyolefin resin. It can be divided into sex plastic.

이중 자연계에 풍부하게 존재하고 가격 또한 저렴한 전분이 함유된 생분해성 고분자에 대한 활발한 연구가 진행되고 있다.Active research is being conducted on biodegradable polymers containing starch which are abundant in nature and inexpensive.

그러나 전분은 열가소성이 없으며, 자체에 10∼13%의 수분을 함유하는 친수성(hydrophilic) 물질로서 무극성 폴리올레핀계 수지 및 지방족 폴리에스테르와 상용성이 없기 때문에 아직까지는 블로운 필름(blown film)의 경우 약 최대 30%, 몰딩물(molding compounds)의 경우 최대 70% 정도 첨가할 수 있는 것으로 알려져 있다.However, starch is not thermoplastic, and it is a hydrophilic substance that contains 10 to 13% of water in itself and is not compatible with nonpolar polyolefin resin and aliphatic polyester. It is known to add up to 30% and molding compounds up to 70%.

반면, 본 발명에서는 생분해성 포장용 완충재를 제조함에 있어 전분에 포함되어 있는 수분을 가장 효과적인 가소제로 이용하고 여기에 상승제(synergist)로 고분자성 가소제 및 기타 첨가제를 사용하여 자연 미생물에 의해 완전히 분해되는 제품을 제조하는 것을 특징으로 한다.On the other hand, in the present invention, in the preparation of a biodegradable packaging buffer material, the water contained in the starch is used as the most effective plasticizer, and as a synergist, it is completely decomposed by natural microorganisms using polymeric plasticizers and other additives. It is characterized by manufacturing a product.

현재까지 생분해성 포장용 완충재에 대한 연구 및 제조방법은 고아밀로스전분(아밀로스 함량 45% 이상) 또는 이의 유도체에 가소제를 첨가하여 압출기를 이용하여 제조하는 방법(USP 4,863,655, EP 0375831 AI), 전분류에다가 알코올 유도체를 이용하여 제조하는 방법(JP 평-136168), 목분 또는 왕겨에 포함되어 있는 리그노 셀룰로스와 지방족계 폴리콜의 반응물을 이용하여 발포성 폴리우레탄 대용품의 제조방법(KP 95-18201), 전분, 부분적으로 덱스트린화한 전분 또는 이의 유도체에 가소제 및 무기염류를 혼합하여 제조하는 방법(WO 92/18325, JP 평 6-271695) 등이 있다. 이상의 방법들은 기존의 발포성 폴리스티렌 및 폴리우레탄에 비하여 제조방법이 간단하고 프레온 가스를 사용하지 않는 장점이 있는 반면, 가격이 고가인 점과 기존의 포장용 완충재에 비하여 외관, 강도 및 복원력 등이 저하되는 단점이 있다.To date, researches and manufacturing methods for biodegradable packaging buffers have been made using extruder by adding plasticizer to high amylose starch (more than 45% amylose content) or derivatives thereof (USP 4,863,655, EP 0375831 AI) Process for the preparation of alcohol derivatives (JP Hei-136168), Process for the preparation of foamed polyurethane substitutes using reactants of lignocellulosic and aliphatic polycols contained in wood flour or chaff (KP 95-18201), Starch And a method of preparing a mixture of a plasticizer and an inorganic salt with partially dextrinized starch or a derivative thereof (WO 92/18325, JP Hei 6-271695). The above methods have advantages in that the manufacturing method is simpler and does not use Freon gas, compared to the existing expandable polystyrene and polyurethane, while the price is high and the appearance, strength, and resilience are lowered compared to the conventional packaging buffer. There is this.

따라서 본 발명은 종래 생분해성 포장용 완충재의 문제점을 해결하기 위하여 외관 및 기계적물성(압축강도 및 복원력)이 저하되지 않으면서 사용 후 폐기하였을 때 자연 미생물에 의해 완전히 생분해되어 환경문제를 유발하지 않는 포장용 완충재를 보다 간편하고 저렴하게 제조할 수 있는 방법을 제공하기 위한 것이다.Therefore, in order to solve the problems of the conventional biodegradable packaging buffer material, the packaging buffer material which is completely biodegraded by natural microorganisms when disposed after use without deterioration in appearance and mechanical properties (compressive strength and restoring force) does not cause environmental problems. To provide a method that can be manufactured more easily and cheaply.

이에 본 발명은 전분 및 이의 글라이신 유도체에 물성 보강제, 가소제, 압출 윤활제 및 발포 조절제를 단독 또는 2종 이상 혼합하여 압출기로 직접 발포시킨 제품으로 자연 미생물에 의해 완전히 생분해될 뿐만 아니라 외관이 양호하고 기계적물성이 우수한 포장용 완충재를 제조하는 방법이다.Therefore, the present invention is a product foamed directly with an extruder by mixing a single or two or more of a physical reinforcing agent, a plasticizer, an extrusion lubricant and a foam control agent to starch and its glycine derivatives and is completely biodegradable by natural microorganisms as well as good appearance and mechanical properties It is a method of manufacturing this excellent packaging cushioning material.

즉, 포장용 완충재의 압축강도 및 복원력을 개선하기 위하여 첫째, 전분의 하이드록시기를 가소제인 글라이신의 카르복시기와 에스테르화 반응시킨 전분-글라이신 유도체를 사용하거나 반응시키지 않은 순수한 전분을 혼합하여 사용하는 방법, 둘째, 전분 및 전분-글라이신 유도체에 물성 보강제로 천연물질인 리그노설포네이트(lignosulfonate)를 첨가하여 생분해성 포장용 완충재를 제조하는 방법, 셋째, 고분자성 가소제중 폴리비닐알코올(polyvinylalcohol, PVA)을 첨가함에 있어 기존의 호모폴리머(homopolymer)를 사용하는 방법 외에 코폴리머(copolymer)를 첨가하여 생분해성 포장용 완충재를 제조하는 방법, 넷째 전분 및 전분-글라이신 유도체에 발포 조절제로 무기염을 사용하여 발포율(expansion rate)을 조절하여 생분해성 포장용 완충제를 제조하는 방법을 특징으로 한다.That is, in order to improve the compressive strength and the restoring force of the packaging buffer material, first, a method of using starch-glycine derivatives in which the hydroxy group of the starch is esterified with the carboxyl group of glycine, a plasticizer, or a mixture of pure starches that do not react, and secondly, To prepare a biodegradable packaging buffer by adding lignosulfonate, which is a natural substance, to starch and starch-glycine derivatives, and third, to add polyvinyl alcohol (polyvinylalcohol, PVA) in the polymeric plasticizer. Method of preparing biodegradable packaging buffers by adding copolymers in addition to using conventional homopolymers; fourth, foaming rate using inorganic salts as foam control agents for starch and starch-glycine derivatives to control biodegradable packaging buffers It shall be.

본 발명에 의한 생분해성 포장용 완충재의 제조방법을 보다 상세히 설명하면 다음과 같다.Referring to the manufacturing method of the biodegradable packaging buffer according to the present invention in more detail.

즉, 전분의 글라이신 유도체에 대한 제조방법으로는 전분에 물을 가하여 전분 현탁액을 만든 다음 글라이신을 가하고 10∼20분간 교반한다. 단, 이때 총 고형분의 허용 농도 범위는 10∼50%(w/w)로 반응 효율상 20∼40%가 적당하며, 첨가되는 글라이신의 양은 반응온도 및 요구되는 치환정도에 따라 적정 비율로 선택할 수 있으나, 전분 고형분 대비 5∼15%(w/w)가 바람직하다. 이어서 반응 촉매로 수산화나트륨, 수산화칼슘 및 이들의 알칼리성 염 등을 이용하여 전분 현탁액의 pH를 7.5∼13.0 범위로 조절한 다음 30∼65℃의 온도에서 1∼36시간 반응을 유지, 40℃의 온수로 수세한 후 건조하여 목적하는 전분-글라이신 유도체를 얻는 방법으로 제조비용 및 효율을 감안하면 반응시간은 1.5∼3.5시간이 바람직하다.That is, as a method for preparing a glycine derivative of starch, water is added to the starch to prepare a starch suspension, and then glycine is added and stirred for 10 to 20 minutes. In this case, the allowable concentration range of the total solids is 10 to 50% (w / w), and 20 to 40% is appropriate in terms of reaction efficiency, and the amount of glycine added may be selected in an appropriate ratio depending on the reaction temperature and the degree of substitution required. However, 5 to 15% (w / w) relative to starch solids is preferred. Subsequently, the pH of the starch suspension was adjusted to a range of 7.5 to 13.0 using sodium hydroxide, calcium hydroxide and alkaline salts thereof as a reaction catalyst, and then the reaction was maintained at a temperature of 30 to 65 ° C. for 1 to 36 hours. After washing with water and drying to obtain the desired starch-glycine derivative, the reaction time is preferably 1.5 to 3.5 hours in view of production cost and efficiency.

상기의 방법에 의해 제조된 전분-글라이신 유도체를 단독으로 사용하거나 옥수수전분, 찰옥수수전분, 감자전분, 타피오카전분, 고구마전분, 밀전분, 쌀전분 중 1종 이상을 비율에 맞춰 혼합기(V-mixer)에 투입한 후 물성 보강제로 리그노설포네이트를 0.1∼10%(w/w) 첨가하고 고분자성 가소제인 폴리비닐알코올의 호모폴리머 및 코폴리머, 폴리비닐아세테이트, 폴리에틸렌아세테이트 및 폴리에틸렌아크릴산 공중합체 중 1종 이상을 1∼45%(w/w), 글리세롤 지방산 에스테르 중 모노아실글리세롤(글리세롤 모노팔미테이트, 글리세롤 모노 스테아레이트, 글리세롤 모노 올레이트, 글리세롤 모노 팔미테이트의 호박산 에스테르), 디아실글리세롤 등의 압출 윤활제 1∼10%(w/w) 및 발포 조절제로서 염화마그네슘, 탄산칼슘, 탄산칼륨, 탄산나트륨, 인산칼슘, 염화칼슘 등의 염류를 0.1∼10%(w/w) 추가 투입한 다음 1시간 30분 동안 혼합하였다. 이어서 상기 혼합물의 수분함량을 10∼30%(w/w) 조절하고 압출기(extruder, 스크류 지름 : 50mm, L/D : 10∼25)를 이용하여 배럴 온도 120∼300℃, 스크류 속도 30∼300rpm의 가공 조건으로 생분해성 포장용 완충재를 제조하였다.The starch-glycine derivative prepared by the above method may be used alone or at least one of corn starch, waxy corn starch, potato starch, tapioca starch, sweet potato starch, wheat starch and rice starch in proportion to the mixer (V-mixer). ) And add 0.1-10% (w / w) of lignosulfonate as a physical property reinforcing agent and in the homopolymer and copolymer of polyvinyl alcohol, a polymeric plasticizer, polyvinylacetate, polyethylene acetate and polyethyleneacrylic acid copolymer. 1 to 45% (w / w) of at least one, monoacylglycerol (glycerol monopalmitate, glycerol mono stearate, glycerol monooleate, succinic acid ester of glycerol mono palmitate), and diacylglycerol in glycerol fatty acid ester 1-10% (w / w) extrusion lubricant and magnesium chloride, calcium carbonate, potassium carbonate, sodium carbonate, calcium phosphate, calcium chloride, etc. Adding a salt 0.1~10% (w / w) was added and then mixed for one hour and 30 minutes. Subsequently, the water content of the mixture was adjusted to 10-30% (w / w), and the barrel temperature was 120-300 ° C. and the screw speed 30-300 rpm using an extruder (screw diameter: 50 mm, L / D: 10-25). Biodegradable packaging buffer was prepared under the processing conditions of.

또한 본 발명에 의한 생분해성 포장용 완충재의 기계적물성 및 생분해성 평가는 다음과 같은 방법으로 실시하였다.In addition, the evaluation of mechanical properties and biodegradability of the biodegradable packaging buffer according to the present invention was carried out by the following method.

[복원력(Resiliency)][Resiliency]

복원력이란 일정한 힘에 의해서 변형시킨 후 원래 상태로 회복되는 정도를 나타내는 것으로 포장용 완충재에 요구되는 가장 중요한 물리적 특성이다.Restorative force is the most important physical property required for packing cushioning material. It shows the degree of recovery to the original state after deformation by a constant force.

복원력 시험은 원통 프루브(cylinderical probe, 직경 20mm)가 부착된 레오 미터(Rheo meter)를 사용하여 초당 0.5mm의 속도로 시료(직경 13mm, 길이 20mm)를 50% 압축한 후 1분간 고정하였다. 그후 다시 압축하여 시료 당 10회 측정후 평균값을 다음의 식에 의하여 복원력으로 나타내었다.Resiliency test was performed by using a rheometer (cylinderical probe, diameter 20mm) attached to a sample (50mm diameter 13mm, length 20mm) at a rate of 0.5mm per second and then fixed for 1 minute. After the compression was again measured 10 times per sample the average value was represented by the restoring force by the following equation.

[압축강도(Compressibility)][Compressibility]

압축강도는 포장용 완충제를 변형시키는데 필요한 힘으로 레오 미터를 이용하여 복원력의 측정과 동일한 조건으로 측정하였다.The compressive strength was measured under the same conditions as the measurement of the restoring force using a rheometer as a force required to deform the packaging buffer.

즉, 20mm로 자른 시료를 레오 미터 시료대에 부착시킨 후 초당 0.5mm의 속도로 이동하면서 시료를 항복점(yield stress, 降伏點)까지 변형시켰다. 이때 포장용 완충재에 가해진 최고의 힘(g/㎠)을 10회 측정하여 평균값을 취하였다.That is, the sample cut to 20 mm was attached to the rheometer sample stage, and the sample was deformed to yield stress (降伏 點) while moving at a speed of 0.5 mm per second. At this time, the highest force (g / cm 2) applied to the packaging buffer was measured 10 times and the average value was taken.

[생분해성(Biodegradability)][Biodegradability]

생분해성 포장용 완충재의 생분해성 평가는 미국표준시험법(ASTM)G21-70 및 1924-70을 변형하여 측정하였다.Biodegradability evaluation of the biodegradable packaging buffer was determined by modifying the American Standard Test Methods (ASTM) G21-70 and 1924-70.

즉, 고체 한천 배지에 일정한 크기로 절단한 시료를 넣은 후 토양에서 흔히 발견되는 곰팡이인 아스퍼질러스 나이저(Aspergillus niger), 아스퍼질러스 오라이재(Aspergillus oryzae), 페니실리움 퍼니클로섬(Penicillium funiculosum) 및 푸루라리아 푸루란스(Pulluaria pululans) 등의 혼합한 포자를 접종하여 32℃(±2℃)에서 30일간 배양하여 평가하였다.In other words, a fungus commonly found in soil after putting a sample cut to a certain size into a solid agar medium, Aspergillus niger, Aspergillus oryzae, Penicillium funiculosum (Penicillium funiculosum) ) And inoculated mixed spores such as Pulluaria pululans and incubated at 32 ℃ (± 2 ℃) for 30 days to evaluate.

상기와 같은 방법으로 제조된 생분해성 포장용 완충재의 기계적물성과 생분해성을 평가한 결과, 전분의 고른 분산성으로 인하여 조직이 치밀한 제품을 생산할 수 있으며 복원력 및 압축강도가 기존 폴리스티렌 포장용 완충재와 유사한 물성을 나타낼 뿐만 아니라 자연계 미생물에 의해 효과적으로 분해되었다.As a result of evaluating the mechanical properties and biodegradability of the biodegradable packaging buffer prepared by the above method, it is possible to produce a dense product due to the even dispersibility of the starch, and the restoring force and the compressive strength are similar to those of the conventional polystyrene packaging buffer. In addition to being effectively degraded by natural microorganisms.

따라서 본 발명은 일회용 포장용 완충재로 쓰이는 발포성 폴리스티렌을 대체함으로써 소각, 회수, 매립지 오염 등의 환경문제를 해결할 수 있으며, 세계 각국의 환경규제에 따른 대책의 일환으로 수출 증대에도 기여할 수 있다.Therefore, the present invention can solve the environmental problems such as incineration, recovery, landfill pollution by replacing the expanded polystyrene used as a buffer for disposable packaging, it can contribute to the increase of export as part of measures in accordance with environmental regulations of the world.

이하, 실시예로서 본 발명을 상세히 설명하고자 하며, 본 발명은 다음 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, and the present invention is not limited to the following Examples.

[실시예 1]Example 1

200L 용적의 파일로트(pilot) 반응관에 수분 13.3%의 전분 30kg을 넣고 물 108L을 가하여 10분간 교반한 다음 반응제로서 글라이신(glycine)을 2.34kg 추가 투입하여 10분간 교반하였다. 이어서 지속적인 교반과 함께 8% 수산화나트륨 용액(NaOH solution)을 이용하여 pH9.0으로 조절한 다음 40℃에서 3시간 반응을 시켜 탈수 후 40℃온수로 수세 및 건조하여 수분 10.9%의 전분 유도체를 제조하였다.30 kg of starch of 13.3% moisture was added to a 200 L pilot pilot tube, and 108 L of water was added thereto, followed by stirring for 10 minutes. An additional 2.34 kg of glycine was added as a reactant, followed by stirring for 10 minutes. Subsequently, the mixture was adjusted to pH9.0 using 8% sodium hydroxide solution (NaOH solution) with continuous stirring, and then reacted for 3 hours at 40 ° C. After dehydration, washing and drying with 40 ° C hot water to prepare a starch derivative having a water content of 10.9% It was.

[실시예 2]Example 2

200L 용적의 파일로트 반응관에 수분 13.3%의 전분 30kg을 넣고 물 128L을 가하여 10분간 교반한 다음 반응제로서 글라이신을 6.8kg 투입하고 10분간 교반하였다. 이어서 교반을 유지하며 8% 수산화나트륨 용액(NaOH solution)을 이용하여 pH 10.0으로 조절한 다음 55℃에서 2시간 반응시킨 후 실시예 1과 동일한 방법으로 처리하여 수분 11.3%의 전분 유도체를 제조하였다.30 kg of starch of 13.3% water was added to a 200L volume pilot tube, and 128L of water was added thereto, stirred for 10 minutes, and 6.8 kg of glycine was added as a reactant, followed by stirring for 10 minutes. Subsequently, the mixture was adjusted to pH 10.0 using 8% sodium hydroxide solution (NaOH solution) and reacted at 55 ° C. for 2 hours, and then treated in the same manner as in Example 1 to prepare a starch derivative having 11.3% moisture.

[실시예 3]Example 3

혼합기(U-type mixer)에 실시예 1에서 얻어진 변성전분 10kg(수분함량 10.9%)과 리그노설포네이트(lignosulfonate) 49g, 폴리비닐알코올(polyviny-lalcohol)의 호모폴리머(homopolymer) 294g, 모노아실글리세롤(monoacyl-glycerol) 490g 및 탄산나트륨(Na2CO3) 49g을 투입한 후 1시간 30분간 교반하였다. 이 혼합물은 스크류 지름 50mm, L/D15가 부착된 압출기에 투입한 후 실린더 온도 170∼200℃로 조절하고 스크류의 속도를 300rpm으로 하여 생분해성 포장용 완충재를 제조하였다.10 kg of modified starch obtained in Example 1 (water content 10.9%), 49 g of lignosulfonate, 294 g of homopolymer of polyvinyl alcohol (polyviny-lalcohol), and monoacyl in a U-type mixer 490 g of glycerol (monoacyl-glycerol) and 49 g of sodium carbonate (Na 2 CO 3 ) were added thereto, followed by stirring for 1 hour 30 minutes. The mixture was introduced into an extruder with a screw diameter of 50 mm and L / D15, and then adjusted to a cylinder temperature of 170 to 200 ° C., and the speed of the screw was set at 300 rpm to prepare a biodegradable packaging buffer.

제조한 생분해성 포장용 완충재는 앞에서 기술한 방법에 의해 기계적 물성(밀도, 복원력 및 강도) 및 생분해성 평가를 실시하였다.The prepared biodegradable packaging buffer material was evaluated for mechanical properties (density, resilience and strength) and biodegradability by the method described above.

[실시예 4]Example 4

실시예 2에서 얻어진 변성전분 5kg(수분함량 11.3%)과 순수일반전분 5kg(수분함량 13.3%)을 혼합기에 투입한 후 리그노설포네이트 49g, 폴리비닐알코올 호모폴리머 294g, 디아실글리세롤(diacylglycerol) 490g 및 탄산칼륨(K2CO3) 49g을 넣고 1시간 30분 동안 교반한 후 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 생분해성을 평가하였다.5 kg modified starch obtained in Example 2 (water content 11.3%) and 5 kg pure pure starch (water content 13.3%) were added to a mixer, followed by 49 g of lignosulfonate, 294 g of polyvinyl alcohol homopolymer, and diacylglycerol. 490g and 49g of potassium carbonate (K 2 CO 3 ) were added thereto, stirred for 1 hour 30 minutes, and prepared in the same manner as in Example 3, to evaluate mechanical properties and biodegradability.

[실시예 5]Example 5

혼합기에 순수일반전분 10kg(수분함량 13.3%)에 리그노설포네이트 62g, 폴리비닐알코올 호모폴리머 520g, 모노아실글리세롤 124g, 디아실글리세롤 366g 및 탄산나트륨 49g를 투입하고 1시간 30분 동안 혼합하여 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 분해성 평가를 하였다.Into the mixer, 10 kg of pure general starch (13.3% water content), 62 g of lignosulfonate, 520 g of polyvinyl alcohol homopolymer, 124 g of monoacylglycerol, 366 g of diacylglycerol, and 49 g of sodium carbonate were mixed and mixed for 1 hour and 30 minutes. Prepared in the same manner as 3 to evaluate the mechanical properties and degradability.

[실시예 6]Example 6

실시예 1에서 얻은 변성전분 5kg(수분함량 10.9%)과 순수일반전분 5kg(수분함량 13.3%)을 혼합기에 투입하고 리그노설포네이트 79g, 폴리비닐알코올 호모폴리머 360g, 폴리비닐알코올 코폴리머(copolymer) 360g, 모노아실글리세롤 124g, 디아실글리세롤 366g 및 탄산나트륨 49g을 첨가하여 1시간 30분 동안 잘 혼합하였다. 그후 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 분해성 평가를 하였다.5 kg modified starch obtained in Example 1 (water content 10.9%) and 5 kg pure pure starch (water content 13.3%) were added to a mixer, 79 g lignosulfonate, 360 g polyvinyl alcohol homopolymer, and polyvinyl alcohol copolymer (copolymer). ) 360 g, monoacylglycerol 124 g, diacylglycerol 366 g and sodium carbonate 49 g were added and mixed well for 1 hour 30 minutes. Thereafter, the preparation was carried out in the same manner as in Example 3 to evaluate mechanical properties and degradability.

[실시예 7]Example 7

순수일반전분 10kg(수분함량 13.3%)과 리그노설포네이트 200g, 폴리비닐알코올 호모폴리머 120g, 폴리비닐알코올 코폴리머 360g, 모노아실글리세롤 124g, 디아실글리세롤 366g 및 탄산나트륨 98g을 혼합기에서 1시간 30분 동안 혼합한 후 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 분해성 평가를 하였다.10kg pure starch (water content 13.3%), 200g lignosulfonate, 120g polyvinyl alcohol homopolymer, 360g polyvinyl alcohol copolymer, 124g monoacylglycerol, 366g diacylglycerol and 98g sodium carbonate in a mixer for 1 hour 30 minutes After mixing for the prepared in the same manner as in Example 3 to evaluate the mechanical properties and degradability.

[실시예 8]Example 8

혼합기에 하이아밀로스전분(아밀로스함량 45%이상, 수분함량 12.5%) 10kg과 리그노설포네이트 49g, 폴리비닐알코올 호모폴리머 120g, 폴리비닐알코올 코폴리머 360g, 모노아실글리세롤 124g 및 탄산나트륨 98g을 혼합기에서 1시간 30분 동안 잘 혼합한 후 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 분해성 평가를 하였다.10 kg of high amylose starch (at least 45% amylose content, 12.5% moisture content), 49 g lignosulfonate, 120 g polyvinyl alcohol homopolymer, 360 g polyvinyl alcohol copolymer, 124 g monoacylglycerol and 98 g sodium carbonate were added to the mixer. After mixing well for 30 minutes, it was prepared in the same manner as in Example 3 to evaluate the mechanical properties and degradability.

[실시예 9]Example 9

실시예 1에서 얻은 변성전분(수분함량 10.9%) 10kg과 폴리비닐알코올 호모폴리머 240g, 폴리비닐알코올 코폴리머 240g, 모노아실글리세롤 124g, 디아실글리세롤 46g 및 탄산나트륨 98g을 혼합기에서 1시간 30분 동안 잘 혼합한 후 실시예 3과 동일한 방법으로제조하여 기계적물성 및 분해성 평가를 하였다.10 kg of modified starch (water content 10.9%) obtained in Example 1, 240 g of polyvinyl alcohol homopolymer, 240 g of polyvinyl alcohol copolymer, 124 g of monoacylglycerol, 46 g of diacylglycerol and 98 g of sodium carbonate were mixed well for 1 hour 30 minutes in a mixer. After mixing, the preparation was carried out in the same manner as in Example 3 to evaluate mechanical properties and degradability.

[실시예 10]Example 10

실시예 2에서 얻은 변성전분(수분함량 11.3%) 5kg과 순수일반전분(수분함량 13.3%) 5kg을 혼합기에 투입한 후 리그노설포네이트 98g, 폴리비닐알코올 호모폴리머 240g, 폴리비닐알코올 코폴리머 240g, 모노아실글리세롤 72g, 디아실글리세롤 24g 및 인산칼슘 98g을 혼합기에서 1시간 30분 동안 잘 혼합한 후 실시예 3과 동일한 방법으로 제조하여 기계적물성 분해성 평가를 하였다.5 kg of modified starch (moisture content 11.3%) and 5 kg pure pure starch (water content 13.3%) obtained in Example 2 were added to a mixer, followed by 98 g of lignosulfonate, 240 g of polyvinyl alcohol homopolymer, and 240 g of polyvinyl alcohol copolymer. , Monoacylglycerol 72g, diacylglycerol 24g and calcium phosphate 98g was mixed well for 1 hour 30 minutes in a mixer and prepared in the same manner as in Example 3 to evaluate the mechanical properties degradability.

[실시예 11]Example 11

실시예 2에서 얻은 변성전분(수분함량 11.3%) 5kg과 순수일반전분(수분함량 13.3%) 5kg을 혼합기에 투입한 후 리그노설포네이트 49g, 폴리에틸렌 비닐아세테이트 1440g, 모노아실글리세롤 120g 및 탄산나트륨 49g을 1시간 30분 동안 혼합한 후 실시예 3과 동일한 방법으로 제조하여 기계적물성 및 분해성 평가를 하였다.5 kg of modified starch (water content 11.3%) and 5 kg pure pure starch (water content 13.3%) obtained in Example 2 were added to a mixer, followed by 49 g of lignosulfonate, 1440 g of polyethylene vinyl acetate, 120 g of monoacylglycerol, and 49 g of sodium carbonate. After mixing for 1 hour 30 minutes was prepared in the same manner as in Example 3 to evaluate the mechanical properties and degradability.

상기 실시예에서 제조된 생분해성 포장용 완충재의 물성 및 생분해성을 기존의 발포성 폴리스틸렌 포장용 완충재(expansion polystyrene loose-fill;EPS loose-fill)과 비교한 결과는 표 1,2 와 같다.The results of comparing the properties and biodegradability of the biodegradable packaging buffer prepared in the above example with the existing expanded polystyrene packaging buffer (expansion polystyrene loose-fill; EPS loose-fill) are shown in Table 1,2.

곰팡이 생장율에 따른 지수Index according to mold growth rate

0 : 0% 생육0: 0% growth

1 : 10%이하 생육1: less than 10% growth

2 : 10∼30% 생육2: 10 to 30% growth

3 : 30∼60% 생육3: 30 to 60% growth

4 : 60%이상 생육4: More than 60% growth

Claims (7)

천연고분자인 전분 및 이의 유도체를 단독 또는 일정비율의 혼합물에 물성 보강제(0.1∼50%, w/w), 고분자성 가소제(1∼45%, w/w), 압출 윤활제(1∼10%, w/w) 및 발포 조절제(0.1∼10%, w/w)를 단독 또는 2중 이상 첨가, 혼합하고 전체 수분량을 10∼30%로 조절하여 130∼300℃로 예열된 압출기(extruder)에서 직접 팽화(extrusion)시켜 생분해성 포장용 완충재를 제조하는 방법.Starch and its derivatives, which are natural polymers, are used alone or in a mixture in a proportion of physical properties (0.1 to 50%, w / w), polymeric plasticizer (1 to 45%, w / w), extrusion lubricant (1 to 10%, w / w) and foaming regulators (0.1 to 10%, w / w) alone or in combination of two or more, and mixed directly and the total water content is adjusted to 10 to 30% directly in an extruder preheated to 130 to 300 ° C. A method of making a biodegradable packaging cushioning material by extruding. 제1항에 있어서, 전분 유도체는 전분에 아미노산인 글라이신을 전분 중량 대비 5∼15%(w/w) 첨가하여 에스테르화 반응시킨 것을 특징으로 하는 생분해성 포장용 완충재를 제조하는 방법.The method of claim 1, wherein the starch derivative is an esterification reaction by adding 5 to 15% (w / w) of glycine which is an amino acid to the starch, to produce a biodegradable packaging buffer material. 제1항 및 제2항에 있어서, 전분은 옥수수전분, 찰옥수수전분, 감자전분, 타피오카전분, 고아밀로스전분, 고구마전분, 밀전분, 쌀전분 및 이들의 변성전분 즉, 산화전분, 산처리전분, 에스테르전분, 가교전분, 하이드록시 알킬전분 또는 이들의 α화 전분의 혼합물을 사용하여 생분해성 포장용 완충재를 제조하는 방법.The starch according to claim 1 or 2, wherein the starch is corn starch, waxy corn starch, potato starch, tapioca starch, high amylose starch, sweet potato starch, wheat starch, rice starch and modified starch thereof, that is, oxidized starch, acid treated starch. A method for producing a biodegradable packaging buffer using a mixture of ester starch, crosslinked starch, hydroxy alkyl starch or α-starch thereof. 제1항에 있어서, 물성 보강제는 리그노설포네이트를 사용하는 것을 특징으로 하는 방법.The method of claim 1, wherein the physical property enhancer uses lignosulfonate. 제1항에 있어서, 고분자성 가소제는 폴리비닐알코올의 호모폴리머 및 코폴리머, 폴리비닐아세테이트, 폴리에틸렌비닐아세테이트, 폴리에틸렌 아크릴산 코폴리머 또는 이들을 혼합, 첨가하여 생분해성 포장용 완충재를 제조하는 방법.The method of claim 1, wherein the polymeric plasticizer is a homopolymer and copolymer of polyvinyl alcohol, polyvinylacetate, polyethylenevinylacetate, polyethylene acrylic acid copolymer or a method for mixing and adding these to prepare a biodegradable packaging buffer. 제1항에 있어서, 압출윤활제는 글리세롤, 모노아실글리세롤 및 디아실글리세롤을 단독 또는 2종 이상 혼합하여 생분해성 포장용 완충재를 제조하는 방법.The method of claim 1, wherein the extrusion lubricant is a mixture of glycerol, monoacylglycerol and diacylglycerol alone or two or more kinds to prepare a biodegradable packaging buffer. 제1항에 있어서, 발포 조절제가 염화마그네슘, 탄산칼슘, 탄산칼륨, 탄산나트륨, 인산칼슘 및 염화칼슘 또는 이들의 혼합물임을 특징으로 하여 생분해성 포장용 완충재를 제조하는 방법.The method of claim 1, wherein the foam control agent is magnesium chloride, calcium carbonate, potassium carbonate, sodium carbonate, calcium phosphate and calcium chloride or a mixture thereof.
KR1019950042196A 1995-11-20 1995-11-20 Method of manufacturing biodegradable loose-fill KR0183123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950042196A KR0183123B1 (en) 1995-11-20 1995-11-20 Method of manufacturing biodegradable loose-fill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950042196A KR0183123B1 (en) 1995-11-20 1995-11-20 Method of manufacturing biodegradable loose-fill

Publications (2)

Publication Number Publication Date
KR970027178A KR970027178A (en) 1997-06-24
KR0183123B1 true KR0183123B1 (en) 1999-05-15

Family

ID=19434644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950042196A KR0183123B1 (en) 1995-11-20 1995-11-20 Method of manufacturing biodegradable loose-fill

Country Status (1)

Country Link
KR (1) KR0183123B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271122B1 (en) * 2020-04-17 2021-07-01 (주)에어핏 Starch-based biodegradable composition of cushioning material for packaging with improved processability, productivity and mechanical properties, and method for manufacturing cushioning material for packaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096865A (en) * 2002-06-18 2003-12-31 이귀영 Manufacturing method for Biodegradable Starch Resin vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271122B1 (en) * 2020-04-17 2021-07-01 (주)에어핏 Starch-based biodegradable composition of cushioning material for packaging with improved processability, productivity and mechanical properties, and method for manufacturing cushioning material for packaging

Also Published As

Publication number Publication date
KR970027178A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
US5272181A (en) Biodegradable expanded foam material
US5852114A (en) Biodegradable thermoplastic polymer blend compositions with accelerated biodegradation
EP0530987B1 (en) Microboiologically degradable polymer composition
US5360830A (en) Expanded articles of biodegradable plastic materials
EP1942137B1 (en) Water soluble biodegradable material
US5854345A (en) Biodegradable polyester and natural polymer compositions and expanded articles therefrom
US5322866A (en) Method of producing biodegradable starch-based product from unprocessed raw materials
KR101011279B1 (en) Water-soluble Biodegradable Material
KR960007671A (en) Biodegradable Foamed Plastic Materials
JPH0662839B2 (en) Microbial degradable plastic molding and method for producing the same
IE66346B1 (en) Polymer base blend compositions containing destructurized starch
JPH0374445A (en) Polymer-base blend composition containing modified starch
JPH06184358A (en) New thermoformable composition, its preparation and its use for obtaining thermoformed article
JPH0678475B2 (en) Biodegradability control method for plastics
KR100276839B1 (en) Biodegradable disposable container manufacturing method using natural polymer and composition
JPH0770367A (en) Biodegradable molding composition containing thermplastic starch and thermoplastic aliphatic polyester
US5691403A (en) Biodegradable compositions
KR0183123B1 (en) Method of manufacturing biodegradable loose-fill
JP3773335B2 (en) Biodegradable aliphatic polyester resin-starch composition
KR100578113B1 (en) Biodegradable Composition for Packaging Cushion and Second Material and, Manufacturing Method thereof
JP2740824B2 (en) Polymer composition containing esterified starch
JPH04248851A (en) Biodegradable composition and sheet
JP4601111B2 (en) How to make a biodegradable model
JP2001064458A (en) Polypropylene composition having biochemical degradability and its production
JPH06255677A (en) Expandable starch-based granular substance for solid packing-material and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131111

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 17

EXPY Expiration of term