KR0176290B1 - 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법 - Google Patents

석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법 Download PDF

Info

Publication number
KR0176290B1
KR0176290B1 KR1019950023039A KR19950023039A KR0176290B1 KR 0176290 B1 KR0176290 B1 KR 0176290B1 KR 1019950023039 A KR1019950023039 A KR 1019950023039A KR 19950023039 A KR19950023039 A KR 19950023039A KR 0176290 B1 KR0176290 B1 KR 0176290B1
Authority
KR
South Korea
Prior art keywords
catalyst
tungsten
moo
coo
hydrodesulfurization
Prior art date
Application number
KR1019950023039A
Other languages
English (en)
Other versions
KR970005386A (ko
Inventor
이득기
이인철
윤왕래
이호태
정헌
우성일
Original Assignee
손영목
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손영목, 한국에너지기술연구소 filed Critical 손영목
Priority to KR1019950023039A priority Critical patent/KR0176290B1/ko
Publication of KR970005386A publication Critical patent/KR970005386A/ko
Application granted granted Critical
Publication of KR0176290B1 publication Critical patent/KR0176290B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 나프타, 등유, 경유 및 중질유의 수소화탈황과 수소화처리 반응을 수행하는데 있어서 CoO-MoO3또는 NiO-MoO3촉매와 같은 기존의 몰리브데늄계 알루미나 담지촉매에 숫자를 증가시키고 또한 활성전의 촉매표면에서의 분산도를 높임으로써 촉매의 반응활성도를 증가시키면서, 아울러 반응기에서의 사용중 카본의 침적 및 촉매 활성상의 소결(Sintering)으로 인한 비활성화를 최소화하는 효과를 얻기 위한 촉매의 조성, 제조방법 및 그 특성에 관한 것이다.

Description

석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법
본 발명은 나프타, 등유, 경유 및 중질유의 수소화탈황과 수소화처리 반응을 수행하는데 있어서 CoO-MoO3또는 NiO-MoO3촉매와 같은 기존의 몰리브데늄계 알루미나 담지촉매에 비교적 소량의 텅스텐을 첨가 사용함으로써 촉매의 예비 황화처리시에 촉매의 표면에 생성되는 촉매활성점의 숫자를 증가시키고 또한 활성점의 촉매 표면에서의 분산도를 높임으로써 촉매의 반응활성도를 증가시키면서, 아울러 반응기에서의 사용중 카본의 침적 및 촉매 활성상의 소결(Sintering)로 인한 비활성화를 최소화하는 효과를 얻을 수 있는 촉매의 제조방법에 관한 것이다.
등유 및 경유 또는 상압잔사유 및 진공잔사유와 같은 석유류에는 대기오업의 주요 원인물질인 황성분이 대략 1.0~4.0wt% 정도로 유성분 분자에 화학적으로 결합되어 있음으로 이를 시판 제품화하기 위해서는 고압 고온의 조건에서 수소 및 탈황촉매를 사용한 반응을 통해 유제품 중 황함량을 일정 규제치 이하로 낮추어야 한다.
여기서 촉매는 황함유 유분자의 황원자를 주위의 탄소원자로부터 절단하여 H2S로 생성시킴으로써 황함유 유분자를 탈황되게 하는 반응에서 반응활성화에너지를 낮추어줌으로써 반응조건을 완화시키고 반응이 효율적으로 일어나는 역할을 한다.
이러한 수소화탈황반응에 상업적으로 주로 사용되어온 촉매는 알루미나 담체에 CoO-MoO3또는 NiO-MoO3와 같이 2~5wt%의 8족 금속 및 8~25wt%와 몰리브데늄 금속쌍을 산화금속 상태로 담지시킨 것들이다.
금속산화물상태로 시판 공급되는 이러한 촉매들은 공장의 반응기에 충전된 후, 예비황화처리를 통하여 실제반응을 위한 촉매인 황화금속상태로 활성화시켜 반응에 사용된다.
실제 반응에 있어서 이러한 촉매들의 반응활성도의 크기는 예비황화처리를 통해 산화물상태의 촉매금속이 금속황화물로 전환되는 정도와, 이러한 처리과정을 통해 생성된 촉매활성점의 수 및 촉매 표면에서의 그 분산정도에 따라 좌우되는 것으로 알려지고 있다.
그러므로 이러한 산화촉매의 황화전환율을 높임으로써 보다 높은 활성도를 얻기 위한 방법의 하나로서 인 및 불소를 촉매의 첨가제로 사용하여 촉매활성 금속 성분인 Co-, Ni- 및 Mo- 산화물과 담체인 알루미나 사이의 강한 화학적 결합력을 약화시켜 금속산화물 상태의 촉매가 쉽게 황화되도록 하여 촉매의 활성도를 증가시키는 방법이 상업적으로 주로 사용되어 오고 있다.
그러나, 이와 같은 인 또는 불소함유 촉매는 반응 전단계인 예비황화처리 단계에서 촉매산화물의 황화를 쉽게 해주는 역할을 함으로써 촉매의 초기 활성도를 높게 하는데 기여할 뿐, 실제로 오랜시간 동안 반응에 사용중일 때 촉매에서 일어나는 활성입자의 소결(Sintering) 등에 의해 진행되는 촉매의 비활성화를 지지하는데는 별로효과적이지 못한 것으로 알려지고 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 기존의 Nio-MoO3/γ-Al2O3촉매 및 CoO-MoO3/γ-Al2O3촉매에 소량의 텅스텐이 첨가 존재하게 되면 앞서 인 또는 불소의 첨가에서와 비슷한 효과로 촉매의 활성도 상승을 얻을 수 있을 뿐만 아니라 실제 반응 중 촉매에 나타나는 비활성화 현상을 개선하는 소량의 텅스텐 함유 WO3-Nio-MoO3/γ-Al2O3및 WO3-CoO-MoO3/γ-Al2O3촉매의 제조방법을 제공하는데 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 상세히 설명하면 다음과 같다.
소량의 텅스텐을 포함한 본 발명의 촉매는 산화물상태에서 2~5wt%의 CoO 또는 Nio, 8~25wt%의 MoO3및 MoO3의 담지량에 따라 0.2~3wt%의 WO3로 그 조성이 구성된 촉매로서, 암모니움 몰리브데이트 코발트 나이트레이트 혹은 니켈 나이트레이트 및 암모니움 텅스테이트와 같은 수용성의 무기금속 화합물을 이용하여 시판되는 알루미나 담체에 이를 각각 담지하고 건조 소성시키되, 그 순서는 WO3-CoO-MoO3/γ-Al2O3촉매의 경우, 몰리브데늄, 코발트 및 텅스텐이거나 또는 몰리브데늄, 텅스텐 및 코발트의 순으로 각각 담지 건조 소성되며, WO3-CoO-MoO3/γ-Al2O3촉매의 경우, 몰리브데늄, 니켈 및 텅스텐이거나 또는 몰리브데늄, 텅스텐 및 니켈의 순으로 각각 건조 소성하여 제조되는데, 이때, 건조조건은 100~120℃의 온도에서 6시간 이상이며, 소성조건은 400~600℃의 온도의 공기하에서 4~12시간 동안 소성되어진다.
또한, 시판되는 Nio-MoO3/γ-Al2O3촉매 및 CoO-MoO3/γ-Al2O3촉매의 경우에도앞서 설명한 바와 같은 효과를 가져오게 하는 목적으로 텅스텐을 첨가할 수 있는데, 시판 촉매에 담지된 MoO3의 무게백분율에 따라 0.2~3wt%의 WO3가 소성 후 촉매에 담지 되도록 암모니움 텅스테이트 수용액을 사용하여 담지하되 건조 소성조건은 앞서와 같다.
여기서, 언급한 내용의 효과를 얻고자 시판촉매에 또는 각 촉매의 제조단계에서 텅스텐을 암모니움 텅스테이트 수용액을 사용하여 담지할 때, NH4OH 수용액을 사용하여 암모니움 텅스테이트 수용액의 pH를 9.5이상으로 높여서 수용액 중 텅스텐 이온의 단량체가 WO4 -2위주로 형성되도록 유의하여야 한다.
다음 실시예는 본 발명에서의 WO3함유 CoO(Nio)-MoO3알루미나 담지촉매에 대한 제조방법 실제 반응에서의 반응활성도 및 촉매특성 분석을 예시한 것이다.
[실시예 1]
본 실시예는 본 발명에서의 WO3함유 촉매중의 하나인 WO3-CoO-MoO3/γ-Al2O3촉매의 제조에 있어서, 상업적으로 시판되는 촉매인 CoO-MoO3/γ-Al2O3촉매 및 Nio-MoO3촉매에텅스텐을 담지하여 함유 촉매를 제조하는 경우, 소성후 각각의 촉매 중 WO3의 무게백분율이 0.5Wt%인 촉매를 얻는 예를 설명한 것이다.
본 예시에서 사용된 상업용 시판 촉매 및 이 촉매들에 텅스텐을 담지시킨 후 소정된 촉매들의 기본 물성은 표 1에 나타낸 바와 같다.
먼저 상업용 C-CM 촉매 및 C-NM 촉매를 110℃에서 6시간 동안 건조시킨 다음 500℃의 공기하에서 5시간 동안 소성시킨 후, 건조상태로 보관한다.
건조상태의 C-CM 촉매 100g에 초기 젖음함침법을 이용하여 텅스텐을 담지시키기 위해 암모니움(메타)텅스테이트, (NH4)6H2W12O40, 0.5333g을 증류수에 용해시키고 1N NH4OH 수용액을 사용하여 텅스테이트 수용액의 pH를 9.5이상으로 조절하되 정량병으로 수용액의 부피를 80cc로 맞춘다.
C-CM 촉매를 비이커에 넣고 준비된 암모니움(메타)텅스테이트 용액을 뷰렛을 이용하여 떨어뜨리면서 촉매가 골고루 젖어들도록 잘 저어준다.
함침을 마친 촉매는 젖은 상태로 비이커에 비닐랩을 씌우고 1~2시간 가량 방치한 후 넓은 접시에 얇게 분산시킨 후 오븐에 넣어 120℃에서 12시간 동안 건조시킨 다음 즉시 머플퍼니스에 넣고 500℃에서 6시간 동안 소성한 후 얻어진 C-WCM 촉매를 밀폐 용기에 보관한다.
C-NM촉매는 CM촉매와 마찬가지로 100g에 대해 암모니움(메타)텅스테이트 0.5333g을 녹인 pH 9.5의 75cc용액을 이용하여 동일한 방법으로 텅스텐을 담지하여 C-WNM 촉매를 얻는다.
최종촉매의 0.5wt%에 해당하는 WO3의 담지에도 불구하고 이와 같은 양 WO3담지가 촉매의 비표면적이나 기공부피에 미치는 영향은 거의 없음을 알 수 있다.
[실시예 2]
본 실시예는 앞서 실시예 1에서의 상업용 시판촉매인 C-WCM, C-NM과 여기에 본 발명에서 이 텅스텐을 0.5wt%로 담지한 C-WCM, C-WNM 촉매를 고유황 중질 상압잔사유를 대상으로 수소 압력 70기압, 반응온도 420℃, 액공간속도 2hr 및 수소/원료유 공급비 500nL/L의 조건하의 연속식 고정층반응기에서 25시간 이상의 연속 수소화처리반응을 통해 반응활성도를 비교 평가한 것이다.
반응기에 충전된 산화물촉매는 2.5시간 동안 400℃에서 10% H2S와 H2혼합가스에 의해 먼저 황화되어 활성화된 후 반응에 사용된다.
상압잔산유 시료는 밀도(15/4℃) 0.9865, 황 3.9wt%,질소 0.5wt%, 바나디움 20ppm, 아스파텐(n-펜탄 불용분)13.7wt%의 초기비점 320℃이상의 유분이다.
이와 같은 촉매활성도의 비교평가 결과는 표 2에 나타낸 바와 같으며, 여기서 황전환율 및 아스팔텐의 유성분으로의 전환율은 반응시작 후 20시간이 경과된 시점에서의 전환율이며, 촉매의 초기비활성화 속도상수는 반응시간 25시간까지의 각 시간에서의 황전환율 데이터를 Voorhies deactivation correlation 상관식으로 나타낼 때, C-CM 및 C-NM 촉매에서의 비활성화 속도상수를 1로 기준하며 선정한 비교수치이다.
앞서 표 1에서 나타낸 바와 같이 0.5 Wt% 정도의 WO3담지가 촉매의 비표면적이나 기공부피 등에는 거의 영향을 주지 않지만, 황전환율, 아스팔텐전환율 및 초기비활성화 속도 등과 같은 실제 반응성능 측면에 있어서는 매우 큰 향상이 나타나고 있다.
[실시예 3]
본 실시예는 상업용 시판 γ-Al2O3담체를 이용하여 여러 가지 조성의 WO3-CoO-MoO3/γ-Al2O3촉매의 제조에 대해 설명하고자 하며, 표 3에 제조촉매의 기본물성을 나타내었다.
표 3에는 촉매조성은 같으나 텅스텐의 담지순서가 다른 두 종류의 WO3함유 촉매가 있는데, 처음에 알루미나에 몰리브데늄을 담지 소성하여 기본 MoO3/γ-Al2O3를 얻고, 여기에 코발트 및 텅스텐을 담지시키되 첫째, A-WCM계 촉매는 소성한 MoO3/γ-Al2O3에 먼저 코발트를 담지조성하고 마지막으로 텅스텐을 담지 소성한 촉매계이며, A-WCM계 촉매는 MoO3/γ-Al2O3에 먼저 텅스텐을 담지 소성하고 다음에 코발트를 담지 소성하여 얻은 촉매제이다.
한편 A-CM 촉매는 A-WCM촉매를 제조하는 과정에서 텅스텐을 담지하기 전의 알루미나 담지 CoO-MoO3촉매를 나타낸다.
표 3에서 각 촉매명에 뒤따르는 괄호안의 숫자는 해당 촉매에서의 W/ (W+Mo) 원자비를 나타낸 것이다.
이와 같은 촉매들은 실시예 1에서와 같은 방법 및 과정으로 제조되었다.
사용된 시판알루미나는 비표면적 160㎡/g, 기공부피 0.67cc/g이며 이를 건조 소성하여계산된 양의 암모니움 몰리브데이트, (NH4)6Mo7O24·4H2O를 증류수에 녹여 함침, 건조, 소성하여 MoO3/γ-Al2O3를 얻었다.
얻어진 MoO3/γ-Al2O3에 계산된 양의 코발트나이트레이트, Co(Mo3)26H2O 및 암모니움(메타)텅스테이트, (NH4)6H2W12O40용해액을 각각 합침하여 건조 소성하되 이들의 함침순서를 서로 바꾸어 각각 C-WCM 촉매와 A-CWM촉매를 제조하였다.
여기서도, 텅스텐 함침용액의 pH는 9.5로 조절하였다.
[실시예 4]
본 실시예는 앞서 실시예 3에서 제조된 A-CM계 촉매, A-WCM계 촉매 및 A-CWM계 촉매의 티오펜 및 에틸렌의 수소화탈황반응활성 및 수소화반응활성을 비교 평가한 것이다.
반응실험은 상압하의 초당 22.3mol(30cc/min)의 수소흐름하에서 0.1g 촉매시료를 충전한 고정층반응기를 이용하여, 티오펜의 수소화탈황반응의 경우, 반응온도 350℃, 티오펜 공급량1.075mol/s의 조건에서 수행되었으며, 에틸렌 수소화반응의 경우, 반응온도 275℃, 에틸렌 공급유량 3.72mol/s의 조건에서 수행되었다.
반응수행에 앞서서 반응기에 충전된 산화물촉매는 2.5시간 동안 450℃에서 10% H2S와 H2혼합가스에 의해 먼저 황화되어 활성화된 후 반응에 사용된다.
이와 같은 반응활성도 실험결과는 표 4에 나타낸 바와 같으며, 여기서 A-WCM계 촉매 및 A-CWM계 촉매에서의 탈황 및 수소화반응활성도는 A-CM 촉매의 탈황반응활성도 및 수소화반응활성도를 100으로 하였을 때 얻어지는 상대적인 활성도 수치이다.
상압하의 반응실험을 통해 얻어진 본 실시예에서의 WO3함유 촉매들의 반응활성도의 상승은 앞서 실시예 2의 고압반응결과 보다는 낮지만, 본 발명에서의 WO3함유효과를 분명하게 나타내주고 있다.
[실시예 5]
본 실시예는 앞서 실시예 3에서 제조된 A-CM계 촉매, A-WCM계 촉매 및 A-CWM계 촉매의 저온조건(-78℃)에서의 산소흡착 실험 결과를 설명한다.
표 5는 실시예 4에서와 같이 황화, 활성화된 촉매의 단위 그램당 산소흡착량을 나타내고 있다.
저온조건(-78℃)에서의 산소흡착 실험은 활성화된 촉매의 표면활성점을 정량적으로 측정할 수 있는 수단으로 알려져 있으며, 그러므로 촉매표면 활성점의 수와산소흡착량은 비례하는 관계로주어진다.
본 실시예에서 얻어진 결과도 표 4의 반응활성도 실험결과와 비교해 볼 때 그와 같은 관계가 있음을 알 수 있으며 따라서 적절한 량의 WO3가 존재함으로써 촉매 활성점의 수가 증가되는 본 발명 사항을 뒷받침해 준다.
[실시예 6]
본 실시예는 앞서 실시예 3에서 제조된 A-CM계 촉매, A-WCM(0.025)계 촉매 및 A-CWM(0.025)계 촉매의 산화 및 황화상태에서의 X-레이 포토일렉트론 스텍트로스코피(XPS : X-ray Photoelectron Spectroscopy) 분석을 이용하여 본 발명에서의 WO3함유가 촉매활성화 과정인 예비황화처리 과정에서 어떠한 역할을 하는지에 대해 설명한다.
위 세가지 촉매에 대해 수행한 X-레이 포토일렉트론 스텍트로스코피(XPS) 분석 결과, 촉매성분인 몰리브데늄, 코발트 및 텅스텐 전자들의 결합에너지(binding energy)는 표 6에 나타낸 바와 같다.
먼저, 텅스텐이 첨가되지 않은 A-CM계 촉매의 경우 실시예 4에서와 같은 예비황화처리를 통해 산화물상태의 촉매성분인 MoO3및 CoO 가 각각 황화금속상태로 전환되고 있음을 알 수 있다.
텅스텐이 첨가된 경우에서도 MoO3및 CoO는 각각 황화금속상태로 변화되었으나 첨가된 WO3는 거의 황화되지 않고 그대로 산화상태로 머물러 있음을 알 수 있다.
촉매가 황화된 상태에서 텅스텐이 첨가된 촉매와 첨가되지 않은 촉매의 Mo 및 Co의 결합에너지를 비교해보면 WO3가 첨가된 촉매의 경우 결합에너지들이 더 높은 것을 알 수 있는데, 이는 실제 촉매활성상인 황화몰리브데늄 및 황화 코발트의 알루미나 담체 표면에서의 분산도가 더 큰 것을 의미한다.
그러므로, 본 발명에서의 WO3함유 촉매는 단량체로 알루미나 표면에 존재하여 알루미나 표면과의 강력한 상호작용 때문에 황화되지 않은 체 존재하는 WO3가 측면표면에서의 일종의 앵커 역할을 하여 실제 촉매활성상인 황화몰리브데늄 및 황화코발트의 담체 표면 분산도를 증가시키게 되는 것으로 해석되며, 따라서 실시예 2 및 실시예 4에서 보인 바와 같은 촉매활성도의 증가를 가져온다.
상기와 같은 본 발명 조성의 촉매는 고유황 상압잔사유를 원료로한 고압수소하의 수소화처리실험에서 텅스텐이 첨가되지 않은 CoO-MoO3/γ-Al2O3촉매 및 Nio-MoO3/γ-Al2O3촉매에 비해 약 1.35배 정도의 탈황반응활성의 증가와 이에 상응하는 정도의 아스판텐 전환율에서의 증가를 나타내었으며, 또한 이에 비례하여 촉매의 초기 비활성 속도도 개선되는 것으로 나타났다.
또한, 티오펜 및 에틸렌을 이용한 상압하의 반응에서도 소량의 WO3함유촉매의 경우 탈황반응활성도 및 수소화반응활성도가 증가되는 것으로 나타났다.
그러므로, 발명 촉매는 상압잔사유 및 진공잔사유와 같은 증질유의 탈황을 비롯한 수소화처리반응 뿐만아니라, 나프타, 등유 및 경유와 같은 경질유의 수소화 탈황에도 효과적으로 이용될 수 있다.
이러한 WO3포함 삼성분계 촉매를 저온에서의 산소흡착법 및 X-레이 포토일렉트론 스펙트로스코피(X-ray Photoelectron Spectroscopy)등으로 분석한 결과, 소량 담지된 WO3는 알루미나 담체와의 강력한 결합을 이루어 예비황화처리시 황화되지 않고 WO3상태로 촉매표면에 존재하면서 한편으로 황화되는 Co(Ni)-Mo의 분산상태를 증가시키고, 일단 황화된 MoS2레이어가 소결(Sintering)하지 않도록 일종의 앵커역할을 함으로써 더욱 많은 수의 활성점이 촉매표면에 생성 유지될 수 있도록 작용하는 등의 효과가 있다.

Claims (4)

  1. 나프타, 등유, 경유 및 중질유의 수소화타황과 수소화처리반응을 수행하는데 있어서, 알루미나 담체 위에 산화금속상태로 2~5wt% CoO 또는 NiO, 8~25wt%MoO3및 MoO3의 담지량에 따라 0.2~3wt%WO3로 조성되어 담지된 WO3-CoO-MoO3/γ-Al2O3촉매 또는 WO3-NiO-MoO3/γ-Al2O3촉매의 예비황화처리시에 촉매의 표면에 생성되는 촉매 활성점의 숫자를 증가시키고, 활성점의 촉매표면에서의 분산도를 높여 촉매의 반응 활성도를 증가시킴으로써 반응기에서의 사용중 카본의 침적 및 촉매 활성상의 소결(Sintering)로 인한 비활성화를 최소화 하기 위하여 알루미나 담지 CoO-MoO3또는 NiO-MoO3 촉매와 같은 몰리브데늄계 알루미나 담지촉매에 텅스텐을 0.5wt% 첨가하는 것을 특징으로 하는 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매 제조방법.
  2. 제1항에 있어서, 상기 텅스텐을 MoO3/γ-Al2O3, CoO-MoO3/γ-Al2O3또는 NiO-MoO3/γ-Al2O3에 함침 담지시키는 것을 특징으로 하는 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 담지촉매 제조방법.
  3. 제2항에 있어서, 상기 텅스텐의 담지시 함침 담지시키는 텅스텐의 화학종을 주로 WO4 2-으로 화학종이 생성되도록 NH4OH 수용액을 이용하여 용액의 pH를 9.5이상으로 높여서 텅스텐을 함침 담지시키는 것을 특징으로 하는 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 담지촉매 제조방법.
  4. 제3항에 있어서, 상기 텅스텐 함유 무기화합물 수용액의 함침 후, 함침된 내용물을 100-120℃ 온도에서 6-12시간 동안 건조하고, 400-600℃의 공기하에서 4-12시간 동안 소성하는 것을 특징으로 하는 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매 제조방법.
KR1019950023039A 1995-07-29 1995-07-29 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법 KR0176290B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950023039A KR0176290B1 (ko) 1995-07-29 1995-07-29 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950023039A KR0176290B1 (ko) 1995-07-29 1995-07-29 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법

Publications (2)

Publication Number Publication Date
KR970005386A KR970005386A (ko) 1997-02-19
KR0176290B1 true KR0176290B1 (ko) 1999-03-20

Family

ID=19422158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950023039A KR0176290B1 (ko) 1995-07-29 1995-07-29 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법

Country Status (1)

Country Link
KR (1) KR0176290B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467769B1 (ko) * 2000-08-24 2005-01-24 주식회사 포스코 고온 탈황용 감마알루미나 촉매의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989121B1 (ko) * 2008-08-29 2010-10-20 애경유화 주식회사 불포화 지방산 알킬 에스테르를 연속적으로 수소화하는 방법
KR101641212B1 (ko) * 2014-06-19 2016-07-21 에이치앤파워(주) 막대 형상을 갖는 다목적용 촉매 성형방법 및 이의 방법으로 제조된 촉매.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467769B1 (ko) * 2000-08-24 2005-01-24 주식회사 포스코 고온 탈황용 감마알루미나 촉매의 제조방법

Also Published As

Publication number Publication date
KR970005386A (ko) 1997-02-19

Similar Documents

Publication Publication Date Title
CA2553857C (en) A method of restoring catalytic activity of a spent hydroprocessing catalyst, a spent hydroprocessing catalyst having restored catalytic activity and a hydroprocessing process
EP1737571B1 (en) A method of restoring catalytic activity of a spent hydroprocessing catalyst
US5529968A (en) Hydrodearomatization of hydrocarbon oils using novel "phophorus treated carbon" supported metal sulfide catalysts
JP2832033B2 (ja) 窒素または硫黄含有炭化水素油の接触ハイドロプロセシング方法
US4960506A (en) Desulfurization of hydrocarbons using molybdenum or tungsten sulfide catalysts promoted with low valent group VIII metals
US5837640A (en) Carbon-supported hydrodearomatization catalyst
US5676822A (en) Process for hydrodearomatization of hydrocarbon oils using carbon supported metal sulfide catalysts promoted by zinc
JP2010513015A (ja) 高活性の担持留出油水素処理触媒
US4525472A (en) Process for catalyst preparation for the hydrodemetallization of heavy crudes and residues
MXPA98005494A (es) Procedimiento para la obtencion de un catalizadorpara la hidrodesnitrogenacion e hidrodesulfuracion de fracciones intermedias y pesadas del petroleoy producto resultante.
US5336394A (en) Process for hydrodesulfurizing a sulfur-containing hydrocarbon
US5556824A (en) Hydrodearomatization of hydrocarbons
US5576261A (en) Hydrodearomatization catalyst composition
KR0176290B1 (ko) 석유제품 수소화탈황을 위한 텅스텐함유 몰리브데늄계 알루미나 탐지촉매의 제조방법
CA2839881C (en) A hydroprocessing catalyst and methods of making and using such a catalyst
CN114555229B (zh) 具有有机添加剂以及使用螯合剂的覆盖金属的加氢处理催化剂以及制备和使用此类催化剂的方法
JP2531730B2 (ja) 炭化水素の水素化処理用触媒及びその製造方法
JP3230585B2 (ja) 水素化処理用触媒の製造方法
CN113262795A (zh) 一种石脑油加氢脱砷和脱硫的催化剂及其制备方法
JPH04244238A (ja) 水素化処理用触媒の製造方法
JPH0811190B2 (ja) 炭化水素の水素化処理用触媒およびその活性化方法
JPH07178B2 (ja) 炭化水素の水素化処理用触媒の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131107

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141112

Year of fee payment: 17

EXPY Expiration of term