KR0162531B1 - Manufacture of anisotropic conductive film and manufacture of lcd panel using this film - Google Patents
Manufacture of anisotropic conductive film and manufacture of lcd panel using this film Download PDFInfo
- Publication number
- KR0162531B1 KR0162531B1 KR1019950032156A KR19950032156A KR0162531B1 KR 0162531 B1 KR0162531 B1 KR 0162531B1 KR 1019950032156 A KR1019950032156 A KR 1019950032156A KR 19950032156 A KR19950032156 A KR 19950032156A KR 0162531 B1 KR0162531 B1 KR 0162531B1
- Authority
- KR
- South Korea
- Prior art keywords
- medium
- light
- liquid crystal
- conductive
- conductive film
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
- H05K3/323—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/22—Processes involving a combination of more than one step according to groups G03G13/02 - G03G13/20
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/04—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0338—Transferring metal or conductive material other than a circuit pattern, e.g. bump, solder, printed component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0502—Patterning and lithography
- H05K2203/0517—Electrographic patterning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/102—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1266—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by electrographic or magnetographic printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Non-Insulated Conductors (AREA)
- Wire Bonding (AREA)
Abstract
실장용 글래스 마스크를 이용하고, 광을 쪼이면 도전성으로 되는 매개물을 대전시켜두고 노광한다. 이로써, 광이 조사된 매개물의 표면의 전하가 방전 또는 금속판을 통하여 없어지며, 실장패턴에 맞춘 대전패턴을 할 수있다. 다음에 매개물의 표면에, 중핵의 절연체의 표면에 도전성 물질을 도금한 물질인 도전입자를 산포한다. 도전입자는 매개물이 대전하고 있는 부분에 집중적으로 모인다. 이를 이방성 도전막의 절연수지를 도포하든지 전사하여 형성하면, 실장패턴에 맞추어서 도전입자가 편재하는 이방성 도전막이 완성된다.A mounting glass mask is used to expose the medium that becomes conductive when light is emitted. Thereby, the electric charge on the surface of the medium to which light is irradiated disappears through a discharge or a metal plate, and the charging pattern according to the mounting pattern can be made. Next, on the surface of the medium, conductive particles, which are materials obtained by plating a conductive material on the surface of the core insulator, are dispersed. Conductive particles are concentrated in the area where the medium is charged. When the insulating resin of the anisotropic conductive film is coated or transferred, the anisotropic conductive film in which the conductive particles are unevenly distributed in accordance with the mounting pattern is completed.
Description
제1a도, 제1b도, 제1c도는 본 실시예의 이방성 도전막의 제조방법을 나타내는 제조공정의 단면도.1A, 1B, and 1C are cross-sectional views of the production process showing the method for producing the anisotropic conductive film of the present embodiment.
제2a도, 제2b도는 본 실시예의 이방성 도전막의 제조방법을 나타내는 다른 제조공정의 단면도.2A and 2B are sectional views of another manufacturing process showing the manufacturing method of the anisotropic conductive film of this embodiment.
제3a도, 제3b도는 본 실시예의 이방성 도전막의 제조방법을 나타내는 또다른 제조공정의 단면도.3A and 3B are sectional views of still another manufacturing process showing the manufacturing method of the anisotropic conductive film of this embodiment.
제4a도, 제4b도는 제1도에 나타내는 부분의 글래스 마스크의 평면도로거, 제4a도가 노광전용 글래스 마스크, 제4b도가 실장용 글래스 마스크.4A and 4B are plan views of the glass mask of the portion shown in FIG. 1, FIG. 4A is a glass mask for exposure exposure, and FIG. 4B is a glass mask for mounting.
제5도는 본 발명에 의해 제조된 이방성 도전막의 평면도.5 is a plan view of an anisotropic conductive film produced by the present invention.
제6a도와 제6b도는 본 발명에 의해 제조된 이방성 도전막을 이용한 액정 패널과 구동용 IC 의 접속부의 단면도.6A and 6B are cross-sectional views of a connection portion between a liquid crystal panel and a driving IC using the anisotropic conductive film produced according to the present invention.
제7도는 본 발명에 의해 제조된 이방성 도전막을 이용하여 액정표시 패널에 구동용 IC 가 실장된 사시도.7 is a perspective view in which a driving IC is mounted on a liquid crystal display panel using an anisotropic conductive film prepared according to the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 도전입자 2 : 절연수지1: conductive particles 2: insulating resin
3 : 매개물 4 : 금속판3: medium 4: metal plate
5 : 글래스 마스크 6 : 차광패턴5: glass mask 6: shading pattern
7 : 구동용 IC 8 : 패널7: driving IC 8: panel
9 : 구동용 IC 접속전극 10 : 액정패널 접속용 전극9 driving IC connection electrode 10 liquid crystal panel connection electrode
11 : 배선 12 : 액정표시 패널11 wiring 12 liquid crystal display panel
본 발명은, 이방성 도전막에 관한 것이며, 특히 액정표시장치의 표시패널의 인출선과 구동용 IC의 접속에 사용하는 이방성 도전막의 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to an anisotropic conductive film, and more particularly, to a method for manufacturing an anisotropic conductive film for use in connecting a lead line of a display panel of a liquid crystal display device to a driving IC.
액정표시장치에서는, 액정표시패널의 인출선과 테이프 캐리어 패키지, 또는 인출선과 베어칩을 접속하는 경우에, 이방성 도전막을 이용하여 접속하고 있다. 이방성 도전막은 도전성에 이방성을 가지게 할 수 있는 접착제이다. 또한, 상세하게는 동, 니켈 등의 금속입자를 접착제중에 분산시키고, 이 금속입자의 함유량, 형상, 크기 등을 컨트롤하여 전기적 접속을 취하려 하는 부분에 필요에 따라서 압력을 가하여 접착제층의 두께방향에는 도전성을 가지며, 양방향에는 절연성을 유지도록 한 도전성이 이방적인 접착제의 막인 것이다. 이 막은, 배선기판상에 전면에 입자가 혼합된 접착제를 인쇄하고, 페이스 다운하여 본딩하기 때문에 한번에 많은 본딩 패드를 본딩할 수 있다. 또한 이 막을 사용하는 IC 칩은, 뱀프가 불필요하므로 IC 칩의 가격을 싸게할 수 있다는 특징이 있다. 이 막을 이용하여 전자부품이나 IC 칩을 접속하는 방법으로서 일본국 특개소 51-100679 호 공보나 일본국 특개소 58-21350 호 공보에 기재되어 있다.In a liquid crystal display device, when the lead wire of a liquid crystal display panel and a tape carrier package, or a lead wire and a bare chip are connected, it connects using an anisotropic conductive film. The anisotropic conductive film is an adhesive capable of having anisotropy in conductivity. Further, in detail, metal particles such as copper and nickel are dispersed in the adhesive, and the pressure direction is applied to the portion to which the electrical connection is to be made by controlling the content, shape, size, etc. of the metal particles as necessary, and the thickness direction of the adhesive layer. Is a film of an anisotropic adhesive having conductivity, and conductivity in both directions maintaining insulation. This film can bond a large number of bonding pads at a time because the film is printed on the wiring board with the adhesive mixed with particles on the entire surface and face down bonded. In addition, the IC chip using this film has a feature that the IC chip can be reduced in price since no vamp is required. As a method of connecting an electronic component or an IC chip using this film, it is described in Japanese Patent Laid-Open No. 51-100679 or Japanese Patent Laid-Open No. 58-21350.
그러나 액정표시소자 등의 전극과 외부 구동회로와의 접속에 이방성 도전필름을 사용하는 경우, 접속밀도가 높아지면 인접하는 전극간의 절연이 유지될 수 없으며, 또 접속부의 면적이 작아지기 때문에 접속에 기여하는 도전 입자의 수가 적어져서 접속저항이 커진다는 문제점이 있었다.However, in the case of using an anisotropic conductive film for connecting an electrode such as a liquid crystal display device to an external driving circuit, when the connection density increases, insulation between adjacent electrodes cannot be maintained, and the area of the connection becomes small, contributing to the connection. There existed a problem that connection resistance became large because the number of the electroconductive particle made to become small.
그래서, 도전입자를 편재시킨 이방성 도전막이 일본국 특개평 3-62411 호 공보 (종래예 1)에 기재되어 있다. 본 막의 제조방법은, 도전입자를 모으고 싶은 부분에 접착제를 도포해 두고, 그 밑에 접지된 전극을 설치하고, 필요에 따라서 절연성 마스크를 이용하고, 코로나 전계중을 통과하여 대전시킨 도전성 입자를 마스크되어 있지 않는 접착제 부분에 주입하여, 도전입자를 재편시킨다는 것이다.Therefore, an anisotropic conductive film in which conductive particles are localized is described in Japanese Patent Laid-Open No. 3-62411 (Prior Example 1). In the method for producing the film, an adhesive is applied to a portion where conductive particles are to be collected, a grounded electrode is provided thereunder, and an insulating mask is used as necessary to mask conductive particles charged through a corona electric field. It is injected into the adhesive part which is not present, and the conductive particle is realigned.
또, 일본국 특개소 60-126889 호 공보 (종래예 2) 에 기재된 도전입자가 편재시킨 이방성 도전막의 제조방법은, 감광성 수지에 광을 쪼이고, 경화ㆍ미경화부분을 만들고, 미경화부분을 에칭하여 패터닝된 절연패턴에, 코로나 방전 또는 자기 브러시에 의한 마찰로 대전시키고, 정전패턴을 형성하고, 그 정전패턴부분에 도전입자를 퇴적시키고, 그 후에 접착제를 도포 및 도전입자와 함께 떼어서 이방성 도전막을 작성한다는 것이다.Moreover, the manufacturing method of the anisotropic conductive film by which the electrically-conductive particle described in Unexamined-Japanese-Patent No. 60-126889 (Prior Example 2) unevenly distributed was made by irradiating light to the photosensitive resin, making hardened | cured and uncured part, and etching uncured part. To the patterned insulating pattern by corona discharge or friction with a magnetic brush, to form an electrostatic pattern, to deposit conductive particles on the electrostatic pattern portion, and then to apply an adhesive and peel off together with the conductive particles to form an anisotropic conductive film. Is to write.
또, 일본국 특개소 59-191395 호 공보에도, 도전입자를 기판표면에 분산시키는 방법이 기재되어 있지만, 이 공보는 세라믹 기판상에 구리도금하는 세라믹 기판배선의 제조방법이므로, 본 발명의 이방성 도전막과는 관계가 없다.Japanese Unexamined Patent Publication No. 59-191395 also describes a method for dispersing conductive particles on a substrate surface. However, this publication is a method for producing a ceramic substrate wiring for copper plating on a ceramic substrate. It has nothing to do with the act.
그러나, 종래예 1 에서는 배선패턴에 따라서 형성된 전극과 절연층 마스크가 필요하므로 미세한 위치맞춤이 곤란하다는 문제점이 있다. 종래예 2 에서는, 감광수지에 광을 쪼이면서 경화, 미경화부분을 만들고, 미경화부분을 에칭하고 있으므로 공정이 복잡하다.However, in the conventional example 1, since the electrode and the insulating layer mask formed according to the wiring pattern are required, there is a problem that fine positioning is difficult. In the conventional example 2, since the hardened | cured and uncured part is made, and the uncured part is etched while irradiating light to a photosensitive resin, a process is complicated.
본 발명의 목적은, 보다 적은 공정으로 이방성 도전막을 작성하는 것이다.An object of the present invention is to produce an anisotropic conductive film in less steps.
본 발명의 이방성 도전막은, 광의 조사에 의해 절연성으로부터 도전성으로 변하는 매개물을 설치하는 공정과, 매개물에 선택적으로 광을 조사하는 공정과, 매개물의 상기 광이 조사되어 있는 부분에 도전입자를 편재시키는 공정과, 매개물상에 절연층을 형성하고 절연층내에 도전입자를 포함시키는 공정을 갖는 것을 특징으로 한다.In the anisotropic conductive film of the present invention, a step of providing a medium that changes from insulating to conductive by irradiation of light, a step of selectively irradiating light to the medium, and a step of ubiquitous conductive particles in a portion to which the light of the medium is irradiated And a step of forming an insulating layer on the medium and including conductive particles in the insulating layer.
도전입자를 편재시키는 방법은, 절연성의 매개물의 전면에 대전을 실시하고, 소정의 글래스 마스크를 사용하여 선택적으로 노광함으로써 광이 조사된 영역의 표면 및 내부의 전하를 없애고, 대전된 상태의 부분의 상기 매개물 상에 반대의 전하로 대전한 도전입자를 전기적 인력에 의해 편재시킨 것을 특징으로 한다.In the method of ubiquitous the conductive particles, the entire surface of the insulating medium is charged, and selectively exposed using a predetermined glass mask to eliminate charges on the surface and inside of the region to which light is irradiated, and It characterized in that the conductive particles charged with the opposite charge on the medium by ubiquitous by electrical attraction.
소정의 글래스 마스크는, 노광전용의 글래스 마스크라도 좋지만, 광투과성 도전배선이 형성되어 있는 실장용 글래스 마스크를 이용하는 것을 특징으로 한다.The predetermined glass mask may be a glass mask for exposure, but is characterized by using a mounting glass mask in which light-transmissive conductive wiring is formed.
매개물은, 폴리에틸렌텔레프탈레이트 (PET), 폴리테트라플루오로에틸렌 (PTFE) 인 것을 특징으로 한다.The medium is characterized in that the polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE).
도전입자는, 중핵의 절연체인 표면에 도전성물질을 도금한 물질인 것을 특징으로 한다.The conductive particles are characterized by being a substance in which a conductive material is plated on a surface that is a core insulator.
제1도에 나타내는 바와 같이, 구리 등의 금속판 (4) 상에 매개물 (3), 예를 들면 폴리에틸렌텔레프탈레이트 (PET (투명)) 나 폴리테트라플루오로에틸렌 (PTFE) (백색반투명) 이 약 20㎛의 두께로 형성되어 있다. 이 PET나 PTFE는, 광을 쪼이지 않는 부분은 절연성을 나타내고, 광을 쪼이면 도전성을 나타낸다는 성질을 갖는다. 이 매개물 (3)은, 종래 이용되고 있는 감광체 수지에 비하여 가격이 싸다는 이점이 있다. 금속판 (4) 은 접지가 취해져 있으며, 그 두께는 100㎛이상이다. 매개물 (3) 은, 코로나방전 등을 이용하여 표면 또는 내부가 대전하고 있으며, 제 1a 도에서는 양으로 대전한 경우가 나타나 있다. 그 대전량은 표면전위에서 약 0.5KV 이다. 이 대전은 음이라도 좋다.As shown in FIG. 1, the medium 3 on the metal plate 4 such as copper, for example, polyethylene terephthalate (PET) or polytetrafluoroethylene (PTFE) (white translucent) is about 20 It is formed in the thickness of micrometer. This PET and PTFE have the property that the part which does not emit light shows insulation, and when it emits light, it shows electroconductivity. This medium (3) has the advantage that the price is cheaper than that of the conventionally used photosensitive resin. The metal plate 4 is grounded, and its thickness is 100 micrometers or more. The medium 3 is charged by the surface or the inside using corona discharge or the like, and a case of positive charging is shown in FIG. 1A. The charge amount is about 0.5 KV at the surface potential. This game may be sound.
다음에 제1b도에 나타내는 바와 같이 두께 약 1.1㎜ 의 글래스 마스크 (5) 를 통하여 광을 매개물에 쪼인다. 매개물 (3)은 노광됨으로써, 노광영역 (30) 은 도전물질로 변화하고, 표면 또는 내부의 전하가 방전 또는 광이 매개물의 내부로 입사할 때에 금속판 (4) 을 통해서 없어진다. 이로써 글래스 마스크 (5)의 패턴과 같이 전하패턴이 형성된다.Next, as shown in FIG. 1B, light is irradiated to the medium through the glass mask 5 having a thickness of about 1.1 mm. The medium 3 is exposed, so that the exposure area 30 is changed into a conductive material, and the charge on the surface or inside disappears through the metal plate 4 when discharge or light enters the inside of the medium. As a result, a charge pattern is formed like the pattern of the glass mask 5.
글래스 마스크 (5) 는, 제4a도 및 제4b도에서 나타내는 글래스 마스크가 이용된다. 제4a도는, 노광전용 글래스 마스크(5-1)이다. 이 글래스 마스크(5-1)상에는 차광패턴(6)이 실장패턴, 예를 들면 본딩패턴에 맞추어서 형성되어 있다. 차광패턴(6)은, 두께 300㎚의 두께의 크롬으로 이루어지며, 광을 통과시키지 않는다. 따라서, 차광패턴(6)이외의 부분을 투과한 광만이 매개물(3)의 표면에 쪼이게 된다. 또한, 본원은, 제4b도에 나타내는 실장용 글래스 마스크5-2를 이용하고 있다. 이 글래스 마스크(5-2)는, 액정표시장치에서 필요한 배선이 전부 깔린 완성품으로서의 실장용 글래스 마스크로서, 차광패턴 및 ITO로 이루어지는 투과성 도전패턴(11)이 형성되어 있다. 이 ITO 배선은, 액정 패널의 구동선이나 인출선으로서, 각각 메모리셀의 게이트나 드레인에 접속되어 있다. 출력측에서는, 고저항이라도 상관없으므로 (예를 들면 1 KΩ), 고저항의 ITO를 충분히 사용할 수 있다. 한편, 입력측에서는, 게이트 배선은 크롬 등의 금속으로 작성하여 이방성도전막 이외의 영역에서 ITO배선과 접속된다. 실장액정 패널은, 노광용 마스크를 겸하고 있으므로, 노광용 글래스 마스크를 실장패턴별로 작성할 필요가 없으며 경비를 저감할 수 있다.As the glass mask 5, the glass mask shown in FIG. 4A and FIG. 4B is used. 4A is a glass mask 5-1 for exposure only. On the glass mask 5-1, the light shielding pattern 6 is formed in accordance with a mounting pattern, for example, a bonding pattern. The light shielding pattern 6 is made of chromium having a thickness of 300 nm and does not pass light. Therefore, only light transmitted through portions other than the light shielding pattern 6 is scattered on the surface of the medium 3. In addition, this application uses the mounting glass mask 5-2 shown in FIG. 4B. This glass mask 5-2 is a glass mask for mounting as a finished product in which all the wiring necessary for a liquid crystal display device is laid, and the transparent conductive pattern 11 which consists of a light shielding pattern and ITO is formed. These ITO wirings are connected to the gates and the drains of the memory cells, respectively, as drive lines and lead lines of the liquid crystal panel. On the output side, since high resistance may be sufficient (for example, 1 KPa), high resistance ITO can be used sufficiently. On the other hand, on the input side, the gate wiring is made of metal such as chromium and connected to the ITO wiring in a region other than the anisotropic conductive film. Since the mounting liquid crystal panel also serves as an exposure mask, it is not necessary to create an exposure glass mask for each mounting pattern and the cost can be reduced.
다음에 제 1c 도에 나타내는 바와 같이, 전하 패턴이 형성된 매개물 (3) 에 평균직경 5㎛가 대전하고 있는 도전입자 (1) 를 산포한다. 도전입자는 매개물 (3) 과는 반대의 전하, 이 예에서는 음으로 대전시켜 둔다. 도전입자는, 중핵의 절연체의 표면에 도전성물질 예를 들면, 니켈, 금을 도금한 것이다. 따라서, 이 도전입자는 다른 금속구 보다도 대전하기 쉽게 할 수 있다. 이 도전입자 (1) 는 전기적 인력에 의해 매개물 (3)이 대전하고 있는 부분으로 모인다. 이 위에 두께 20㎛ 정도의 절연수지 (2)를 도포하여 제 2 도에 나타내는 바와 같이, 또는 전사하여 제 3 도에 나타내는 바와 같이 특정의 실장패턴으로 도전입자가 편재한 이방성 도전막을 형성한다. 절연수지 (2) 를 도포하는 경우는, 페이스트형의 절연수지 (2) 를 디스펜서 등으로 제 1c 도의 매개물 (3) 과 도전금속 (1) 의 위에 도포한다. 이때, 페이스트형의 절연수지 (2) 는 도전금속 (1) 을 둘러싸도록 넓어지며, 제 2a 도가 형성된다. 그후, 제 2b 도에 나타내는 바와 같이 기판상 (3) 으로부터 떼어내어 이방성 도전막이 완성된다. 절연수지 (2) 를 전사할 경우는 제 3a 도에서 나타내는 절연수지 (2) 를 미건조된 채로 베이스 필름상에서 필름형으로 해 둔다. 이를 제 1c 도의 매개물 (3)과 도전금속 (1) 의 위에 얹어 가볍게 압력을 건다. 절연수지(2)는 미건조상태이므로 도전금속 (1) 은 필름형의 절연수지 (2) 의 내부로 들어가고 또 표면에 부착하여 제 3b 도가 형성된다. 제 5 도는 제 2b 도 또는 제 3b 도로 나타내는 완성된 이방성 도전막이 상면도이다.Next, as shown in FIG. 1C, conductive particles 1 having an average diameter of 5 μm are charged onto the medium 3 having the charge pattern formed thereon. The conductive particles are charged opposite to the medium (3), in this example negatively charged. The conductive particles are obtained by plating conductive materials such as nickel and gold on the surface of the core insulator. Therefore, the conductive particles can be more easily charged than other metal spheres. The conductive particles 1 gather into a portion where the medium 3 is charged by electrical attraction. An insulating resin 2 having a thickness of about 20 μm is coated thereon to form an anisotropic conductive film having conductive particles unevenly distributed in a specific mounting pattern as shown in FIG. 2 or transferred and shown in FIG. 3. In the case of applying the insulating resin 2, the paste-type insulating resin 2 is applied onto the medium 3 and the conductive metal 1 of FIG. 1C with a dispenser or the like. At this time, the paste-type insulating resin 2 is widened to surround the conductive metal 1, and FIG. 2A is formed. Thereafter, as shown in FIG. 2B, the anisotropic conductive film is removed from the substrate 3. When transferring the insulating resin 2, the insulating resin 2 shown in FIG. 3A is made into a film form on a base film with undried. It is placed on the medium 3 and the conductive metal 1 of FIG. 1c and lightly pressurized. Since the insulating resin 2 is in an undried state, the conductive metal 1 enters the inside of the film-type insulating resin 2 and adheres to the surface to form the third drawing. 5 is a top view of the completed anisotropic conductive film shown in FIG. 2B or 3B.
다음에 제 6 도를 이용하여 본 발명의 이방성 도전막을 사용하여 액정표시 패널과 액정구동용 IC 의 접속방법을 설명한다. 제 6a 도에서 나타내는 바와 같이, 구동용 IC (7)에는 높이 20㎛ 정도의 구동용 IC 접속전극 (9) 이 형성되어 있다. 한편, 액정표시 패널 (8) 은, 상술한 실장용 글래스 마스크 (5-2) 로서, 높이가 300∼400㎜ 정도의 액정패널 접속용 전극 (10) 이 구동용 IC 접속전극 (9) 과 대향하여 형성되어 있다. 액정표시 패널 (8) 과 구동용 IC (7) 는, 사이에 두께가 25∼30㎛ 정도의 이방성 도전막 (2) 을 끼고, 위치맞춤을 행하여 접속된다. 접속시에는 가압 및 가열이 행해진다. 그렇게 하면, 이방성 도전막 (2) 인 열경화성의 에폭시수지는, 150℃ 정도의 가열에 의해, 가온됨에 따라서 액상으로 되며 액정패널 접속용 전극 (10) 및 구동용 IC 접속전극 (9) 간의 극간에 번져나간다. 그리고 그대로 시간이 경과하면 완전히 에폭시 수지가 고화된다. 가압에 의해 액정패널 접속용 전극(10) 과 구동용 IC (9) 는, 제 6b 도에 나타내는 바와 같이 한 층정도의 도전입자 (1) 를 사이에 두고 전기적으로 접속된다. 각 전극간의 거의 완전하게 에폭시수지로 시일되는 각 전극간의 절연성이 유지된다. 제 7 도에 나타내는 바와 같이, 액정표시 패널 (8) 의 표면에, 이 액정표시 패널 보다도 작으면서 2 변이 접하도록 또한장의 액정표시 패널 (12) 이 설치되어 있다. 이 액정표시 패널 (12) 은, 액정표시부분이다. 액정표시 패널 (8) 의 외주부로서 노출되어 있는 부분에, 가늘고 긴 이방성 도전막 (2) 이 설치되어 있다. 이방성 도전막 (2) 상에는 복수의 구동용 IC (7) 가 형성되어 있어서 각각 액정표시 패널 (8) 과 전기적 접합이 취해져 있다. 액정표시 패널(8) 의 주변측에 형성된 구동용 IC 는, 주로 액정 매트릭스의 게이트 컨트롤용의 IC로서 긴변측에 형성된 구동용 IC 는, 액정 매트릭스의 인출선 컨트롤용 IC이다.Next, a method of connecting the liquid crystal display panel and the liquid crystal driving IC using the anisotropic conductive film of the present invention will be described with reference to FIG. As shown in Fig. 6A, the driving IC connection electrode 9 is formed in the driving IC 7 with a height of about 20 mu m. On the other hand, the liquid crystal display panel 8 is the above-described mounting glass mask 5-2, in which a liquid crystal panel connection electrode 10 having a height of about 300 to 400 mm is largely aligned with the driving IC connection electrode 9. It is formed toward. The liquid crystal display panel 8 and the driver IC 7 are connected to each other with an anisotropic conductive film 2 having a thickness of about 25 to 30 μm interposed therebetween. At the time of connection, pressurization and heating are performed. Then, the thermosetting epoxy resin, which is the anisotropic conductive film 2, becomes liquid as it is heated by heating at about 150 ° C., and the gap between the liquid crystal panel connection electrode 10 and the driving IC connection electrode 9 is maintained. Spread out And as time passes, an epoxy resin will solidify completely. By the pressurization, the liquid crystal panel connection electrode 10 and the drive IC 9 are electrically connected to each other via the conductive particles 1 of about one layer as shown in FIG. 6B. The insulation between the electrodes, which is almost completely sealed with epoxy resin between the electrodes, is maintained. As shown in FIG. 7, a further liquid crystal display panel 12 is provided on the surface of the liquid crystal display panel 8 so as to be in contact with two sides while being smaller than this liquid crystal display panel. This liquid crystal display panel 12 is a liquid crystal display part. The elongate anisotropic conductive film 2 is provided in the part exposed as the outer peripheral part of the liquid crystal display panel 8. A plurality of driving ICs 7 are formed on the anisotropic conductive film 2, and electrical bonding with the liquid crystal display panel 8 is performed, respectively. The driving IC formed on the peripheral side of the liquid crystal display panel 8 is mainly an IC for gate control of the liquid crystal matrix, and the driving IC formed on the long side is an IC for controlling the leader line of the liquid crystal matrix.
그리고, 본 발명은 상기 실시예에 한정되는 것은 아니며 요지를 변경하지 않는 범위에서 여러가지로 변경하여 실시할 수 있다. 예를 들면, IC 칩의 전극의 수를 6 으로 내용을 진행하였지만, 당연히 이에 한정하지 않는다.In addition, this invention is not limited to the said Example, It can change and implement variously in the range which does not change a summary. For example, although the content was advanced to 6 the number of electrodes of an IC chip, it does not limit to this naturally.
또, 글래스 매트릭스 상의 배선 (11) 도 제 4b 도에 나타낸 형상으로 될 필요는 없다.In addition, the wiring 11 on the glass matrix does not need to have the shape shown in FIG. 4B.
이상 설명한 바와 같이, 본 발명에 의하면, 실장 패턴에 맞추어서 도전입자가 편재해 있으므로, 예를 들면 액정패널의 인출선과 구동용 IC 의 접합에 있어서 100㎛ 이하의 좁은 피치라도, 극간의 고절연성 및 접속부의 저저항성이 가능해진다. 이로써 극간 쇼트나 단자접속불량이 각각 10% 로부터 1%, 1% 로부터 0% 로 저감되고, 100㎛ 이하의 좁은 피치에서의 접속신뢰성이 높으며, 수율이 높은 접속이 가능하게 한다. 또, 본 발명의 이방성 도전막은, 절연성으로서 광을 쪼이면 도전성으로 되는 매개물을 이용한 것이므로, 광을 쪼이는 것만으로 절연영역과 도전영역을 작성할 수 있으며, 공정수가 감소한다는 효과를 갖는다. 또, 본 발명의 이방성 도전막은, 매개물로서 PET 나 PTFE 를 이용하므로, 감광성 도전막 보다도 싸게 완성된다는 이점이 있다. 또, 본 발명의 이방성 도전막은, 노광시에 배선패턴을 노광투과성의 막으로 형성한 실장용 글래스 마스크를 이용한 것이므로, 일부러 노광전용 글래스 마스크를 작성할 필요는 없으며, 그러므로 비용이 삭감되고, 또한 정밀한 마스크 패턴을 작성할 수 있다. 또, 본 발명에서 사용한 도전입자는, 중핵에 절연체, 표면에 도전성 물질을 도금한 것이므로 대전하기 쉽다는 효과도 있다.As described above, according to the present invention, since the conductive particles are ubiquitous in accordance with the mounting pattern, for example, even if the pitch of the liquid crystal panel leader and the driving IC are narrow, even at a narrow pitch of 100 μm or less, the high insulation between the poles and the connecting portion The low resistance of becomes possible. This reduces the inter-short and terminal connection defects from 10% to 1% and from 1% to 0%, respectively, enabling high connection reliability at a narrow pitch of 100 μm or less, and high yield. In addition, since the anisotropic conductive film of the present invention uses a medium that becomes conductive when light is emitted as the insulating property, an insulating area and a conductive area can be created by only light is emitted, and the number of steps is reduced. Moreover, since the anisotropic conductive film of this invention uses PET and PTFE as a mediator, there exists an advantage that it is completed cheaper than the photosensitive conductive film. Moreover, since the anisotropic conductive film of this invention uses the mounting glass mask which formed the wiring pattern in the exposure transparent film at the time of exposure, it is not necessary to prepare the exposure glass mask on purpose, therefore cost is reduced and it is a precise mask. You can create a pattern. Moreover, since the electrically conductive particle used by this invention plated the insulator at the core and the electroconductive substance on the surface, it also has the effect of being easy to charge.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23656294 | 1994-09-30 | ||
JP94-236562 | 1994-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960011504A KR960011504A (en) | 1996-04-20 |
KR0162531B1 true KR0162531B1 (en) | 1998-12-15 |
Family
ID=17002482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950032156A KR0162531B1 (en) | 1994-09-30 | 1995-09-27 | Manufacture of anisotropic conductive film and manufacture of lcd panel using this film |
Country Status (3)
Country | Link |
---|---|
US (1) | US5679493A (en) |
KR (1) | KR0162531B1 (en) |
TW (1) | TW406207B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220131795A (en) * | 2021-03-22 | 2022-09-29 | 주식회사 엠시스 | Pre-coated COF manufacturing method and COF produced by the same method |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5887343A (en) * | 1997-05-16 | 1999-03-30 | Harris Corporation | Direct chip attachment method |
WO1999038623A1 (en) * | 1998-01-30 | 1999-08-05 | Loctite Corporation | A method of forming a coating onto a non-random monolayer of particles, and products formed thereby |
US6703566B1 (en) | 2000-10-25 | 2004-03-09 | Sae Magnetics (H.K.), Ltd. | Bonding structure for a hard disk drive suspension using anisotropic conductive film |
US6847747B2 (en) * | 2001-04-30 | 2005-01-25 | Intel Corporation | Optical and electrical interconnect |
JP3621369B2 (en) * | 2001-10-30 | 2005-02-16 | 松下電器産業株式会社 | Manufacturing method of semiconductor device |
FR2842023B1 (en) * | 2002-07-05 | 2005-09-30 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING ANISOTROPIC CONDUCTIVE FILM WITH SHARP DRIVER INSERTS |
JP3918708B2 (en) * | 2002-10-08 | 2007-05-23 | セイコーエプソン株式会社 | Circuit board and manufacturing method thereof, transfer chip, transfer source substrate, electro-optical device, electronic apparatus |
US7078095B2 (en) * | 2004-07-07 | 2006-07-18 | Xerox Corporation | Adhesive film exhibiting anisotropic electrical conductivity |
JP4428329B2 (en) * | 2005-05-30 | 2010-03-10 | エプソンイメージングデバイス株式会社 | ELECTRO-OPTICAL DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE |
KR20070074309A (en) * | 2006-01-09 | 2007-07-12 | 엘에스전선 주식회사 | Anisotropic conductive film using polarized conductive particle and method for manufacturing the same |
TWI354846B (en) | 2007-01-26 | 2011-12-21 | Au Optronics Corp | Adhesive structure and method for manufacturing th |
US20100025250A1 (en) * | 2007-03-01 | 2010-02-04 | Advanced Liquid Logic, Inc. | Droplet Actuator Structures |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561957A (en) * | 1966-09-23 | 1971-02-09 | Xerox Corp | Electrophotographic process using a high intensity electromagnetic radiation source |
JPS592179B2 (en) * | 1975-03-03 | 1984-01-17 | セイコーエプソン株式会社 | Method of manufacturing electrical components |
US4337303A (en) * | 1980-08-11 | 1982-06-29 | Minnesota Mining And Manufacturing Company | Transfer, encapsulating, and fixing of toner images |
JPS5821350A (en) * | 1981-07-30 | 1983-02-08 | Seiko Epson Corp | Mounting structure of semiconductor integrated circuit |
DE3231147A1 (en) * | 1982-08-21 | 1984-02-23 | Basf Ag, 6700 Ludwigshafen | POSITIVELY WORKING METHOD FOR PRODUCING RELIEF IMAGES OR RESIST PATTERNS |
JPS59191395A (en) * | 1983-04-14 | 1984-10-30 | 松下電器産業株式会社 | Method of producing ceramic circuit board |
JPS60126889A (en) * | 1983-12-13 | 1985-07-06 | 松下電器産業株式会社 | Method of producing electrostatic printed block |
JPH0362411A (en) * | 1989-07-31 | 1991-03-18 | Canon Inc | Manufacture of aeolotropic conductive film |
US5304447A (en) * | 1992-02-11 | 1994-04-19 | Elf Technologies, Inc. | Plateable toner and method for producing the same |
-
1995
- 1995-09-27 KR KR1019950032156A patent/KR0162531B1/en not_active IP Right Cessation
- 1995-09-27 TW TW084110120A patent/TW406207B/en not_active IP Right Cessation
- 1995-10-02 US US08/538,118 patent/US5679493A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220131795A (en) * | 2021-03-22 | 2022-09-29 | 주식회사 엠시스 | Pre-coated COF manufacturing method and COF produced by the same method |
Also Published As
Publication number | Publication date |
---|---|
KR960011504A (en) | 1996-04-20 |
US5679493A (en) | 1997-10-21 |
TW406207B (en) | 2000-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0162531B1 (en) | Manufacture of anisotropic conductive film and manufacture of lcd panel using this film | |
KR940008554B1 (en) | Electrode terminal mutual connection method | |
KR100352566B1 (en) | Active matrix liquid-crystal display device | |
JP3671192B2 (en) | Insulating layered prismatic bump, chip-on-glass product using the bump, and method of manufacturing prismatic bump with insulating layer on the IC chip surface | |
US6909053B2 (en) | Circuit substrate connecting structure, liquid crystal display device having the connecting structure and mounting method of liquid crystal display device | |
KR101857331B1 (en) | Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method | |
JPH03131089A (en) | Connecting method for circuit board | |
US5846853A (en) | Process for bonding circuit substrates using conductive particles and back side exposure | |
US5679928A (en) | Electrical connecting structure for electrically connecting terminals to each other | |
KR0183635B1 (en) | Apparatus for including a peak shaped dielectric dam | |
JPS592179B2 (en) | Method of manufacturing electrical components | |
JPH0546930B2 (en) | ||
KR100772454B1 (en) | Anisotropic conductive film and method of manufacturing the same | |
JPH08153424A (en) | Manufacture of anisotropic conductive film, and manufacture of liquid crystal display panel using this film | |
JP3433836B2 (en) | Anisotropic conductive film and liquid crystal display panel connected by anisotropic conductive film | |
JPH0562727A (en) | Anisotropic conductive connection member and its manufacture | |
JPH05290946A (en) | Packaging method for electronic parts | |
JPH038213A (en) | Manufacture of anisotropic conductive film | |
KR100946597B1 (en) | Conductive ball with easily pressed down, method of mamufacturing thereof and anisotropic conductive film using the same | |
KR100356142B1 (en) | Structure and method of connecting the aluminum wiring | |
JP3031134B2 (en) | How to connect electrodes | |
JPH1084178A (en) | Arrangement method of minute substances and forming method of connection structure employing the arrangement method | |
JPS6255883A (en) | Electric connection | |
JP2782944B2 (en) | Circuit connection structure and liquid crystal display device | |
JPH0330988B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110720 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20120727 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |