KR0140834B1 - Manufacturing method zn-al alloy deposited steel sheet - Google Patents

Manufacturing method zn-al alloy deposited steel sheet

Info

Publication number
KR0140834B1
KR0140834B1 KR1019940029273A KR19940029273A KR0140834B1 KR 0140834 B1 KR0140834 B1 KR 0140834B1 KR 1019940029273 A KR1019940029273 A KR 1019940029273A KR 19940029273 A KR19940029273 A KR 19940029273A KR 0140834 B1 KR0140834 B1 KR 0140834B1
Authority
KR
South Korea
Prior art keywords
zinc
steel sheet
aluminum
distance
deposited
Prior art date
Application number
KR1019940029273A
Other languages
Korean (ko)
Other versions
KR960017904A (en
Inventor
전중환
최기덕
신정철
정진호
Original Assignee
신창식
한국신철강기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신창식, 한국신철강기술연구조합 filed Critical 신창식
Priority to KR1019940029273A priority Critical patent/KR0140834B1/en
Publication of KR960017904A publication Critical patent/KR960017904A/en
Application granted granted Critical
Publication of KR0140834B1 publication Critical patent/KR0140834B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D5/00Control of dimensions of material
    • G05D5/02Control of dimensions of material of thickness, e.g. of rolled material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 코일(Coil) 상태의 강판을 연속적으로 이송하면서 아연-알루미늄 합금을 진공증착하는 아연-알루미늄 합금증착 강판의 제조방법에 관한 것으로서, 아연-알루미늄 합금 증착층이 깊이 방향으로 균일한 조성 분포를 가지며, 아연과 알루미늄을 각각 다른 도가니에서 독립적으로 증발시키되 두 증발원 간의 거리를 증발원-강판 간의 거리의 0.35 ~ 0.7배 범위로 설정하며 증착 전 강판의 온도를 200 ~ 260 ℃ 범위로 제어하고 증착 후 강판의 최종 도달 온도를 250 ~ 350 ℃ 범위로 제어하여 아연-알루미늄 합금 증착 강판을 제조하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a zinc-aluminum alloy-deposited steel sheet which vacuum-deposits a zinc-aluminum alloy while continuously transporting a steel sheet in a coil state, in which a zinc-aluminum alloy deposited layer has a uniform composition distribution in the depth direction. Zinc and aluminum are each independently evaporated in different crucibles, but the distance between the two evaporation sources is set within the range of 0.35 to 0.7 times the distance between the evaporation source and the steel sheet. It is characterized by producing a zinc-aluminum alloy deposited steel sheet by controlling the final achieved temperature of the steel sheet in the range of 250 ~ 350 ℃.

본 발명은 두 개의 독립 증발원으로 아연과 알루미늄을 각각 증발시켜서 아연-알루미늄 증착강판을 제조하되 깊이방향 조성 분포를 균일하게 하여 합금도금층을 얻는 방법에 관한 것으로서, 두 증발원과 강판 간의 기하학적 요소인 두 증발원 간의 거리(이하 Dcc 라 한다)와 증발원-강판 간의 거리(이하 Dsc 라 한다)의 적절한 구성을 통해서 아연과 알루미늄의 증기류가 혼합되는 영역을 최대화하고 강판의 온도 제어를 통해서 합금증착층의 조성 분포를 균일화할 수 있다는 효과가 있다.The present invention relates to a method for producing a zinc-aluminum deposited steel sheet by evaporating zinc and aluminum by two independent evaporation sources, respectively, and to obtain an alloy plating layer by uniformly distributing the composition in the depth direction. Distribution of the composition of the alloy deposition layer by maximizing the area where zinc and aluminum vapor streams are mixed through the proper configuration of the distance (hereinafter referred to as Dcc) and the distance between the evaporation source and the steel plate (hereinafter referred to as Dsc). There is an effect that can be uniformized.

Description

조성 분포가 균일한 아연-알루미늄 합금 진공증착 강판의 제조방법.A method for producing a zinc-aluminum alloy vacuum deposited steel sheet having a uniform composition distribution.

제 1도는 실시예 2의 조성 분포 곡선을 나타낸 것이고,1 shows the composition distribution curve of Example 2,

제 2도는 비교예 4의 조성 분포 곡선을 나타낸 것이다.2 shows the composition distribution curve of Comparative Example 4.

본 발명은 코일(Coil)의 강판을 연속적으로 이송하면서 아연-알루미늄 합금을 진공증착하는 아연-알루미늄 합금증착 강판의 제조방법에 관한 것으로서, 아연-알루미늄 합금 증착층이 깊이 방향으로 균일한 조성 분포를 가지며, 아연과 알루미늄을 각각 다른 도가니에서 독립적으로 증발시키되 두 증발원 간의 거리를 증발원-강판 간의 거리의 0.35 ~ 0.7 배 범위로 설정하며 증착 전 강판의 온도를 200 ~ 260 ℃ 범위로 제어하고 증착 후 강판의 최종 도달 온도를 250~ 350 ℃ 범위로 제어하여 아연-알루미늄 합금증착 강판을 제조하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a zinc-aluminum alloy-deposited steel sheet which vacuum-deposits a zinc-aluminum alloy while continuously transferring a steel sheet of a coil, wherein the zinc-aluminum alloy deposited layer has a uniform composition distribution in the depth direction. Zinc and aluminum are each independently evaporated in different crucibles, but the distance between the two evaporation sources is set within the range of 0.35 to 0.7 times the distance between the evaporation source and the steel plate, and the temperature of the steel sheet before the deposition is controlled within the range of 200 to 260 ° C. It is characterized by producing a zinc-aluminum alloy-deposited steel sheet by controlling the final achieved temperature of the range of 250 ~ 350 ℃.

아연-알루미늄 합금도금 강판은 아연 도금강판에 비해서 내식성이 월등히 우수하고 내열성도 갖추고 있어서 건자재의 내외판, 고온용 가전제품, 자동차 부품 등에 사용되고 있다. 현재 상업적으로 생산, 판매되고 있는 제품은 2종류로서 알루미늄 함량이 약 5wt% 인 상품명 GALFAN 이라는 제품과 알루미늄 함량이 약 55wt%인 상품명 GALVALUME 이라는 제품이 있다. 이 두 제품은 용융도금법으로 생산되므로 박도금 제조가 어렵다는 용융도금법 자체의 한계를 지니고 있다.Zinc-aluminum alloy plated steel sheet has excellent corrosion resistance and heat resistance compared with galvanized steel sheet, and is used in internal and external plates of building materials, high-temperature home appliances, automobile parts, and the like. Currently, there are two commercially produced and sold products, namely GALFAN, which is about 5wt% aluminum, and GALVALUME, which is about 55wt% aluminum. Both of these products are produced by the hot dip plating method, which has limitations of the hot dip plating method that it is difficult to manufacture thin plating.

제품의 특성을 살펴보면, GALFAN 은 아연 도금강판에 비해서는 내식성 및 내열성이 월등히 우수하지만 알루미늄 함량이 5wt% 에 불과하여 GALVALUME 에 비하여는 내식성 및 내열성이 떨어진다. 한편, GALVALUME 은 내식성은 대단히 우수하지만 알루미늄 함량이 많음으로 인해서 건자재용 외판 등으로 적용했을 때 알루미늄 특유의 흑변 현상이 발생하는 단점이 있다.Looking at the characteristics of the product, GALFAN is much better corrosion resistance and heat resistance than galvanized steel sheet, but aluminum content is only 5wt%, which is less corrosion and heat resistance than GALVALUME. On the other hand, GALVALUME is very excellent in corrosion resistance, but due to the high aluminum content has a disadvantage in that a black color phenomenon peculiar to aluminum when applied to the exterior material for building materials.

이상에 열거한 바와 같은 아연-알루미늄 용융도금 강판의 제한점 및 단점을 해소하기 위한 노력의 일환으로 진공증착 기술을 이용하여 아연-알루미늄 증착강판을 제조하는 기술이 개발되었다. 아연과 알루미늄은 비슷한 융점, 아연은 419℃이며, 알루미늄은 660℃을 가지고 있으나 같은 온도에서의 증기압은 100만배 이상의 차이가 있다. 따라서 아연-알루미늄 합금을 진공증착함에 있어서 아연과 알루미늄의 모합금을 단일 증발원에서 증발시켜서는 원하는 조성의 합금증착을 얻을 수 없다. 결과적으로 아연-알루미늄 합금을 증착할 수 있는 방법은 두 개의 독립적인 증발원으로 아연과 알루미늄을 각각 증발시켜서 혼합된 증기류(蒸氣流) 가 강판에 입사하여 합금층을 형성하도록 하는 방법뿐이다.In an effort to solve the limitations and disadvantages of the zinc-aluminum hot-dip galvanized steel sheet as listed above, a technique for manufacturing a zinc-aluminum deposited steel sheet using vacuum deposition technology has been developed. Zinc and aluminum have similar melting point, zinc is 419 ℃, and aluminum has 660 ℃ but the vapor pressure at the same temperature is more than one million times different. Therefore, in the vacuum deposition of the zinc-aluminum alloy, the alloy of the desired composition cannot be obtained by evaporating the master alloy of zinc and aluminum from a single evaporation source. As a result, the only method for depositing a zinc-aluminum alloy is to vaporize zinc and aluminum as two independent evaporation sources so that the mixed vapor stream enters the steel sheet to form an alloy layer.

두 개의 증발원으로 각각 아연과 알루미늄을 증발시키면 두 증발원의 사이에서는 증기류의 혼합이 일어나지만 두 증발원이 인접하지 않은 방향에서는 증기류의 혼합이 일어나기 어렵다. 연속적으로 강판을 이송하면서 진공증착하는 연속공정에서는 제 1도에 나타낸 바와 같은 상황이 이루어지게 된다. 즉, 강판 이송의 출발점 쪽으로 배치된 아연 증발원에서 발생한 증기류가 먼저 강판에 입사하여 알루미늄 증착층을 형성하고, 아연과 알루미늄의 증기류가 혼합되는 영역에서는 합금 증착층이 형성되며, 마지막으로 아연 증기류만이 입사되는 영역에 이르게 되면 아연 증착층이 형성된다. 결과적으로는 강판에 알루미늄과 아연이 순차적으로 이층 도금을 형성하게 되며 아연과 알루미늄의 계면에 합금층이 존재하는 형태가 된다.Evaporation of zinc and aluminum, respectively, by two evaporation sources causes the mixing of vapor streams between the two evaporation sources, but it is difficult to mix the vapor streams in a direction where the two evaporation sources are not adjacent. In the continuous process of vacuum deposition while continuously transferring the steel sheet, the situation as shown in FIG. 1 is achieved. That is, the vapor stream generated from the zinc evaporation source disposed toward the starting point of the steel sheet transfer first enters the steel sheet to form an aluminum deposition layer, and an alloy deposition layer is formed in a region where zinc and aluminum vapor streams are mixed. When only the current reaches an incident region, a zinc deposition layer is formed. As a result, aluminum and zinc sequentially form two-layer plating on the steel sheet, and the alloy layer is present at the interface between zinc and aluminum.

이상에서 설명한 바와 같이 강판의 연속 진공증착 공정에서 두개의 독립적인 증발원을 이용해서 아연-알루미늄을 증착하면 아연/알루미늄의 이층도금이 얻어진다. 이층도금 나름대로의 장점도 있으나 표면의 내열성을 확보하는 측면에서는 합금도금이 유리하므로, 이렇게 얻어진 아연/알루미늄 이층도금 강판을 아연/알루미늄 합금도금 강판의 대체품으로 사용할 수는 없다.As described above, when the zinc-aluminum is deposited using two independent evaporation sources in the continuous vacuum deposition process of the steel sheet, two-layer plating of zinc / aluminum is obtained. Although there are advantages in two-layer plating, alloy plating is advantageous in terms of securing the heat resistance of the surface, and thus the zinc / aluminum two-layer coated steel sheet thus obtained cannot be used as a substitute for zinc / aluminum alloy coated steel sheet.

본 발명은 두개의 독립증발원으로 아연과 알루미늄을 각각 증발시켜서 아연-알루미늄 증착강판을 제조하되 깊이방향 조성 분포를 균일하게 하여 합금도금층을 얻는 방법에 관한 것으로서, 두 증발원과 강판 간의 기하학적 요소인 두 증발원 간의 거리(이하 Dcc 라 한다)와 증발원-강판 간의 거리(이하 Dcs 라 한다)의 적절한 구성을 통해서 아연과 알루미늄의 증기류가 혼합되는 영역을 최대화하고 강판의 온도제어를 통해서 합금증착층의 조성 분포를 균일화하는 것을 특징으로 한다.The present invention relates to a method for producing a zinc-aluminum-deposited steel sheet by evaporating zinc and aluminum, respectively, by two independent evaporation sources, to obtain an alloy plating layer by uniformly distributing a composition in the depth direction, and two evaporation sources which are geometric elements between two evaporation sources and steel sheets. Distribution of the composition of the alloy deposition layer by maximizing the area where zinc and aluminum vapors are mixed through the proper configuration of the distance (hereinafter referred to as Dcc) and the distance between the evaporation source and the steel plate (hereinafter referred to as Dcs). It is characterized by equalizing.

본 발명의 구성을 상세히 설명하면 다음과 같다.Referring to the configuration of the present invention in detail as follows.

본 발명에서는 Dcc/Dcs 비가 작을수록 증기류의 혼합율이 증대된다는 사실에 착안하여 Dcc 와 Dsc 를 가변적으로 조절할 수 있는 증발원, 즉 도가니를 제작하여 Dcc/Dcs 비에 따른 증발 및 증착 거동을 조사하였다.In the present invention, the evaporation source that can variably control Dcc and Dsc, ie the crucible, was investigated in consideration of the fact that the smaller the Dcc / Dcs ratio increases, the evaporation and deposition behaviors according to the Dcc / Dcs ratio were investigated.

또한, 아연은 낮은 온도에서도 쉽게 승화된다는 사실에 착안하여 강판의 증착 전 예열온도를 변화시키며 아연-알루미늄의 증착거동을 조사하였다. 그 결과 Dcc/Dcs 비가 0.7 이하에서, 그리고 강판의 증착 정 예열온도가 200℃ 이상, 증착 후 강판의 최종 온도가 350 ℃ 이하인 조건에서 깊이 방향으로 균일한 조성 분포를 갖는 아연-알루미늄 증착층이 형성된다는 사실을 발견하였다.In addition, taking into account the fact that zinc is easily sublimated even at low temperatures, the deposition behavior of zinc-aluminum was investigated by changing the preheating temperature before deposition of the steel sheet. As a result, a zinc-aluminum deposited layer having a uniform composition distribution in the depth direction is formed under a Dcc / Dcs ratio of 0.7 or less, and a condition in which the deposition preheating temperature of the steel sheet is 200 ° C. or more and the final temperature of the steel sheet after deposition is 350 ° C. or less. I found that

각각의 제한 조건에 대하여 설명한다. 본 발명에서 이용한 두개의 증발원 구성에서 Dcc/Dcs 비의 물리적인 최소값은 0.36이다. 또한 공지의 기술이라고 할 수 있는 일반적인 이중 증발원에서의 Dcc/Dcs 비는 1.0 이내이다. 일반적인 이중 증발원에서 아연-알류미늄을 증착한 결과로는 아연과 알루미늄이 분리되어 증착된 이층도금이 얻어지는 것을 발견하였으며, 본 발명에서 이용한 이중 증발원 구성으로 Dcc/Dcs 비를 변화시켜 가면서 확인한 결과 Dcc/Dcs 비가 0.7 이하에서 조성 분포가 균일해짐을 발견하였다. 이때 강판의 증착 전 예열 조건은 아래에서 설명하는 기준을 따랐다.Each restriction condition is demonstrated. In the two evaporation source configurations used in the present invention, the physical minimum value of the Dcc / Dcs ratio is 0.36. In addition, the Dcc / Dcs ratio in a general dual evaporation source, which can be called a known technique, is within 1.0. As a result of depositing zinc-aluminum in a general double evaporation source, it was found that two-layer plating obtained by separating zinc and aluminum is obtained. As a result of confirming by changing the Dcc / Dcs ratio to the double evaporation source configuration used in the present invention, Dcc / Dcs It was found that the composition distribution became uniform at a ratio of 0.7 or less. At this time, the preheating conditions before deposition of the steel sheet followed the criteria described below.

증착 전 강판의 예열온도는 증착층의 밀착성을 좌우할 뿐만 아니라 증착층의 조성 및 그 분포에도 큰 영향을 미친다. 특히 아연은 낮은 온도에서도 쉽게 승화되는 특성을 가지고 있어서 증착 과정에서 강판의 온도가 높으면 증착된 후에 일부 재증발이 일어나는 현상을 발견하였다. 이를 이용하면, 아래와 같은 원리로, 강판의 온도 조건을 적절히 제어함으로써 아연의 부착 효율을 제어할 수 있다.The preheating temperature of the steel sheet before deposition not only influences the adhesion of the deposited layer but also has a great influence on the composition and distribution of the deposited layer. In particular, zinc has a property of easily sublimating even at low temperatures, and thus, when the temperature of the steel sheet is high during deposition, some re-evaporation occurs after deposition. By using this, the adhesion efficiency of zinc can be controlled by controlling the temperature conditions of a steel plate suitably on the following principle.

강판에 증착 전 온도, Ti는 예열 조건에 따라 정해진다. 그런데 강판에 먼저 입사하는 알루미늄이 증착됨에 따라서 알루미늄의 응축 잠열이 방출되고 또한 가열되어 있는 증발원 위를 강판이 지나가면서 복사열로 인하여 온도가 올라가기 시작한다. 그러는 동안에 아연-알루미늄의 혼합 증기류가 강판에 입사하여 증착되고 이어서 아연 증기류가 입사, 증착된다. 결과적으로 마지막에 강판에 입사하는 아연 증기류가 증착될 때에는 강판의 최종 온도, Tf 에 도달하게 된다.The temperature before deposition on the steel sheet, Ti is determined according to the preheating conditions. However, as aluminum is first incident on the steel sheet, latent heat of condensation of aluminum is released and the temperature starts to rise due to radiant heat as the steel sheet passes over the heated evaporation source. In the meantime, a mixed vapor stream of zinc-aluminum is incident on the steel sheet and deposited, and then a zinc vapor stream is incident and deposited. As a result, the final temperature of the steel sheet, Tf, is reached when the zinc vapor stream entering the steel sheet is deposited.

앞에서 설명한 응축 잠열과 복사열로 인하여 Tf 는 Ti 보다 높아지게 된다. 그러므로 강판에 먼저 입사하는 아연-알루미늄 혼합 증기류 중의 아연보다 그 이후에 입사하는 아연 증기류 중의 아연의 부착 효율이 떨어지게 된다. 이러한 현상은 Tf 가 높을수록 심하여져서 Tf 가 350 ℃이상이 되면 거의 대부분의 아연이 재증발 현성으로 인하여 유실되므로 아연-알루미늄 합금증착 강판을 제조하기가 곤란하다.Due to the latent heat of condensation and radiant heat, Tf is higher than Ti. Therefore, the adhesion efficiency of zinc in the zinc vapor stream which enters thereafter becomes inferior to zinc in the zinc-aluminum mixed vapor stream which enters a steel plate first. This phenomenon becomes more severe as the Tf becomes higher, and when Tf is higher than 350 ° C., it is difficult to manufacture a zinc-aluminum alloy-deposited steel sheet because almost all of zinc is lost due to re-evaporation property.

한편, 증착 전 강판의 온도를 200 ℃ 이하로 하면 도금층의 밀착성을 확보할 수 없었다. 이러한 이유로 강판의 온도 조건을 제한하였다.On the other hand, when the temperature of the steel sheet before vapor deposition was 200 degrees C or less, adhesiveness of the plating layer could not be ensured. For this reason, the temperature conditions of the steel sheet were limited.

이하 구체적인 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through specific examples.

[실시예 1-5]Example 1-5

10-5Torr 까지 배기시킨 진공조 내에서 아연을 흑연 도가니에서, 알루미늄을 세라믹 도가니에서 전자빔으로 가열 각각 증발시키고, 300mm 폭, 0.5mm 두께의 대상강판(帶狀鋼板)을 5m/min 의 속력으로 이송하면서 아연-알루미늄을 강판상에 진공 증착하였다. 주요한 공정 변수 및 특성 평가 결과는 표 1과 같다.In a vacuum chamber evacuated to 10 -5 Torr, zinc was evaporated from a graphite crucible, aluminum was heated in a ceramic crucible with an electron beam, respectively, and 300 mm wide and 0.5 mm thick target steel sheets were spun at a speed of 5 m / min. Zinc-aluminum was vacuum deposited onto the steel sheet while transferring. The main process variables and characteristics evaluation results are shown in Table 1.

(주) 밀착성은 180 °굴곡후 테이프 벗김 시험으로 평가.(Note) Adhesiveness is evaluated by tape peeling test after 180 ° bending.

조성 분포의 균일성은 오제전자분광기 또는 글로방전분광기로 깊이 분석을 행하여 조성 분포곡선을 도출하여 평가.Uniformity of composition distribution was evaluated by depth analysis by Auger electron spectroscopy or glow discharge spectroscopy to derive composition distribution curve.

[비교예 1-5]Comparative Example 1-5

10 Torr 까지 배기시킨 진공조 내에서 아연을 흑연 도가니에서, 알루미늄을 세라믹 도가니에서 전자빔으로 가열 각각 증발시키고, 300mm 폭, 0.5mm 두께의 강대를 5m/min 의 속력으로 이송하면서 아연-알루미늄을 강판상에 진공 증착하였다. 주요한 공정 변수는 표 2와 같다.10 In a vacuum chamber evacuated to Torr, zinc was heated in a graphite crucible, aluminum was heated in a ceramic crucible with an electron beam, and zinc-aluminum was deposited on a steel sheet while transferring a 300 mm wide and 0.5 mm thick strip at a speed of 5 m / min. Vacuum deposition. The main process variables are shown in Table 2.

(주) 밀착성은 180°굴곡후 테이프 벗김 시험으로 평가.(Note) The adhesiveness is evaluated by tape peeling test after 180 ° bending.

조성 분포의 균일성은 오제전자분광기 또는 글로방전분광기로 깊이 분석을 행하여 조성 분포곡선을 도출하여 평가.Uniformity of composition distribution was evaluated by depth analysis by Auger electron spectroscopy or glow discharge spectroscopy to derive composition distribution curve.

조성 분포의 균일성을 판정항 예로 제 1도와 제 2도의 글로방전분광분석에 의한 조성 분포 곡선을 도시하였다. 제 1도는 실시예 2의 분석 결과로서 아연과 알루미늄이 깊이방향을 따라서 균일하게 분포되어 있다. 반면에 제 2도는 비교예 4의 분석 결과로서 아연이 표층부에, 그리고 알루미늄이 내부에 분포된 이층 형태를 나타내고 있다.The uniformity of the composition distribution is shown as a composition term by the glow discharge spectroscopy analysis of FIGS. 1 shows zinc and aluminum uniformly distributed along the depth direction as a result of analysis of Example 2. FIG. On the other hand, FIG. 2 shows a bilayer form in which zinc is distributed in the surface layer and aluminum is disposed as a result of analysis of Comparative Example 4.

Claims (1)

아연-알루미늄 합금 진공증착강판을 제조하는 방법에 있어서, 10-5Torr 까지 배기시킨 진공조 내에서 대상강판(帶狀鋼板)을 5m/min 의 속도로 이송시키면서 아연-알루미늄을 두개의 증발원으로 하고 여기에 전자빔을 조사 가열하여 각각 증발시키고 아연 증발원과 알루미늄 증발원 중심간의 거리를 증발원 표면과 강판간 거리의 0.35 ~ 0.7 배 범위로 하고, 강판의 증착 전 온도를 200 ~ 260℃ 범위로 하고, 증착 후 강판의 온도를 250 ~ 350℃의 범위로 하여 Al 의 함량이 20 ~ 45 중량%인 아연-알루미늄 합금증착층을 5 ~ 15 g/m2의 두께로 대상강판에 증착시키는 조성 분포를 균일하게 하는 아연-알루미늄 합금 진공증착강판의 제조방법.In the method of manufacturing a zinc-aluminum alloy vacuum deposition steel sheet, zinc-aluminum is used as two evaporation sources while the target steel sheet is transferred at a rate of 5 m / min in a vacuum chamber exhausted to 10 -5 Torr. Here, the electron beam is irradiated and heated to evaporate, respectively, and the distance between the center of the zinc evaporation source and the aluminum evaporation source is 0.35 to 0.7 times the distance between the surface of the evaporation source and the steel sheet. The temperature distribution of the steel sheet is in the range of 250 to 350 ° C. to uniformly distribute the composition of depositing a zinc-aluminum alloy deposition layer having an Al content of 20 to 45% by weight to a thickness of 5 to 15 g / m 2 . Method for producing a zinc-aluminum alloy vacuum deposition steel sheet.
KR1019940029273A 1994-11-09 1994-11-09 Manufacturing method zn-al alloy deposited steel sheet KR0140834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940029273A KR0140834B1 (en) 1994-11-09 1994-11-09 Manufacturing method zn-al alloy deposited steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940029273A KR0140834B1 (en) 1994-11-09 1994-11-09 Manufacturing method zn-al alloy deposited steel sheet

Publications (2)

Publication Number Publication Date
KR960017904A KR960017904A (en) 1996-06-17
KR0140834B1 true KR0140834B1 (en) 1998-07-15

Family

ID=19397422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940029273A KR0140834B1 (en) 1994-11-09 1994-11-09 Manufacturing method zn-al alloy deposited steel sheet

Country Status (1)

Country Link
KR (1) KR0140834B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332914B1 (en) * 1997-12-23 2002-08-21 주식회사 포스코 A method of manufacturing Mn/Al vapor deposited galvannealed steel sheet with high corrosion resistance and good paint ability

Also Published As

Publication number Publication date
KR960017904A (en) 1996-06-17

Similar Documents

Publication Publication Date Title
EP2085492B2 (en) Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
US5405517A (en) Magnetron sputtering method and apparatus for compound thin films
EP0636589A1 (en) Sources for deposition of silicon oxide
US7541070B2 (en) Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
CN101171361A (en) Ceramic evaporator crucibles, method for the production thereof, and use thereof
KR0140834B1 (en) Manufacturing method zn-al alloy deposited steel sheet
CN101171359A (en) Method for coating substrates with copper or silver
US3637421A (en) Vacuum vapor coating with metals of high vapor pressure
US4214015A (en) Method of coating metal substrates with alloys at elevated substrate temperatures
US4596721A (en) Vacuum evaporating films of alkali metal polyphosphide
KR0138040B1 (en) Method for arrangement of double vapor source
JPH0587591B2 (en)
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
JPH04235272A (en) Vapor-deposited al-mn series alloy plating material having good corrosion resistance and workability and its production
KR100198050B1 (en) Stainless pipe with al vacuum coating in inner side
KR100967709B1 (en) A plate steel sheet with silicon oxide deposition layer and a method for preparing the same
KR100198049B1 (en) Double layer coating sheet with al-zn/zn-al
JPH04173959A (en) Production of metallic sheet plated with al alloy by vapor deposition
JPH01142076A (en) Zn-fe alloy plated steel sheet having superior workability and corrosion resistance and production thereof
KR0138045B1 (en) Method for manufacturing tin vacuum deposited steel plate
KR960009195B1 (en) Method for manufacturing an al-mg alloyed thin film steel sheets with an excellent corrosion resistance and adhesion
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JPH03170661A (en) Method for evaporating sublimable metal
US3761302A (en) Reducing re evaporation of vacuum vapor deposited coatings
RU2033475C1 (en) Method of vacuum condensation application of coats

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee