KR0139023B1 - Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery - Google Patents

Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery

Info

Publication number
KR0139023B1
KR0139023B1 KR1019950006407A KR19950006407A KR0139023B1 KR 0139023 B1 KR0139023 B1 KR 0139023B1 KR 1019950006407 A KR1019950006407 A KR 1019950006407A KR 19950006407 A KR19950006407 A KR 19950006407A KR 0139023 B1 KR0139023 B1 KR 0139023B1
Authority
KR
South Korea
Prior art keywords
paste
electrode
hydrogen storage
nickel
storage alloy
Prior art date
Application number
KR1019950006407A
Other languages
Korean (ko)
Other versions
KR960036174A (en
Inventor
윤경석
조병원
조원일
백지흠
Original Assignee
김은영
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김은영, 한국과학기술연구원 filed Critical 김은영
Priority to KR1019950006407A priority Critical patent/KR0139023B1/en
Publication of KR960036174A publication Critical patent/KR960036174A/en
Application granted granted Critical
Publication of KR0139023B1 publication Critical patent/KR0139023B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법에 관한 것으로, V-Ti-Zr-Ni계 또는 Mm계에 Pd과 Ru이 소량 첨가된 수소저장합금을 분쇄하는 분쇄공정과, 상기 수소저장합금 분말에 K.B. +PTFE +CMC 페이스트 원액을 첨가하여 혼합하는 혼합공정과, 상기 혼합된 페이스트를 다공성 니켈에 충진하는 충진공정과, 다공성 니켈에 충진된 페이스트를 건조하는 건조공정과, 건조된 전극을 압착성형하는 압착성형공정의 순서로 수행하도록 한 것이다.The present invention relates to a method for producing a paste-type metal hydrogen electrode for nickel / metal hydrogen storage batteries, comprising: a grinding step of pulverizing a hydrogen storage alloy in which a small amount of Pd and Ru are added to a V-Ti-Zr-Ni or Mm system; KB to the hydrogen storage alloy powder + PTFE + CMC paste mixing process of adding and mixing the stock solution, the filling process of filling the mixed paste in porous nickel, the drying process of drying the paste filled in porous nickel, and crimping pressing the dried electrode It is to be performed in the order of the molding process.

이와 같은 본 발명을 제공함으로써 활물질의 산화 및 도전성 불량을 방지하여 전극용량이 거의 저하되지 않는 페이스트식 전극제조방법을 제공함으로써, 전극제조시의 막대한 용량저하를 방지하며, 전극의 수명을 현저하게 증대시키는 효과가 있는 것이며, 새로운 페이스트 조성 및 수소저장합금조성으로 불가능한 것으로 알려진 AB2계 합금의 페이스트식 전극제조가 가능하도록 한 것이다.By providing the present invention, by providing a paste-type electrode manufacturing method that prevents oxidation and poor conductivity of the active material and hardly decreases the electrode capacity, it prevents enormous capacity reduction during electrode production and significantly increases the life of the electrode. It is effective to make a paste-type electrode production of the AB 2 based alloy known to be impossible by the new paste composition and hydrogen storage alloy composition.

Description

니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법Manufacturing method of paste type metal hydrogen electrode for nickel / metal hydrogen storage battery

제 1 도는 본 발명에 의한 금속수소전극의 제조과정을 개략적으로 보인 공정도.1 is a process diagram schematically showing a manufacturing process of a metal hydrogen electrode according to the present invention.

제 2 도는 본 발명의 페이스트식 Mm계 금속수소전극에 대한 전극용량 및 수명시험 결과를 나타낸 그래프,2 is a graph showing the electrode capacity and the life test results of the paste-type Mm-based metal hydrogen electrode of the present invention,

제 3 도는 페이스트식 V-Ti-Zr-Ni계 금속수소전극에 대한 적극용량 및 수명시험 결과를 나타낸 그래프.3 is a graph showing the results of positive capacity and life test for a paste-type V-Ti-Zr-Ni-based metal hydrogen electrode.

본 발명은 니켈/금속수소 축전지용 페이스트식 금속수소 전극의 제조방법에 관한 것으로, 특히 수소저장합금 분말과 페이스트 원액을 혼합한 후 다공정 니켈에 충진, 건조, 압착성형하여 페이스트식 금속수소전극을 제조함으로써 전극의 용량 및 가공성을 향상시키고, 수소저장합금 분말의 미분화에 의한 탈락을 방지하여 전극의 안정성 및 수명을 향상시키는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a paste-type metal hydrogen electrode for nickel / metal hydride batteries, and in particular, a hydrogenated alloy powder and a paste stock solution are mixed and then filled, dried, and pressed in multi-process nickel to form a paste-type metal hydrogen electrode. The present invention relates to a method for producing a paste-type metal hydrogen electrode for nickel / metal hydrogen storage battery, which improves the electrode capacity and workability, prevents dropping due to micronization of hydrogen storage alloy powder, and improves the stability and life of the electrode.

종래의 대표적인 금속수소전극의 제조방법은 미국OBC사에서 주로 사용하는 방법으로서, V-Ti-Zr-Ni계 합금분말의 압착성형하고 소결하는 방법과, Mm계합금분말을 도전재를 섞거나 마이크로엔캡슐레이션(microencapsulation)시킨 후 결합재를 혼합하여 페이스트식으로 전극을 제조하는 방법이 있다.Conventional method of manufacturing a typical metal hydrogen electrode is a method mainly used in the United States OCC Corporation, a method of compression molding and sintering of V-Ti-Zr-Ni-based alloy powder, and Mm alloy powder mixed with a conductive material or micro After encapsulation (microencapsulation), there is a method of preparing an electrode in a paste method by mixing the binder.

상기 금속수소전극의 제조방법 중 압착성형하여 소결하는 제조방법은 도전재나 결합재 없이 전극을 제조하기 때문에 전극용량이 높게 나타나는 장점이 있으나, 특수한 고압의 압착성형장치 및 소결장치가 필요하여 설비상의 문제가 있으며, 결합재 없이 전극을 제조함에 따라 적극의 취급이 어렵고, 충방전싸이클을 반복함에 따른 전극의 미분화로 인해 전극활물질의 탈락이 일어나 적극의 수명이 급격히 저하되는 단점이 있다.The manufacturing method of sintering by compression molding in the manufacturing method of the metal hydrogen electrode has the advantage that the electrode capacity is high because the electrode is manufactured without a conductive material or a binder, but a special high-pressure compression molding device and a sintering device are required, which leads to equipment problems. In addition, as the electrode is manufactured without the binder, it is difficult to handle the electrode, and the electrode active material is dropped due to the micronization of the electrode by repeating the charge / discharge cycle.

또한, 페이스트식으로 전극을 제조하는 방법은 전극의 취급이 용이하고 전극활물질의 탈락이 적어 전극수명을 증대시키는 장점이 있으나, 과다한 도전재 및 결합재의 첨가로 인하여 전극용량이 감소하는 단점을 가지고 있다.In addition, the method of manufacturing the electrode by the paste method has the advantage of increasing the life of the electrode by easy handling of the electrode and less dropping of the electrode active material, but has the disadvantage of reducing the electrode capacity due to the addition of excessive conductive and binder materials. .

상기한 바와 같은 문제점을 감안하여 안출한 본 발명의 목적은 V-Ti-Zr-Ni계 소결시 전극에서 문제가 되는 수소저장합금의 미분화에 의한 탈락을 방지하여 전극의 안정성 및 수명을 향상시키고, 전극의 가공성을 향상시키며, 아울러 Mm계 수소저장합금 전극에서 나타나는 과다한 도전재 및 결합재의 첨가를 방지하여 전극용량을 증대시키도록 한 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법을 제공함에 있다.The object of the present invention devised in view of the above problems is to prevent the dropping by the micronization of the hydrogen storage alloy which is a problem in the electrode during V-Ti-Zr-Ni-based sintering to improve the stability and life of the electrode, To improve the processability of the electrode and to prevent the addition of excessive conductive materials and binders appearing in the Mm-based hydrogen storage alloy electrode to increase the electrode capacity to provide a method for producing a paste-type metal hydrogen electrode for nickel / metal hydrogen storage batteries have.

이와 같은 본 발명의 목적은 V-Ti-Zr-Ni계 및 Mm계에 Pd 과 Ru이 소량 첨가된 수소저장합금을 분쇄하는 분쇄공정과, 상기 수소저장합금 분말에 K.B. + PTFE +CMC 페이스트 원액을 첨가하여 혼합하는 혼합공정과, 상기 혼합된 페이스트를 다공정 니켈에 충진하는 충진공정과, 다공성 니켈에 충진된 페이스트를 건조하는 건조공정과, 건조된 전극을 압착성형하는 압착성형공정의 순서로 수행함을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법을 제공하여 달성된다.The object of the present invention is a pulverizing step of grinding a hydrogen storage alloy in which a small amount of Pd and Ru are added to the V-Ti-Zr-Ni-based and Mm-based, and K.B. + Mixing process of adding and mixing PTFE + CMC paste stock solution, filling process of filling the mixed paste into multi-process nickel, drying process of drying paste filled with porous nickel, and compression molding of dried electrode It is achieved by providing a method for producing a paste-type metal hydrogen electrode for nickel / metal hydride batteries, which is carried out in the order of the compression molding process.

이하에서는 첨부도면에 의거하여 본 발명을 보다 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 페이스트식 전극을 제조하기 위해서는 페이스트의 조성이 중요한 바, 본 발명에서는 전극제조시 전극의 산화를 방지하기 위하여 산소가 구축된 수용액으로 페이스트을 제조하였고, 전극제조공정을 질소분위기 하에서 실시하였다. 페이스트 원액은 밀도가 낮아 적은 양으로도 도전재의 역할을 춘분히 하는 K.B(ketjen Black)이나, A.B(Acetylene Black)을 1~10wt.%, PTFE를 1~20wt.%, CM를 0.1~5wt.% 혼합하여 제조하였다. 다공성 니켈에 충진할 페이스트는 페이스트 원액 20~50wt.%, 수소저장합금 분말 50~80wt.%의 조성비로 혼합하여 사용하였다. 또한 본 발명에서는 3차원적 구조를 갖는 다공성 니켈을 집전체로 사용하여, 전기전도성을 우수하게 함으로써 전극용량을 증가시켰으며, 3차원 집전체의 사용에 의한 전극의 기계적 안정성 및 가공성을 증대시켰다. 이때 사용되는 다공성 니켈은 전극제조시 일반적으로 사용되는 -325# 크기를 갖는 수소저장합금 분말이 잘 충진될 수 있도록 40~80ppi가 적당하다.In order to manufacture the paste-type electrode according to the present invention, the composition of the paste is important. In the present invention, in order to prevent oxidation of the electrode, the paste was prepared in an aqueous solution in which oxygen was formed. . The paste stock solution is low in density and has a low amount of KB (ketjen Black), which acts as a conductive material, but AB (Acetylene Black) is 1-10 wt.%, PTFE is 1-20 wt.%, And CM is 0.1-5 wt. It was prepared by mixing%. The paste to be filled in the porous nickel was used by mixing in a composition ratio of 20 ~ 50wt.% Paste stock solution, 50 ~ 80wt.% Hydrogen storage alloy powder. In addition, in the present invention, porous nickel having a three-dimensional structure is used as a current collector, thereby increasing electrode capacity by improving electrical conductivity, and increasing mechanical stability and processability of the electrode by using a three-dimensional current collector. The porous nickel used at this time is 40 ~ 80ppi is suitable so that the hydrogen storage alloy powder having a -325 # size that is commonly used in electrode manufacturing is well filled.

상기 수소저장합금 분말은 기존의 V-Ti-Zr-Ni계 및 Mm계가 모두 가능하나, 본 발명에서는 기존의 전극조성에 Pd을 0.005~1.0wt.%, Ru을 0.05~10wt.%를 첨가한 수소저장합금을 개발하여 전극의 용해 및 부동태화를 방지하고 전기화학적 촉매특성을 증대시킴으로써, 장수명, 고용량의 페이스트식 전극을 개발하였다. Pd이나 Ru은 알카리성 용액에서 산화물형태로 변하지만 이러한 물질은 Ti,Ni,Mn,V등과 함께 혼합산화물을 형성하여 전극의 용해 및 부동태화를 방지하여 전극의 수명을 향상시키며, 또한 이러한 산화물은 전기전도성과 전기화학적 촉매특성이 우수하여 전극용량 증대 및 고율방전 특성향상을 기하도록 하였다.The hydrogen storage alloy powder can be both conventional V-Ti-Zr-Ni-based and Mm-based, but in the present invention is added to 0.005 ~ 1.0wt.%, 0.05 ~ 10wt.% Pd in the existing electrode composition By developing a hydrogen storage alloy to prevent the dissolution and passivation of the electrode and to increase the electrochemical catalytic properties, a long-life, high capacity paste type electrode was developed. Pd and Ru change to an oxide form in alkaline solution, but these materials form mixed oxides with Ti, Ni, Mn, V, etc. to prevent dissolution and passivation of the electrode, which improves the lifetime of the electrode. Its excellent conductivity and electrochemical catalyst properties help to increase electrode capacity and high rate discharge characteristics.

이와 같은 본 발명의 페이스트식 금속수소전극의 제조방법을 제1도의 제조공정도를 참조하여 설명한다.Such a method of manufacturing the paste-type metal hydrogen electrode of the present invention will be described with reference to the manufacturing process diagram of FIG.

먼저, 아크용해로 혹은 고온유도용해로에서 제조한 수소저장합금에 수소를 흡탈착시켜 -325#로 분쇄한 후, K.B. +PTFE +CMC가 혼합된 페이스트 원액을 20~50wt.% 첨가하여 혼합한다. 이때, 페이스트 원액은 1~10wt.% K.B 혹은 A.B., 1~20wt.% PTFE, 0.1~5wt.% CMC를 증류수와 혼합하여 제조한다. 균일하게 혼합된 페이스트는 다공성 니켈에 충진하고 120℃에서 1시간 건조시킨다. 건조된 전극은 1~5ton/cm2의 압력으로 압착성형하여 최종적으로 본 발명의 페이스트식 금속수소전극을 제조한다.First, the hydrogen storage alloy prepared in the arc melting furnace or the high temperature induction melting furnace is adsorbed and desorbed, pulverized to -325 #, and then mixed by adding 20-50 wt.% Of the paste stock solution containing KB + PTFE + CMC. At this time, the paste stock solution is prepared by mixing 1 ~ 10wt.% KB or AB, 1 ~ 20wt.% PTFE, 0.1 ~ 5wt.% CMC with distilled water. The uniformly mixed paste is filled with porous nickel and dried at 120 ° C. for 1 hour. The dried electrode is press-molded at a pressure of 1 to 5 ton / cm 2 to finally prepare a paste-type metal hydrogen electrode of the present invention.

다음은 본 발명의 제조방법을 사용하여 금속수소전극을 제조하고 전지성능을 시험한 실시예 및 비교예로서, 이에 의하여 본 발명을 보다 명확하게 이해할 수 있을 것이다.The following are examples and comparative examples in which a metal hydrogen electrode was manufactured using the manufacturing method of the present invention and the battery performance was tested, thereby making the present invention more clearly understood.

[실시예1]Example 1

-325#로 분쇄한 Mm Ni3.5Coo.8Mno.4Al0.3과 MmNi3.5Coo.8Mno.4Al0.3Pd0.1Ru0.1조성의 수소저장합금분말 각각 lg에 대하여 5wt.% K.B. + 10wt.%PTFE + 2wt.%CMC페이스트 원액 0.3g의 비로 혼합하여 페이스트화한다. 이 페이스트를 80ppi Foamed Ni에 충진한 후 건조하고, 2ton/cm2의 압력으로 압착하여 전극 A1,,A2를 제조한다.Mm Ni 3.5 Coo, ground to -325 #. 8 Mno. 4 Al 0 . 3 and MmNi 3.5 Coo. 8 Mno. 4 Al 0 . Hydrogen storage alloy powder of 3 Pd 0.1 Ru 0.1 composition is pasted at a ratio of 0.3 g of 5 wt.% KB + 10 wt.% PTFE + 2 wt.% CMC paste undiluted solution to lg. The paste was filled in 80 ppi Foamed Ni, dried, and pressed at a pressure of 2 ton / cm 2 to prepare electrodes A 1 and A 2 .

[비교예1]Comparative Example 1

실시예1의 Mm Ni3.5Coo.8Mno.4Al0.3수소저장합금분말 lg에 대하여 -10μm크기의 구리분말 0.1g, 60% PTFE현탁액 0.05g의 비로 혼합하여 20#니켈스크린에 도포한 후, 건조하고, 2ton/cm2의 압력으로 가압하여 전극 A1'를 제조한다. 또한, 동일한 수소저장합금 분말을 10wt.% 비로 구리를 마이크로엔캡슐레이션하여 이 분말 1g에 대하여 60% PTFE현탁액 0.05g의 비로 혼합하여 20# 니켈 스크린에 도포한 후 건조하고, 2ton/cm2의 압력으로 전극A1를 제조한다.Mm Ni 3.5 Coo of Example 1. 8 Mno. 4 Al 0 . 3 Hydrogen-alloy powder lg mixed with a ratio of 0.1g of -10μm copper powder and 0.05g of 60% PTFE suspension, coated on 20 # nickel screen, dried, pressurized at 2ton / cm2 and electrode A 1 Manufacture. Further, the same hydrogen storage alloy powder is 10wt.% Ratio to the copper micro-yen encapsulation mixed at a ratio of 60% PTFE suspension 0.05g respect to 1g of this powder is dried and then coated on 20 # nickel screen, and the 2ton / cm 2 Prepare the electrode A 1 under pressure.

[실시예2]Example 2

-325#로 조성의 수소저장합금분말 각각에 1g에 대하여 5wt.% K.B. +10wt.%PTFE +2wt.%CMC페이스트 원액 0.3g의 비로 혼합하여 페이스트화 한다. 이 페이스트를에 충전한 후 건조하고, 2ton/cm2의 압력으로 압착하여 전극 B1,B2를 제조한다.To -325 # To each hydrogen storage alloy powder of the composition, paste was mixed at a ratio of 0.3 g of 5 wt.% KB + 10 wt.% PTFE + 2 wt.% CMC paste undiluted solution with respect to 1 g. This paste A charge after a dried and pressed at a pressure of 2ton / cm 2 to prepare an electrode B 1, B 2.

[비교예2]Comparative Example 2

실시예2의수소저장합금분말을 20# 니켈스트린에 도포한 후 10ton/cm2의 압력으로 압착하여 전극 B1'를 제조한다.Example 2 The hydrogen storage alloy powder was applied to 20 # nickel string, and then pressed at a pressure of 10 ton / cm 2 to prepare electrode B 1 ′.

상기 조건으로 제조한 전극을 30% KOH + 1M LiOH용액에서 전지성능시험을 실시한 결과는 제2도 및 제3도에 도시한 바와 같다.The battery performance test of the electrode prepared under the above conditions in 30% KOH + 1M LiOH solution is shown in Figures 2 and 3.

이러한 결과에서 보는 바와 같이,합금전극의 경우, 본 발명의 방법으로 제조한 전극의 용량이 도전재 및 결합재를 포함하여 약 250mAh/g으로 나타나 종래의 방법으로 제조된 비교예1의 전극에서 도전재 및 결합재를 포함한 전극 A1'와A1의 각각의 용량 230mAh/g과 235mAh/g보다 약 15~20 mAh/g 의 용량증가를 나타내었다. 또한, 200화까지의 수명시험결과를 보아도 전극 A1'보다는 전극수명이 길게 나타났고, 전극 A1''와는 거의 동일한 결과를 나타내는 것으로 보아 전극수명이 우수한 것을 알 수 있다. 이는 본 발명의 수소저장합금 및 페이스트 조성이 우수한 도전성으로 인하여 도전재 양을 감소시킬 수 있기 때문에 전극용량을 증가시킬 수 있으며, 또한 수소저장합금의 미분화에 의한 탈락을 방지하여 전극수명을 증대시킨 것이다.As you can see from these results, In the case of the alloy electrode, the electrode prepared by the method of the present invention is about 250mAh / g, including the conductive material and the binder, the electrode A 1 containing the conductive material and the binder in the electrode of Comparative Example 1 manufactured by a conventional method The capacity increase of about 15-20 mAh / g was shown to be greater than the capacity of 230 mAh / g and 235 mAh / g of 'and A 1 '. In addition, the life test results up to 200 showed that the electrode life was longer than that of the electrode A 1 ′, and that the electrode life was almost the same as that of the electrode A 1 ″. This can increase the electrode capacity because the amount of the conductive material can be reduced due to the excellent conductivity of the hydrogen storage alloy and paste composition of the present invention, and also increases the life of the electrode by preventing dropout due to micronization of the hydrogen storage alloy. .

또한,합금전극의 경우, 본 발명의 페이스트 방법으로 제조한 전극의 용량은 도전재 및 결합재를 포함하여 약260mAh/g 으로 나타나 비교예1의 전극보다 약 25~30mAh/g 의 용량증가를 나타냈으며, 전극수명로 길게 나타났는데, 이는 Pd와 Ru을 첨가함으로써 수소저장합금의 용해 및 부동태화가 방지되고 전기화학적 촉매특성이 우수하게 되었기 때문이다.Also, In the case of the alloy electrode, the capacity of the electrode prepared by the paste method of the present invention was about 260 mAh / g, including the conductive material and the binder, showing a capacity increase of about 25 ~ 30 mAh / g than the electrode of Comparative Example 1, The longevity was shown because the addition of Pd and Ru prevented the dissolution and passivation of the hydrogen storage alloy and the excellent electrochemical catalytic properties.

합금전극의 경우에는 본 발명의 페이스트 방법이므로 제조한 전극의 용량은 도전재 및 결합재를 포함하여 약 305mAh/g 보다 약25mAh/g정도 낮게 나타났으나, 전극수명한 훨씬 길게 나타났다. 또한 본 발명의 수소저장합금인 과 페이스트 조성으로 제조한 전극의 전극용량한 도전재 및 결합재를 포함하여 약330h/g으로 나타나 비교예1의 전극과 거의 동일하게 나타났고, 전극수명은 훨씬 길게 나타났다. In the case of an alloy electrode, since the paste method of the present invention, the capacity of the prepared electrode was about 25 mAh / g lower than about 305 mAh / g including the conductive material and the binder, but the electrode life was much longer. In addition, the hydrogen storage alloy of the present invention The electrode prepared with the paste composition was about 330 h / g including the electrode-capacitive conductive material and the binder, and appeared almost the same as the electrode of Comparative Example 1, and the electrode life was much longer.

이상에서 설명한 바와 같이, 지금까지 알려져 있는V-Ti-Zr-Ni계 즉, AB2계 합금의 전극제조방법으로 페이스트식 방법을 사용하는 것은 전극활물질의 산화 및 도전성 불량에 의한 용량저하 때문에 거의 실현성이 없는 것으로 알려졌으나, 본 발명에서는 활물질의 산화 및 도전성불량을 방지하여 전극용량이 거의 저하되지 않는 페이스트식 전극제조방법을 제공함으로써, 전극제조시의 막대한 용량저하를 방지하며, 전극의 수명을 현저하게 증대시키는 효과가 있는 것이며, 새로운 페이스트 조성 및 수소저장합금조성으로 불가능한 것으로 알려진 AB2계 합금의 페이스트식 전극제조가 가능하도록 한 것이다.As described above, the type known as V-Ti-Zr-Ni in so far that is, the use of paste expression method as the electrode production method of the AB 2 type alloy almost feasibility because capacity reduction due to oxidation and the conductive failure of the electrode active material Although it is known that the present invention is not provided, the present invention provides a paste-type electrode manufacturing method in which the electrode capacity is hardly lowered by preventing oxidation and poor conductivity of the active material, thereby preventing enormous capacity reduction during electrode production and remarkable life of the electrode. It is effective to increase, and it is possible to manufacture a paste type electrode of AB 2 based alloy, which is known to be impossible with a new paste composition and hydrogen storage alloy composition.

Claims (5)

V-Ti-Zr-Ni계 또는 Mm계에 Pd과 Ru이 소량 첨가된 수소저장합금을 분쇄하는 분쇄공정과, 상기 분쇄된 수소저장합금분말에 K.B. +PTFE +CMC 페이스트 원액을 첨가하여 혼합하는 혼합공정과, 상기 혼합된 페이스트를 다공성 니켈에 충진하는 충진공정과, 다공성 니켈에 충진된 페이스트를 건조하는 건조공정과, 건조된 전극을 압착성형하는 압착성형공정의 순서로 수행함을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법.A grinding step of grinding a hydrogen storage alloy containing a small amount of Pd and Ru in a V-Ti-Zr-Ni-based or Mm-based alloy, and K.B. + PTFE + CMC paste mixing process of adding and mixing the stock solution, the filling process of filling the mixed paste in porous nickel, the drying process of drying the paste filled in porous nickel, and crimping pressing the dried electrode Method for producing a paste-type metal hydrogen electrode for nickel / metal hydrogen storage battery, characterized in that carried out in the order of the molding process. 제1항에 있어서, 상기 수소저장합금은 Pd이 0.005~1.0wt.% , Ru이 0.05~1.0wt.% 첨가됨을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법.The method of claim 1, wherein the hydrogen storage alloy is Pd is 0.005 ~ 1.0wt.%, Ru is 0.05 ~ 1.0wt.% Is added. 제1항에 있어서, 상기 페이스트 원액은 K.B. 혹은 A.B. 1~10wt.%, PTFE 1~20wt.%, CMC 0.1~5wt.%로 구성됨을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법.The method of claim 1, wherein the paste stock solution is K.B. Or A.B. 1 to 10wt.%, PTFE 1 to 20wt.%, CMC 0.1 to 5wt.% The method for producing a paste-type metal hydrogen electrode for nickel metal hydride batteries, characterized in that. 제1항에 있어서, 상기 페이스트의 조성비가 수소저장합금분말 50~80wt.%, 페이스트 원액 20~50wt.%인 것을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법.The method of manufacturing a paste-type metal hydrogen electrode for nickel / metal hydrogen storage batteries according to claim 1, wherein the composition ratio of the paste is 50 to 80 wt.% Hydrogen storage alloy powder and 20 to 50 wt.% Paste stock solution. 제1항에 있어서, 상기 다공성 니켈은 40~80ppi인 것을 특징으로 하는 니켈/금속수소 축전지용 페이스트식 금속수소전극의 제조방법.The method of claim 1, wherein the porous nickel is 40 to 80 ppi.
KR1019950006407A 1995-03-24 1995-03-24 Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery KR0139023B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950006407A KR0139023B1 (en) 1995-03-24 1995-03-24 Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950006407A KR0139023B1 (en) 1995-03-24 1995-03-24 Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery

Publications (2)

Publication Number Publication Date
KR960036174A KR960036174A (en) 1996-10-28
KR0139023B1 true KR0139023B1 (en) 1998-06-15

Family

ID=19410537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950006407A KR0139023B1 (en) 1995-03-24 1995-03-24 Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery

Country Status (1)

Country Link
KR (1) KR0139023B1 (en)

Also Published As

Publication number Publication date
KR960036174A (en) 1996-10-28

Similar Documents

Publication Publication Date Title
Chakkaravarthy et al. The nickel/iron battery
US6338917B1 (en) Alkaline storage battery
JP2018518798A (en) Doped conductive oxide and improved electrode for electrochemical energy storage devices based on this material
US5682592A (en) Fabrication method for paste-type metal hydride electrode
JP2000090920A (en) Alkaline storage battery, hydrogen storage alloy electrode and its manufacture
KR0139023B1 (en) Manufacturing method of metal-hydrogen electrode of paste type for nickel/metal hydrogen battery
JPS6335069B2 (en)
KR0154399B1 (en) Manufacturing method of metal hydrogen electrode for nickel/metadhydrogen battery
Yunchang et al. Effects of dopants on electrochemical performance of nickel cathodes
JP2001313069A (en) Nickel hydrogen storage battery
JP3070695B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3547905B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery
CN101859900B (en) Preparation method of quick quenching Ti-V-base composite hydrogen storage alloy electrode
USRE34471E (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPS6040669B2 (en) nickel electrode
JP2966492B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
US6300010B1 (en) Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
JP3184607B2 (en) Metal oxide / hydrogen battery
JP2983071B2 (en) Metal oxide / hydrogen batteries
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
CA1263437A (en) Cadmium negative electrode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030130

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee