JPWO2021090472A1 - High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts - Google Patents

High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts Download PDF

Info

Publication number
JPWO2021090472A1
JPWO2021090472A1 JP2019567743A JP2019567743A JPWO2021090472A1 JP WO2021090472 A1 JPWO2021090472 A1 JP WO2021090472A1 JP 2019567743 A JP2019567743 A JP 2019567743A JP 2019567743 A JP2019567743 A JP 2019567743A JP WO2021090472 A1 JPWO2021090472 A1 JP WO2021090472A1
Authority
JP
Japan
Prior art keywords
less
steel sheet
high carbon
rolled steel
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019567743A
Other languages
Japanese (ja)
Other versions
JP6880245B1 (en
Inventor
栄司 土屋
雄太 松村
裕樹 太田
友佳 宮本
康広 櫻井
英之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
JFE Steel Corp
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, TOKUSHU KINZOKU EXCEL CO Ltd filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6880245B1 publication Critical patent/JP6880245B1/en
Publication of JPWO2021090472A1 publication Critical patent/JPWO2021090472A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/26Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for needles; for teeth for card-clothing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

短時間の溶体化処理後の急冷(焼入れ)処理と低温焼戻し処理(焼入れ焼戻し処理)後に、良好な衝撃特性および硬さ特性、さらには優れた耐摩耗性を有することが可能で、かつ焼入れ焼戻し処理前の二次加工性の低下が少ない、板厚が1.0mm未満の高炭素冷延鋼板を提供する。質量%で、C:0.85〜1.10%、Mn:0.60%未満、Si:0.10〜0.35%、P:0.030%以下、S:0.030%以下、Cr:0.60%未満を含み、かつMn+Crが1.0%未満を満足し、さらに、Nb:0.005〜0.020mass%を含有し、残部Fe及び不可避不純物からなる鋼板化学組成を有する高炭素冷延鋼板とする。これにより、従来鋼材に比べ、焼入れ焼戻し前の二次加工性の低下が少ない。また、炭化物の平均粒径が0.2〜0.7(μm)と、球状化率が90%以上である鋼板組織とすることにより、3〜15minという短時間の焼入れ焼戻し処理によっても、衝撃値が9J/cm2以上という優れた衝撃特性と、600〜750HVの範囲という十分な硬さ特性と、優れた耐摩耗性を有する機械部品とすることが可能となる。After quenching (quenching) treatment and low-temperature tempering treatment (quenching and tempering treatment) after a short-time solution heat treatment, it is possible to have good impact characteristics and hardness characteristics, as well as excellent wear resistance, and tempering and tempering. Provided is a high carbon cold-rolled steel sheet having a plate thickness of less than 1.0 mm, which has little deterioration in secondary workability before processing. By mass%, C: 0.85 to 1.10%, Mn: less than 0.60%, Si: 0.10 to 0.35%, P: 0.030% or less, S: 0.030% or less, Cr: less than 0.60%, and Mn + Cr is less than 1.0% Further, a high carbon cold-rolled steel sheet containing Nb: 0.005 to 0.020 mass% and having a steel sheet chemical composition consisting of the balance Fe and unavoidable impurities is obtained. As a result, there is less deterioration in secondary workability before quenching and tempering compared to conventional steel materials. In addition, by forming a steel plate structure with an average particle size of carbides of 0.2 to 0.7 (μm) and a spheroidization rate of 90% or more, the impact value is 9 J / even even by quenching and tempering for a short time of 3 to 15 min. It is possible to make mechanical parts with excellent impact characteristics of cm2 or more, sufficient hardness characteristics in the range of 600 to 750 HV, and excellent wear resistance.

Description

本発明は、焼入れ焼戻し処理によって製造される各種機械部品の素材となる高炭素冷延鋼板およびその製造方法に係り、とくにメリヤス針などに適用される板厚1.0mm未満の高炭素冷延鋼板に関するものである。 The present invention relates to a high carbon cold rolled steel sheet used as a material for various machine parts manufactured by quenching and tempering, and a method for manufacturing the high carbon cold rolled steel sheet, and particularly relates to a high carbon cold rolled steel sheet having a thickness of less than 1.0 mm, which is applied to knitting needles and the like. It is a thing.

一般に、JISに規定される機械構造用炭素鋼鋼材(S××C)や炭素工具鋼鋼材(SK)は、大小各種機械部品に使用されている。展伸材として使用される場合は、打抜き加工や各種の塑性加工を経て部品形状にした後、焼入れ・焼戻し処理を行うことで所定の硬さと靱性(衝撃特性)が付与される。その中でも、ニット地を編むメリヤス針は、高速で往復運動を繰返しながら糸を手繰り寄せてメリヤス地を編むため、回転駆動部と接触する針本体のバット部には十分な強度と耐摩耗性が、さらに糸と擦れ合うフック部には十分な耐摩耗性に加えて往復運動に伴う先端部の衝撃特性に優れることが求められる。 Generally, carbon steel materials for machine structure (SXXC) and carbon tool steel materials (SK) specified in JIS are used for various large and small machine parts. When used as a wrought material, it is given a predetermined hardness and toughness (impact characteristics) by quenching and tempering after forming a part shape through punching and various plastic workings. Among them, the knitted needle that knits the knitted fabric has sufficient strength and abrasion resistance for the butt part of the needle body that comes into contact with the rotary drive part because the knitted fabric is knitted by pulling the yarn while repeating the reciprocating motion at high speed. Further, the hook portion that rubs against the thread is required to have sufficient wear resistance and excellent impact characteristics of the tip portion due to the reciprocating motion.

メリヤス針用素材として使われる高炭素冷延鋼板は、板厚が1.0mm以上の場合には横編機用メリヤス針向けとされ、板厚が1.0mm未満の場合には丸編機や縦編機用メリヤス針向けとして用いられる。後者の針では細径の糸を高速で編むため、使用される素材の板厚は0.4〜0.7mmとなることが多い。さらに、素材には、優れた冷間加工性(二次加工性とも云う)に加えて、針形状に二次加工後、焼入れ焼戻しした際に十分な硬さと針先端部で十分な靱性を有することが求められる。 The high carbon cold-rolled steel sheet used as a material for knitting needles is suitable for knitting needles for flat knitting machines when the plate thickness is 1.0 mm or more, and for circular knitting machines or vertical knitting when the plate thickness is less than 1.0 mm. Used for machine knitting needles. Since the latter needle knits a small diameter thread at high speed, the thickness of the material used is often 0.4 to 0.7 mm. Further, in addition to excellent cold workability (also referred to as secondary workability), the material has sufficient hardness at the needle tip and sufficient toughness when quenching and tempering after secondary processing into a needle shape. Is required.

また、JISに規定される機械構造用炭素鋼鋼材(S××C)や炭素工具鋼鋼材(SK)などの所謂高炭素鋼板は、C量によって用途が細かく分類されている。C量が0.8質量%未満の領域、すなわち亜共析組成の鋼板では、フェライト相の分率が高いため冷間加工性には優れるが、十分な焼入れ硬さを得ることが難しく、フック部の耐摩耗性や針本体の耐久性が求められるメリヤス針用途等には向かない。一方、0.8質量%以上の過共析組成の中でもC量が1.1質量%より大きい高炭素鋼板は優れた焼入れ性を有する反面、多量に含まれる炭化物(セメンタイト)のために冷間加工性が極端に劣り、溝切加工等の精密かつ微細な加工が行われるメリヤス針用途等には向かず、刃物や冷間金型等、単純形状で高硬度が求められる部品用途に限定される。 Further, so-called high carbon steel sheets such as carbon steel materials for machine structure (SXXC) and carbon tool steel materials (SK) specified in JIS are classified in detail according to the amount of C. In a region where the amount of C is less than 0.8% by mass, that is, in a steel sheet having a sub-eutectic composition, the ferrite phase fraction is high, so that it is excellent in cold workability, but it is difficult to obtain sufficient quenching hardness, and it is difficult to obtain sufficient quenching hardness. It is not suitable for knitting needle applications where wear resistance and durability of the needle body are required. On the other hand, among the hypereutectoid compositions of 0.8% by mass or more, high carbon steel sheets having a C content of more than 1.1% by mass have excellent hardenability, but the cold workability is extremely high due to the carbide (cementite) contained in a large amount. It is not suitable for knitting needles that perform precise and fine machining such as grooving, and is limited to parts such as cutting tools and cold dies that require high hardness with a simple shape.

従来、メリヤス針には、C:0.8〜1.1質量%の炭素工具鋼や合金工具鋼又はこれらの鋼組成をベースとして第3元素を添加した鋼組成を有する素材が広く用いられている。このメリヤス針の製造過程では、その素材は打抜き(せん断加工)、切削、伸線、かしめ、曲げなどの多種多様な塑性加工に供される。したがって、このメリヤス針製造用の素材は、針製造工程での素材加工時に十分な加工性(二次加工性)を有していることに併せて、針として実際に使用するときに要求される焼入れ焼戻し処理後の硬さ特性や衝撃特性(靱性)を具備する必要がある。 Conventionally, for knitting needles, carbon tool steels and alloy tool steels having a C: 0.8 to 1.1% by mass, or materials having a steel composition based on these steel compositions and to which a third element is added have been widely used. In the manufacturing process of this knitting needle, the material is subjected to a wide variety of plastic working such as punching (shearing), cutting, wire drawing, caulking, and bending. Therefore, this material for manufacturing a knitted needle is required when it is actually used as a needle, in addition to having sufficient workability (secondary workability) at the time of material processing in the needle manufacturing process. It is necessary to have hardness characteristics and impact characteristics (toughness) after quenching and tempering.

メリヤス針の製造では、所定の硬さ特性を確保するために、素材に焼入れ焼戻し処理が行われる。この焼戻し処理の温度は、200〜350℃の低温とする場合が一般的である。しかし、硬さ特性を重視して、焼入れ性に有効なMnやCrの含有量を増量したり、また、その他の第3元素を多量に含有すると、上記した200〜350℃の温度範囲での低温焼戻し処理では、マルテンサイト相の焼戻しが十分になされず、衝撃特性(靱性)の向上が不十分であったり、靱性値がばらついたりする場合があった。 In the manufacture of knitting needles, the material is quenched and tempered in order to ensure a predetermined hardness characteristic. The temperature of this tempering process is generally as low as 200 to 350 ° C. However, if the content of Mn and Cr, which is effective for hardenability, is increased with an emphasis on hardness characteristics, or if a large amount of other third element is contained, the above-mentioned temperature range of 200 to 350 ° C. In the low-temperature tempering treatment, the martensite phase was not sufficiently tempered, and the impact characteristics (toughness) were not sufficiently improved, or the toughness value was sometimes varied.

一方、メリヤス針の衝撃特性を向上させることを目的として、素材の化学組成のうち不純物元素であるPやSを低減し、Pの粒界偏析や介在物(MnS)の生成を抑制し、それら元素の悪影響の軽減を図ることも有効な対策とされている。しかし、製鋼技術上及び経済性の観点から、PやSを低減してメリヤス針の衝撃特性の向上を図るには限界がある。 On the other hand, for the purpose of improving the impact characteristics of knitting needles, P and S, which are impurity elements in the chemical composition of the material, are reduced, and grain boundary segregation of P and formation of inclusions (MnS) are suppressed. It is also considered to be an effective measure to reduce the adverse effects of elements. However, from the viewpoint of steelmaking technology and economy, there is a limit to reducing P and S to improve the impact characteristics of knitting needles.

また、衝撃特性を向上させる手段として金属組織の微細化が有効であることは従来から知られている。 Further, it has been conventionally known that miniaturization of a metal structure is effective as a means for improving impact characteristics.

例えば、特許文献1には、「焼入れ性、疲労特性、靭性に優れた高炭素鋼板及びその製造方法」が記載されている。特許文献1に記載された高炭素鋼板は、質量%で、C:0.5〜0.7%、Si:0.5%以下、Mn:1.0〜2.0%、P:0.02%以下、S:0.02%以下、Al:0.001〜0.10%を含み、さらにV:0.05〜0.50%、Ti:0.02〜0.20%、Nb:0.01〜0.50%の1種または2種以上を含み、残部がFeおよび不可避的不純物である成分組成と、炭化物の球状化率が95%以上で、しかも最大粒径が2.5μm以下の炭化物を分散させた組織を有する高炭素鋼板である。特許文献1に記載された技術では、亜共析鋼を対象として、炭窒化物形成元素であるV、Ti、Nbを添加し、微細な炭窒化物を形成させ、これら微細な炭窒化物のピン止めの効果を利用して旧オーステナイト粒を微細化して、靱性を向上させるとしている。 For example, Patent Document 1 describes "a high carbon steel sheet having excellent hardenability, fatigue characteristics, and toughness, and a method for producing the same". The high carbon steel sheet described in Patent Document 1 has a mass% of C: 0.5 to 0.7%, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.02% or less, S: 0.02% or less, Al: With a component composition containing 0.001 to 0.10%, one or more of V: 0.05 to 0.50%, Ti: 0.02 to 0.20%, Nb: 0.01 to 0.50%, and the balance being Fe and unavoidable impurities. A high carbon steel sheet having a structure in which carbides having a spheroidization rate of 95% or more and a maximum particle size of 2.5 μm or less are dispersed. In the technique described in Patent Document 1, fine carbonitrides are formed by adding V, Ti, and Nb, which are carbonitride forming elements, to subeutectoid steel, and these fine carbonitrides are formed. It is said that the effect of pinning will be used to refine the old austenite grains to improve toughness.

また、特許文献2には、「衝撃特性に優れた高炭素鋼部材」が記載されている。特許文献2に記載された高炭素鋼部材は、質量%で、C:0.60〜1.30%、Si:1.0%以下、Mn:0.2〜1.5%、P:0.02%以下、S:0.02%以下、Fe:実質的に残部の組成をもち、焼入れ・焼戻し後のマトリックスに、次式
8.5 < 15.3×C%−Vf < 10.0
を満足する体積率Vf(体積%)で未溶解炭化物が残存し、粒径:1.0μm以上の未溶解炭化物が観測面積:100μm2当り2個以下に規制されていることを特徴とする高炭素鋼部材である。特許文献2に記載された高炭素鋼部材では、上記した組成に加えて更に、質量%で、Ni:1.8%以下、Cr:2.0%以下、V:0.5%以下、Mo:0.5%以下、Nb:0.3%以下、Ti:0.3%以下、B:0.01%以下、Ca:0.01%以下の1種または2種以上を含有してもよいとしている。特許文献2に記載された技術では、亜共析から過共析の広範な炭素含有量の鋼を対象としているが、目標硬さ:600〜900HVを維持しながら、衝撃値25J/cm2以上と優れた衝撃特性を呈する高炭素鋼部材が得られるとしている。
Further, Patent Document 2 describes "a high carbon steel member having excellent impact characteristics". The high carbon steel member described in Patent Document 2 has a mass% of C: 0.60 to 1.30%, Si: 1.0% or less, Mn: 0.2 to 1.5%, P: 0.02% or less, S: 0.02% or less, Fe. : Substantially has the composition of the balance, and the matrix after quenching and tempering is based on the following formula.
8.5 <15.3 x C% -Vf <10.0
Undissolved carbide remains at a volume ratio of Vf (volume%) that satisfies the above, and undissolved carbide with a particle size of 1.0 μm or more is restricted to 2 or less per 100 μm 2 observation area. It is a steel member. In the high carbon steel member described in Patent Document 2, in addition to the above composition, Ni: 1.8% or less, Cr: 2.0% or less, V: 0.5% or less, Mo: 0.5% or less, Nb in mass%. : 0.3% or less, Ti: 0.3% or less, B: 0.01% or less, Ca: 0.01% or less may be contained in one or more. The technique described in Patent Document 2 targets steels having a wide carbon content from sub-eutectic to hyper-eutectic, but the impact value is 25 J / cm 2 or more while maintaining the target hardness: 600 to 900 HV. It is said that a high carbon steel member exhibiting excellent impact characteristics can be obtained.

また、特許文献3には、「高炭素冷延鋼板及びその製造方法」が記載されている。特許文献3に記載された高炭素冷延鋼板は、mass%で、C:0.85〜1.10%、Mn:0.50〜1.0%、Si:0.10〜0.35%、P:0.030%以下、S:0.030%以下、Cr:0.35〜0.45%、Nb:0.005〜0.020%を含有し、残部Fe及び不可避不純物からなり、鋼板中に分散する炭化物の平均粒径(dav)と球状化率(NSC/NTC)×100%が、それぞれ次(1)式
0.2≦dav≦0.7(μm) …(1)
及び次(2)式
(NSC/NTC)×100≧90% …(2)
を満たし、板厚が1.0mm未満である冷延鋼板である。なお、特許文献3に記載された技術では、上記した組成に加えてさらに、Mo及びVの内から選ばれる1種または2種を含有し、それぞれの含有量がいずれも0.001%以上0.05%未満であることが好ましいとしている。そして、特許文献3に記載された技術では、短時間溶体化処理と低温焼戻し処理後の焼入れ性・衝撃特性(靭性)向上には、Nb:0.005〜0.020%の含有が有効であるとしている。
Further, Patent Document 3 describes "high carbon cold-rolled steel sheet and its manufacturing method". The high carbon cold-rolled steel sheet described in Patent Document 3 has a mass% of C: 0.85 to 1.10%, Mn: 0.50 to 1.0%, Si: 0.10 to 0.35%, P: 0.030% or less, S: 0.030% or less. , Cr: 0.35 to 0.45% Nb: containing 0.005 to 0.020 percent, the balance being Fe and inevitable impurities, an average particle size (d av) and spheroidization ratio of carbides dispersed in the steel sheet (N SC / N TC ) × 100% is the following equation (1), respectively.
0.2 ≤ d av ≤ 0.7 (μm)… (1)
And the following equation (2)
(N SC / N TC ) × 100 ≧ 90%… (2)
It is a cold-rolled steel sheet that meets the above requirements and has a thickness of less than 1.0 mm. In addition, in the technique described in Patent Document 3, in addition to the above-mentioned composition, one or two kinds selected from Mo and V are further contained, and the content of each is 0.001% or more and less than 0.05%. It is said that it is preferable. According to the technique described in Patent Document 3, the content of Nb: 0.005 to 0.020% is effective for improving the hardenability and impact characteristics (toughness) after the short-time solution treatment and the low-temperature tempering treatment.

また、特許文献4には、「靭性に優れる耐摩耗性鋼板」が記載されている。特許文献4に記載された耐摩耗性鋼板は、質量%で、C:0.60〜1.25%、Si:0.50%以下、Mn:0.30〜1.20%、P:0.030%以下、S:0.030%以下、Cr:0.30〜1.50%、Nb:0.10〜0.50%、Ti:0〜0.50%、Mo:0〜0.50%、V:0〜0.50%、Ni:0〜2.00%、残部Feおよび不可避的不純物からなる化学組成を有し、フェライト相の金属素地中に、セメンタイト粒子と、Nb、Tiの1種以上を含有する炭化物の粒子が分散した金属組織を有し、圧延方向および板厚方向に平行な断面(L断面)において、円相当径0.5μm以上のNb・Ti系炭化物粒子の個数密度が3000〜9000個/mm2、円相当径1.0μm以上のボイドの個数密度が1250個/mm2以下である鋼板、である。特許文献4に記載された耐摩耗性鋼板は、優れた耐摩耗性と靭性を兼ね備えた鋼板である、としている。Further, Patent Document 4 describes "abrasion resistant steel sheet having excellent toughness". The wear-resistant steel plate described in Patent Document 4 has a mass% of C: 0.60 to 1.25%, Si: 0.50% or less, Mn: 0.30 to 1.20%, P: 0.030% or less, S: 0.030% or less, Cr. : 0.30 to 1.50%, Nb: 0.10 to 0.50%, Ti: 0 to 0.50%, Mo: 0 to 0.50%, V: 0 to 0.50%, Ni: 0 to 2.00%, balance Fe and unavoidable impurities It has a metal structure in which cementite particles and carbide particles containing one or more of Nb and Ti are dispersed in a metal substrate of a ferrite phase, and has a cross section parallel to the rolling direction and the plate thickness direction. In the L section), the number density of Nb / Ti carbide particles with a circle equivalent diameter of 0.5 μm or more is 3000 to 9000 particles / mm 2 , and the number density of voids with a circle equivalent diameter of 1.0 μm or more is 1250 particles / mm 2 or less. It is a steel plate. The wear-resistant steel sheet described in Patent Document 4 is said to be a steel sheet having both excellent wear resistance and toughness.

特開2009−24233号公報Japanese Unexamined Patent Publication No. 2009-24233 特開2006−63384号公報Japanese Unexamined Patent Publication No. 2006-63384 特開2017−36492号公報Japanese Unexamined Patent Publication No. 2017-36492 特開2017−190494号公報Japanese Unexamined Patent Publication No. 2017-190494

メリヤス針用素材として使われる高炭素冷延鋼板には、焼入れ焼戻し処理後に十分な硬さと、十分な衝撃特性(靱性)を有することが求められる。近年、生産性向上のため、編機のさらなる高速化が求められ、それに伴い、メリヤス針にかかる負荷が大きくなり、従来より短時間でメリヤス針が破断したりあるいは寿命が短くなることが多発し問題となっている。そのため、衝撃特性及び耐摩耗性を従来より向上させたメリヤス針が要求されるようになっている。このようなメリヤス針は、第三元素の添加、あるいはCr、Mn、Mo等の合金元素を増量することにより実現できると考えられるが、針の製造工程における二次加工性が阻害されることが懸念される。このようなことから、二次加工性を従来より低下させることなく、焼入れ焼戻し後の耐摩耗性と衝撃特性(靱性)を向上させることができるメリヤス針向け素材が要望されている。 The high carbon cold-rolled steel sheet used as a material for knitting needles is required to have sufficient hardness and sufficient impact characteristics (toughness) after quenching and tempering. In recent years, in order to improve productivity, further speeding up of the knitting machine has been required, and as a result, the load applied to the knitting needle has increased, and the knitting needle often breaks or its life is shortened in a shorter time than before. It's a problem. Therefore, there is a demand for knitting needles having improved impact characteristics and wear resistance. It is considered that such a knitted needle can be realized by adding a third element or increasing the amount of alloying elements such as Cr, Mn, and Mo, but the secondary processability in the needle manufacturing process may be hindered. I am concerned. For these reasons, there is a demand for a material for knitted needles that can improve wear resistance and impact characteristics (toughness) after quenching and tempering without lowering the secondary workability.

しかしながら、特許文献1に記載された技術は、高硬度が求められる機械部品への適用は難しい。特許文献1に記載された技術は、亜共析鋼組成に限定されたものであり、V、Ti、Nbなどの炭窒化物形成元素を、第3元素として添加することで、それらの微細炭窒化物によって旧オーステナイト粒を微細化し、靭性向上効果を期待した技術である。また、特許文献1に記載された技術は、炭素レベルが亜共析組成であるため、フェライト母相の成形性を改善した技術でもある。 However, the technique described in Patent Document 1 is difficult to apply to machine parts that require high hardness. The technique described in Patent Document 1 is limited to the composition of sub-eutectic steel, and by adding a carbonitride forming element such as V, Ti, Nb as a third element, fine charcoal thereof is added. It is a technology that is expected to have the effect of improving toughness by refining old austenite grains with nitrides. Further, the technique described in Patent Document 1 is also a technique for improving the moldability of the ferrite matrix because the carbon level is a sub-eutectic composition.

また、特許文献2には、第3元素である、Mo、V、Ti、Nb、Bの添加は、炭素含有量が0.67〜0.81質量%の範囲の鋼についての例しか示されていない。特許文献2に記載された技術では、亜共析鋼の特性改善を意図して、Mo、V、Ti、Nb、B等の第3元素を添加していると推察される。しかも、特許文献2には、0.81質量%を超える炭素含有量の鋼について、Mo、V、Ti、Nb、B等の第3元素の作用とその最適化に関することまでの記載はない。 Further, Patent Document 2 shows only an example of steel having a carbon content in the range of 0.67 to 0.81% by mass for the addition of the third elements Mo, V, Ti, Nb and B. It is presumed that in the technique described in Patent Document 2, a third element such as Mo, V, Ti, Nb, and B is added with the intention of improving the characteristics of the subeutectoid steel. Moreover, Patent Document 2 does not describe the action of third elements such as Mo, V, Ti, Nb, and B and their optimization for steels having a carbon content of more than 0.81% by mass.

さらに、特許文献1、特許文献2には、高炭素冷延鋼板について、3〜15minのような短時間の溶体化処理後焼入れ、200〜350℃の低温焼戻しを施し、所望の衝撃特性及び所定硬さを有利に向上させる技術についての記載はない。 Further, in Patent Document 1 and Patent Document 2, high carbon cold-rolled steel sheets are subjected to short-time solution heat treatment such as 3 to 15 min, quenching, and low-temperature tempering at 200 to 350 ° C. to obtain desired impact characteristics and predetermined values. There is no description of a technique for advantageously improving hardness.

また、特許文献3に記載された技術では、短時間の溶体化保持後の焼入れと低温焼戻し処理後の焼入れ性・衝撃特性(靭性)向上には、Nb:0.005〜0.020%の含有が有効であるとしているが、特許文献3には、短時間の溶体化保持後の焼入れ(急冷)と低温焼戻し処理(以下、焼入れ焼戻し処理ともいう)前の高炭素冷延鋼板の二次加工性についての具体的な言及はない。特許文献3には、焼入れ焼戻し処理後に、優れた靱性と優れた耐摩耗性とを兼備することができる高炭素冷延鋼板が記載されているが、しかし、この高炭素冷延鋼板では、焼入れ焼戻し処理前の二次加工性が不十分で、最近の生産性向上要求に対応できないという問題があった。 Further, in the technique described in Patent Document 3, it is effective to contain Nb: 0.005 to 0.020% for quenching after holding the solution for a short time and improving hardenability and impact characteristics (toughness) after low-temperature tempering treatment. However, Patent Document 3 describes the secondary workability of the high carbon cold-rolled steel sheet before quenching (quenching) after holding the solution for a short time and before low-temperature tempering treatment (hereinafter, also referred to as tempering tempering treatment). There is no specific mention. Patent Document 3 describes a high carbon cold-rolled steel sheet that can have both excellent toughness and excellent wear resistance after quenching and tempering, but this high-carbon cold-rolled steel sheet is hardened. There was a problem that the secondary workability before the tempering process was insufficient and it was not possible to meet the recent demand for improvement in productivity.

また、特許文献4に記載された技術では、高炭素冷延鋼板において、焼入れ焼戻し後の耐摩耗性と靱性のいずれも高くすることが可能であるとしているが、焼入れ焼戻し処理前の二次加工性については記載がなく、特許文献4には、焼入れ焼戻し処理前の二次加工性の低下を伴うことなく、焼入れ焼戻し後の耐摩耗性と靱性を向上させることができることまでの言及はない。 Further, according to the technique described in Patent Document 4, it is possible to increase both wear resistance and toughness after quenching and tempering in a high carbon cold-rolled steel plate, but secondary processing before quenching and tempering is performed. There is no description about the property, and Patent Document 4 does not mention that the wear resistance and toughness after quenching and tempering can be improved without deteriorating the secondary processability before quenching and tempering.

本発明は、上記した従来技術の問題を解決し、短時間の溶体化処理後の焼入れ(急冷)及び低温焼戻し処理(焼入れ焼戻し処理)前の二次加工性の低下を抑制し、かつ短時間の溶体化処理後の焼入れ(急冷)及び低温焼戻し処理(焼入れ焼戻し処理)後で、実際に使用される板厚近傍での衝撃試験で評価して、衝撃値が9J/cm2以上で、硬さが600〜750HVの範囲を満たし、かつ耐摩耗性に優れた、板厚が1.0mm未満の高炭素冷延鋼板を提供することを目的とする。The present invention solves the above-mentioned problems of the prior art, suppresses deterioration of secondary workability before quenching (quenching) and low-temperature tempering treatment (quenching tempering treatment) after a short time solution treatment, and for a short time. After quenching (quenching) and low-temperature tempering (quenching and tempering) after the solution treatment, the impact value is 9 J / cm 2 or more and the hardness is evaluated by an impact test near the plate thickness actually used. It is an object of the present invention to provide a high carbon hardened steel sheet having a thickness of less than 1.0 mm, which satisfies the range of 600 to 750 HV and has excellent wear resistance.

本発明者らは、上記した目的を達成するために、高炭素冷延鋼板の組成と、焼入れ焼戻し処理前の二次加工性、焼入れ焼戻し処理後の硬さ、衝撃特性、耐摩耗性の関係について鋭意検討した。その結果、焼入れ性、焼入れ低温焼戻し後の硬さ、衝撃特性などの観点から、メリヤス針用として好適な、Cを0.85〜1.10質量%の範囲に限定し、さらに、Nbを0.005〜0.020質量%の範囲に特定し、所定の製造方法を実施することが、炭化物の平均粒径と球状化の程度を調整でき、焼入れ焼戻し処理後の所望の特性を確保することに有効であることを知見した。そして、さらに、Mnを0.60質量%未満とし、かつ(Mn+Cr)を1.0%未満に調整することにより、焼入れ焼戻し処理前の二次加工性の低下を抑制し、かつ、焼入れ焼戻し処理後の硬さ、衝撃特性(靭性)、耐摩耗性が所望の特性を満足することを知見した。 In order to achieve the above object, the present inventors have a relationship between the composition of the high carbon cold-rolled steel sheet, the secondary workability before the quenching and tempering treatment, the hardness after the quenching and tempering treatment, the impact characteristics, and the abrasion resistance. Diligently examined. As a result, from the viewpoint of hardenability, hardness after quenching and low-temperature tempering, impact characteristics, etc., C is limited to the range of 0.85 to 1.10% by mass, which is suitable for knitting needles, and Nb is 0.005 to 0.020% by mass. It was found that it is effective to adjust the average particle size and the degree of spheroidization of carbides and to secure the desired characteristics after quenching and tempering treatment by specifying the above range and implementing a predetermined manufacturing method. .. Further, by adjusting Mn to less than 0.60% by mass and (Mn + Cr) to less than 1.0%, deterioration of secondary workability before quenching and tempering treatment is suppressed, and hardness after quenching and tempering treatment is suppressed. It was found that the impact characteristics (toughness) and abrasion resistance satisfy the desired characteristics.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.85%以上1.10%以下、Mn:0.60%未満、Si:0.10%以上0.35%以下、P:0.030%以下、S:0.030%以下、Cr:0.60%未満、Nb:0.005%以上0.020%以下を含み、かつMn含有量とCr含有量の合計(Mn+Cr)が1.0%未満を満足し、残部Fe及び不可避不純物からなる鋼板組成を有し、鋼板板厚が1.0mm未満であることを特徴とする高炭素冷延鋼板。
(2)(1)において、前記鋼板組成を有し、さらに鋼板中に分散する炭化物の平均粒径(dav)と球状化率(NSC/NTC)×100%が、それぞれ次(1)式
0.2≦dav≦0.7(μm) …(1)
及び次(2)式
(NSC/NTC)×100≧90% …(2)
(ここで、dav:炭化物の円相当径の平均値(平均粒径μm)、NTC:観察面積100μm2当たりの炭化物の総個数、NSC:観察面積100μm2当たりの、(長径dL)/(短径dS)が1.4以下の条件を満たす炭化物の個数)
を満たす鋼板組織を有することを特徴とする高炭素冷延鋼板。
(3)(1)または(2)において、前記鋼板組成に代えて、質量%で、C:0.85%以上1.10%以下、Mn:0.60%未満、Si:0.10%以上0.35%以下、P:0.030%以下、S:0.030%以下、Cr:0.50%未満、Nb:0.005%以上0.020%以下を含み、かつMn含有量とCr含有量の合計(Mn+Cr)が0.90%未満を満足し、残部Fe及び不可避不純物からなる鋼板組成とすることを特徴とする高炭素冷延鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記鋼板組成がさらに、質量で、Mo:0.001%以上0.05%未満、V:0.001%以上0.05%未満のうちから選ばれた1種または2種を含有する鋼板組成であることを特徴とする高炭素冷延鋼板。
(5)(1)ないし(4)のいずれかに記載の鋼板組成を有する熱延鋼板に、冷間圧延および球状化焼鈍を繰り返し行い高炭素冷延鋼板を製造する高炭素冷延鋼板の製造方法において、前記高炭素冷延鋼板中に分散する炭化物の平均粒径(dav)と、球状化率(NSC/NTC)が、それぞれ次(1)式および次(2)式
0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
(ここで、dav:炭化物の円相当径の平均値(平均粒径μm)、NTC:観察面積100μm2当たりの炭化物の総個数、NSC:観察面積100μm2当たりの、(長径dL)/(短径dS)が1.4以下の条件を満たす炭化物の個数。)
を満足し、前記高炭素冷延鋼板の板厚が1.0mm未満である高炭素冷延鋼板とすることを特徴とする高炭素冷延鋼板の製造方法。
(6)(5)において、前記冷間圧延および球状化焼鈍を繰り返し行う回数が、2〜5回であることを特徴とする高炭素冷延鋼板の製造方法。
(7)(5)または(6)において、前記冷間圧延の圧下率が25〜65%で、前記球状化焼鈍の温度が640〜720℃であることを特徴とする高炭素冷延鋼板の製造方法。
(8)(1)ないし(4)のいずれかに記載の前記高炭素冷延鋼板を素材として、該素材に二次加工を施して所定形状の機械部品としたのち、該機械部品に短時間溶体化処理後急冷する処理と焼戻し処理を施す機械部品の製造方法であって、前記短時間溶体化処理後急冷する処理を、760〜820℃の範囲の温度で、3〜15minの範囲の時間保持したのち、急冷する処理とし、前記焼戻し処理を、200〜350℃の範囲の温度で焼戻する処理として、優れた耐摩耗性と優れた靭性を兼備する機械部品とすることを特徴とする高炭素鋼製機械部品の製造方法。
(9)(8)に記載の高炭素鋼製機械部品の製造方法で製造されてなる高炭素鋼製機械部品。
The present invention has been completed with further studies based on the above findings. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.85% or more and 1.10% or less, Mn: less than 0.60%, Si: 0.10% or more and 0.35% or less, P: 0.030% or less, S: 0.030% or less, Cr: less than 0.60%, Nb : It contains 0.005% or more and 0.020% or less, satisfies the total of Mn content and Cr content (Mn + Cr) of less than 1.0%, has a steel sheet composition consisting of the balance Fe and unavoidable impurities, and has a steel sheet thickness of 1.0 mm. High carbon cold rolled steel sheet characterized by being less than.
(2) In (1), the average particle size (dav ) and spheroidization rate ( NSC / NTC ) × 100% of the carbides having the steel sheet composition and further dispersed in the steel sheet are as follows (1). )formula
0.2 ≤ d av ≤ 0.7 (μm)… (1)
And the following equation (2)
(N SC / N TC ) × 100 ≧ 90%… (2)
(Here, dav : average value of the equivalent circle diameter of carbides (average particle size μm), NTC : total number of carbides per 100 μm 2 observation area, N SC : per 100 μm 2 observation area, (major axis d L) ) / (Number of carbides satisfying the condition that (minor diameter d S) is 1.4 or less)
A high carbon cold-rolled steel sheet characterized by having a steel sheet structure satisfying the above conditions.
(3) In (1) or (2), instead of the steel sheet composition, C: 0.85% or more and 1.10% or less, Mn: less than 0.60%, Si: 0.10% or more and 0.35% or less, P: 0.030 in mass%. % Or less, S: 0.030% or less, Cr: less than 0.50%, Nb: 0.005% or more and 0.020% or less, and the total Mn content and Cr content (Mn + Cr) is less than 0.90%, and the balance Fe and A high carbon cold-rolled steel sheet characterized by having a steel sheet composition composed of unavoidable impurities.
(4) In any of (1) to (3), the steel sheet composition is further selected from Mo: 0.001% or more and less than 0.05%, V: 0.001% or more and less than 0.05% by mass, or one of them. A high carbon cold-rolled steel sheet characterized by having a steel sheet composition containing two types.
(5) Manufacture of a high carbon cold rolled steel sheet by repeatedly cold rolling and spheroidizing annealing on a hot rolled steel sheet having the steel sheet composition according to any one of (1) to (4) to manufacture a high carbon cold rolled steel sheet. in the method, the high average particle size of the carbide dispersed in the carbon cold-rolled steel sheet and (d av), spheroidization ratio (N SC / N TC) are respectively the following equations (1) and the following equation (2)
0.2 ≤ d av ≤ 0.7 (μm)… (1)
(N SC / N TC ) × 100 ≧ 90%… (2)
(Here, dav : average value of the equivalent circle diameter of carbides (average particle size μm), NTC : total number of carbides per 100 μm 2 observation area, N SC : per 100 μm 2 observation area, (major axis d L) ) / (Short diameter d S ) is the number of carbides satisfying the condition of 1.4 or less.)
A method for manufacturing a high carbon cold-rolled steel sheet, which comprises a high-carbon cold-rolled steel sheet having a thickness of less than 1.0 mm.
(6) A method for producing a high carbon cold-rolled steel sheet, wherein the cold rolling and spheroidizing annealing are repeated 2 to 5 times in (5).
(7) In (5) or (6), the high carbon cold-rolled steel sheet is characterized in that the reduction rate of the cold rolling is 25 to 65% and the temperature of the spheroidizing annealing is 640 to 720 ° C. Production method.
(8) Using the high carbon cold-rolled steel sheet according to any one of (1) to (4) as a material, the material is subjected to secondary processing to obtain a machine part having a predetermined shape, and then the machine part is subjected to a short time. A method for manufacturing machine parts that undergoes rapid cooling after solution treatment and tempering, and the process of quenching after short-time solution treatment is performed at a temperature in the range of 760 to 820 ° C. for a time in the range of 3 to 15 min. It is characterized in that it is a mechanical part having excellent wear resistance and excellent toughness as a process of holding and then quenching, and the tempering process of tempering at a temperature in the range of 200 to 350 ° C. How to manufacture high carbon steel machine parts.
(9) A high carbon steel machine part manufactured by the method for manufacturing a high carbon steel machine part according to (8).

本発明高炭素冷延鋼板は、切削性などの二次加工性の低下を抑制し、打抜き、スウェージング、曲げ、二次加工などに使われる工具の寿命が、従来の高炭素冷延鋼板と同程度であり、しかも、短時間の溶体化処理後急冷する処理と低温焼戻し処理(焼入れ焼戻し処理)を施したのちに、従来の高炭素鋼板に比べて、高い硬さ特性、優れた衝撃特性および優れた耐摩耗性をバランスよく兼備する機械部品を製造できるという、産業上格段の効果を奏する。さらに、本発明高炭素冷延鋼板は、焼入れ焼戻し処理後の衝撃特性(靱性)、耐摩耗性、さらには耐疲労特性に優れ、とくに、メリヤス針のような過酷な使用環境下で優れた耐久性が求められる機械部品用素材として好適であるという、効果もある。 The high carbon cold rolled steel sheet of the present invention suppresses deterioration of secondary workability such as machinability, and the life of tools used for punching, swaging, bending, secondary machining, etc. is longer than that of the conventional high carbon cold rolled steel sheet. It has the same level of hardness and impact characteristics as compared to conventional high carbon steel sheets after being subjected to a short-time solution heat treatment and then quenching treatment and low temperature tempering treatment (quenching tempering treatment). In addition, it has a remarkable industrial effect of being able to manufacture mechanical parts that have excellent wear resistance in a well-balanced manner. Further, the high carbon cold-rolled steel sheet of the present invention is excellent in impact characteristics (toughness), wear resistance, and fatigue resistance after quenching and tempering, and in particular, excellent durability in a harsh usage environment such as a knitted needle. It also has the effect of being suitable as a material for machine parts that require toughness.

エンドミル加工試験(二次加工性評価試験)の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of the end mill processing test (secondary processability evaluation test) schematically. 摩耗試験装置の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of the wear test apparatus schematically. (a)摩耗試験片の形状、(b)摩耗試験片の摩耗状況、の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of (a) the shape of the wear test piece, (b) the wear state of the wear test piece schematically. 本発明で使用するシャルピー衝撃試験片形状の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of the outline of the Charpy impact test piece shape used in this invention. 本発明で使用するシャルピー衝撃試験機への試験片の設置状況を模式的に示す説明図である。It is explanatory drawing which shows typically the installation state of the test piece in the Charpy impact tester used in this invention.

本発明高炭素冷延鋼板は、質量%で、C:0.85%以上1.10%以下、Mn:0.60%未満、Si:0.10%以上0.35%以下、P:0.030%以下、S:0.030%以下、Cr:0.60%未満、Nb:0.005%以上0.020%以下を含み、かつMn含有量とCr含有量の合計(Mn+Cr)が1.0%未満を満足し、残部Fe及び不可避不純物からなる鋼板組成を有し、板厚1.0mm未満である高炭素冷延鋼板である。まず、鋼板組成の限定理由について説明する。なお、以下、組成に係る質量%は単に%で記す。 The high carbon cold-rolled steel sheet of the present invention has C: 0.85% or more and 1.10% or less, Mn: less than 0.60%, Si: 0.10% or more and 0.35% or less, P: 0.030% or less, S: 0.030% or less, Cr. : Less than 0.60%, Nb: 0.005% or more and 0.020% or less, and the total of Mn content and Cr content (Mn + Cr) is less than 1.0%, and has a steel sheet composition consisting of the balance Fe and unavoidable impurities. It is a high carbon cold-rolled steel sheet with a plate thickness of less than 1.0 mm. First, the reason for limiting the composition of the steel sheet will be described. In the following, the mass% related to the composition is simply expressed as%.

C:0.85%以上1.10%以下
Cは、熱処理(焼入れ焼戻し処理)後に、メリヤス針等のような精密部品で十分な硬さ(600〜750HV)を得るために必須の元素である。熱処理(焼入れ焼戻し処理)後に安定して600HV以上の硬さを確保するためには、Cは0.85%以上の含有を必要とする。一方、C量が増加すると、炭化物量が増加して、冷間加工性が低下し、打抜き、スェージング、曲げ、二次加工など多岐に渡る塑性加工(冷間加工)に耐えることができなくなる。冷間圧延と球状化焼鈍を繰り返し、炭化物の球状化処理を行うことにより、冷間加工性は改善されるが、1.10%を超えてCを含有すると、熱間圧延工程、冷間圧延工程での圧延負荷が高くなり、またコイル端部の割れの頻度が著しく高くなるなど、製造工程上の問題が顕在化する。このようなことから、Cは0.85%以上1.10%以下に限定した。なお、好ましくは0.95〜1.05%である。
C: 0.85% or more and 1.10% or less
C is an essential element for obtaining sufficient hardness (600 to 750 HV) with precision parts such as knitting needles after heat treatment (quenching and tempering). In order to stably secure a hardness of 600 HV or more after heat treatment (quenching and tempering), C must be contained at 0.85% or more. On the other hand, when the amount of C increases, the amount of carbide increases, the cold workability deteriorates, and it becomes impossible to withstand a wide range of plastic working (cold working) such as punching, swaging, bending, and secondary working. Cold workability is improved by repeating cold rolling and spheroidizing annealing to spheroidize carbides, but if C is contained in excess of 1.10%, it is used in the hot rolling process and cold rolling process. Problems in the manufacturing process become apparent, such as a high rolling load and a significantly high frequency of cracking at the end of the coil. For this reason, C was limited to 0.85% or more and 1.10% or less. It is preferably 0.95 to 1.05%.

Mn:0.60%未満
Mnは、鋼の脱酸に有効に作用する元素であるとともに、鋼の焼入れ性を向上させて所定の硬さを安定的に確保することができる。しかし、0.60%以上の含有は、MnS介在物が増加し、焼入れ焼戻し処理前の二次加工性に悪影響を及ぼす。清浄度、とくにdAが0.10%以上となると、切削刃に介在物があたる確率が高くなり、切削抵抗を増加させ、二次加工性の悪化が顕著になる。このため、本発明では、MnはdAが0.10%未満になる範囲として、0.60%未満に限定した。なお、好ましくは0.50%以下である。清浄度は、JIS G 0555に準拠して測定するものとする。ここでは、とくにA系介在物を対象としdAに着目した。
Mn: less than 0.60%
Mn is an element that effectively acts on the deoxidation of steel, and can improve the hardenability of steel to stably secure a predetermined hardness. However, a content of 0.60% or more increases MnS inclusions and adversely affects the secondary processability before quenching and tempering. When the cleanliness, especially dA, is 0.10% or more, the probability that inclusions hit the cutting blade increases, the cutting resistance increases, and the deterioration of secondary workability becomes remarkable. Therefore, in the present invention, Mn is limited to less than 0.60% as the range in which dA is less than 0.10%. It should be noted that it is preferably 0.50% or less. Cleanliness shall be measured in accordance with JIS G 0555. Here, we focused on dA, especially for A-type inclusions.

Si:0.10%以上0.35%以下
Siは、溶鋼の脱酸剤として作用し、清浄鋼を溶製するうえで有効な元素である。また、Siは、マルテンサイトの焼戻し軟化抵抗に寄与する元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.35%を超える多量のSi含有は、低温焼戻し処理時に、マルテンサイトの焼戻しが不十分となり、衝撃特性を劣化させる。このようなことから、Siは0.10%以上0.35%以下の範囲に限定した。
Si: 0.10% or more and 0.35% or less
Si acts as a deoxidizing agent for molten steel and is an effective element for melting clean steel. Si is an element that contributes to the temper softening resistance of martensite. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, if a large amount of Si exceeding 0.35% is contained, the tempering of martensite becomes insufficient at the time of low-temperature tempering treatment, and the impact characteristics are deteriorated. For these reasons, Si was limited to the range of 0.10% or more and 0.35% or less.

P:0.030%以下、S:0.030%以下
P、Sはいずれも、鋼中に不可避的に存在し、衝撃特性に悪影響を及ぼす元素であり、できるだけ低減することが望ましいが、Pは0.030%まで、Sは0.030%までの含有は実用的に問題ない。このようなことから、Pは0.030%以下、Sは0.030%以下に限定した。なお、優れた衝撃特性を維持するという観点からは、Pは0.020%以下、Sは0.020%以下に調整することが好ましい。
P: 0.030% or less, S: 0.030% or less
Both P and S are inevitably present in steel and have an adverse effect on impact characteristics, and it is desirable to reduce them as much as possible. However, it is practical to contain P up to 0.030% and S up to 0.030%. There is no problem. For this reason, P was limited to 0.030% or less, and S was limited to 0.030% or less. From the viewpoint of maintaining excellent impact characteristics, it is preferable to adjust P to 0.020% or less and S to 0.020% or less.

Cr:0.60%未満
Crは、鋼の焼入れ性を向上させるとともに、炭化物(セメンタイト)中に固溶して炭化物を硬くすることにより、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.10%以上含有することが望ましい。Crは、炭化物(セメンタイト)中に固溶して加熱段階での炭化物の再溶解を遅滞させるため、Cr量の増加に伴い、焼入れ焼戻し後の残留炭化物が増加する。ここで、残留炭化物は、焼入れ処理時の加熱保持中、素地に溶け切れなかった炭化物が、マルテンサイト変態させるための急冷後に素地に残留した炭化物をいう。残留炭化物が増加すると耐摩耗性は向上する。しかし、Crを0.60%以上と多量に含有すると、残留炭化物が増加することに加え、焼入れ加熱保持中の炭化物の溶解を遅滞させる影響が大きくなり、焼入性を阻害し、靱性を低下させる。このようなことから、Crは0.60%未満に限定した。なお、好ましくは0.10%以上0.50%未満である。
Cr: less than 0.60%
Cr is an element that contributes to the improvement of wear resistance by improving the hardenability of steel and by dissolving it in carbide (cementite) to harden the carbide. In order to obtain such an effect, it is desirable to contain 0.10% or more. Cr dissolves in carbide (cementite) and delays the redissolution of carbide in the heating stage. Therefore, as the amount of Cr increases, the residual carbide after quenching and tempering increases. Here, the residual carbide refers to the carbide remaining in the substrate after quenching for martensitic transformation of the carbide that was not completely melted in the substrate during heating and holding during the quenching treatment. Abrasion resistance improves as residual carbide increases. However, when Cr is contained in a large amount of 0.60% or more, in addition to the increase in residual carbides, the effect of delaying the dissolution of the carbides during quenching and heating retention becomes large, which inhibits the hardenability and lowers the toughness. For this reason, Cr was limited to less than 0.60%. It should be noted that it is preferably 0.10% or more and less than 0.50%.

Nb:0.005%以上0.020%以下
Nbは、従来から、主として低炭素鋼において、熱間圧延時に鋼の未再結晶温度域を拡大し、同時にNbCとして析出し、オーステナイト粒の微細化に寄与する元素であることが知られている。高炭素鋼においても、冷間圧延工程以降における組織の微細化効果を期待して添加される場合がある。本発明では、焼入れ後の低温焼戻しによる靭性回復を主目的に、Nbを0.005%以上0.020%以下含有させる。微量のNbであれば、組織の微細化に寄与するほどのNbCは形成されず、Nbは希薄固溶状態となっている。Nbが希薄固溶状態となっていることにより、BCC構造であるフェライト相とマルテンサイト相中でのCの拡散が促進されるものと考えられる。すなわち、焼入れ処理における加熱時に炭化物からフェライト相へ溶けたCのオーステナイト相への拡散、および、焼戻し処理における加熱時にマルテンサイト相中の過飽和固溶Cの拡散と析出が促進され、その結果、短時間加熱での焼入れ性の向上と低温焼戻し処理による靭性の回復とを両立させることができる、と考えている。このような効果は、0.005%以上のNb含有で顕著となるが、0.020%を超えてNbを含有すると、NbCの析出が顕著になり、Nbの希薄固溶状態が確保できず、Nbの希薄固溶状態に起因するC拡散の促進効果が認められなくなる。このため、Nbは0.005%以上0.020%以下に限定した。なお、好ましくは0.015%以下である。
Nb: 0.005% or more and 0.020% or less
It has been conventionally known that Nb is an element that expands the unrecrystallized temperature range of steel during hot rolling, and at the same time precipitates as NbC, which contributes to the miniaturization of austenite grains, mainly in low carbon steel. .. Even in high carbon steel, it may be added in anticipation of the effect of microstructuring after the cold rolling process. In the present invention, Nb is contained in an amount of 0.005% or more and 0.020% or less for the main purpose of recovering toughness by low-temperature tempering after quenching. If the amount of Nb is small, NbC is not formed to the extent that it contributes to the miniaturization of the structure, and Nb is in a dilute solid solution state. It is considered that the diffusion of C in the ferrite phase and the martensite phase, which are BCC structures, is promoted because Nb is in a dilute solid solution state. That is, the diffusion of C dissolved in the ferrite phase from the carbide to the austenite phase during heating in the quenching treatment and the diffusion and precipitation of the supersaturated solid-dissolved C in the martensite phase during heating in the tempering treatment are promoted, resulting in a short time. We believe that it is possible to achieve both improvement of quenchability by time heating and restoration of toughness by low-temperature tempering treatment. Such an effect becomes remarkable when Nb is contained in an amount of 0.005% or more, but when Nb is contained in an amount of more than 0.020%, the precipitation of NbC becomes remarkable, the diluted solid solution state of Nb cannot be secured, and the Nb is diluted. The effect of promoting C diffusion due to the solid solution state is not recognized. Therefore, Nb was limited to 0.005% or more and 0.020% or less. It is preferably 0.015% or less.

(Mn+Cr):1.0%未満
本発明では、焼入れ焼戻し処理前の二次加工性の低下を抑制しつつ、焼入れ焼戻し処理後の靱性、耐摩耗性を向上させるために、Mn含有量とCr含有量の合計(Mn+Cr)を1.0%未満に調整する。本発明者らの検討によれば、MnとCrはいずれも炭化物に固溶しやすいため、Mn含有量とCr含有量の合計(Mn+Cr)が増加するにしたがい、焼入れ加熱時の加熱段階での炭化物の再溶解を遅滞させる効果がMn単独、Cr単独の場合より大きくなり、残留炭化物も増加し、耐摩耗性も増加する。しかし、(Mn+Cr)が1.0%以上に増加すると、残留炭化物が面積率で6%以上となり、焼入れ性低下の影響が大きくなり、焼入れ焼戻し後の衝撃値(靭性)も低下する。(Mn+Cr)が1%未満であれば、残留炭化物が面積率で6%未満となり、優れた耐摩耗性と靱性を兼備できる。一方、(Mn+Cr)が少なすぎると、残留炭化物が少なくなり、所望の耐摩耗性を確保できなくなる。このため、残留炭化物は面積率で3%以上とすることが好ましい。なお、面積率で3%以上の残留炭化物量を実現するための(Mn+Cr)は0.15%以上とすることが好ましい。一方、焼入れ焼戻し処理前の二次加工性は、(Mn+Cr)の増加、とくにMnの増加に伴い、二次加工性に悪影響を及ぼすMnS介在物が増加するため、二次加工性の低下を抑制しつつ、耐摩耗性、靱性をともに向上させるために、本発明では(Mn+Cr)を1.0%未満に限定した。なお、好ましくは0.90%未満である。
(Mn + Cr): Less than 1.0% In the present invention, in order to improve the toughness and abrasion resistance after the quenching and tempering treatment while suppressing the deterioration of the secondary workability before the quenching and tempering treatment, the Mn content and the Cr content. Adjust the total (Mn + Cr) to less than 1.0%. According to the study by the present inventors, since both Mn and Cr are easily dissolved in carbides, as the total of Mn content and Cr content (Mn + Cr) increases, the heating stage during quenching and heating increases. The effect of delaying the redissolution of carbides is greater than that of Mn alone and Cr alone, residual carbides increase, and wear resistance also increases. However, when (Mn + Cr) increases to 1.0% or more, the residual carbide becomes 6% or more in area ratio, the influence of the decrease in hardenability becomes large, and the impact value (toughness) after quenching and tempering also decreases. If (Mn + Cr) is less than 1%, the residual carbide is less than 6% in area ratio, and excellent wear resistance and toughness can be combined. On the other hand, if (Mn + Cr) is too small, the amount of residual carbide will be small, and the desired wear resistance cannot be ensured. Therefore, it is preferable that the residual carbide has an area ratio of 3% or more. The (Mn + Cr) for achieving a residual carbide amount of 3% or more in terms of area ratio is preferably 0.15% or more. On the other hand, in the secondary workability before quenching and tempering, the increase in (Mn + Cr), especially the increase in Mn, increases the amount of MnS inclusions that adversely affect the secondary workability, thus suppressing the deterioration of the secondary workability. However, in order to improve both wear resistance and toughness, (Mn + Cr) was limited to less than 1.0% in the present invention. It is preferably less than 0.90%.

上記した成分が基本の成分であるが、基本の成分に加えてさらに、選択元素として、Mo:0.001%以上0.05%未満、V:0.001%以上0.05%未満のうちから選ばれた1種または2種を含有することができる。 The above-mentioned components are the basic components, but in addition to the basic components, Mo: 0.001% or more and less than 0.05%, V: 0.001% or more and less than 0.05% are selected as one or 2 elements. Can contain seeds.

Mo:0.001%以上0.05%未満、V:0.001%以上0.05%未満のうちから選ばれた1種または2種
Mo、Vはいずれも、鋼の焼入れ性向上や、焼入れ焼戻し処理後の衝撃特性(靭性)の向上に寄与する元素であり、必要に応じて選択して1種または2種を、不可避的に含有する水準(0.001%)よりも多く含有できる。
Mo: 0.001% or more and less than 0.05%, V: 0.001% or more and less than 0.05%, one or two selected
Both Mo and V are elements that contribute to the improvement of hardenability of steel and the improvement of impact characteristics (toughness) after quenching and tempering, and one or two types are inevitably selected as necessary. It can be contained in excess of the contained level (0.001%).

Moは、鋼の焼入れ性向上に有効な元素であるが、含有量が0.05%以上と多くなると、炭化物の溶け込みを遅らせる効果が大きくなることでかえって焼入れ性が低下し、十分な硬さが得られなくなることに加え、Nbの効果が失われ、低温焼戻し処理後の衝撃特性が低下する。このため、含有する場合は、Moは不可避的に含有する水準以上である0.001%以上、0.05%未満に限定することが好ましい。なお、より好ましくは0.01%以上0.03%以下である。 Mo is an element that is effective in improving the hardenability of steel, but if the content is as high as 0.05% or more, the effect of delaying the penetration of carbides will increase, and the hardenability will decrease, resulting in sufficient hardness. In addition to being unable to do so, the effect of Nb is lost and the impact characteristics after low temperature tempering are reduced. Therefore, when it is contained, it is preferable to limit Mo to 0.001% or more and less than 0.05%, which is inevitably higher than the level contained. More preferably, it is 0.01% or more and 0.03% or less.

Vは、鋼組織を微細化することを介して、衝撃特性の向上に寄与する元素であるが、0.05%以上と多量に含有すると、炭化物の溶け込みを遅らせる効果が大きくなることでかえって焼入れ性が低下し、十分な硬さが得られないことに加え、Nbの効果が失われ、低温焼戻し処理後の衝撃特性が低下する。このようなことから、含有する場合には、Vは不可避的に含有する水準以上である0.001%以上、0.05%未満に限定することが好ましい。なお、より好ましくは0.01%以上0.03%以下である。 V is an element that contributes to the improvement of impact characteristics by refining the steel structure, but if it is contained in a large amount of 0.05% or more, the effect of delaying the dissolution of carbides becomes greater, and the hardenability is rather improved. In addition to the decrease and insufficient hardness, the effect of Nb is lost and the impact characteristics after low temperature tempering are deteriorated. Therefore, when it is contained, it is preferable to limit V to 0.001% or more and less than 0.05%, which is unavoidably higher than the content level. More preferably, it is 0.01% or more and 0.03% or less.

上記した成分以外の残部は、Fe及び不可避不純物からなる。
本発明高炭素冷延鋼板は、上記した組成を有し、かつ、次(1)式
0.2≦dav≦0.7(μm) …(1)
を満たす平均粒径(dav)(μm)と、次(2)式
(NSC/NTC)×100≧90% …(2)
を満たす球状化率(NSC/NTC)を有する炭化物が分散した組織を有する。
The rest other than the above components consist of Fe and unavoidable impurities.
The high carbon cold-rolled steel sheet of the present invention has the above-mentioned composition and has the following formula (1).
0.2 ≤ d av ≤ 0.7 (μm)… (1)
The average particle size ( dav ) (μm) that satisfies the condition and the following equation (2) ( NSC / NTC ) × 100 ≧ 90%… (2)
It has a structure in which carbides having a spheroidization rate (N SC / NT C) satisfying the above conditions are dispersed.

ここで(1)式の平均粒径(dav)は、鋼板断面で観察される個々の炭化物と同等の面積の円を想定したときの個々の円の直径(円相当径)の平均値である。分散する炭化物の平均粒径(dav)が、(1)式を満たす範囲にあると、衝撃特性に優れ、さらに短時間の溶体化処理後急冷(焼入れ)する処理でも、所望の焼入れ硬さが容易に確保できるという効果がある。分散する炭化物の平均粒径(dav)が、0.2μm未満であると、炭化物が細かくなり、分散する炭化物の数が増加するため、針形状への二次加工の負荷が増大する。また、平均粒径(dav)が0.7μmを超えると、短時間の溶体化処理後急冷する処理において、所望の焼入れ硬さを確保でき難くなる。Here, the average particle size ( dav ) in Eq. (1) is the average value of the diameters (equivalent to circles) of individual circles assuming a circle with the same area as the individual carbides observed in the cross section of the steel sheet. be. When the average particle size ( dav ) of the dispersed carbide is within the range satisfying the equation (1), the impact characteristics are excellent, and even in the short-time solution heat treatment and then quenching (quenching) treatment, the desired quenching hardness is obtained. Has the effect of being easily secured. When the average particle size ( dav ) of the dispersed carbide is less than 0.2 μm, the carbide becomes finer and the number of dispersed carbides increases, so that the load of secondary processing on the needle shape increases. Further, if the average particle size ( dav ) exceeds 0.7 μm, it becomes difficult to secure the desired quenching hardness in the short-time solution heat treatment and then the rapid cooling treatment.

また、本発明では、球状化率を(2)式の(NSC/NTC)で定義した。ここで、NTCは、観察面積100μm2あたりの炭化物の総個数であり、NSCは、同一観察視野で球状化しているとみなせる炭化物の個数であり、dL/dS≦1.4の条件を満たす炭化物個数とした。ここで炭化物の長径をdL、短径をdSとした。Further, in the present invention, the spheroidization rate is defined by (NSC / NTC) in Eq. (2). Here, N TC is the total number of carbides per observation area 100 [mu] m 2, N SC is the number of carbide which can be regarded to be spheroidized in the same observation field, the condition of d L / d S ≦ 1.4 The number of carbides to be satisfied was used. Here, the major axis of the carbide is d L and the minor axis is d S.

炭化物は、完全な球状に形成されているとはいえず、また観察面によっても楕円形として観察される場合が多いので、長径と短径との比(dL/dS)により、球状化の程度を規定した。本発明では、(dL/dS):1.4以下の条件を満たす炭化物を、球状化している炭化物(球状化炭化物)として、その個数をNSCとした。また、経験的な知見から、鋼板の二次加工性を良好に保つために球状化率(NSC/NTC)×100が、90%以上であることが必要である。Carbides are not completely formed in a spherical shape, and are often observed as an ellipse depending on the observation surface. Therefore, the carbides are spheroidized by the ratio of the major axis to the minor axis (d L / d S ). The degree of is specified. In the present invention, (d L / d S) : 1.4 The following conditions are satisfied carbide as carbide is spheroidized (spheroidizing carbides), and the number and N SC. In addition, from empirical knowledge, it is necessary that the spheroidization rate (NSC / NTC ) x 100 is 90% or more in order to maintain good secondary workability of the steel sheet.

なお、上記した炭化物の平均粒径及び球状化率の算出は、走査型電子顕微鏡を用いて、二次電子像(倍率:2000倍)を観察し、画像解析にすることにより行った。 The above-mentioned average particle size and spheroidization rate of the charcoal were calculated by observing a secondary electron image (magnification: 2000 times) using a scanning electron microscope and performing image analysis.

冷間圧延後の鋼板(板厚中央部)から、炭化物観察用試験片を採取し、樹脂に埋込み、研磨し、腐食液でエッチングし、走査型電子顕微鏡を用いて炭化物を観察し、板厚中央部近辺の観察面積100μm2の範囲で、炭化物の円相当径、長径dL/短径dS比、NTC、NSCを測定した。このような測定を5視野実施し、それぞれの平均値を算出した。これら測定及び算出は、市販の画像解析ソフトwinroofを用いた。Carbide observation test pieces are collected from the cold-rolled steel plate (central part of the plate thickness), embedded in resin, polished, etched with a corrosive liquid, and the carbides are observed using a scanning electron microscope. The equivalent circle diameter, major axis d L / minor axis d S ratio, N TC , and N SC of carbides were measured within an observation area of 100 μm 2 near the center. Such measurements were carried out in 5 fields of view, and the average value of each was calculated. Commercially available image analysis software winroof was used for these measurements and calculations.

本発明高炭素冷延鋼板は、上記した鋼板組成および組織を有し、切削性などの二次加工性を保持しつつ、打抜き、スウェージング、曲げ、二次加工などに使われる工具の寿命が、従来の高炭素冷延鋼板と同程度であり、しかも、短時間の溶体化処理後急冷する処理と低温焼戻し処理(焼入れ焼戻し処理)を施したのちに、従来の高炭素鋼板に比べて、高い硬さ特性、優れた衝撃特性および優れた耐摩耗性をバランスよく兼備する機械部品を製造できる高炭素冷延鋼板である。 The high carbon cold-rolled steel sheet of the present invention has the above-mentioned steel plate composition and structure, and while maintaining secondary workability such as machinability, the life of tools used for punching, swaging, bending, secondary processing, etc. is long. Compared to the conventional high carbon steel sheet, it is about the same as the conventional high carbon cold-rolled steel sheet, and after being subjected to a short-time solution heat treatment and then rapid cooling and low temperature tempering treatment (quenching tempering treatment). It is a high carbon cold-rolled steel sheet that can manufacture mechanical parts that have high hardness characteristics, excellent impact characteristics, and excellent wear resistance in a well-balanced manner.

ここでいう「二次加工性に優れる」とは、図1に示すように、切削加工(エンドミル加工)試験を行って、工具(エンドミル)にかかる力が、40N未満である場合(工具回転数が低速(1300rpm))を、または35N未満である場合(工具回転数が高速(2300rpm)の場合)を、いうものとする。 As shown in FIG. 1, "excellent in secondary workability" here means that when a cutting (end milling) test is performed and the force applied to the tool (end mill) is less than 40 N (tool rotation speed). Is low speed (1300 rpm)) or less than 35 N (when the tool rotation speed is high speed (2300 rpm)).

本発明では、一般的なエンドミル加工に着目し、図1に示すように、鋼板(被削材)に、エンドミルを用いて切削加工(エンドミル加工)を行い、その際に、工具に取り付けた切削動力計(図示せず)で、工具(エンドミル:φ6mm径)にかかる切削抵抗力として、X方向分力、Y方向分力、Z方向分力を測定したのちそれらの合力を計算して二次加工性の評価指数とした。なお、エンドミル加工試験の条件は、切削速度:25m/min(低速)、45m/min(高速)、1羽当たりの送り量:0.016mm/touth、切り込み量:0.2mm、工具突き出し長さ:25mm、切削距離:30mmとし、切削油剤は使用しないものとした。 In the present invention, focusing on general end mill processing, as shown in FIG. 1, cutting processing (end mill processing) is performed on a steel plate (work material) using an end mill, and cutting attached to a tool at that time. After measuring the X-direction component force, Y-direction component force, and Z-direction component force as the cutting resistance force applied to the tool (end mill: φ6 mm diameter) with a power meter (not shown), the resultant force is calculated and secondary. It was used as an evaluation index for workability. The conditions for the end mill machining test are: cutting speed: 25 m / min (low speed), 45 m / min (high speed), feed amount per blade: 0.016 mm / touth, depth of cut: 0.2 mm, tool protrusion length: 25 mm. , Cutting distance: 30 mm, no cutting fluid was used.

このようなエンドミル加工試験を採用することにより、より実際の使用環境に近い状態で二次加工性を評価することができる。工具にかかる切削抵抗力が40N未満(あるいは35N未満)であれば、従来の高炭素冷延鋼板の二次加工性と同等あるいはそれ以上の優れた二次加工性を有することを意味する。 By adopting such an end mill processing test, it is possible to evaluate the secondary workability in a state closer to the actual usage environment. If the cutting resistance applied to the tool is less than 40 N (or less than 35 N), it means that it has excellent secondary workability equal to or higher than the secondary workability of the conventional high carbon cold-rolled steel sheet.

また、ここでいう「優れた耐摩耗性」とは、図2に示す摩耗試験装置を用いた摩耗試験を実施し、得られた摩耗深さが485μm未満である場合を、いうものとする。 Further, the term "excellent wear resistance" as used herein means a case where a wear test is carried out using the wear test apparatus shown in FIG. 2 and the obtained wear depth is less than 485 μm.

図2に示す摩耗試験装置10は、糸を巻き出す糸巻出手段11と、巻き出された糸2に所望の張力を付与する張力調整手段12と、張力付与された糸を通すホール1a〜1dを有する摩耗試験片1と、糸を巻き取る糸巻取手段13とを有し、編み糸によるメリヤス針の摩耗を、実機に近い状況で再現できる装置である。なお、摩耗試験装置10は、糸が破断すると張力が零(ゼロ)となり、その時点で装置が自動的に止まる構造となっている。 The wear test device 10 shown in FIG. 2 includes a thread unwinding means 11 for unwinding a thread, a tension adjusting means 12 for applying a desired tension to the unwound thread 2, and holes 1a to 1d for passing the tension-applied thread. It is a device having a wear test piece 1 and a thread winding means 13 for winding a thread, and can reproduce the wear of a knitted needle due to knitting yarn in a situation close to that of an actual machine. The wear test device 10 has a structure in which the tension becomes zero when the thread breaks, and the device automatically stops at that point.

使用する摩耗試験片1は、図3(a)に示す形状の摩耗試験片とし、ボビン(糸巻出手段)11から、連続的に巻き出された糸2は、張力調整手段12により適正な張力を付与されたのち、摩耗試験片1に形成された例えば、ホール1aを通り、ホール1aと接触してホール1aを摩耗させながら、糸巻取手段13に巻き取られる。ホールは一つの試験片で4箇所(1a〜1d)形成した。なお、摩耗試験の条件は、編み糸ポリエステルフルダル製(規格110T48)を使用し、糸の送給速度:160m/s、張力:10±2N/cmとして、1つのホールで糸の長さ10万m繰り出すまで実施し、当該ホールにおける摩耗深さを測定した。このような摩耗試験を、一つの摩耗試験片に形成された4箇所のホール1a〜1dでそれぞれ実施し、各ホールの摩耗深さを測定し、それら平均値を当該摩耗試験片の摩耗深さ(平均)とした。 The wear test piece 1 to be used is a wear test piece having the shape shown in FIG. 3A, and the thread 2 continuously unwound from the bobbin (thread unwinding means) 11 has an appropriate tension by the tension adjusting means 12. Then, the thread is wound by the thread winding means 13 while passing through, for example, the hole 1a formed in the wear test piece 1 and contacting the hole 1a to wear the hole 1a. Holes were formed at four locations (1a to 1d) with one test piece. The conditions for the wear test are knitted yarn made of polyester full dull (standard 110T48), yarn feeding speed: 160 m / s, tension: 10 ± 2 N / cm, and the length of the yarn is 100,000 in one hole. It was carried out until m was extended, and the wear depth in the hole was measured. Such a wear test is carried out in each of the four holes 1a to 1d formed in one wear test piece, the wear depth of each hole is measured, and the average value thereof is used as the wear depth of the wear test piece. (Average).

上記した条件で摩耗試験を行った結果、摩耗深さが485μm未満であれば、従来の高炭素冷延鋼板の耐摩耗性と同等あるいはそれ以上の優れた耐摩耗性を有することを意味する。このような摩耗試験を採用することにより、メリヤス針フック部の糸による摩耗に近い状態で耐摩耗性を評価することができる。なお、このようなノリアス針フック部の糸による摩耗に近い状態で耐摩耗性を評価することにより、残留炭化物の存在が耐摩耗性に大きく影響することを見出した。耐摩耗性は、残留炭化物の面積率に比例し、残留炭化物が面積率で3%未満では所望の耐摩耗性が確保できなくなる。残留炭化物は面積率で3%以上とすることが好ましい。 As a result of the wear test under the above conditions, if the wear depth is less than 485 μm, it means that the wear resistance is equal to or higher than that of the conventional high carbon cold-rolled steel sheet. By adopting such a wear test, it is possible to evaluate the wear resistance in a state close to the wear caused by the thread of the knitted needle hook portion. By evaluating the wear resistance of the Norias needle hook portion in a state close to the wear caused by the thread, it was found that the presence of residual carbide greatly affects the wear resistance. The wear resistance is proportional to the area ratio of the residual carbide, and if the area ratio of the residual carbide is less than 3%, the desired wear resistance cannot be ensured. The area ratio of residual carbide is preferably 3% or more.

また、ここでいう「優れた衝撃特性」とは、図4に示す衝撃試験片(ノッチ幅0.2mmのUノッチ試験片(ノッチ深さ2.5mm、ノッチ半径0.1mm))を用い、JIS K 7077に基づいた、定格容量:1Jのシャルピー衝撃試験機((株)東洋精機製作所、型式DG−GB)で、図5に示すように、支持台間距離を40mmとして、室温で試験したときの衝撃値が、9J/cm2以上である場合を、いうものとする。The term "excellent impact characteristics" as used herein refers to the impact test piece shown in FIG. 4 (U notch test piece having a notch width of 0.2 mm (notch depth 2.5 mm, notch radius 0.1 mm)) and JIS K 7077. Impact when tested at room temperature with a Charpy impact tester (Toyo Seiki Seisakusho Co., Ltd., model DG-GB) with a rated capacity of 1J based on the above, with the distance between the supports as 40 mm, as shown in FIG. The case where the value is 9 J / cm 2 or more is referred to.

このようなシャルピー衝撃試験機を用いることにより、板厚:1.0mm未満の試験片を用いても、金属材料のシャルピー衝撃試験方法である、JIS Z 2242に近い条件で試験でき、また、このような衝撃試験片を使用することにより、応力集中係数が高くなり、衝撃試験時のたわみを最小限とし、安定した衝撃値が得られる。このような衝撃試験方法および衝撃試験片を採用することで、実際の使用環境に近い状態の衝撃特性を評価することができる。なお、衝撃値は、残留炭化物量が少ない方が高い値を示す傾向があるが、残留炭化物量が面積率で6%を超えると衝撃値の低下が著しくなるため、所望の衝撃値を確保するためには、残留炭化物を面積率で6%未満とすることを本発明者らは見出している。 By using such a Charpy impact tester, even if a test piece with a plate thickness of less than 1.0 mm is used, the test can be performed under conditions close to JIS Z 2242, which is a Charpy impact test method for metal materials. By using a flexible impact test piece, the stress concentration coefficient becomes high, the deflection during the impact test is minimized, and a stable impact value can be obtained. By adopting such an impact test method and an impact test piece, it is possible to evaluate the impact characteristics in a state close to the actual usage environment. The impact value tends to be higher when the amount of residual carbide is small, but when the amount of residual carbide exceeds 6% in terms of area ratio, the impact value drops significantly, so the desired impact value is secured. Therefore, the present inventors have found that the residual carbide is less than 6% in area ratio.

このように、耐摩耗性を評価する新しい摩耗試験方法を導入し、また、二次加工性を評価するエンドミル加工試験方法を導入することにより、実機に近い環境での評価に基づき、適正な化学成分範囲を規定することができるようになった。 In this way, by introducing a new wear test method for evaluating wear resistance and an end mill processing test method for evaluating secondary workability, appropriate chemistry is based on evaluation in an environment close to the actual machine. It has become possible to specify the range of ingredients.

次に、本発明高炭素冷延鋼板の製造方法について説明する。
本発明高炭素冷延鋼板は、熱延鋼板に、必要に応じて軟化焼鈍を行い、冷間圧延および球状化焼鈍を繰り返し行って製造される。
Next, a method for manufacturing the high carbon cold-rolled steel sheet of the present invention will be described.
The high carbon cold-rolled steel sheet of the present invention is produced by repeatedly softening and annealing a hot-rolled steel sheet, cold rolling and spheroidizing annealing, if necessary.

本発明で用いる熱延鋼板は、通常の製造条件で得られるものでよく、例えば、上記した組成を有する鋼片(スラブ)を、1050〜1250℃に加熱し、800〜950℃の仕上温度で熱間圧延し、600〜750℃の巻取温度でコイルとすることで製造できる。なお、熱延鋼板の板厚は、所望の冷延鋼板の板厚から好適な冷間圧下率となるように適宜設定すればよい。 The hot-rolled steel sheet used in the present invention may be obtained under normal manufacturing conditions. For example, a steel piece (slab) having the above composition is heated to 1050 to 1250 ° C. and at a finishing temperature of 800 to 950 ° C. It can be manufactured by hot rolling and forming a coil at a winding temperature of 600 to 750 ° C. The thickness of the hot-rolled steel sheet may be appropriately set so as to have a suitable cold reduction ratio from the desired thickness of the cold-rolled steel sheet.

熱延鋼板に、冷間圧延と球状化焼鈍を複数回繰り返し施すことにより、板厚1.0mm未満の高炭素冷延鋼板とする。冷間圧延と球状化焼鈍は、それぞれ2〜5回繰り返すことが好ましい。 Cold-rolled and spheroidized annealing are repeatedly applied to the hot-rolled steel sheet to obtain a high-carbon cold-rolled steel sheet with a thickness of less than 1.0 mm. Cold rolling and spheroidizing annealing are preferably repeated 2 to 5 times each.

冷間圧延の圧下率は、25〜65%の範囲とすることが好ましい。冷間圧延の圧下率が25%未満の鋼板(冷延鋼板)に、球状化焼鈍を施すと、炭化物が粗大化してしまう。一方、冷間圧延の圧下率が65%超では、冷間圧延操業の負荷が大きすぎることがある。このため、冷間圧延の圧下率は、25〜65%の範囲に限定することとした。なお、冷間圧延後に球状化焼鈍を施さない最終の冷間圧延については、圧下率の下限は特に限定されない。 The rolling reduction in cold rolling is preferably in the range of 25 to 65%. When spheroidizing annealing is applied to a steel sheet (cold-rolled steel sheet) having a reduction ratio of cold rolling of less than 25%, carbides become coarse. On the other hand, if the rolling reduction of cold rolling exceeds 65%, the load of cold rolling operation may be too large. Therefore, the rolling reduction rate for cold rolling is limited to the range of 25 to 65%. The lower limit of the rolling reduction is not particularly limited for the final cold rolling that is not subjected to spheroidizing annealing after cold rolling.

また、球状化焼鈍は、640〜720℃の範囲の温度で行うことが好ましい。球状化焼鈍温度が、640℃未満では、球状化が不十分となりやすく、一方、720℃より高温では炭化物が粗大化しやすい。このため、球状化焼鈍は640〜720℃の範囲の温度で行うこととした。なお、球状化焼鈍の保持時間は、9〜30hrの範囲で適宜選択して行うことが好ましい。 Further, the spheroidizing annealing is preferably performed at a temperature in the range of 640 to 720 ° C. When the spheroidizing annealing temperature is less than 640 ° C, spheroidization tends to be insufficient, while when the temperature is higher than 720 ° C, carbides tend to coarsen. Therefore, spheroidizing annealing was performed at a temperature in the range of 640 to 720 ° C. The holding time for spheroidizing annealing is preferably selected in the range of 9 to 30 hr.

なお、冷間圧延(25〜65%)と球状化焼鈍(640〜720℃)を複数回繰り返す理由は、炭化物の平均粒径(dav)と、球状化率(NSC/NTC)×100がそれぞれ上記した(1)式及び(2)式を満たすように制御するためである。The reason why the repeated cold rolling (25-65%) and spheroidizing annealing (six hundred and forty to seven hundred and twenty ° C.) a plurality of times, the average particle size of the carbide (d av), spheroidization ratio (N SC / N TC) × This is because 100 is controlled so as to satisfy the above-mentioned equations (1) and (2), respectively.

まず、冷間圧延によって炭化物にひびが導入され、球状化焼鈍によってくだけはじめた炭化物が球状化していくが、1回の球状化焼鈍のみでは、炭化物の球状化率を90%以上まで高めるのは困難であり、棒状又は板状の炭化物が残留する。そのような場合、焼入れ性にも悪影響を及ぼし、精密部品への冷間加工性を悪化させる。そのため、炭化物の球状化率(NSC/NTC)×100を90%以上にするには、冷間圧延と球状化焼鈍を交互に繰返すことが最適で、結果として鋼板中に微細かつ球状化率の高い炭化物の分布が得られる。特に好ましくは、2〜5回の冷間圧延と2〜5回の球状化焼鈍である。なお、冷間圧延前の熱延鋼板の軟化を目的とする軟化焼鈍についても、同様の温度範囲が好ましい。First, cracks are introduced into the carbide by cold rolling, and the carbide that has started to be spheroidized by spheroidizing annealing is spheroidized. It is difficult and rod-shaped or plate-shaped carbide remains. In such a case, the hardenability is also adversely affected, and the cold workability for precision parts is deteriorated. Therefore, in order to increase the spheroidization rate (N SC / NTC ) x 100 of carbides to 90% or more, it is optimal to repeat cold rolling and spheroidizing annealing alternately, resulting in fine and spheroidizing in the steel sheet. A high rate of carbide distribution is obtained. Particularly preferred are 2-5 cold rollings and 2-5 spheroidizing annealings. The same temperature range is preferable for softening and annealing for the purpose of softening hot-rolled steel sheets before cold rolling.

以上が、本発明高炭素冷延鋼板の製造方法であるが、この鋼板を最終の目的である、メリヤス針のような機械部品とするには、所定の形状に加工したのち、以下の熱処理を行うことが好ましい。 The above is the method for manufacturing a high carbon cold-rolled steel sheet of the present invention. In order to make this steel sheet into a mechanical part such as a knitted needle, which is the final purpose, after processing it into a predetermined shape, the following heat treatment is performed. It is preferable to do it.

90%以上球状化した炭化物が分布した高炭素冷延鋼板を、各種機械部品に加工した後、溶体化処理後急冷(焼入れ)する処理を施し、ついで焼戻し処理を施す。溶体化処理は、加熱温度を760〜820℃で、保持時間を短時間の3〜15minとする。焼入れ(急冷)は油を用いることが好ましい。焼戻し処理では、焼戻し温度を低温の200〜350℃とすることが好ましい。なお、より好ましくは250〜300℃である。これにより、硬さ600〜750HVを持つ各種機械部品とすることができる。 A high-carbon cold-rolled steel sheet in which carbides spheroidized by 90% or more are distributed is processed into various machine parts, and then subjected to a solution heat treatment and then a quenching (quenching) treatment, and then a tempering treatment. In the solution treatment, the heating temperature is 760 to 820 ° C and the holding time is 3 to 15 min for a short time. It is preferable to use oil for quenching (quenching). In the tempering treatment, the tempering temperature is preferably a low temperature of 200 to 350 ° C. The temperature is more preferably 250 to 300 ° C. This makes it possible to make various mechanical parts with a hardness of 600 to 750 HV.

溶体化処理の保持時間が、15minより長いと炭化物が溶け込みすぎ、オーステナイト粒が粗大化することで、焼入れ後のマルテンサイト相が粗くなり、衝撃特性が低下する。一方、保持時間が、3minより短いと、炭化物の溶け込みが不十分で、急冷後に、所望の高硬さが得にくくなる。このため、溶体化処理の保持時間は3min以上15min以下とすることが好ましい。より好ましくは5〜10minである。 If the retention time of the solution treatment is longer than 15 min, carbides will dissolve too much and the austenite grains will be coarsened, resulting in coarsening of the martensite phase after quenching and deterioration of impact characteristics. On the other hand, if the holding time is shorter than 3 min, the carbides are not sufficiently dissolved, and it becomes difficult to obtain the desired high hardness after quenching. Therefore, the retention time of the solution treatment is preferably 3 min or more and 15 min or less. More preferably, it is 5 to 10 min.

また、焼戻し温度が200℃未満では、マルテンサイト相の靱性回復が不十分となる。一方、焼戻し温度が350℃を超えると、硬さが600HVを下回り、衝撃値は高くなるが、耐久性や耐摩耗性が低下し、問題となる。このため、焼戻し温度は200〜350℃の範囲の温度とすることが好ましい。なお、より好ましくは250〜300℃である。焼戻し処理の保持時間は、30min〜3hrの範囲で適宜選択して行うことが好ましい。 Further, if the tempering temperature is less than 200 ° C., the toughness recovery of the martensite phase becomes insufficient. On the other hand, when the tempering temperature exceeds 350 ° C., the hardness falls below 600 HV and the impact value increases, but the durability and wear resistance decrease, which is a problem. Therefore, the tempering temperature is preferably a temperature in the range of 200 to 350 ° C. The temperature is more preferably 250 to 300 ° C. It is preferable that the holding time of the tempering treatment is appropriately selected in the range of 30 min to 3 hr.

以下に、実施例に基づき、本発明についてさらに説明する。 Hereinafter, the present invention will be further described based on examples.

表1に示す化学成分を有する溶鋼を、真空溶解炉で溶製したのち、鋳型に鋳込み、小型鋼塊(50kgf)とした。これら小型鋼塊を分塊圧延し鋼片としたのち、加熱温度:1150℃、圧延仕上温度:870℃の条件で熱間圧延し、熱延鋼板(板厚:4mm)とした。ついで、得られた熱延鋼板に、表2に示す条件で冷間圧延及び球状化焼鈍を行って、板厚:0.4mm以上1.0mm未満の冷延鋼板とした。 The molten steel having the chemical components shown in Table 1 was melted in a vacuum melting furnace and then cast into a mold to obtain a small ingot (50 kgf). These small ingots were ingot-rolled into steel pieces and then hot-rolled under the conditions of heating temperature: 1150 ° C and rolling finish temperature: 870 ° C to obtain hot-rolled steel sheets (plate thickness: 4 mm). Then, the obtained hot-rolled steel sheet was cold-rolled and spheroidized and annealed under the conditions shown in Table 2 to obtain a cold-rolled steel sheet having a plate thickness of 0.4 mm or more and less than 1.0 mm.

まず、得られた冷延鋼板から、組織観察用試験片を採取し、樹脂に埋込み、研磨、腐食して、走査型電子顕微鏡の二次電子像(倍率:2000倍)で組織を観察し、撮像して、画像解析により、炭化物の平均粒径(dav)、および球状化率(NSC/NTC)を算出した。板厚中央部近辺の観察面積100μm2の範囲で、個々の炭化物の円相当径、個々の炭化物の長径dL/短径dS比を求めると共に、観察面積100μm2あたりの炭化物総数NTC、dL/dS:1.4以下の条件を満たす炭化物の総数NSCを測定した。このような測定を5視野で実施し、それらの平均値をそれぞれ算出した。これら測定及び算出は、市販の画像解析ソフトwinroofを用いた。また、組織観察用試験片について、JIS G 0555に準拠して、A系介在物を対象に清浄度dAを測定した。なお、測定視野は60視野とした。First, a test piece for structure observation was collected from the obtained cold-rolled steel plate, embedded in a resin, polished and corroded, and the structure was observed with a secondary electron image (magnification: 2000 times) of a scanning electron microscope. The images were taken and image analysis was performed to calculate the average particle size (dav ) and spheroidization rate ( NSC / NTC ) of the charcoal. Within the range of the observed area of 100 μm 2 near the center of the plate thickness, the circle-equivalent diameter of each carbide and the major axis d L / minor axis d S ratio of each carbide are obtained, and the total number of carbides per 100 μm 2 observation area N TC , d L / d S: 1.4 was measured the total number N SC of the following conditions are met carbide. Such measurements were carried out in 5 fields of view, and their average values were calculated respectively. Commercially available image analysis software winroof was used for these measurements and calculations. In addition, the cleanliness dA of the test piece for tissue observation was measured for A-based inclusions in accordance with JIS G 0555. The measurement field of view was set to 60 fields of view.

さらに、得られた冷延鋼板から、試験片を採取し、表3に示す条件で、図1に示すように、切削性試験(エンドミル加工試験)を実施し、工具(エンドミル:6mm径)にかかるX方向、Y方向、Z方向の力を測定したのち、合力を計算して切削抵抗力とした。なお、工具の回転数は低速(1300rpm)高速(2300rpm)の2種とした。 Further, a test piece was collected from the obtained cold-rolled steel plate, and a machinability test (end milling test) was carried out under the conditions shown in Table 3 as shown in FIG. 1, and the tool (end mill: 6 mm diameter) was used. After measuring the forces in the X, Y, and Z directions, the resultant force was calculated and used as the cutting resistance force. There are two types of tool rotation speeds: low speed (1300 rpm) and high speed (2300 rpm).

ついで、得られた冷延鋼板に、表4に示す条件で、加熱炉に装入し、短時間溶体化処理を施した後、急冷(油焼入れ)する処理を施し、さらに低温焼戻し処理を施す熱処理を行った。熱処理済みの鋼板から、試験片を採取し、残留炭化物調査、硬さ試験、衝撃試験、摩耗試験を実施した。試験方法は次のとおりとした。
(1)残留炭化物調査
熱処理済みの鋼板から、組織観察用試験片を採取し、樹脂に埋込み、研磨、腐食して、走査型電子顕微鏡の二次電子像(倍率:2000倍)で組織を観察し、撮像して、画像解析により、円相当径0.1μm以上の大きさの残留炭化物を対象に、残留炭化物の面積率(%)を算出した。なお、測定面積は100μm2とした。
(2)硬さ試験
熱処理済みの鋼板から、圧延方向に直角な方向に硬さ試験片を切り出し、これを樹脂に埋め込み、断面を研磨し、板厚中央部で硬さ測定を行った。硬さ測定は、JIS Z 2244の規定に準拠して、ビッカース硬度計(試験力:49.0N)を用いて、各5点測定し、それらの平均値を当該鋼板の硬さとした。
(3)衝撃試験
熱処理済みの鋼板から圧延方向に平行となるように、図4に示す衝撃試験片(ノッチ幅0.2mmのUノッチ試験片(ノッチ深さ2.5mm、ノッチ半径0.1mm))を採取し、JIS K 7077に基づいた、定格容量:1Jのシャルピー衝撃試験機((株)東洋精機製作所製型式DG-GB)で、図5に示すように、支持台間距離を40mmとして、室温でシャルピー衝撃試験を実施し、衝撃値(J)を求めた。試験片は各5本とし、得られた各衝撃値の平均を当該鋼板の衝撃値とした。
(4)摩耗試験
熱処理済みの鋼板から、図3に示す形状の摩耗試験片を採取し、図2に示す摩耗試験装置を用いた摩耗試験を実施した。摩耗試験の条件は、ポリエステルフルダル製の編み糸(規格110T48)を使用し、糸の送給速度:160m/s、張力:10±2N/cmとした。1つのホールで糸を10万m走らせたのち、試験装置を止め、図3(b)に示すように摩耗試験片1のホール(ここでは1a)に形成された摩耗深さを光学顕微鏡で測定した。このような摩耗試験を各ホール(1a〜1d)でそれぞれ実施し、各ホール(4箇所)の摩耗深さを測定し、それらの平均値を求め、当該摩耗試験片の摩耗深さとした。
Then, the obtained cold-rolled steel sheet is charged into a heating furnace under the conditions shown in Table 4, subjected to a short-time solution treatment, then rapidly cooled (oil-quenched), and further subjected to a low-temperature tempering treatment. Heat treatment was performed. Specimens were collected from the heat-treated steel sheet and subjected to residual carbide investigation, hardness test, impact test, and wear test. The test method was as follows.
(1) Investigation of residual carbides Test pieces for structure observation are collected from the heat-treated steel plate, embedded in resin, polished and corroded, and the structure is observed with a secondary electron image (magnification: 2000 times) of a scanning electron microscope. Then, an image was taken, and the area ratio (%) of the residual carbide was calculated for the residual carbide having a size equivalent to a circle of 0.1 μm or more by image analysis. The measured area was 100 μm 2 .
(2) Hardness test A hardness test piece was cut out from the heat-treated steel sheet in a direction perpendicular to the rolling direction, embedded in a resin, the cross section was polished, and the hardness was measured at the center of the plate thickness. The hardness was measured at 5 points each using a Vickers hardness tester (test force: 49.0N) in accordance with JIS Z 2244, and the average value was taken as the hardness of the steel sheet.
(3) Impact test An impact test piece (U notch test piece with a notch width of 0.2 mm (notch depth 2.5 mm, notch radius 0.1 mm)) shown in FIG. 4 is placed so as to be parallel to the rolling direction from the heat-treated steel plate. A Charpy impact tester with a rated capacity of 1J (model DG-GB manufactured by Toyo Seiki Seisakusho Co., Ltd.) based on JIS K 7077, with a distance between supports of 40 mm and room temperature as shown in Fig. 5. The Charpy impact test was carried out in 1 and the impact value (J) was determined. The number of test pieces was five, and the average of the obtained impact values was taken as the impact value of the steel sheet.
(4) Wear test A wear test piece having the shape shown in FIG. 3 was collected from the heat-treated steel sheet, and a wear test was carried out using the wear test apparatus shown in FIG. The conditions for the wear test were polyester full dull knitting yarn (standard 110T48), yarn feeding speed: 160 m / s, and tension: 10 ± 2 N / cm. After running the thread 100,000 m in one hole, the test device is stopped, and the wear depth formed in the hole (here, 1a) of the wear test piece 1 is measured with an optical microscope as shown in FIG. 3 (b). bottom. Such a wear test was carried out in each hole (1a to 1d), the wear depth of each hole (4 points) was measured, and the average value thereof was obtained and used as the wear depth of the wear test piece.

得られた結果を表5に示す。 The results obtained are shown in Table 5.


Figure 2021090472
Figure 2021090472

Figure 2021090472
Figure 2021090472


Figure 2021090472
Figure 2021090472

Figure 2021090472
Figure 2021090472


Figure 2021090472
Figure 2021090472

本発明例はいずれも、工具にかかる力(切削抵抗)が低速加工で40N未満、高速加工で35N未満であり二次加工性が従来の高炭素冷延鋼板と同等の高炭素冷延鋼板であり、短時間溶体化処理後急冷(油焼入れ)処理と低温焼戻し処理を施したのちに、硬さが600〜750HVの範囲を満足する高硬さ特性を有し、衝撃値が9J/cm2以上を満足し衝撃特性に優れ、さらに、摩耗深さが485μm未満と耐摩耗性に優れた高炭素冷延鋼板となっており、「◎」と評価した。一方、本発明の範囲を外れる比較例は、工具にかかる力(切削抵抗)が低速加工で40N以上、高速加工で35N以上となり二次加工性が劣るか、短時間溶体化処理後急冷(油焼入れ)処理を施しさらに低温焼戻し処理を施す熱処理後に、衝撃値が9J/cm2未満と衝撃特性が低下しているか、あるいは、摩耗深さが485μm以上と耐摩耗性が低下しているか、して「×」と評価された高炭素冷延鋼板である。In each of the examples of the present invention, the force (cutting resistance) applied to the tool is less than 40 N in low-speed machining and less than 35 N in high-speed machining, and the secondary workability is the same as that of the conventional high-carbon cold-rolled steel sheet. It has high hardness characteristics that satisfy the hardness range of 600 to 750 HV after short-time solution treatment, quenching (oil quenching) treatment and low-temperature tempering treatment, and has an impact value of 9 J / cm 2. Satisfied with the above, it is a high carbon cold-rolled steel plate with excellent impact characteristics and a wear depth of less than 485 μm, which is excellent in wear resistance, and was evaluated as “◎”. On the other hand, in a comparative example outside the scope of the present invention, the force (cutting resistance) applied to the tool is 40 N or more in low-speed machining and 35 N or more in high-speed machining, resulting in inferior secondary workability or quenching (oil) after short-time solution treatment. After heat treatment, which is subjected to quenching) treatment and further low-temperature tempering treatment, the impact characteristics are deteriorated when the impact value is less than 9 J / cm 2 , or the wear resistance is deteriorated when the wear depth is 485 μm or more. It is a high carbon cold-rolled steel sheet evaluated as "x".

具体的には、C量が本発明の範囲を低く外れた比較例(鋼板No.1)では、切削抵抗が低く二次加工性に優れ、衝撃値も9J/cm2以上と衝撃特性に優れているが、残留炭化物が少なく、摩耗深さが485μm以上と耐摩耗性が低下していた。また、C量が本発明の範囲を高く外れた比較例(鋼No.12)は、残留炭化物が多く、摩耗深さが485μm未満と耐摩耗性に優れるが、衝撃値が9J/cm2未満と衝撃特性が低下している。さらに、(Mn+Cr)が1.0%を超え、清浄度も悪く、工具にかかる力(切削抵抗)が高く二次加工性が低下している。また、(Mn+Cr)が1.0%以上と本発明の範囲を高く超える比較例(鋼板No.9、No.10、No.11)はいずれも、残留炭化物が多めで、摩耗深さが485μm未満と耐摩耗性に優れているが、衝撃値が9J/cm2未満と衝撃特性が低下している。さらに清浄度が悪く、工具にかかる力(切削抵抗)が高く二次加工性が低下している。また、V量が本発明の範囲を高く外れる比較例(鋼板No.13)、Mo量が本発明の範囲を高く外れる比較例(鋼板No.14)は、残留炭化物が多めで、耐摩耗性に優れるが、靱性は低下している。また、Nb量が本発明の範囲を低く外れる比較例(鋼板No.3、No.15)、Nb量が本発明の範囲を高く外れる比較例(鋼板No.16)、はいずれも、衝撃値が9J/cm2未満と衝撃特性が低下している。なお、(Mn+Cr)が0.14%と低い本発明例(鋼板No.19)は、耐摩耗性が多少低下する傾向を示し、(Mn+Cr)が0.90%と高い本発明例(鋼板No.20)は、二次加工性が多少低下する傾向を示している。また、(Mn+Cr)が1.0%を超える比較例(鋼板No.21)、Crが本発明の範囲を高く外れる比較例(鋼板No.22)は、残留炭化物が面積率で6%を超え、耐摩耗性に優れるが、衝撃値が9J/cm2未満と衝撃靭性が低下している。Specifically, in the comparative example (steel plate No. 1) in which the amount of C is low outside the range of the present invention, the cutting resistance is low, the secondary workability is excellent, and the impact value is 9 J / cm 2 or more, which is excellent in impact characteristics. However, the amount of residual carbide was small, and the wear depth was 485 μm or more, resulting in reduced wear resistance. Further, in the comparative example (steel No. 12) in which the amount of C is high outside the range of the present invention, there are many residual carbides and the wear depth is less than 485 μm, which is excellent in wear resistance, but the impact value is less than 9 J / cm 2. And the impact characteristics are reduced. Further, (Mn + Cr) exceeds 1.0%, the cleanliness is poor, the force applied to the tool (cutting resistance) is high, and the secondary workability is lowered. Further, in all the comparative examples (steel plates No. 9, No. 10, and No. 11) in which (Mn + Cr) is 1.0% or more, which greatly exceeds the range of the present invention, the residual carbide is large and the wear depth is less than 485 μm. It has excellent wear resistance, but its impact characteristics are deteriorated when the impact value is less than 9 J / cm 2. Furthermore, the cleanliness is poor, the force applied to the tool (cutting resistance) is high, and the secondary workability is reduced. Further, the comparative example (steel plate No. 13) in which the amount of V is highly outside the range of the present invention and the comparative example (steel plate No. 14) in which the amount of Mo is highly outside the range of the present invention have a large amount of residual carbide and have abrasion resistance. However, the toughness is reduced. In addition, both the comparative example (steel plate No. 3 and No. 15) in which the amount of Nb is low outside the range of the present invention and the comparative example (steel plate No. 16) in which the amount of Nb is high outside the range of the present invention are impact values. However, the impact characteristics are reduced to less than 9 J / cm 2. The example of the present invention (steel plate No. 19) having a low (Mn + Cr) of 0.14% shows a tendency for the wear resistance to be slightly lowered, and the example of the present invention (steel plate No. 20) having a high (Mn + Cr) of 0.90% shows. , The secondary workability tends to decrease to some extent. Further, in the comparative example (steel plate No. 21) in which (Mn + Cr) exceeds 1.0% and the comparative example (steel plate No. 22) in which Cr is highly outside the scope of the present invention, the residual carbide exceeds 6% in area ratio and the toughness resistance. It has excellent wear resistance, but its impact toughness is reduced when the impact value is less than 9 J / cm 2.

1 摩耗試験片
1a、1b、1c、1d ホール
2 糸
10 摩耗試験装置
11 糸巻出手段(ボビン)
12 張力調整手段
13 糸巻取手段
1 Abrasion test piece 1a, 1b, 1c, 1d Hole 2 Thread 10 Abrasion test device 11 Thread unwinding means (bobbin)
12 Tension adjusting means 13 Thread winding means

Claims (9)

質量%で、
C:0.85%以上1.10%以下、 Mn:0.60%未満、
Si:0.10%以上0.35%以下、 P:0.030%以下、
S:0.030%以下、 Cr:0.60%未満、
Nb:0.005%以上0.020%以下
を含み、かつMn含有量とCr含有量の合計(Mn+Cr)が1.0%未満を満足し、残部Fe及び不可避不純物からなる鋼板組成を有し、鋼板板厚が1.0mm未満であることを特徴とする高炭素冷延鋼板。
By mass%,
C: 0.85% or more and 1.10% or less, Mn: less than 0.60%,
Si: 0.10% or more and 0.35% or less, P: 0.030% or less,
S: 0.030% or less, Cr: less than 0.60%,
Nb: Contains 0.005% or more and 0.020% or less, satisfies the total Mn content and Cr content (Mn + Cr) of less than 1.0%, has a steel sheet composition consisting of the balance Fe and unavoidable impurities, and has a steel sheet thickness of 1.0. High carbon cold rolled steel sheet characterized by being less than mm.
前記鋼板組成を有し、さらに鋼板中に分散する炭化物の平均粒径(dav)と球状化率(NSC/NTC)×100%がそれぞれ下記(1)式及び下記(2)式を満たす鋼板組織を有することを特徴とする請求項1に記載の高炭素冷延鋼板。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、dav:炭化物の円相当径の平均値(平均粒径μm)、
TC:観察面積100μm2当たりの炭化物の総個数、
SC:観察面積100μm2当たりの、(長径dL)/(短径dS)が1.4以下の条件を満たす炭化物の個数。
The following equations (1) and (2) are used for the average particle size (dav ) and spheroidization rate ( NSC / NTC ) x 100% of the carbides having the steel sheet composition and dispersed in the steel sheet, respectively. The high carbon cold-rolled steel sheet according to claim 1, wherein the steel sheet structure is satisfied.
Record
0.2 ≤ d av ≤ 0.7 (μm)… (1)
(N SC / N TC ) × 100 ≧ 90%… (2)
Here, dav : the average value of the equivalent circle diameter of the carbide (average particle size μm),
NTC : Total number of carbides per 100 μm 2 observation area,
N SC : The number of carbides satisfying the condition of (major diameter d L ) / (minor diameter d S ) of 1.4 or less per 100 μm 2 observation area.
前記鋼板組成に代えて、質量%で、
C:0.85%以上1.10%以下、 Mn:0.60%未満、
Si:0.10%以上0.35%以下、 P:0.030%以下、
S:0.030%以下、 Cr:0.50%未満、
Nb:0.005%以上0.020%以下
を含み、かつMn含有量とCr含有量の合計(Mn+Cr)が0.90%未満を満足し、残部Fe及び不可避不純物からなる鋼板組成とすることを特徴とする請求項1または2に記載の高炭素冷延鋼板。
Instead of the steel sheet composition, by mass%,
C: 0.85% or more and 1.10% or less, Mn: less than 0.60%,
Si: 0.10% or more and 0.35% or less, P: 0.030% or less,
S: 0.030% or less, Cr: less than 0.50%,
Nb: A claim comprising a steel sheet composition containing 0.005% or more and 0.020% or less, satisfying a total of Mn content and Cr content (Mn + Cr) of less than 0.90%, and having a balance Fe and unavoidable impurities. The high carbon cold-rolled steel sheet according to 1 or 2.
前記鋼板組成がさらに、質量%で、Mo:0.001%以上0.05%未満、V:0.001%以上0.05%未満のうちから選ばれた1種または2種を含有する鋼板組成であることを特徴とする請求項1ないし3のいずれかに記載の高炭素冷延鋼板。 The steel sheet composition is further characterized by a steel sheet composition containing one or two selected from Mo: 0.001% or more and less than 0.05% and V: 0.001% or more and less than 0.05% in mass%. The high carbon cold-rolled steel sheet according to any one of claims 1 to 3. 請求項1ないし4のいずれかに記載の鋼板組成を有する熱延鋼板に、冷間圧延および球状化焼鈍を繰り返し行い高炭素冷延鋼板を製造する高炭素冷延鋼板の製造方法において、前記高炭素冷延鋼板中に分散する炭化物の平均粒径(dav)と、球状化率(NSC/NTC)がそれぞれ下記(1)式および下記(2)式を満足し、前記高炭素冷延鋼板の板厚が1.0mm未満である高炭素冷延鋼板とすることを特徴とする高炭素冷延鋼板の製造方法。

0.2≦dav≦0.7(μm) …(1)
(NSC/NTC)×100≧90% …(2)
ここで、dav:炭化物の円相当径の平均値(平均粒径μm)、
TC:観察面積100μm2当たりの炭化物の総個数、
SC:観察面積100μm2当たりの、(長径dL)/(短径dS)が1.4以下の条件を満たす炭化物の個数。
In the method for manufacturing a high carbon cold rolled steel sheet, the hot rolled steel sheet having the steel sheet composition according to any one of claims 1 to 4 is repeatedly cold rolled and spheroidized and annealed to manufacture a high carbon cold rolled steel sheet. the average particle size of the carbide dispersed in the carbon cold-rolled steel sheet and (d av), spheroidization ratio (N SC / N TC) satisfies the respective following equations (1) and equation (2), wherein the high carbon cold A method for manufacturing a high-carbon cold-rolled steel sheet, which comprises a high-carbon cold-rolled steel sheet having a thickness of less than 1.0 mm.
Record
0.2 ≤ d av ≤ 0.7 (μm)… (1)
(N SC / N TC ) × 100 ≧ 90%… (2)
Here, dav : the average value of the equivalent circle diameter of the carbide (average particle size μm),
NTC : Total number of carbides per 100 μm 2 observation area,
N SC : The number of carbides satisfying the condition of (major diameter d L ) / (minor diameter d S ) of 1.4 or less per 100 μm 2 observation area.
前記冷間圧延および球状化焼鈍を繰り返し行う回数が、2〜5回であることを特徴とする請求項5に記載の高炭素冷延鋼板の製造方法。 The method for producing a high carbon cold-rolled steel sheet according to claim 5, wherein the number of times of repeated cold rolling and spheroidizing annealing is 2 to 5 times. 前記冷間圧延の圧下率が25〜65%で、前記球状化焼鈍の温度が640〜720℃であることを特徴とする請求項5または6に記載の高炭素冷延鋼板の製造方法。 The method for producing a high carbon cold-rolled steel sheet according to claim 5 or 6, wherein the reduction rate of the cold rolling is 25 to 65%, and the temperature of the spheroidizing annealing is 640 to 720 ° C. 請求項1ないし4のいずれかに記載の高炭素冷延鋼板を素材として、該素材に二次加工を施して所定形状の機械部品としたのち、該機械部品に短時間溶体化処理後急冷する処理と焼戻し処理を施す機械部品の製造方法であって、
前記短時間溶体化処理後急冷する処理を、760〜820℃の範囲の温度で、3〜15minの範囲の時間保持したのち、急冷する処理とし、前記焼戻し処理を、200〜350℃の範囲の温度で焼戻する処理として、優れた耐摩耗性と優れた靭性を兼備する機械部品とすることを特徴とする高炭素鋼製機械部品の製造方法。
The high carbon cold-rolled steel sheet according to any one of claims 1 to 4 is used as a material, and the material is subjected to secondary processing to obtain a machine part having a predetermined shape, and then the machine part is subjected to a short-time solution treatment and then rapidly cooled. It is a manufacturing method of machine parts that are processed and tempered.
The process of quenching after the short-time solution treatment is performed at a temperature in the range of 760 to 820 ° C. for a time in the range of 3 to 15 min, and then the process of quenching is performed, and the tempering process is performed in the range of 200 to 350 ° C. A method for manufacturing a machine part made of high carbon steel, which comprises making a machine part having excellent wear resistance and excellent toughness as a process of tempering at a temperature.
請求項8に記載の高炭素鋼製機械部品の製造方法で製造されてなる高炭素鋼製機械部品。 A high carbon steel machine part manufactured by the method for manufacturing a high carbon steel machine part according to claim 8.
JP2019567743A 2019-11-08 2019-11-08 High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts Active JP6880245B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043828 WO2021090472A1 (en) 2019-11-08 2019-11-08 High-carbon cold-rolled steel sheet and production method therefor, and mechanical parts made of high-carbon steel

Publications (2)

Publication Number Publication Date
JP6880245B1 JP6880245B1 (en) 2021-06-02
JPWO2021090472A1 true JPWO2021090472A1 (en) 2021-11-25

Family

ID=75849823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567743A Active JP6880245B1 (en) 2019-11-08 2019-11-08 High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts

Country Status (6)

Country Link
EP (1) EP3848477A4 (en)
JP (1) JP6880245B1 (en)
KR (1) KR102329386B1 (en)
CN (1) CN113099723B (en)
TW (1) TWI734291B (en)
WO (1) WO2021090472A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264947A1 (en) * 2021-06-18 2022-12-22 Jfeスチール株式会社 Cold-rolled steel sheet, steel components, method for producing cold-rolled steel sheet, and method for producing steel components
EP4324953A1 (en) * 2021-06-18 2024-02-21 JFE Steel Corporation Steel part and manufacturing method of steel part
CN114055082B (en) * 2021-11-15 2024-02-06 江苏九天光电科技有限公司 Production method of high-grade special steel precision steel strip for crochet hook
CN114855076B (en) * 2022-04-15 2023-03-17 首钢集团有限公司 High-spheroidization-rate high-carbon steel and preparation method thereof
CN114850436B (en) * 2022-05-06 2023-05-09 上海交通大学 Carbide refining method for high-carbon high-alloy steel
CN114774795A (en) * 2022-05-09 2022-07-22 湖南华菱涟钢特种新材料有限公司 Ultrahigh carbon tool steel hot-rolled steel plate and production method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492105B2 (en) * 2003-11-28 2010-06-30 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JP4530268B2 (en) 2004-08-26 2010-08-25 日新製鋼株式会社 High carbon steel member with excellent impact characteristics and method for producing the same
CN1772939A (en) * 2005-11-17 2006-05-17 上海隆兴特钢有限公司 High purity steel belt for textile needle and its production process
JP5030280B2 (en) 2007-07-20 2012-09-19 日新製鋼株式会社 High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same
KR101128942B1 (en) * 2008-12-24 2012-03-27 주식회사 포스코 Fine spheroidal graphite steel sheet with excellent heat treatmentability and manufacturing method thereof
JP6104163B2 (en) * 2010-09-16 2017-03-29 ポスコPosco High carbon hot-rolled steel sheet, cold-rolled steel sheet and method for producing the same
WO2013047821A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same
CN103290308B (en) * 2012-02-27 2017-04-12 株式会社神户制钢所 High-strength cold-rolled steel plate and manufacturing method thereof
KR101886030B1 (en) * 2013-06-27 2018-08-07 닛신 세이코 가부시키가이샤 Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
US10407748B2 (en) * 2013-11-22 2019-09-10 Nippon Steel Corporation High-carbon steel sheet and method of manufacturing the same
US20180202022A1 (en) * 2015-07-16 2018-07-19 Nisshin Steel Co., Ltd. Steel sheet for textile machinery parts and method for manufacturing the same
JP6089131B2 (en) * 2015-08-14 2017-03-01 株式会社特殊金属エクセル High carbon cold rolled steel sheet and method for producing the same
JP6615039B2 (en) 2016-04-13 2019-12-04 日鉄日新製鋼株式会社 Wear-resistant steel plate with excellent toughness
CN110306027A (en) * 2019-07-02 2019-10-08 浙江豪环新材料有限公司 A kind of T8 carbon steel cold-rolling production process

Also Published As

Publication number Publication date
CN113099723A (en) 2021-07-09
CN113099723B (en) 2023-02-17
KR102329386B1 (en) 2021-11-19
JP6880245B1 (en) 2021-06-02
TW202118881A (en) 2021-05-16
TWI734291B (en) 2021-07-21
EP3848477A1 (en) 2021-07-14
EP3848477A4 (en) 2022-05-25
WO2021090472A1 (en) 2021-05-14
KR20210056880A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
JP5482971B2 (en) Steel wire or bar with excellent cold forgeability
JP6089131B2 (en) High carbon cold rolled steel sheet and method for producing the same
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP5280324B2 (en) High carbon steel sheet for precision punching
KR20120040728A (en) Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP6468365B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP3848444B2 (en) Medium and high carbon steel plates with excellent local ductility and hardenability
JP4465057B2 (en) High carbon steel sheet for precision punching
US20190300994A1 (en) Steel for Induction Hardening
JP5391711B2 (en) Heat treatment method for high carbon pearlitic rail
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP4600988B2 (en) High carbon steel plate with excellent machinability
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP4161090B2 (en) High carbon steel plate with excellent punchability
TWI794118B (en) Steel part and manufacturing method of steel part
JP2005336560A (en) High-carbon steel sheet for precision-blanked parts, and precision-blanked parts
JP4266052B2 (en) High workability high carbon steel sheet with excellent local ductility
JP2018141184A (en) Carbon steel plate
WO2022264947A1 (en) Cold-rolled steel sheet, steel components, method for producing cold-rolled steel sheet, and method for producing steel components
JP4266051B2 (en) High workability high carbon steel sheet with excellent local ductility
JP2018070963A (en) Bearing component and manufacturing method therefor
JP2007231374A (en) Steel tube having excellent cold forging property and machining property and further having excellent hardening, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6880245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250