JPWO2021046243A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021046243A5
JPWO2021046243A5 JP2022514694A JP2022514694A JPWO2021046243A5 JP WO2021046243 A5 JPWO2021046243 A5 JP WO2021046243A5 JP 2022514694 A JP2022514694 A JP 2022514694A JP 2022514694 A JP2022514694 A JP 2022514694A JP WO2021046243 A5 JPWO2021046243 A5 JP WO2021046243A5
Authority
JP
Japan
Prior art keywords
human
sequence
polypeptide
sequence encoding
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022514694A
Other languages
Japanese (ja)
Other versions
JP2022546592A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/049240 external-priority patent/WO2021046243A2/en
Publication of JP2022546592A publication Critical patent/JP2022546592A/en
Publication of JPWO2021046243A5 publication Critical patent/JPWO2021046243A5/ja
Pending legal-status Critical Current

Links

Description

国際出願時の請求の範囲の記載は以下のとおりである。
〔項1〕
核酸配列を細胞のゲノムに組み込む方法であって、組換えmRNAまたはmRNAをコードするベクターを細胞に導入するステップを含み、mRNAが、
(a)挿入配列であって、
(i)外来配列、または
(ii)外来配列の逆相補鎖である配列
を含む、挿入配列、
(b)5’UTR配列および該5’UTR配列の下流にある3’UTR配列であって、5’UTR配列または3’UTR配列がヒトORFタンパク質のための結合部位を含む、5’UTR配列および3’UTR配列
を含み、
挿入配列が細胞のゲノムに組み込まれる、方法。
〔項2〕
5’UTR配列または3’UTR配列がヒトORF2pのための結合部位を含む、請求項1に記載の方法。
〔項3〕
核酸配列を免疫細胞のゲノムに組み込むための方法であって、組換えmRNAまたはmRNAをコードするベクターを導入するステップを含み、mRNAが、
(a)挿入配列であって、(i)外来配列または(ii)外来配列の逆相補鎖である配列を含む、挿入配列、
(b)5’UTR配列および該5’UTR配列の下流にある3’UTR配列であって、5’UTR配列または3’UTR配列がエンドヌクレアーゼ結合部位および/または逆転写酵素結合部位を含む、5’UTR配列および3’UTR配列
を含み、
導入遺伝子配列が免疫細胞のゲノムに組み込まれる、方法。
〔項4〕
核酸配列を細胞のゲノムに組み込むための方法であって、組換えmRNAまたはmRNAをコードするベクターを導入するステップを含み、mRNAが、
(a)挿入配列であって、(i)外来配列または(ii)外来配列の逆相補鎖である配列を含む、挿入配列、
(b)5’UTR配列、該5’UTR配列の下流にあるヒトレトロトランスポゾンの配列、および該ヒトレトロトランスポゾンの配列の下流にある3’UTR配列であって、5’UTR配列または3’UTR配列がエンドヌクレアーゼ結合部位および/または逆転写酵素結合部位を含む、5’UTR配列、ヒトレトロトランスポゾンの配列、および3’UTR配列
を含み、
ヒトレトロトランスポゾンの配列が、2つのORFを含有する単一RNAから翻訳される2つのタンパク質をコードし、
挿入配列が細胞のゲノムに組み込まれる、方法。
〔項5〕
5’UTR配列または3’UTR配列がORF2p結合部位を含む、請求項3または4に記載の方法。
〔項6〕
ORF2p結合部位が3’UTR配列におけるポリA配列である、請求項2または5に記載の方法。
〔項7〕
mRNAがヒトレトロトランスポゾンの配列を含む、請求項1から3のいずれか一項に記載の方法。
〔項8〕
ヒトレトロトランスポゾンの配列が5’UTR配列の下流にある、請求項7に記載の方法。
〔項9〕
ヒトレトロトランスポゾンの配列が3’UTR配列の上流にある、請求項7または8に記載の方法。
〔項10〕
ヒトレトロトランスポゾンの配列が、2つのORFを含有する単一RNAから翻訳される2つのタンパク質をコードする、請求項7から9のいずれか一項に記載の方法。
〔項11〕
2つのORFが非重複ORFである、請求項4または10に記載の方法。
〔項12〕
2つのORFがORF1およびORF2である、請求項4、10、または11に記載の方法。
〔項13〕
ORF1がORF1pをコードし、ORF2がORF2pをコードする、請求項12に記載の方法。
〔項14〕
ヒトレトロトランスポゾンの配列が非LTRレトロトランスポゾンの配列を含む、請求項4から13のいずれか一項に記載の方法。
〔項15〕
ヒトレトロトランスポゾンの配列がLINE-1レトロトランスポゾンを含む、請求項4から13のいずれか一項に記載の方法。
〔項16〕
LINE-1レトロトランスポゾンがヒトLINE-1レトロトランスポゾンである、請求項15に記載の方法。
〔項17〕
ヒトレトロトランスポゾンの配列が、エンドヌクレアーゼおよび/または逆転写酵素をコードする配列を含む、請求項4から16のいずれか一項に記載の方法。
〔項18〕
エンドヌクレアーゼおよび/または逆転写酵素がORF2pである、請求項17に記載の方法。
〔項19〕
逆転写酵素がグループIIイントロン逆転写酵素ドメインである、請求項17に記載の方法。
〔項20〕
エンドヌクレアーゼおよび/または逆転写酵素がミンククジラエンドヌクレアーゼおよび/または逆転写酵素である、請求項17に記載の方法。
〔項21〕
ヒトレトロトランスポゾンの配列がORF2pをコードする配列を含む、請求項4から16または20のいずれか一項に記載の方法。
〔項22〕
挿入配列が、ORF2pのエンドヌクレアーゼドメインの特異性を使用して、ポリT部位においてゲノムに組み込まれる、請求項21に記載の方法。
〔項23〕
ポリT部位が配列TTTTTAを含む、請求項22に記載の方法。
〔項24〕
(i)ヒトレトロトランスポゾンの配列がORF1pをコードする配列を含むか、(ii)mRNAがORF1pをコードする配列を含まないか、または(iii)mRNAが、相補遺伝子由来の5’UTR配列を有する、ORF1pをコードする配列の置換配列を含む、請求項4から23のいずれか一項に記載の方法。
〔項25〕
mRNAが、ORF1pをコードする第1のmRNA分子とエンドヌクレアーゼおよび/または逆転写酵素をコードする第2のmRNA分子とを含む、請求項1から24のいずれか一項に記載の方法。
〔項26〕
mRNAが、ORF1pをコードする第1の配列とエンドヌクレアーゼおよび/または逆転写酵素をコードする第2の配列とを含むmRNA分子である、請求項1から24のいずれか一項に記載の方法。
〔項27〕
ORF1pをコードする第1の配列とエンドヌクレアーゼおよび/または逆転写酵素をコードする第2の配列とがリンカー配列によって分離される、請求項26に記載の方法。
〔項28〕
リンカー配列が内部リボソーム進入配列(IRES)を含む、請求項27に記載の方法。
〔項29〕
IRESがCVB3またはEV71由来のIRESである、請求項28に記載の方法。
〔項30〕
リンカー配列が自己切断ペプチド配列をコードする、請求項27に記載の方法。
〔項31〕
リンカー配列がT2A、E2A、またはP2A配列をコードする、請求項27に記載の方法。
〔項32〕
ヒトレトロトランスポゾンの配列が、追加のタンパク質配列と融合したORF1pをコードする配列および/または追加のタンパク質配列と融合したORF2pをコードする配列を含む、請求項1から31のいずれか一項に記載の方法。
〔項33〕
ORF1pおよび/またはORF2pが核内保留配列と融合する、請求項32に記載の方法。
〔項34〕
核内保留配列がAlu配列である、請求項33に記載の方法。
〔項35〕
ORF1pおよび/またはORF2pがMS2コートタンパク質と融合する、請求項32に記載の方法。
〔項36〕
5’UTR配列または3’UTR配列が少なくとも1つ、2つ、3つ、またはそれよりも多くのMS2ヘアピン配列を含む、請求項1から35のいずれか一項に記載の方法。
〔項37〕
5’UTR配列または3’UTR配列が、mRNAのポリA尾部とエンドヌクレアーゼおよび/または逆転写酵素との相互作用を促進または増強する配列を含む、請求項17から36のいずれか一項に記載の方法。
〔項38〕
5’UTR配列または3’UTR配列が、ポリA結合タンパク質(PABP)とエンドヌクレアーゼおよび/または逆転写酵素との相互作用を促進または増強する配列を含む、請求項17から37のいずれか一項に記載の方法。
〔項39〕
5’UTR配列または3’UTR配列が、エンドヌクレアーゼおよび/または逆転写酵素のmRNAに対する特異性を、細胞によって発現される別のmRNAと比べて向上させる配列を含む、請求項17から38のいずれか一項に記載の方法。
〔項40〕
5’UTR配列または3’UTR配列がAluエレメント配列を含む、請求項1から32のいずれか一項に記載の方法。
〔項41〕
ORF1pをコードする第1の配列とエンドヌクレアーゼおよび/または逆転写酵素をコードする第2の配列とが同じプロモーターを有する、請求項26から40のいずれか一項に記載の方法。
〔項42〕
挿入配列が、ORF1pをコードする第1の配列のプロモーターと異なるプロモーターを有する、請求項24から41のいずれか一項に記載の方法。
〔項43〕
挿入配列が、エンドヌクレアーゼおよび/または逆転写酵素をコードする第2の配列のプロモーターと異なるプロモーターを有する、請求項17から42のいずれか一項に記載の方法。
〔項44〕
ORF1pをコードする第1の配列ならびに/またはエンドヌクレアーゼおよび/もしくは逆転写酵素をコードする第2の配列が、誘導性プロモーター、CMVプロモーターまたは転写開始部位、T7プロモーターまたは転写開始部位、EF1aプロモーターまたは転写開始部位、およびそれらの組合せからなる群から選択されるプロモーターまたは転写開始部位を有する、請求項26から43のいずれか一項に記載の方法。
〔項45〕
挿入配列が、誘導性プロモーター、CMVプロモーターまたは転写開始部位、T7プロモーターまたは転写開始部位、EF1aプロモーターまたは転写開始部位、およびそれらの組合せからなる群から選択されるプロモーターまたは転写開始部位を有する、請求項1から44のいずれか一項に記載の方法。
〔項46〕
ORF1pをコードする第1の配列とエンドヌクレアーゼおよび/または逆転写酵素をコードする第2の配列とが、ヒト細胞における発現に対してコドン最適化される、請求項26から45のいずれか一項に記載の方法。
〔項47〕
mRNAがWPREエレメントを含む、請求項1から46のいずれか一項に記載の方法。
〔項48〕
mRNAが選択マーカーを含む、請求項1から47のいずれか一項に記載の方法。
〔項49〕
mRNAが親和性タグをコードする配列を含む、請求項1から48のいずれか一項に記載の方法。
〔項50〕
親和性タグがエンドヌクレアーゼおよび/または逆転写酵素をコードする配列と連結する、請求項49に記載の方法。
〔項51〕
3’UTRがポリA配列を含むか、またはポリA配列がin vitroにおいてmRNAに付加される、請求項1から50のいずれか一項に記載の方法。
〔項52〕
ポリA配列がエンドヌクレアーゼおよび/または逆転写酵素をコードする配列の下流にある、請求項51に記載の方法。
〔項53〕
挿入配列がポリA配列の上流にある、請求項51または52に記載の方法。
〔項54〕
3’UTR配列が挿入配列を含む、請求項1から53のいずれか一項に記載の方法。
〔項55〕
挿入配列が、外来ポリペプチドをコードする配列の逆相補鎖である配列を含む、請求項1から54のいずれか一項に記載の方法。
〔項56〕
挿入配列がポリアデニル化部位を含む、請求項1から55のいずれか一項に記載の方法。
〔項57〕
挿入配列がSV40ポリアデニル化部位を含む、請求項1から56のいずれか一項に記載の方法。
〔項58〕
挿入配列が、外来ポリペプチドをコードする配列の逆相補鎖である配列の上流にポリアデニル化部位を含む、請求項1から57のいずれか一項に記載の方法。
〔項59〕
挿入配列が、リボソーム座位ではない座位においてゲノムに組み込まれる、請求項1から58のいずれか一項に記載の方法。
〔項60〕
挿入配列が遺伝子または遺伝子の調節領域に組み込まれ、それによって遺伝子を破壊するかまたは遺伝子の発現を下方制御する、請求項1から58のいずれか一項に記載の方法。
〔項61〕
挿入配列が遺伝子または遺伝子の調節領域に組み込まれ、それによって遺伝子の発現を上方制御する、請求項1から58のいずれか一項に記載の方法。
〔項62〕
挿入配列がゲノムに組み込まれ、遺伝子を置き換える、請求項1から58のいずれか一項に記載の方法。
〔項63〕
挿入配列がゲノムに安定に組み込まれる、請求項1から62のいずれか一項に記載の方法。
〔項64〕
挿入配列がゲノムにレトロ転移する、請求項1から63のいずれか一項に記載の方法。
〔項65〕
挿入配列が、mRNAによってコードされるエンドヌクレアーゼによる標的部位のDNA鎖の切断によってゲノムに組み込まれる、請求項1から64のいずれか一項に記載の方法。
〔項66〕
挿入配列が、標的をプライマーとする逆転写(TPRT)を介してゲノムに組み込まれる、請求項1から65のいずれか一項に記載の方法。
〔項67〕
挿入配列が、mRNAのゲノムのDNA標的部位への逆スプライシングを介してゲノムに組み込まれる、請求項1から65のいずれか一項に記載の方法。
〔項68〕
細胞が免疫細胞である、請求項1または4から67のいずれか一項に記載の方法。
〔項69〕
免疫細胞がT細胞またはB細胞である、請求項3または68に記載の方法。
〔項70〕
免疫細胞が骨髄細胞である、請求項3または68に記載の方法。
〔項71〕
免疫細胞が、単球、マクロファージ、樹状細胞、樹状前駆細胞、およびマクロファージ前駆細胞からなる群から選択される、請求項3または68に記載の方法。
〔項72〕
mRNAが自己組込みmRNAである、請求項1から71のいずれか一項に記載の方法。
〔項73〕
細胞にmRNAを導入するステップを含む、請求項1から72のいずれか一項に記載の方法。
〔項74〕
細胞にmRNAをコードするベクターを導入するステップを含む、請求項1から72のいずれか一項に記載の方法。
〔項75〕
mRNAまたはmRNAをコードするベクターを細胞にex vivoにおいて導入するステップを含む、請求項1から74のいずれか一項に記載の方法。
〔項76〕
前記細胞をヒト対象に投与するステップをさらに含む、請求項75に記載の方法。
〔項77〕
mRNAまたはmRNAをコードするベクターをヒト対象に投与するステップを含む、請求項1から74のいずれか一項に記載の方法。
〔項78〕
免疫応答がヒト対象において誘発されない、請求項76または77に記載の方法。
〔項79〕
mRNAまたはベクターが実質的に非免疫原性である、請求項76または77に記載の方法。
〔項80〕
ベクターがプラスミドまたはウイルスベクターである、請求項1から79のいずれか一項に記載の方法。
〔項81〕
ベクターが非LTRレトロトランスポゾンを含む、請求項1から79のいずれか一項に記載の方法。
〔項82〕
ベクターがヒトL1エレメントを含む、請求項1から79のいずれか一項に記載の方法。
〔項83〕
ベクターがL1レトロトランスポゾンORF1遺伝子を含む、請求項1から79のいずれか一項に記載の方法。
〔項84〕
ベクターがL1レトロトランスポゾンORF2遺伝子を含む、請求項1から79のいずれか一項に記載の方法。
〔項85〕
ベクターがL1レトロトランスポゾンを含む、請求項1から79のいずれか一項に記載の方法。
〔項86〕
mRNAが少なくとも約1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、または3キロベースである、請求項1から85のいずれか一項に記載の方法。
〔項87〕
mRNAが最大で約2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、または5キロベースである、請求項1から86のいずれか一項に記載の方法。
〔項88〕
mRNAがmRNAの分解を阻害または防止する配列を含む、請求項1から87のいずれか一項に記載の方法。
〔項89〕
mRNAの分解を阻害または防止する配列が、エキソヌクレアーゼまたはRNAseによるmRNAの分解を阻害または防止する、請求項88に記載の方法。
〔項90〕
mRNAの分解を阻害または防止する配列が、G4構造、シュードノット、または三重鎖配列である、請求項88に記載の方法。
〔項91〕
mRNAの分解を阻害または防止する配列が、フラビウイルスRNA由来のエキソリボヌクレアーゼ耐性RNA構造またはKSV由来のENEエレメントである、請求項88に記載の方法。
〔項92〕
mRNAの分解を阻害または防止する配列が、デアデニラーゼによるmRNAの分解を阻害または防止する、請求項88に記載の方法。
〔項93〕
mRNAの分解を阻害または防止する配列が、mRNAのポリA尾部の内部または末端に非アデノシンヌクレオチドを含む、請求項88に記載の方法。
〔項94〕
mRNAの分解を阻害または防止する配列がmRNAの安定性を向上させる、請求項88に記載の方法。
〔項95〕
外来配列が外来ポリペプチドをコードする配列を含む、請求項1から94のいずれか一項に記載の方法。
〔項96〕
外来ポリペプチドをコードする配列が、エンドヌクレアーゼおよび/または逆転写酵素をコードする配列とインフレームではない、請求項95に記載の方法。
〔項97〕
外来ポリペプチドをコードする配列が、エンドヌクレアーゼおよび/または逆転写酵素をコードする配列とインフレームではない、請求項95または96に記載の方法。
〔項98〕
外来配列がイントロンを含まない、請求項95から97のいずれか一項に記載の方法。
〔項99〕
外来配列が、酵素、受容体、輸送タンパク質、構造タンパク質、ホルモン、抗体、収縮タンパク質、および貯蔵タンパク質からなる群から選択される外来ポリペプチドをコードする配列を含む、請求項95から98のいずれか一項に記載の方法。
〔項100〕
外来配列が、キメラ抗原受容体(CAR)、リガンド、抗体、受容体、および酵素からなる群から選択される外来ポリペプチドをコードする配列を含む、請求項95から98のいずれか一項に記載の方法。
〔項101〕
外来配列が調節配列を含む、請求項1から94のいずれか一項に記載の方法。
〔項102〕
調節配列がシス作用性調節配列を含む、請求項101に記載の方法。
〔項103〕
調節配列が、エンハンサー、サイレンサー、プロモーター、または応答エレメントからなる群から選択されるシス作用性調節配列を含む、請求項101に記載の方法。
〔項104〕
調節配列がトランス作用性調節配列を含む、請求項101に記載の方法。
〔項105〕
調節配列が、転写因子をコードするトランス作用性調節配列を含む、請求項101に記載の方法。
〔項106〕
挿入配列の組込みが細胞の健康状態に悪影響を及ぼさない、請求項1から105のいずれか一項に記載の方法。
〔項107〕
エンドヌクレアーゼ、逆転写酵素、またはその両方が、挿入配列の部位特異的組込みが可能である、請求項1から106のいずれか一項に記載の方法。
〔項108〕
mRNAが、追加のヌクレアーゼドメインまたはORF2に由来しないヌクレアーゼドメインをコードする配列を含む、請求項1から107のいずれか一項に記載の方法。
〔項109〕
mRNAが、メガTALヌクレアーゼドメイン、TALENドメイン、Cas9ドメイン、R2レトロエレメント由来のジンクフィンガー結合ドメイン、またはAAV由来のRep78等の反復配列に結合するDNA結合ドメインをコードする配列を含む、請求項1から107のいずれか一項に記載の方法。
〔項110〕
エンドヌクレアーゼが、エンドヌクレアーゼの活性を、変異を有しないエンドヌクレアーゼと比較して低下させる変異を含む、請求項17から109のいずれか一項に記載の方法。
〔項111〕
エンドヌクレアーゼがORF2pエンドヌクレアーゼであり、変異がS228Pである、請求項110に記載の方法。
〔項112〕
mRNAが、逆転写酵素の正確性および/またはプロセシング能を向上させるドメインをコードする配列を含む、請求項17から111のいずれか一項に記載の方法。
〔項113〕
逆転写酵素が、ORF2以外のレトロエレメント由来の逆転写酵素、またはORF2pの逆転写酵素と比較してより高い正確性および/もしくはプロセシング能を有する逆転写酵素である、請求項17から111のいずれか一項に記載の方法。
〔項114〕
逆転写酵素がグループIIイントロン逆転写酵素である、請求項113に記載の方法。
〔項115〕
グループIIイントロン逆転写酵素が、グループIIAイントロン逆転写酵素、グループIIBイントロン逆転写酵素、またはグループIICイントロン逆転写酵素である、請求項114に記載の方法。
〔項116〕
グループIIイントロン逆転写酵素がTGIRT-IIまたはTGIRT-IIIである、請求項114に記載の方法。
〔項117〕
mRNAが、Aluエレメントおよび/またはリボソーム結合アプタマーを含む配列を含む、請求項1から116のいずれか一項に記載の方法。
〔項118〕
mRNAが、DNA結合ドメインを含むポリペプチドをコードする配列を含む、請求項1から117のいずれか一項に記載の方法。
〔項119〕
3’UTR配列がウイルス3’UTRまたはベータ-グロビン3’UTRに由来する、請求項1から118のいずれか一項に記載の方法。
〔項120〕
組換えmRNAまたはmRNAをコードするベクターを含む組成物であって、mRNAが、
(i)ヒトLINE-1トランスポゾン5’UTR配列、
(ii)該ヒトLINE-1トランスポゾン5’UTR配列の下流にあるORF1pをコードする配列、
(iii)該ORF1pをコードする配列の下流にあるORF間リンカー配列、
(iv)該ORF間リンカー配列の下流にあるORF2pをコードする配列、および
(v)該ORF2pをコードする配列の下流にあるヒトLINE-1トランスポゾンに由来する3’UTR配列
を含むヒトLINE-1トランスポゾン配列を含み、
3’UTR配列が挿入配列を含み、挿入配列が、外来ポリペプチドをコードする配列の逆相補鎖または外来調節エレメントをコードする配列の逆相補鎖である、組成物。
〔項121〕
挿入配列が、細胞に導入される場合、細胞のゲノムに組み込まれる、請求項120に記載の組成物。
〔項122〕
挿入配列が状態または疾患と関連する遺伝子に組み込まれ、それによって遺伝子を破壊するかまたは遺伝子の発現を下方制御する、請求項121に記載の組成物。
〔項123〕
挿入配列が遺伝子に組み込まれ、それによって遺伝子の発現を上方制御する、請求項121に記載の組成物。
〔項124〕
mRNAが、配列番号35~50からなる群から選択される配列と少なくとも80%の配列同一性を有する配列を含む、請求項121に記載の組成物。
〔項125〕
組換えmRNAまたはmRNAをコードするベクターが単離または精製される、請求項121に記載の組成物。
〔項126〕
(a)長鎖散在反復配列(LINE)ポリペプチドであって、ヒトORF1pおよびヒトORF2pを含む、LINEポリペプチドと、(b)挿入配列であって、外来ポリペプチドをコードする配列の逆相補鎖または外来調節エレメントをコードする配列の逆相補鎖である、挿入配列とをコードするヌクレオチド配列を含む核酸を含む組成物であって、実質的に非免疫原性である、組成物。
〔項127〕
ヒトORF1pおよびヒトORF2pタンパク質を含む、請求項126に記載の組成物。
〔項128〕
前記核酸と複合体を形成したヒトORF1pおよびヒトORF2pを含むリボ核タンパク質(RNP)を含む、請求項126または127に記載の組成物。
〔項129〕
核酸がmRNAである、請求項127または128に記載の組成物。
〔項130〕
請求項120から129のいずれか一項に記載の組成物を含む細胞を含む組成物。
〔項131〕
細胞が免疫細胞である、請求項130に記載の組成物。
〔項132〕
免疫細胞がT細胞またはB細胞である、請求項131に記載の組成物。
〔項133〕
免疫細胞が骨髄細胞である、請求項131に記載の組成物。
〔項134〕
免疫細胞が、単球、マクロファージ、樹状細胞、樹状前駆細胞、およびマクロファージ前駆細胞からなる群から選択される、請求項131に記載の組成物。
〔項135〕
挿入配列が外来ポリペプチドをコードする配列の逆相補鎖であり、外来ポリペプチドがキメラ抗原受容体(CAR)である、請求項120から134のいずれか一項に記載の組成物。
〔項136〕
請求項120から135のいずれか一項に記載の組成物と、薬学的に許容される賦形剤とを含む医薬組成物。
〔項137〕
遺伝子療法における使用のための、請求項136に記載の医薬組成物。
〔項138〕
疾患または状態を処置するための医薬の製造における使用のための、請求項136に記載の医薬組成物。
〔項139〕
疾患または状態を処置することにおける使用のための、請求項136に記載の医薬組成物。
〔項140〕
対象における疾患を処置する方法であって、疾患または状態を有する対象に請求項136に記載の医薬組成物を投与するステップを含む、方法。
〔項141〕
対象におけるタンパク質または機能性RNAの量または活性を増加する、請求項140に記載の方法。
〔項142〕
対象が不十分な量または活性のタンパク質または機能性RNAを有する、請求項140または141に記載の方法。
〔項143〕
不十分な量または活性のタンパク質または機能性RNAが、疾患もしくは状態と関連するかまたは疾患もしくは状態を引き起こす、請求項142に記載の方法。
〔項144〕
ヒトサイレンシングハブ(HUSH)複合体を阻害する薬剤、FAM208Aを阻害する薬剤、またはTRIM28を阻害する薬剤を投与するステップをさらに含む、請求項140から143のいずれか一項に記載の方法。
〔項145〕
ヒトサイレンシングハブ(HUSH)複合体を阻害する薬剤が、ペリフィリン、TASOR、および/またはMPP8を阻害する薬剤である、請求項144に記載の方法。
〔項146〕
ヒトサイレンシングハブ(HUSH)複合体を阻害する薬剤がHUSH複合体の集合を阻害する、請求項144に記載の方法。
〔項147〕
ファンコニ貧血複合体を阻害する薬剤を投与するステップをさらに含む、請求項140から146のいずれか一項に記載の方法。

配列
[0489]以下は、実施例において使用される構築物の例示的な配列である。これらの配列は参照例示を目的としており、当業者によって過度の実験を行わずに想到される配列の変形および最適化は本開示によって企図および包含される。配列の表題にmRNA配列と記載される場合、構築物はDNA鋳型のヌクレオチドを記載しており、当業者は対応するmRNA配列を容易に得ることができる。
The scope of claims at the time of international filing is as follows.
[Section 1]
A method of integrating a nucleic acid sequence into the genome of a cell, the method comprising the step of introducing into the cell a recombinant mRNA or a vector encoding the mRNA, the mRNA comprising:
(a) an insertion sequence,
(i) a foreign sequence, or
(ii) a sequence that is the reverse complement of a foreign sequence;
an insert array containing,
(b) a 5'UTR sequence and a 3'UTR sequence downstream of the 5'UTR sequence, the 5'UTR sequence or the 3'UTR sequence comprising a binding site for a human ORF protein; and 3'UTR sequence
including;
A method in which an inserted sequence is integrated into the genome of a cell.
[Section 2]
2. The method of claim 1, wherein the 5'UTR sequence or 3'UTR sequence contains a binding site for human ORF2p.
[Section 3]
A method for integrating a nucleic acid sequence into the genome of an immune cell, the method comprising the step of introducing a recombinant mRNA or a vector encoding the mRNA, the mRNA comprising:
(a) an insertion sequence comprising (i) a foreign sequence or (ii) a sequence that is the reverse complement of the foreign sequence;
(b) a 5'UTR sequence and a 3'UTR sequence downstream of the 5'UTR sequence, the 5'UTR sequence or 3'UTR sequence comprising an endonuclease binding site and/or a reverse transcriptase binding site; 5'UTR sequence and 3'UTR sequence
including;
A method in which a transgene sequence is integrated into the genome of an immune cell.
[Section 4]
A method for integrating a nucleic acid sequence into the genome of a cell, the method comprising the step of introducing a recombinant mRNA or a vector encoding the mRNA, the mRNA comprising:
(a) an insertion sequence comprising (i) a foreign sequence or (ii) a sequence that is the reverse complement of the foreign sequence;
(b) a 5'UTR sequence, a sequence of a human retrotransposon downstream of the 5'UTR sequence, and a 3'UTR sequence downstream of the human retrotransposon sequence, the 5'UTR sequence or the 3'UTR sequence; 5'UTR sequences, sequences of human retrotransposons, and 3'UTR sequences, the sequences of which include an endonuclease binding site and/or a reverse transcriptase binding site.
including;
the sequence of a human retrotransposon encodes two proteins that are translated from a single RNA containing two ORFs,
A method in which an inserted sequence is integrated into the genome of a cell.
[Section 5]
5. The method of claim 3 or 4, wherein the 5'UTR sequence or 3'UTR sequence comprises an ORF2p binding site.
[Section 6]
6. The method according to claim 2 or 5, wherein the ORF2p binding site is a poly A sequence in the 3'UTR sequence.
[Section 7]
4. The method according to any one of claims 1 to 3, wherein the mRNA comprises a sequence of a human retrotransposon.
[Section 8]
8. The method of claim 7, wherein the human retrotransposon sequence is downstream of the 5'UTR sequence.
[Section 9]
9. The method of claim 7 or 8, wherein the human retrotransposon sequence is upstream of the 3'UTR sequence.
[Section 10]
10. The method of any one of claims 7 to 9, wherein the sequence of the human retrotransposon encodes two proteins that are translated from a single RNA containing two ORFs.
[Section 11]
11. The method of claim 4 or 10, wherein the two ORFs are non-overlapping ORFs.
[Section 12]
12. The method of claim 4, 10, or 11, wherein the two ORFs are ORF1 and ORF2.
[Section 13]
13. The method of claim 12, wherein ORF1 encodes ORF1p and ORF2 encodes ORF2p.
[Section 14]
14. The method of any one of claims 4 to 13, wherein the human retrotransposon sequence comprises a non-LTR retrotransposon sequence.
[Section 15]
14. The method of any one of claims 4 to 13, wherein the human retrotransposon sequence comprises a LINE-1 retrotransposon.
[Section 16]
16. The method of claim 15, wherein the LINE-1 retrotransposon is a human LINE-1 retrotransposon.
[Section 17]
17. The method according to any one of claims 4 to 16, wherein the sequence of the human retrotransposon comprises a sequence encoding an endonuclease and/or a reverse transcriptase.
[Section 18]
18. The method according to claim 17, wherein the endonuclease and/or reverse transcriptase is ORF2p.
[Section 19]
18. The method of claim 17, wherein the reverse transcriptase is a group II intron reverse transcriptase domain.
[Section 20]
18. The method of claim 17, wherein the endonuclease and/or reverse transcriptase is minke whale endonuclease and/or reverse transcriptase.
[Section 21]
21. The method according to any one of claims 4 to 16 or 20, wherein the sequence of the human retrotransposon comprises a sequence encoding ORF2p.
[Section 22]
22. The method of claim 21, wherein the insertion sequence is integrated into the genome at a poly-T site using the specificity of the endonuclease domain of ORF2p.
[Section 23]
23. The method of claim 22, wherein the poly T site comprises the sequence TTTTTA.
[Section 24]
(i) the sequence of the human retrotransposon contains a sequence encoding ORF1p, (ii) the mRNA does not contain a sequence encoding ORF1p, or (iii) the mRNA has a 5'UTR sequence derived from a complementary gene. , comprising a replacement sequence of the sequence encoding ORF1p.
[Section 25]
25. The method according to any one of claims 1 to 24, wherein the mRNA comprises a first mRNA molecule encoding ORF1p and a second mRNA molecule encoding an endonuclease and/or reverse transcriptase.
[Section 26]
25. The method according to any one of claims 1 to 24, wherein the mRNA is an mRNA molecule comprising a first sequence encoding ORF1p and a second sequence encoding an endonuclease and/or reverse transcriptase.
[Section 27]
27. The method of claim 26, wherein the first sequence encoding ORF1p and the second sequence encoding an endonuclease and/or reverse transcriptase are separated by a linker sequence.
[Section 28]
28. The method of claim 27, wherein the linker sequence comprises an internal ribosome entry sequence (IRES).
[Section 29]
29. The method of claim 28, wherein the IRES is a CVB3 or EV71 derived IRES.
[Section 30]
28. The method of claim 27, wherein the linker sequence encodes a self-cleaving peptide sequence.
[Section 31]
28. The method of claim 27, wherein the linker sequence encodes a T2A, E2A, or P2A sequence.
[Section 32]
32. The human retrotransposon sequence according to any one of claims 1 to 31, wherein the sequence of the human retrotransposon comprises a sequence encoding ORF1p fused to an additional protein sequence and/or a sequence encoding ORF2p fused to an additional protein sequence. Method.
[Section 33]
33. The method according to claim 32, wherein ORF1p and/or ORF2p are fused with a nuclear retention sequence.
[Section 34]
34. The method according to claim 33, wherein the nuclear retention sequence is an Alu sequence.
[Section 35]
33. The method according to claim 32, wherein ORF1p and/or ORF2p are fused to MS2 coat protein.
[Section 36]
36. The method of any one of claims 1-35, wherein the 5'UTR or 3'UTR sequence comprises at least one, two, three or more MS2 hairpin sequences.
[Section 37]
37. According to any one of claims 17 to 36, the 5'UTR sequence or 3'UTR sequence comprises a sequence that promotes or enhances the interaction of the polyA tail of the mRNA with an endonuclease and/or a reverse transcriptase. the method of.
[Section 38]
38. Any one of claims 17 to 37, wherein the 5'UTR sequence or 3'UTR sequence comprises a sequence that promotes or enhances the interaction of poly A binding protein (PABP) with an endonuclease and/or reverse transcriptase. The method described in.
[Section 39]
39. Any of claims 17 to 38, wherein the 5'UTR sequence or 3'UTR sequence comprises a sequence that increases the specificity of an endonuclease and/or reverse transcriptase for an mRNA compared to another mRNA expressed by the cell. The method described in paragraph (1).
[Section 40]
33. A method according to any one of claims 1 to 32, wherein the 5'UTR sequence or 3'UTR sequence comprises an Alu element sequence.
[Section 41]
41. The method according to any one of claims 26 to 40, wherein the first sequence encoding ORF1p and the second sequence encoding an endonuclease and/or reverse transcriptase have the same promoter.
[Section 42]
42. The method of any one of claims 24 to 41, wherein the inserted sequence has a promoter different from the promoter of the first sequence encoding ORF1p.
[Section 43]
43. A method according to any one of claims 17 to 42, wherein the insertion sequence has a promoter different from the promoter of the second sequence encoding the endonuclease and/or reverse transcriptase.
[Section 44]
The first sequence encoding ORF1p and/or the second sequence encoding an endonuclease and/or reverse transcriptase is an inducible promoter, a CMV promoter or transcription start site, a T7 promoter or transcription start site, an EF1a promoter or transcription start site. 44. The method of any one of claims 26 to 43, having a promoter or transcription initiation site selected from the group consisting of an initiation site, and combinations thereof.
[Section 45]
12. The inserted sequence has a promoter or transcription initiation site selected from the group consisting of an inducible promoter, a CMV promoter or transcription initiation site, a T7 promoter or transcription initiation site, an EF1a promoter or transcription initiation site, and combinations thereof. 45. The method according to any one of 1 to 44.
[Section 46]
46. Any one of claims 26 to 45, wherein the first sequence encoding ORF1p and the second sequence encoding an endonuclease and/or reverse transcriptase are codon optimized for expression in human cells. The method described in.
[Section 47]
47. A method according to any one of claims 1 to 46, wherein the mRNA comprises a WPRE element.
[Section 48]
48. A method according to any one of claims 1 to 47, wherein the mRNA comprises a selectable marker.
[Section 49]
49. The method of any one of claims 1-48, wherein the mRNA comprises a sequence encoding an affinity tag.
[Section 50]
50. The method of claim 49, wherein the affinity tag is linked to a sequence encoding an endonuclease and/or reverse transcriptase.
[Section 51]
51. The method of any one of claims 1 to 50, wherein the 3'UTR comprises a poly A sequence or the poly A sequence is added to the mRNA in vitro.
[Section 52]
52. The method of claim 51, wherein the polyA sequence is downstream of an endonuclease and/or reverse transcriptase encoding sequence.
[Section 53]
53. The method of claim 51 or 52, wherein the insertion sequence is upstream of the polyA sequence.
[Section 54]
54. The method of any one of claims 1-53, wherein the 3'UTR sequence comprises an insertion sequence.
[Section 55]
55. The method of any one of claims 1-54, wherein the inserted sequence comprises a sequence that is the reverse complement of a sequence encoding a foreign polypeptide.
[Section 56]
56. A method according to any one of claims 1 to 55, wherein the insertion sequence comprises a polyadenylation site.
[Section 57]
57. The method of any one of claims 1-56, wherein the inserted sequence comprises an SV40 polyadenylation site.
[Section 58]
58. The method of any one of claims 1 to 57, wherein the inserted sequence comprises a polyadenylation site upstream of a sequence that is the reverse complement of the sequence encoding the foreign polypeptide.
[Section 59]
59. A method according to any one of claims 1 to 58, wherein the insertion sequence is integrated into the genome at a locus that is not a ribosomal locus.
[Section 60]
59. A method according to any one of claims 1 to 58, wherein the insertion sequence is integrated into the gene or the regulatory region of the gene, thereby disrupting the gene or down-regulating the expression of the gene.
[Section 61]
59. A method according to any one of claims 1 to 58, wherein the insertion sequence is integrated into the gene or the regulatory region of the gene, thereby upregulating the expression of the gene.
[Section 62]
59. A method according to any one of claims 1 to 58, wherein the insertion sequence is integrated into the genome and replaces a gene.
[Section 63]
63. A method according to any one of claims 1 to 62, wherein the inserted sequence is stably integrated into the genome.
[Section 64]
64. A method according to any one of claims 1 to 63, wherein the inserted sequence is retrotransposed into the genome.
[Section 65]
65. The method of any one of claims 1 to 64, wherein the insertion sequence is integrated into the genome by cleavage of the DNA strand at a target site by an endonuclease encoded by the mRNA.
[Section 66]
66. The method of any one of claims 1 to 65, wherein the inserted sequence is integrated into the genome via target-primed reverse transcription (TPRT).
[Section 67]
66. The method of any one of claims 1 to 65, wherein the insertion sequence is integrated into the genome via reverse splicing of the mRNA to a DNA target site of the genome.
[Section 68]
68. The method of any one of claims 1 or 4-67, wherein the cells are immune cells.
[Section 69]
69. The method of claim 3 or 68, wherein the immune cells are T cells or B cells.
[Section 70]
69. The method of claim 3 or 68, wherein the immune cells are bone marrow cells.
[Section 71]
69. The method of claim 3 or 68, wherein the immune cells are selected from the group consisting of monocytes, macrophages, dendritic cells, dendritic progenitor cells, and macrophage progenitor cells.
[Section 72]
72. A method according to any one of claims 1 to 71, wherein the mRNA is self-integrating mRNA.
[Section 73]
73. A method according to any one of claims 1 to 72, comprising the step of introducing mRNA into the cell.
[Section 74]
73. The method of any one of claims 1 to 72, comprising introducing a vector encoding the mRNA into the cell.
[Section 75]
75. A method according to any one of claims 1 to 74, comprising introducing the mRNA or a vector encoding the mRNA into the cell ex vivo.
[Section 76]
76. The method of claim 75, further comprising administering the cell to a human subject.
[Section 77]
75. The method of any one of claims 1-74, comprising administering the mRNA or a vector encoding the mRNA to a human subject.
[Section 78]
78. The method of claim 76 or 77, wherein no immune response is elicited in the human subject.
[Section 79]
78. The method of claim 76 or 77, wherein the mRNA or vector is substantially non-immunogenic.
[Section 80]
80. A method according to any one of claims 1 to 79, wherein the vector is a plasmid or a viral vector.
[Section 81]
80. The method of any one of claims 1-79, wherein the vector comprises a non-LTR retrotransposon.
[Section 82]
80. The method of any one of claims 1-79, wherein the vector comprises a human L1 element.
[Section 83]
80. The method according to any one of claims 1 to 79, wherein the vector comprises the L1 retrotransposon ORF1 gene.
[Section 84]
80. The method according to any one of claims 1 to 79, wherein the vector comprises the L1 retrotransposon ORF2 gene.
[Section 85]
80. The method of any one of claims 1-79, wherein the vector comprises an L1 retrotransposon.
[Section 86]
The mRNA is at least about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2. 86. according to any one of claims 1 to 85, which is 2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, or 3 kilobases. Method.
[Section 87]
The maximum mRNA is approximately 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 , 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 , or 5 kilobases.
[Section 88]
88. The method of any one of claims 1 to 87, wherein the mRNA comprises a sequence that inhibits or prevents degradation of the mRNA.
[Section 89]
89. The method of claim 88, wherein the sequence that inhibits or prevents mRNA degradation inhibits or prevents mRNA degradation by an exonuclease or RNAse.
[Section 90]
89. The method of claim 88, wherein the sequence that inhibits or prevents mRNA degradation is a G4 structure, a pseudoknot, or a triplex sequence.
[Section 91]
89. The method of claim 88, wherein the sequence that inhibits or prevents mRNA degradation is an exoribonuclease resistant RNA structure derived from flavivirus RNA or an ENE element derived from KSV.
[Section 92]
89. The method of claim 88, wherein the sequence that inhibits or prevents mRNA degradation inhibits or prevents mRNA degradation by deadenylase.
[Section 93]
89. The method of claim 88, wherein the sequence that inhibits or prevents degradation of the mRNA comprises non-adenosine nucleotides within or at the end of the polyA tail of the mRNA.
[Section 94]
89. The method of claim 88, wherein the sequence that inhibits or prevents mRNA degradation improves mRNA stability.
[Section 95]
95. The method of any one of claims 1-94, wherein the foreign sequence comprises a sequence encoding a foreign polypeptide.
[Section 96]
96. The method of claim 95, wherein the foreign polypeptide encoding sequence is not in frame with the endonuclease and/or reverse transcriptase encoding sequence.
[Section 97]
97. The method of claim 95 or 96, wherein the sequence encoding the foreign polypeptide is not in frame with the sequence encoding the endonuclease and/or reverse transcriptase.
[Section 98]
98. The method of any one of claims 95-97, wherein the foreign sequence does not include introns.
[Section 99]
Any of claims 95-98, wherein the foreign sequence comprises a sequence encoding a foreign polypeptide selected from the group consisting of enzymes, receptors, transport proteins, structural proteins, hormones, antibodies, contractile proteins, and storage proteins. The method described in paragraph 1.
[Section 100]
99. According to any one of claims 95 to 98, the foreign sequence comprises a sequence encoding a foreign polypeptide selected from the group consisting of a chimeric antigen receptor (CAR), a ligand, an antibody, a receptor, and an enzyme. the method of.
[Section 101]
95. The method of any one of claims 1-94, wherein the foreign sequence comprises a regulatory sequence.
[Section 102]
102. The method of claim 101, wherein the regulatory sequence comprises a cis-acting regulatory sequence.
[Section 103]
102. The method of claim 101, wherein the regulatory sequence comprises a cis-acting regulatory sequence selected from the group consisting of an enhancer, silencer, promoter, or response element.
[Section 104]
102. The method of claim 101, wherein the regulatory sequence comprises a trans-acting regulatory sequence.
[Section 105]
102. The method of claim 101, wherein the regulatory sequence comprises a trans-acting regulatory sequence encoding a transcription factor.
[Section 106]
106. A method according to any one of claims 1 to 105, wherein the incorporation of the insertion sequence does not adversely affect the health of the cells.
[Section 107]
107. The method of any one of claims 1 to 106, wherein the endonuclease, reverse transcriptase, or both are capable of site-specific integration of the inserted sequence.
[Section 108]
108. The method of any one of claims 1-107, wherein the mRNA comprises a sequence encoding an additional nuclease domain or a nuclease domain not derived from ORF2.
[Section 109]
From claim 1, wherein the mRNA comprises a sequence encoding a DNA binding domain that binds to a repeat sequence such as a mega TAL nuclease domain, a TALEN domain, a Cas9 domain, a zinc finger binding domain from an R2 retroelement, or Rep78 from AAV. 108. The method according to any one of 107.
[Section 110]
110. The method of any one of claims 17 to 109, wherein the endonuclease comprises a mutation that reduces the activity of the endonuclease compared to an endonuclease without the mutation.
[Section 111]
111. The method of claim 110, wherein the endonuclease is an ORF2p endonuclease and the mutation is S228P.
[Section 112]
112. A method according to any one of claims 17 to 111, wherein the mRNA comprises a sequence encoding a domain that improves the accuracy and/or processing capacity of reverse transcriptase.
[Section 113]
Any of claims 17 to 111, wherein the reverse transcriptase is a reverse transcriptase derived from a retroelement other than ORF2, or a reverse transcriptase with higher accuracy and/or processing ability compared to a reverse transcriptase of ORF2p. The method described in paragraph (1).
[Section 114]
114. The method of claim 113, wherein the reverse transcriptase is a group II intron reverse transcriptase.
[Section 115]
115. The method of claim 114, wherein the Group II intron reverse transcriptase is a Group IIA intron reverse transcriptase, a Group IIB intron reverse transcriptase, or a Group IIC intron reverse transcriptase.
[Section 116]
115. The method of claim 114, wherein the Group II intron reverse transcriptase is TGIRT-II or TGIRT-III.
[Section 117]
117. The method of any one of claims 1 to 116, wherein the mRNA comprises a sequence comprising an Alu element and/or a ribosome binding aptamer.
[Section 118]
118. The method of any one of claims 1-117, wherein the mRNA comprises a sequence encoding a polypeptide comprising a DNA binding domain.
[Section 119]
119. The method of any one of claims 1-118, wherein the 3'UTR sequence is derived from a viral 3'UTR or a beta-globin 3'UTR.
[Section 120]
A composition comprising a recombinant mRNA or a vector encoding an mRNA, the mRNA comprising:
(i) human LINE-1 transposon 5'UTR sequence,
(ii) a sequence encoding ORF1p downstream of the human LINE-1 transposon 5'UTR sequence;
(iii) an inter-ORF linker sequence downstream of the ORF1p-encoding sequence;
(iv) a sequence encoding ORF2p downstream of the inter-ORF linker sequence, and
(v) 3'UTR sequence derived from the human LINE-1 transposon downstream of the sequence encoding said ORF2p
comprising a human LINE-1 transposon sequence comprising;
A composition wherein the 3'UTR sequence comprises an insertion sequence, the insertion sequence being the reverse complement of a sequence encoding a foreign polypeptide or a sequence encoding a foreign regulatory element.
[Section 121]
121. The composition of claim 120, wherein the insertion sequence is integrated into the genome of the cell when introduced into the cell.
[Section 122]
122. The composition of claim 121, wherein the inserted sequence is incorporated into a gene associated with a condition or disease, thereby disrupting the gene or downregulating expression of the gene.
[Section 123]
122. The composition of claim 121, wherein the insertion sequence is integrated into a gene, thereby upregulating expression of the gene.
[Section 124]
122. The composition of claim 121, wherein the mRNA comprises a sequence having at least 80% sequence identity with a sequence selected from the group consisting of SEQ ID NOs: 35-50.
[Section 125]
122. The composition of claim 121, wherein the recombinant mRNA or mRNA-encoding vector is isolated or purified.
[Section 126]
The reverse complement of (a) a long interspersed repeat (LINE) polypeptide, including human ORF1p and human ORF2p, and (b) an inserted sequence encoding a foreign polypeptide. or an inserted sequence that is the reverse complement of a sequence encoding a foreign regulatory element, the composition comprising a nucleic acid sequence that is substantially non-immunogenic.
[Section 127]
127. The composition of claim 126, comprising human ORF1p and human ORF2p proteins.
[Section 128]
128. The composition of claim 126 or 127, comprising a ribonucleoprotein (RNP) comprising human ORF1p and human ORF2p complexed with the nucleic acid.
[Section 129]
129. The composition according to claim 127 or 128, wherein the nucleic acid is mRNA.
[Section 130]
130. A composition comprising cells comprising a composition according to any one of claims 120 to 129.
[Section 131]
131. The composition of claim 130, wherein the cell is an immune cell.
[Section 132]
132. The composition of claim 131, wherein the immune cell is a T cell or a B cell.
[Section 133]
132. The composition of claim 131, wherein the immune cells are bone marrow cells.
[Section 134]
132. The composition of claim 131, wherein the immune cells are selected from the group consisting of monocytes, macrophages, dendritic cells, dendritic progenitor cells, and macrophage progenitor cells.
[Section 135]
135. The composition of any one of claims 120 to 134, wherein the inserted sequence is the reverse complement of a sequence encoding a foreign polypeptide, and the foreign polypeptide is a chimeric antigen receptor (CAR).
[Section 136]
136. A pharmaceutical composition comprising a composition according to any one of claims 120 to 135 and a pharmaceutically acceptable excipient.
[Section 137]
137. A pharmaceutical composition according to claim 136 for use in gene therapy.
[Section 138]
137. A pharmaceutical composition according to claim 136 for use in the manufacture of a medicament for treating a disease or condition.
[Section 139]
137. A pharmaceutical composition according to claim 136 for use in treating a disease or condition.
[Section 140]
137. A method of treating a disease in a subject, the method comprising administering a pharmaceutical composition according to claim 136 to a subject having the disease or condition.
[Section 141]
141. The method of claim 140, wherein the method increases the amount or activity of a protein or functional RNA in the subject.
[Section 142]
142. The method of claim 140 or 141, wherein the subject has an insufficient amount or activity of protein or functional RNA.
[Section 143]
143. The method of claim 142, wherein insufficient amount or activity of the protein or functional RNA is associated with or causes a disease or condition.
[Section 144]
144. The method of any one of claims 140-143, further comprising administering an agent that inhibits the human silencing hub (HUSH) complex, an agent that inhibits FAM208A, or an agent that inhibits TRIM28.
[Section 145]
145. The method of claim 144, wherein the agent that inhibits the human silencing hub (HUSH) complex is an agent that inhibits perophilin, TASOR, and/or MPP8.
[Section 146]
145. The method of claim 144, wherein the agent that inhibits human silencing hub (HUSH) complex inhibits HUSH complex assembly.
[Section 147]
147. The method of any one of claims 140-146, further comprising administering an agent that inhibits Fanconi anemia complex.

array
[0489] Below are exemplary sequences of constructs used in the Examples. These sequences are for exemplary reference purposes, and variations and optimizations of the sequences that occur to those skilled in the art without undue experimentation are contemplated and encompassed by this disclosure. When a sequence title states an mRNA sequence, the construct describes the nucleotides of a DNA template, and those skilled in the art can easily obtain the corresponding mRNA sequence.

Claims (36)

標的ヒト細胞集団のゲノムに組み込まれたDNA配列から外来ヒト治療用ポリペプチドを発現させる方法であって、
(a)1つもしくは複数のRNA分子を標的ヒト細胞集団に接触させるステップであって、該1つもしくは複数のRNA分子は:
(i)挿入配列であって、外来ヒト治療用ポリペプチドをコードするDNA配列の逆相補鎖であるRNA配列を含む、挿入配列、および
(ii)標的をプライマーとする逆転写(TPRT)活性を有するポリペプチドをコードするRNA配列を含むヒト可動性遺伝因子
を含む、ステップ;
(b)前記ヒト可動性遺伝因子を翻訳してTPRT活性を有するポリペプチドを産生させるステップ;
(c)ステップ(b)で翻訳されたポリペプチドのTPRT活性を介して前記外来ヒト治療用ポリペプチドをコードするDNA配列の逆相補鎖であるRNA配列を逆転写することにより、前記外来ヒト治療用ポリペプチドをコードするDNA配列を産生させるステップ;
(d)前記外来ヒト治療用ポリペプチドをコードするDNA配列を前記標的ヒト細胞集団の標的ヒト細胞のゲノムDNA中に標的部位で組み込むステップ;および
(e)ゲノムに組み込まれた外来ヒト治療用ポリペプチドをコードするDNA配列から前記標的ヒト細胞中で前記外来ヒト治療用ポリペプチドを発現させるステップ
含み、
TPRT活性を有するポリペプチドは、ヒト長鎖散在反復配列(LINE)1(L1)ORF2pポリペプチドまたはその機能性断片を含み、
挿入配列は100~12000塩基長である、方法。
A method for expressing a foreign human therapeutic polypeptide from a DNA sequence integrated into the genome of a target human cell population , the method comprising:
(a) contacting a target human cell population with one or more RNA molecules, wherein the one or more RNA molecules are:
(i) an insertion sequence comprising an RNA sequence that is the reverse complement of a DNA sequence encoding a foreign human therapeutic polypeptide, and
(ii) a human mobile genetic element comprising an RNA sequence encoding a polypeptide with target-primed reverse transcription (TPRT) activity;
a step including;
(b) translating the human mobile genetic element to produce a polypeptide having TPRT activity;
(c) producing said exogenous human therapeutic by reverse transcribing an RNA sequence that is the reverse complement of the DNA sequence encoding said exogenous human therapeutic polypeptide through the TPRT activity of the polypeptide translated in step (b); producing a DNA sequence encoding a polypeptide;
(d) integrating a DNA sequence encoding said exogenous human therapeutic polypeptide into the genomic DNA of a target human cell of said target human cell population at a targeted site; and
(e) expressing the foreign human therapeutic polypeptide in the target human cell from a DNA sequence encoding the foreign human therapeutic polypeptide integrated into the genome;
including ;
The polypeptide having TPRT activity comprises a human long interspersed repeat (LINE) 1 (L1) ORF2p polypeptide or a functional fragment thereof,
A method in which the inserted sequence is 100 to 12,000 bases long .
前記1つもしくは複数のRNA分子がmRNAである、請求項1に記載の方法。 2. The method of claim 1, wherein the one or more RNA molecules are mRNA . 前記1つもしくは複数のRNA分子が、in vitroで転写されたRNA分子、合成RNA分子、精製されたRNA分子、または単離されたRNA分子である、請求項1または2に記載の方法。3. The method of claim 1 or 2, wherein the one or more RNA molecules are in vitro transcribed, synthetic, purified, or isolated RNA molecules. 前記TPRT活性を有するポリペプチドをコードするRNA配列が、LINE1 ORF2p逆転写酵素(RT)を含む、ヒトORF2pポリペプチドまたはその機能性断片をコードする、請求項1に記載の方法。2. The method of claim 1, wherein the RNA sequence encoding a polypeptide having TPRT activity encodes a human ORF2p polypeptide or a functional fragment thereof, including LINE1 ORF2p reverse transcriptase (RT). 前記TPRT活性を有するポリペプチドをコードするRNA配列が、さらにエンドヌクレアーゼをコードし、該エンドヌクレアーゼはORF2pエンドヌクレアーゼまたはその断片である、請求項4に記載の方法。5. The method of claim 4, wherein the RNA sequence encoding the polypeptide having TPRT activity further encodes an endonuclease, and the endonuclease is ORF2p endonuclease or a fragment thereof. 前記TPRT活性を有するポリペプチドをコードするRNA配列が、さらにヒトORF1pまたはその機能性断片を含むポリペプチドをコードする、請求項4に記載の方法。5. The method according to claim 4, wherein the RNA sequence encoding the polypeptide having TPRT activity further encodes a polypeptide comprising human ORF1p or a functional fragment thereof. 前記ヒトORF2pポリペプチドをコードするRNA配列およびヒトORF1pポリペプチドをコードするRNA配列が、単一のRNA分子上にある、請求項5または6に記載の方法。7. The method of claim 5 or 6, wherein the RNA sequence encoding human ORF2p polypeptide and the RNA sequence encoding human ORF1p polypeptide are on a single RNA molecule. ヒトORF1pポリペプチドをコードする配列とヒトORF2pポリペプチドをコードする配列のコピー数の間の比率が少なくとも2:1である、請求項7に記載の方法。8. The method of claim 7, wherein the ratio between the copy number of the human ORF1p polypeptide-encoding sequence and the human ORF2p polypeptide-encoding sequence is at least 2:1. 前記1つもしくは複数のRNA分子が第1のRNA分子と第2のRNA分子を含み、第1のRNA分子はヒトORF1pまたはその機能性断片をコードする配列を含み、第2のRNA分子はヒトORF2pまたはその機能性断片をコードする、請求項1または2に記載の方法。The one or more RNA molecules include a first RNA molecule and a second RNA molecule, the first RNA molecule comprising a sequence encoding human ORF1p or a functional fragment thereof, and the second RNA molecule comprising a human 3. The method according to claim 1 or 2, which encodes ORF2p or a functional fragment thereof. 組成物中の第1のRNA分子の第2のRNA分子に対する比率が、(a)少なくとも2:1である、(b)最大で5:1である、または(c)約3:1である、請求項9に記載の方法。the ratio of first RNA molecules to second RNA molecules in the composition is (a) at least 2:1, (b) at most 5:1, or (c) about 3:1. 10. The method according to claim 9. 前記ヒト可動性遺伝因子が、配列番号55に少なくとも90%の配列同一性を持つポリペプチドをコードする配列を含む、請求項1または2に記載の方法。3. The method of claim 1 or 2, wherein the human mobile genetic element comprises a sequence encoding a polypeptide having at least 90% sequence identity to SEQ ID NO: 55. 前記ヒトORF1pポリペプチドをコードする配列とヒトORF2pポリペプチドをコードする配列が、前記外来ヒト治療用ポリペプチドをコードするDNA配列の逆相補鎖であるRNA配列とインフレームではない、請求項6に記載の方法。7. The human ORF1p polypeptide-encoding sequence and the human ORF2p polypeptide-encoding sequence are not in frame with an RNA sequence that is the reverse complement of the DNA sequence encoding the foreign human therapeutic polypeptide. Method described. 前記外来ヒト治療用ポリペプチドをコードするDNA配列が、さらにプロモーターを含む、請求項1または2に記載の方法。3. The method of claim 1 or 2, wherein the DNA sequence encoding the exogenous human therapeutic polypeptide further comprises a promoter. 前記外来ヒト治療用ポリペプチドをコードする配列が、リガンド、抗体、受容体、酵素、輸送タンパク質、構造タンパク質、ホルモン、収縮タンパク質、貯蔵タンパク質、転写因子、キメラ抗原受容体(CAR)またはT細胞受容体(TCR)である、請求項1または2に記載の方法。The sequence encoding the foreign human therapeutic polypeptide may be a ligand, an antibody, a receptor, an enzyme, a transport protein, a structural protein, a hormone, a contractile protein, a storage protein, a transcription factor, a chimeric antigen receptor (CAR) or a T cell receptor. 3. The method according to claim 1 or 2, wherein the method is TCR. 前記外来ヒト治療用ポリペプチドをコードする配列がイントロンを含まない、請求項1または2に記載の方法。3. The method of claim 1 or 2, wherein the sequence encoding the exogenous human therapeutic polypeptide is intron-free. 前記外来ヒト治療用ポリペプチドをコードする配列が、標的部位で前記標的ヒト細胞集団の標的ヒト細胞のゲノムDNA中にレトロ転移し、標的部位はリボソームRNA座位ではなく;標的部位は、(i)ゲノムの遺伝子または遺伝子の調節領域であり、それによって遺伝子を破壊するかまたは遺伝子の発現を下方制御する;(ii)ゲノムの遺伝子または遺伝子の調節領域であり、それによって遺伝子の発現を上方制御する;(iii)ゲノムの遺伝子であり、ゲノムの遺伝子を置き換える;または(iv)セーフハーバー座位である、請求項1または2に記載の方法。the sequence encoding said foreign human therapeutic polypeptide is retrotransposed into the genomic DNA of a target human cell of said target human cell population at a target site, the target site is not a ribosomal RNA locus; the target site is (i) (ii) a gene of the genome or a regulatory region of a gene, thereby disrupting the gene or downregulating the expression of the gene; (ii) a gene or regulatory region of the gene, thereby upregulating the expression of the gene; (iii) is a genomic gene and replaces a genomic gene; or (iv) is a safe harbor locus. 前記RNA配列を含むヒト可動性遺伝因子が、メガTALヌクレアーゼドメイン、TALENドメイン、CRISPR-Casタンパク質ドメイン、ジンクフィンガー結合ドメイン、またはAAV由来のRep78等の反復配列に結合するDNA結合ドメインから選択される、ORF2に由来しない異種タンパク質またはその断片に由来するドメインをコードする配列をさらに含む、請求項15に記載の方法。The human mobile genetic element comprising said RNA sequence is selected from a mega TAL nuclease domain, a TALEN domain, a CRISPR-Cas protein domain, a zinc finger binding domain, or a DNA binding domain that binds to a repetitive sequence such as Rep78 from AAV. 16. The method of claim 15, further comprising a sequence encoding a domain derived from a heterologous protein not derived from ORF2, or a fragment thereof. 前記異種タンパク質またはその断片に由来するドメインをコードする配列が、特定の標的部位に対するガイドRNA(gRNA)を伴うCRISPR-Casタンパク質ドメインをコードする、請求項17に記載の方法。18. The method of claim 17, wherein the domain-encoding sequence derived from the heterologous protein or fragment thereof encodes a CRISPR-Cas protein domain with a guide RNA (gRNA) directed to a specific target site. 前記CRISPR-Casタンパク質ドメインが、Cas9、Cas12a、Cas12b、Cas13、CasX、またはCasYタンパク質由来のエンドヌクレアーゼドメインである、請求項18に記載の方法。19. The method of claim 18, wherein the CRISPR-Cas protein domain is an endonuclease domain from a Cas9, Cas12a, Cas12b, Cas13, CasX, or CasY protein. 前記RNA配列を含むヒト可動性遺伝因子が、異種タンパク質由来のドメインをコードする配列をさらに含み、該異種タンパク質由来のドメインはヒトORF2pエンドヌクレアーゼドメインに融合したCRISPR-Cas9エンドヌクレアーゼドメインを含む、請求項1に記載の方法。Claim: the human mobile genetic element comprising the RNA sequence further comprises a sequence encoding a domain derived from a heterologous protein, the domain derived from the heterologous protein comprising a CRISPR-Cas9 endonuclease domain fused to a human ORF2p endonuclease domain. The method described in Section 1. 前記ORF2pエンドヌクレアーゼドメインが変異を含み、変異はORF2pエンドヌクレアーゼの活性を低下または抑制する欠失または点変異である、請求項20に記載の方法。21. The method of claim 20, wherein the ORF2p endonuclease domain comprises a mutation, the mutation being a deletion or point mutation that reduces or suppresses ORF2p endonuclease activity. 変異がS228P変異である、請求項21に記載の方法。22. The method of claim 21, wherein the mutation is the S228P mutation. CRISPR-Cas9エンドヌクレアーゼドメインがCas9ニッカーゼである、請求項20に記載の方法。21. The method of claim 20, wherein the CRISPR-Cas9 endonuclease domain is Cas9 nickase. 前記ヒトORF2pポリペプチドが核局在化配列(NLS)をN末端に、C末端に、または両方に含む、請求項4に記載の方法。5. The method of claim 4, wherein the human ORF2p polypeptide comprises a nuclear localization sequence (NLS) at the N-terminus, the C-terminus, or both. 前記外来ヒト治療用ポリペプチドが、前記標的ヒト細胞集団の標的ヒト細胞のゲノムDNAから2日よりも長い間にわたり安定的に発現する、請求項1に記載の方法。2. The method of claim 1, wherein the exogenous human therapeutic polypeptide is stably expressed from genomic DNA of target human cells of the target human cell population for more than two days. 外来ヒト治療用ポリペプチドをコードするDNA配列のヒト細胞のゲノムへの安定した組み込みのための組成物であって、該組成物は非LTRレトロトランスポゾン系を含み、該非LTRレトロトランスポゾン系は、A composition for stable integration of a DNA sequence encoding a foreign human therapeutic polypeptide into the genome of a human cell, the composition comprising a non-LTR retrotransposon system, the non-LTR retrotransposon system comprising:
(i)挿入配列であって、外来ヒト治療用ポリペプチドをコードするDNA配列の逆相補鎖であるRNA配列を含む、挿入配列、および(i) an insertion sequence comprising an RNA sequence that is the reverse complement of a DNA sequence encoding a foreign human therapeutic polypeptide, and
(ii)標的をプライマーとする逆転写(TPRT)活性を有するポリペプチドをコードするRNA配列を含むヒト可動性遺伝因子(ii) a human mobile genetic element comprising an RNA sequence encoding a polypeptide with target-primed reverse transcription (TPRT) activity;
を含む、1つもしくは複数の組換えmRNA分子を含み、one or more recombinant mRNA molecules comprising;
前記TPRT活性を有するポリペプチドをコードするRNA配列が、ヒトORF2p逆転写酵素(RT)およびエンドヌクレアーゼを含む、ヒトORF2pポリペプチドまたはその機能性断片を含むポリペプチドをコードし、the RNA sequence encoding a polypeptide having TPRT activity encodes a polypeptide comprising a human ORF2p polypeptide or a functional fragment thereof, including a human ORF2p reverse transcriptase (RT) and an endonuclease;
挿入配列は100~12000塩基長である、組成物。A composition in which the inserted sequence is 100 to 12,000 bases in length.
前記エンドヌクレアーゼがヒトLINE1 ORF2pエンドヌクレアーゼである、請求項26に記載の組成物。27. The composition of claim 26, wherein the endonuclease is human LINE1 ORF2p endonuclease. 前記TPRT活性を有するポリペプチドをコードするRNA配列が、さらにヒトLINE1 ORF1pポリペプチドまたはその機能性断片をコードする、請求項26に記載の組成物。27. The composition of claim 26, wherein the RNA sequence encoding the polypeptide having TPRT activity further encodes a human LINE1 ORF1p polypeptide or a functional fragment thereof. 5’UTR配列および該5’UTR配列の下流にある3’UTR配列をさらに含む、請求項26に記載の組成物であって;該5’UTR配列または該3’UTR配列はヒトLINE1 ORF2pポリペプチドまたはヒトLINE1 ORF1pポリペプチドまたはその機能性断片のための結合部位を含む、組成物。27. The composition of claim 26, further comprising a 5'UTR sequence and a 3'UTR sequence downstream of the 5'UTR sequence; wherein the 5'UTR sequence or the 3'UTR sequence A composition comprising a binding site for a peptide or human LINE1 ORF1p polypeptide or functional fragment thereof. ヒトLINE1 ORF2pポリペプチドまたはその機能性断片を含むポリペプチドをコードするRNA配列と、ヒトORF1pポリペプチドまたはその機能性断片を含むポリペプチドをコードするRNA配列とが単一のRNA分子上にあり、ヒトORF1pポリペプチドをコードする配列とヒトORF2pポリペプチドをコードする配列のコピー数の間の比率が少なくとも2:1である、請求項29に記載の組成物。An RNA sequence encoding a polypeptide comprising the human LINE1 ORF2p polypeptide or a functional fragment thereof and an RNA sequence encoding a polypeptide comprising the human ORF1p polypeptide or a functional fragment thereof are on a single RNA molecule, 30. The composition of claim 29, wherein the ratio between the copy number of the human ORF1p polypeptide-encoding sequence and the human ORF2p polypeptide-encoding sequence is at least 2:1. ヒトLINE1 ORF2pポリペプチドまたはその機能性断片を含むポリペプチドをコードする配列と、ヒトORF1pポリペプチドまたはその機能性断片を含むポリペプチドをコードするRNA配列とがリンカー配列によって分離され、該リンカー配列はT2A、E2A、またはP2A配列をコードする、請求項30に記載の組成物。A sequence encoding a polypeptide comprising the human LINE1 ORF2p polypeptide or a functional fragment thereof and an RNA sequence encoding a polypeptide comprising the human ORF1p polypeptide or a functional fragment thereof are separated by a linker sequence, and the linker sequence 31. The composition of claim 30, encoding a T2A, E2A, or P2A sequence. 前記1つもしくは複数の組換えmRNA分子が第1のRNA分子と第2のRNA分子を含み、第1のRNA分子はヒトORF1pポリペプチドまたはその機能性断片をコードする配列を含み、第2のRNA分子はヒトORF2pポリペプチドまたはその機能性断片をコードし、組成物中の第1のRNA分子の第2のRNA分子に対する比率が、(a)少なくとも2:1である、(b)最大で5:1である、または(c)約3:1である、請求項26に記載の組成物。The one or more recombinant mRNA molecules comprise a first RNA molecule and a second RNA molecule, the first RNA molecule comprising a sequence encoding a human ORF1p polypeptide or a functional fragment thereof; The RNA molecule encodes a human ORF2p polypeptide or a functional fragment thereof, and the ratio of the first RNA molecule to the second RNA molecule in the composition is (a) at least 2:1, (b) at most 27. The composition of claim 26, wherein the ratio is 5:1, or (c) about 3:1. 前記ヒト可動性遺伝因子が、配列番号55に少なくとも90%の配列同一性を持つポリペプチドをコードする配列を含む、請求項26に記載の組成物。27. The composition of claim 26, wherein the human mobile genetic element comprises a sequence encoding a polypeptide having at least 90% sequence identity to SEQ ID NO: 55. 前記ヒト可動性遺伝因子が、配列番号53に少なくとも90%の配列同一性を持つポリペプチドをコードする配列を含む、請求項26に記載の組成物。27. The composition of claim 26, wherein the human mobile genetic element comprises a sequence encoding a polypeptide having at least 90% sequence identity to SEQ ID NO: 53. 前記ヒトORF2pポリペプチドが核局在化配列(NLS)をN末端に、C末端に、または両方に含む、請求項26に記載の組成物。27. The composition of claim 26, wherein the human ORF2p polypeptide comprises a nuclear localization sequence (NLS) at the N-terminus, the C-terminus, or both. 前記外来ヒト治療用ポリペプチドをコードする配列が、リガンド、抗体、受容体、酵素、輸送タンパク質、構造タンパク質、ホルモン、収縮タンパク質、貯蔵タンパク質、転写因子、キメラ抗原受容体(CAR)またはT細胞受容体(TCR)である、請求項26に記載の組成物。The sequence encoding the foreign human therapeutic polypeptide may be a ligand, an antibody, a receptor, an enzyme, a transport protein, a structural protein, a hormone, a contractile protein, a storage protein, a transcription factor, a chimeric antigen receptor (CAR) or a T cell receptor. 27. The composition according to claim 26, wherein the composition is TCR.
JP2022514694A 2019-09-03 2020-09-03 Methods and compositions for genomic integration Pending JP2022546592A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962895441P 2019-09-03 2019-09-03
US62/895,441 2019-09-03
US201962908800P 2019-10-01 2019-10-01
US62/908,800 2019-10-01
US202063039261P 2020-06-15 2020-06-15
US63/039,261 2020-06-15
PCT/US2020/049240 WO2021046243A2 (en) 2019-09-03 2020-09-03 Methods and compositions for genomic integration

Publications (2)

Publication Number Publication Date
JP2022546592A JP2022546592A (en) 2022-11-04
JPWO2021046243A5 true JPWO2021046243A5 (en) 2023-09-11

Family

ID=74853338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022514694A Pending JP2022546592A (en) 2019-09-03 2020-09-03 Methods and compositions for genomic integration

Country Status (12)

Country Link
US (6) US11672874B2 (en)
EP (1) EP4025686A4 (en)
JP (1) JP2022546592A (en)
KR (1) KR20220097875A (en)
CN (1) CN114981409A (en)
AU (1) AU2020341479A1 (en)
BR (1) BR112022003970A2 (en)
CA (1) CA3149897A1 (en)
GB (1) GB2605276A (en)
IL (1) IL291048A (en)
MX (1) MX2022002613A (en)
WO (1) WO2021046243A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022003970A2 (en) 2019-09-03 2022-06-21 Myeloid Therapeutics Inc Methods and compositions for genomic integration
EP4232583A1 (en) 2020-10-21 2023-08-30 Massachusetts Institute of Technology Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste)
CA3197423A1 (en) 2020-11-04 2022-05-12 Daniel Getts Engineered chimeric fusion protein compositions and methods of use thereof
WO2022241029A1 (en) * 2021-05-11 2022-11-17 Myeloid Therapeutics, Inc. Methods and compositions for genomic integration
WO2023182948A1 (en) * 2022-03-21 2023-09-28 Bio Adventure Co., Ltd. Internal ribosome entry site (ires), plasmid vector and circular mrna for enhancing protein expression
CN115044583A (en) * 2022-03-21 2022-09-13 隋云鹏 RNA framework for gene editing and gene editing method
WO2024020114A2 (en) * 2022-07-20 2024-01-25 Addition Therapeutics Genome insertions in cells

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633234A (en) 1993-01-22 1997-05-27 The Johns Hopkins University Lysosomal targeting of immunogens
US5773244A (en) 1993-05-19 1998-06-30 Regents Of The University Of California Methods of making circular RNA
FR2709309B1 (en) 1993-08-25 1995-11-10 Centre Nat Rech Scient Cellular compositions, preparation and therapeutic uses.
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5641863A (en) 1993-09-30 1997-06-24 University Of Pennsylvania Chimeric IgG Fc receptors
US6150160A (en) 1995-11-16 2000-11-21 The John Hopkins University Compositions and methods of use of mammalian retrotransposons
US20030121063A1 (en) * 1995-11-16 2003-06-26 The Trustees Of The University Of Pennsylvania Compositions and methods of use of mammalian retrotransposons
US6576463B1 (en) 1999-01-15 2003-06-10 The Regents Of The University Of California Hybrid vectors for gene therapy
WO2001030965A2 (en) 1999-10-28 2001-05-03 The Board Of Trustees Of The Leland Stanford Junior University Methods of in vivo gene transfer using a sleeping beauty transposon system
ATE338124T1 (en) 2000-11-07 2006-09-15 Hope City CD19-SPECIFIC TARGETED IMMUNE CELLS
US8709412B2 (en) 2001-06-29 2014-04-29 The Board Of Trustees Of The Leland Stanford Junior University Modulation of TIM receptor activity in combination with cytoreductive therapy
EP1482974A4 (en) 2002-02-15 2006-08-02 Zycos Inc Electroporation methods for introducing bioactive agents into cells
US20080254027A1 (en) 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US20050250207A1 (en) 2002-06-05 2005-11-10 Rozwadowski Kevin L Retrons for gene targeting
JP4662776B2 (en) 2002-12-04 2011-03-30 ベイラー リサーチ インスティテュート A rapid one-step method for generating antigen-loaded dendritic cell vaccines from precursors
US20070037759A1 (en) * 2003-02-07 2007-02-15 Administrators Of The Tulane Educational Fund, The Mammalian retrotransposable elements
US8007805B2 (en) 2003-08-08 2011-08-30 Paladin Labs, Inc. Chimeric antigens for breaking host tolerance to foreign antigens
US8198020B2 (en) 2003-08-22 2012-06-12 Potentia Pharmaceuticals, Inc. Compositions and methods for enhancing phagocytosis or phagocyte activity
EP2626415A3 (en) 2004-10-25 2014-04-16 Cellerant Therapeutics, Inc. Methods of expanding myeloid cell populations and uses thereof
US20060188891A1 (en) 2005-02-23 2006-08-24 Bickmore William D Jr Methods and apparatus for controlling DNA amplification
US20060257359A1 (en) 2005-02-28 2006-11-16 Cedric Francois Modifying macrophage phenotype for treatment of disease
US20090191202A1 (en) 2005-09-29 2009-07-30 Jamieson Catriona Helen M Methods for manipulating phagocytosis mediated by CD47
US20090123366A1 (en) 2006-04-03 2009-05-14 Keele University Targeted Therapy
EP2041296A4 (en) * 2006-05-04 2010-11-03 Abmaxis Inc Method for producing stable mammalian cell lines producing high levels of recombinant proteins
US20080171002A1 (en) 2006-07-20 2008-07-17 Gourmetceuticals, Llc Products For Receptor Mediated Activation And Maturation Of Monocyte-Derived Dendritic Cells By A Phosphorylated Glucomannane Polysaccharide
US7833789B2 (en) 2006-08-01 2010-11-16 Fondazione Centro San Raffaele Del Monte Tabor Monocyte cell
WO2009003671A2 (en) 2007-07-04 2009-01-08 Max-Delbrück-Centrum für Molekulare Medizin Hyperactive variants of the transposase protein of the transposon system sleeping beauty
EP2055784A1 (en) 2007-10-31 2009-05-06 Bundesrepublik Deutschland, letztvertreten durch den Präsidenten des Paul-Ehrlich-Instituts Prof. Dr. Johannes Löwer Controlled activation of non-LTR retrotransposons in mammals
ES2740823T3 (en) 2008-01-15 2020-02-06 Univ Leland Stanford Junior Methods for manipulating phagocytosis mediated by CD47
US9034325B2 (en) 2008-07-22 2015-05-19 Ablynx N.V. Amino acid sequences directed against multitarget scavenger receptors and polypeptides
EP2328932A1 (en) 2008-08-29 2011-06-08 Symphogen A/S Anti-cd5 antibodies
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
EP2248903A1 (en) * 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to monocytes and macrophages
AU2011239569B2 (en) 2010-04-16 2014-07-24 Baylor College Of Medicine Method for treating solid tumors
WO2012005763A1 (en) 2010-07-06 2012-01-12 The Scripps Research Institute Use of myeloid-like progenitor cell populations to treat tumors
US10034900B2 (en) 2010-09-30 2018-07-31 National University Corporation Kumamoto University Method of producing myeloid blood cells
US9206479B2 (en) 2011-02-09 2015-12-08 University Of Rochester Methods and compositions related to Staufen 1 binding sites formed by duplexing Alu elements
US9353370B2 (en) 2011-03-30 2016-05-31 Riken Functional nucleic acid molecule and use thereof
WO2013051718A1 (en) 2011-10-07 2013-04-11 国立大学法人三重大学 Chimeric antigen receptor
US9149519B2 (en) 2012-01-17 2015-10-06 New York University Chimeric human immunodeficiency virus type 1 (HIV-1) with enhanced dendritic cell and macrophage tropism comprising the simian immunodeficiency virus (SIV) minimal Vpx packaging domain
US20140140989A1 (en) 2012-02-06 2014-05-22 Inhibrx Llc Non-Platelet Depleting and Non-Red Blood Cell Depleting CD47 Antibodies and Methods of Use Thereof
KR102100388B1 (en) 2012-02-06 2020-04-13 인히브릭스, 인크. Cd47 antibodies and methods of use thereof
AU2013221672B2 (en) 2012-02-13 2017-11-09 Seattle Children's Hospital D/B/A Seattle Children's Research Institute Bispecific chimeric antigen receptors and therapeutic uses thereof
WO2013123088A1 (en) 2012-02-14 2013-08-22 Loma Linda University Agents and method for treating inflammation-related conditions and diseases
EP2639313A1 (en) 2012-03-14 2013-09-18 Rheinische Friedrich-Wilhelms-Universität Bonn High-resolution transcriptome of human macrophages
PL2855667T3 (en) 2012-05-25 2024-03-25 Cellectis Methods for engineering allogeneic and immunosuppressive resistant t cell for immunotherapy
DK2692865T3 (en) 2012-07-30 2015-02-16 Nbe Therapeutics Llc Transponeringsmedieret identification of specific binding proteins, or functional
US9221908B2 (en) 2012-12-12 2015-12-29 Vasculox, Inc. Therapeutic CD47 antibodies
KR20150093770A (en) 2012-12-12 2015-08-18 베스쿨럭스 인코포레이티드 Therapeutic cd47 antibodies
SE537429C2 (en) 2013-02-14 2015-04-28 Scania Cv Ab Simultaneous estimation of at least mass and rolling resistance of vehicles
AU2014223243B2 (en) 2013-03-01 2019-10-17 Regents Of The University Of Minnesota Talen-based gene correction
US20160145348A1 (en) 2013-03-14 2016-05-26 Fred Hutchinson Cancer Research Center Compositions and methods to modify cells for therapeutic objectives
EP3623380A1 (en) 2013-03-15 2020-03-18 Michael C. Milone Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
MX2016005689A (en) 2013-10-31 2016-08-08 Hutchinson Fred Cancer Res Modified hematopoietic stem/progenitor and non-t effector cells, and uses thereof.
DK3105335T3 (en) 2014-02-14 2020-01-13 Univ Texas CHEMICAL ANTIGEN RECEPTORS AND METHODS FOR PRODUCING IT
CA2939293C (en) 2014-03-11 2023-10-03 The Board Of Trustees Of The Leland Standford Junior University Anti sirp-alpha antibodies and bi-specific macrophage enhancing antibodies
US20170233452A1 (en) 2014-04-23 2017-08-17 Immusoft Corporation Chimeric antigen receptors specific to avb6 integrin and methods of use thereof to treat cancer
CN104004095B (en) 2014-06-04 2016-11-23 博生吉医药科技(苏州)有限公司 A kind of CD7 nano antibody, its coded sequence and application
EP3172237A2 (en) 2014-07-21 2017-05-31 Novartis AG Treatment of cancer using humanized anti-bcma chimeric antigen receptor
EP3194432B1 (en) 2014-07-31 2019-04-10 Cellectis Ror1 specific multi-chain chimeric antigen receptor
WO2016030501A1 (en) * 2014-08-28 2016-03-03 Centre National De La Recherche Scientifique - Cnrs - Synthetic alu-retrotransposon vectors for gene therapy
EP3186284B1 (en) 2014-08-28 2022-04-06 BioAtla, Inc. Conditionally active chimeric antigen receptors for modified t-cells
MX2017003062A (en) 2014-09-09 2017-12-14 Unum Therapeutics Chimeric receptors and uses thereof in immune therapy.
MX2017004007A (en) 2014-09-28 2018-05-07 Univ California Modulation of stimulatory and non-stimulatory myeloid cells.
EP3204491A1 (en) 2014-10-07 2017-08-16 Cellectis Method for modulating car-induced immune cells activity
MA41538A (en) 2014-10-17 2017-12-26 Baylor College Medicine BIPARTITE AND TRIPARTITE IMMUNE CELLS OF SIGNALING
CN107109362A (en) 2014-10-31 2017-08-29 麻省理工学院 Biomolecule is delivered to immunocyte
BR112017010303A2 (en) 2014-11-18 2018-05-15 Janssen Pharmaceutica Nv cd47 antibodies, methods and uses
US11041158B2 (en) 2014-12-22 2021-06-22 AgBiome, Inc. Optimization methods for making a synthetic gene
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US20170151281A1 (en) 2015-02-19 2017-06-01 Batu Biologics, Inc. Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
MX2017010721A (en) 2015-02-24 2018-08-28 Univ California Binding-triggered transcriptional switches and methods of use thereof.
EP3261651B1 (en) 2015-02-27 2022-05-04 iCell Gene Therapeutics LLC Chimeric antigen receptors (cars) targeting hematologic malignancies, compositions and methods of use thereof
US9777064B2 (en) 2015-03-17 2017-10-03 Chimera Bioengineering, Inc. Smart CAR devices, DE CAR polypeptides, side CARs and uses thereof
EP3277309A1 (en) * 2015-04-03 2018-02-07 Alienor Farma Monoclonal antibody to human line-1 orf2 protein and method for early detection of transforming cells in pre-neoplastic tissues of a human subject
EP3286225B1 (en) 2015-04-23 2020-07-01 Baylor College of Medicine Cd5 chimeric antigen receptor for adoptive t cell therapy
JP7064234B2 (en) 2015-05-18 2022-05-10 エービー イニチオ バイオセラピューティクス,インク. SIRP polypeptide composition and method of use
US10434153B1 (en) 2015-05-20 2019-10-08 Kim Leslie O'Neill Use of car and bite technology coupled with an scFv from an antibody against human thymidine kinase 1 to specifically target tumors
US10882917B2 (en) 2015-06-01 2021-01-05 The Rockefeller University Anti-tumor agents and methods of use
GB201509413D0 (en) 2015-06-01 2015-07-15 Ucl Business Plc Fusion protein
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
MX2018001182A (en) 2015-07-28 2018-04-20 Univ Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof.
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
AU2016303497A1 (en) 2015-07-31 2018-03-01 Tarveda Therapeutics, Inc. Compositions and methods for immuno-oncology therapies
RS62151B1 (en) 2015-08-07 2021-08-31 Alx Oncology Inc Constructs having a sirp-alpha domain or variant thereof
US11352439B2 (en) 2015-08-13 2022-06-07 Kim Leslie O'Neill Macrophage CAR (MOTO-CAR) in immunotherapy
CA2997912A1 (en) 2015-09-09 2017-03-16 Seattle Children's Hospital (dba Seattle Children's Research Institute) Genetic engineering of macrophages for immunotherapy
WO2017046259A1 (en) 2015-09-16 2017-03-23 Ethris Gmbh Improved transposon system for gene delivery
EA201890772A1 (en) 2015-09-22 2018-10-31 Юлиус Максимилианс-Универзитет Вюрцбург METHOD OF HIGH-LEVEL AND STABLE TRANSFER OF GENES IN LYMPHOCYTES
CN105154473B (en) 2015-09-30 2019-03-01 上海细胞治疗研究院 A kind of transposon integration system of highly effective and safe and application thereof
KR20180054600A (en) 2015-10-13 2018-05-24 브라이엄 영 유니버시티 The macrophage chimeric antigen receptor (MOTO-CAR)
US20180325953A1 (en) 2015-11-09 2018-11-15 Aperisys, Inc. Modified immune cells and uses thereof
US10946042B2 (en) 2015-12-01 2021-03-16 The Trustees Of The University Of Pennsylvania Compositions and methods for selective phagocytosis of human cancer cells
EP3202783A1 (en) 2016-02-02 2017-08-09 Ecole Polytechnique Federale de Lausanne (EPFL) Engineered antigen presenting cells and uses thereof
WO2017133175A1 (en) 2016-02-04 2017-08-10 Nanjing Legend Biotech Co., Ltd. Engineered mammalian cells for cancer therapy
US20190381158A1 (en) 2016-02-04 2019-12-19 Duke University Cell-based vaccine compositions and methods of use
GB201602473D0 (en) 2016-02-11 2016-03-30 Horizon Discovery Ltd Replicative transposon system
US20170275665A1 (en) 2016-02-24 2017-09-28 Board Of Regents, The University Of Texas System Direct crispr spacer acquisition from rna by a reverse-transcriptase-cas1 fusion protein
US20200063157A9 (en) 2016-02-26 2020-02-27 Poseida Therapeutics, Inc. Transposon system and methods of use
EP3219803A1 (en) 2016-03-15 2017-09-20 Max-Delbrück-Centrum für Molekulare Medizin Enhanced sleeping beauty transposons, kits and methods of transposition
US20180186855A1 (en) 2016-03-23 2018-07-05 Alector Llc Chimeric receptors and methods of use thereof
US20190112380A1 (en) 2016-03-29 2019-04-18 University Of Southern California Chimeric antigen receptors targeting cancer
WO2017184553A1 (en) 2016-04-18 2017-10-26 Baylor College Of Medicine Cancer gene therapy targeting cd47
US10875919B2 (en) 2016-04-26 2020-12-29 Alector Llc Chimeric receptors and methods of use thereof
WO2017213979A1 (en) 2016-06-06 2017-12-14 St. Jude Children's Research Hospital Anti-cd7 chimeric antigen receptor and method of use thereof
WO2017214553A1 (en) 2016-06-09 2017-12-14 The General Hospital Corporation Modulating the cellular stress response
KR20190019168A (en) 2016-06-17 2019-02-26 더 브로드 인스티튜트, 인코퍼레이티드 Type VI CRISPR Operating System and System
CN107523545A (en) 2016-06-20 2017-12-29 上海细胞治疗研究院 A kind of lethal cell of high efficiency stable expression antibody and application thereof
WO2018038684A1 (en) 2016-08-26 2018-03-01 Agency For Science, Technology And Research Macrophage stimulating protein receptor (or ron - recepteur d' origine nantais) antibodies and uses thereof
JOP20190009A1 (en) 2016-09-21 2019-01-27 Alx Oncology Inc Antibodies against signal-regulatory protein alpha and methods of use
CN110036033B (en) 2016-09-27 2023-12-08 森罗治疗公司 Chimeric phagocytic receptor molecules
US20190263928A1 (en) 2016-09-30 2019-08-29 Baylor College Of Medicine Adaptive chimeric antigen receptor t-cell design
WO2018071058A1 (en) 2016-10-15 2018-04-19 Baylor College Of Medicine Platform for enhanced targeted cell delivery
WO2018073394A1 (en) 2016-10-19 2018-04-26 Cellectis Cell death inducing chimeric antigen receptors
WO2018075960A1 (en) 2016-10-21 2018-04-26 Tioma Therapeutics, Inc. Therapeutic cd47 antibodies
CN110461868A (en) 2016-11-01 2019-11-15 根马布私人有限公司 Polypeptide variants and application thereof
KR102489902B1 (en) 2016-11-11 2023-01-19 바이오 래드 래버러토리스 인코오포레이티드 Methods of processing nucleic acid samples
CN110325549B (en) 2016-12-09 2024-03-08 艾利妥 anti-SIRP alpha antibodies and methods of use thereof
SI3551753T1 (en) 2016-12-09 2022-09-30 The Broad Institute, Inc. Crispr effector system based diagnostics
US20190336615A1 (en) 2017-01-27 2019-11-07 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof
US11744861B2 (en) 2017-03-13 2023-09-05 Poseida Therapeutics, Inc. Compositions and methods for selective elimination and replacement of hematopoietic stem cells
EP3596218B1 (en) 2017-03-15 2023-08-23 The Broad Institute, Inc. Crispr effector system based diagnostics for virus detection
US10934336B2 (en) 2017-04-13 2021-03-02 The Trustees Of The University Of Pennsylvania Use of gene editing to generate universal TCR re-directed T cells for adoptive immunotherapy
US10415017B2 (en) 2017-05-17 2019-09-17 Thunder Biotech, Inc. Transgenic macrophages, chimeric antigen receptors, and associated methods
CA3067244A1 (en) 2017-06-12 2018-12-20 Emory University T-cell antigen targeted chimeric antigen receptor (car) and uses in cell therapies
CN110891650A (en) 2017-06-25 2020-03-17 西雅图免疫公司 Guidance and navigation control proteins and methods of making and using same
BR112020000406A2 (en) 2017-07-10 2022-09-13 Inst De Biologia Molecular Do Parana Ibmp GENETIC PLATFORM FOR HETEROLOGOUS OVEREXPRESSION ASSOCIATED WITH THE SELECTION OF HIGHLY PROTEIN PRODUCING CELLS
PL3658589T3 (en) 2017-07-26 2024-03-18 Forty Seven, Inc. Anti-sirp-alpha antibodies and related methods
CN109337872B (en) 2017-07-27 2023-06-23 上海细胞治疗研究院 Artificial antigen presenting cell for efficiently amplifying CAR-T cells and application thereof
CN109306340B (en) 2017-07-27 2023-06-06 上海细胞治疗研究院 Artificial antigen presenting cell for efficiently amplifying whole T cells and application thereof
EP3664845A4 (en) 2017-08-08 2021-03-10 Pionyr Immunotherapeutics, Inc. Compositions and methods for disabling meyloid cells expressing trem1
EP3678680A4 (en) 2017-09-05 2021-12-01 Regeneron Pharmaceuticals, Inc. Delivery of a gene-editing system with a single retroviral particle and methods of generation and use
EP3679145A2 (en) 2017-09-08 2020-07-15 Poseida Therapeutics, Inc. Compositions and methods for chimeric ligand receptor (clr)-mediated conditional gene expression
EP3735460A4 (en) 2017-09-18 2021-08-11 Exuma Biotech Corp. Methods and compositions for genetically modifying and expanding lymphocytes and regulating the activity thereof
KR20200100598A (en) 2017-09-26 2020-08-26 세로 테라퓨틱스, 인코포레이티드 Chimeric phagocytosis receptor molecules and methods of use
WO2019070704A1 (en) 2017-10-02 2019-04-11 Georgia Tech Research Corporation Methods and compositions for engineering synthetic bioswitches for remote control of biological activity
WO2019070843A1 (en) 2017-10-03 2019-04-11 Board Of Regents, The University Of Texas System Non-ltr-retroelement reverse transcriptase and uses thereof
GB201717974D0 (en) 2017-10-31 2017-12-13 Univ Court Of The Univ Of Aberdeen Modified receptors
US20200255830A1 (en) 2017-11-02 2020-08-13 Arbor Biotechnologies, Inc. Novel crispr-associated transposon systems and components
CN109971716B (en) 2017-12-28 2023-08-01 上海细胞治疗研究院 EGFR-specific CAR-T cells from autocrine CD47 antibodies and uses thereof
AU2019226526A1 (en) * 2018-03-02 2020-10-15 Generation Bio Co. Identifying and characterizing genomic safe harbors (GSH) in humans and murine genomes, and viral and non-viral vector compositions for targeted integration at an identified GSH loci
GB2572005A (en) 2018-03-16 2019-09-18 Univ Court Univ Of Edinburgh Macrophage-based therapy
EP3774865A1 (en) 2018-03-28 2021-02-17 Cero Therapeutics, Inc. Cellular immunotherapy compositions and uses thereof
WO2019191332A1 (en) 2018-03-28 2019-10-03 Cero Therapeutics, Inc. Chimeric engulfment receptors and uses thereof for neurodegenerative diseases
US20210087251A1 (en) 2018-03-28 2021-03-25 Cero Therapeutics, Inc. Chimeric tim4 receptors and uses thereof
MX2020013778A (en) 2018-06-26 2021-05-27 Broad Inst Inc Crispr/cas and transposase based amplification compositions, systems and methods.
EP3821011B1 (en) 2018-07-11 2023-04-26 Cygnus Biosciences (Beijing) Co., Ltd. Transposome enabled dna/rna-sequencing (ted rna-seq)
US20210285009A1 (en) 2018-07-13 2021-09-16 The Regents Of The University Of California Retrotransposon-based delivery vehicle and methods of use thereof
JP2021534798A (en) 2018-08-28 2021-12-16 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Methods and compositions for regulating the genome
GB201818110D0 (en) 2018-11-06 2018-12-19 Macrophox Ltd Monocytes for cancer targeting
EP3876977A1 (en) 2018-11-06 2021-09-15 The Regents Of The University Of California Chimeric antigen receptors for phagocytosis
CN114072495A (en) * 2019-01-16 2022-02-18 比姆医疗股份有限公司 Modified immune cells with enhanced antitumor activity and immunosuppressive resistance
US11026973B2 (en) 2019-04-30 2021-06-08 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
EP3962497A4 (en) 2019-04-30 2023-01-18 Myeloid Therapeutics, Inc. Engineered chimeric fusion protein compositions and methods of use thereof
AU2020292339A1 (en) 2019-06-11 2022-01-20 Myeloid Therapeutics, Inc. Macrophage specific engager compositions and methods of use thereof
MA56538A (en) 2019-06-19 2022-04-27 Flagship Pioneering Innovations Vi Llc METHODS FOR ASSAYING CIRCULAR POLYRIBONUCLEOTIDES
WO2021016075A1 (en) 2019-07-19 2021-01-28 Flagship Pioneering Innovations Vi, Llc Recombinase compositions and methods of use
BR112022003970A2 (en) 2019-09-03 2022-06-21 Myeloid Therapeutics Inc Methods and compositions for genomic integration
WO2021102042A1 (en) 2019-11-19 2021-05-27 The Broad Institute, Inc. Retrotransposons and use thereof
KR20220143642A (en) 2019-12-11 2022-10-25 마이얼로이드 테라퓨틱스, 인크. Therapeutic cell compositions and methods for their preparation and uses
AU2021230545A1 (en) 2020-03-04 2022-09-29 Flagship Pioneering Innovations Vi, Llc Improved methods and compositions for modulating a genome
BR112022017713A2 (en) 2020-03-04 2022-11-16 Flagship Pioneering Innovations Vi Llc METHODS AND COMPOSITIONS TO MODULATE A GENOME
CN116209756A (en) 2020-03-04 2023-06-02 旗舰先锋创新Vi有限责任公司 Methods and compositions for modulating genome
WO2021178898A1 (en) 2020-03-05 2021-09-10 Flagship Pioneering Innovations Vi, Llc Host defense suppressing methods and compositions for modulating a genome

Similar Documents

Publication Publication Date Title
US20200340012A1 (en) Crispr-cas genome engineering via a modular aav delivery system
AU2020313143B2 (en) Targeted RNA editing by leveraging endogenous adar using engineered RNAs
JP2023106391A (en) Directed editing of cellular rna via nuclear delivery of crispr/cas9
JP6363958B2 (en) AAV variant
Trepotec et al. Maximizing the translational yield of mRNA therapeutics by minimizing 5′-UTRs
GB2605276A (en) Methods and compositions for genomic integration
TW202136508A (en) Antisense guide RNA with added functional region for editing target RNA
JPH10507061A (en) Gene delivery vector and packaging cell line using plasmid DNA packaged in adenovirus
JP2002503459A (en) Modified adenovirus containing fiber displacement protein
JP2002503459A5 (en)
US7094399B2 (en) Use of spliceosome mediated RNA trans-splicing to confer cell selective replication to adenoviruses
US11939580B2 (en) Construct of self-circularization RNA
WO2021034373A1 (en) Conjugates of guide rna-cas protein complex
CN115151277A (en) Erythrocyte outer vesicle loaded with nucleic acid
JPWO2021046243A5 (en)
WO2024083095A1 (en) Circular rna, vector, and use of vector
WO2022150974A1 (en) Targeted rna editing by leveraging endogenous adar using engineered rnas
JPWO2021178717A5 (en)
WO2024087423A1 (en) Mrna drug that is less expressed in liver after being delivered to body and preparation method therefor
JPWO2020082047A5 (en)
CN115244176A (en) Conjugates of guide RNA-CAS protein complexes
WO2024078345A1 (en) Snrna nucleic acid molecule and application thereof
WO2023134560A1 (en) Nucleotide and use thereof
CN117701532B (en) gRNA for KRAS-G12D gene editing, molecular system containing same and application
WO2023024504A1 (en) Crispr-cas13 system for treating sod1-associated diseases