JPWO2020241422A1 - Buffer - Google Patents

Buffer Download PDF

Info

Publication number
JPWO2020241422A1
JPWO2020241422A1 JP2021522272A JP2021522272A JPWO2020241422A1 JP WO2020241422 A1 JPWO2020241422 A1 JP WO2020241422A1 JP 2021522272 A JP2021522272 A JP 2021522272A JP 2021522272 A JP2021522272 A JP 2021522272A JP WO2020241422 A1 JPWO2020241422 A1 JP WO2020241422A1
Authority
JP
Japan
Prior art keywords
chamber
piston
shock absorber
cylinder
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2021522272A
Other languages
Japanese (ja)
Inventor
貴義 須田
博克 内藤
有未 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2020241422A1 publication Critical patent/JPWO2020241422A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Abstract

この緩衝器は、シリンダ(12)内に設けられ、シリンダ(12)をロッド側室とボトム側室(52)とに画成し、移動することによって減衰力を発生させる減衰力発生部を有するピストン部と、基端側にピストン部が連結され、先端側がロッド側室を通ってシリンダ(12)の外部に延びるロッドと、ボトム側室(52)に設けられ、ボトム側室(52)を作動液室(55)とガス室(56)とに分離するフリーピストン(41)とを備える。フリーピストン(41)は、ピストン部のストロークの中間位置において、ボトム側室(52)の圧力が所定圧力に達したときに可動状態になる。This shock absorber is provided in the cylinder (12), and the cylinder (12) is defined as a rod side chamber and a bottom side chamber (52), and a piston portion having a damping force generating portion that generates a damping force by moving the cylinder (12). The piston portion is connected to the base end side, the tip side is provided in the bottom side chamber (52) and the rod extending to the outside of the cylinder (12) through the rod side chamber, and the bottom side chamber (52) is used as the working fluid chamber (55). ) And a free piston (41) separated into a gas chamber (56). The free piston (41) becomes movable when the pressure of the bottom side chamber (52) reaches a predetermined pressure at the intermediate position of the stroke of the piston portion.

Description

本発明は、緩衝器に関する。
本願は、2019年5月29日に、日本に出願された特願2019−100442号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a shock absorber.
The present application claims priority based on Japanese Patent Application No. 2019-100442 filed in Japan on May 29, 2019, the contents of which are incorporated herein by reference.

リザーバ室の体積を変化させてばね特性を変更する緩衝器がある(例えば、特許文献1参照)。 There is a shock absorber that changes the volume of the reservoir chamber to change the spring characteristics (see, for example, Patent Document 1).

特開平10−299810号公報Japanese Unexamined Patent Publication No. 10-299810

緩衝器において、効果的に減衰力を立ち上げる特性を求められることがある。 In the shock absorber, the characteristic of effectively raising the damping force may be required.

本発明は、効果的に減衰力を立ち上げることが可能な緩衝器を提供する。 The present invention provides a shock absorber capable of effectively raising the damping force.

本発明の一態様によれば、緩衝器は、シリンダ内に設けられ、前記シリンダをロッド側室とボトム側室とに画成し、移動することによって減衰力を発生させる減衰力発生部を有するピストン部と、基端側に前記ピストン部が連結され、先端側が前記ロッド側室を通って前記シリンダの外部に延びるロッドと、前記ボトム側室に設けられ、該ボトム側室を作動液室とガス室とに分離するフリーピストンとを備える。前記フリーピストンは、前記ピストン部のストロークの中間位置において、前記ボトム側室の圧力が所定圧力に達したときに可動状態になる。 According to one aspect of the present invention, the shock absorber is provided in a cylinder, and the piston portion has a damping force generating portion that generates a damping force by defining the cylinder into a rod side chamber and a bottom side chamber and moving the cylinder. The piston portion is connected to the base end side, and the tip side is provided in the bottom side chamber and the rod extending to the outside of the cylinder through the rod side chamber, and the bottom side chamber is separated into a hydraulic fluid chamber and a gas chamber. It is equipped with a free piston. The free piston becomes movable when the pressure in the bottom side chamber reaches a predetermined pressure at an intermediate position of the stroke of the piston portion.

上記した緩衝器によれば、効果的に減衰力を立ち上げることが可能となる。 According to the above-mentioned shock absorber, it is possible to effectively raise the damping force.

本発明の第1実施形態に係る緩衝器を示す断面図である。It is sectional drawing which shows the shock absorber which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る緩衝器の液圧ロック制御機構周辺を示す断面図である。It is sectional drawing which shows the periphery of the hydraulic pressure lock control mechanism of the shock absorber which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る緩衝器を含む壁構造部を示す正面図である。It is a front view which shows the wall structure part including the shock absorber which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る液圧ロック制御機構周辺を示す断面図である。It is sectional drawing which shows the periphery of the hydraulic pressure lock control mechanism which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る液圧ロック制御機構周辺を示す断面図である。It is sectional drawing which shows the periphery of the hydraulic pressure lock control mechanism which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る取付アイを除いた底面図である。It is a bottom view excluding the attachment eye which concerns on 3rd Embodiment of this invention. 本発明の第1実施形態〜第3実施形態に係るピストン部の変形例を示す断面図である。It is sectional drawing which shows the modification of the piston part which concerns on 1st Embodiment to 3rd Embodiment of this invention.

[第1実施形態]
図1に示すように、第1実施形態の緩衝器11は、内部に油液等の作動液Lが封入される有底筒状のシリンダ12を有している。シリンダ12は、一端が開口部21とされた円筒状の胴部22と、胴部22の開口部21とは反対の他端を閉塞する底部23とを有している。底部23は、外周部において胴部22に繋がる円形平板状の平板部24と、平板部24の径方向の中央から軸方向の胴部22とは反対側に膨出する膨出部25とを有している。膨出部25は、軸方向の胴部22側が、平板部24よりも胴部22とは反対側に凹む凹部26となっている。シリンダ12内には底部23側に内筒28が設けられている。内筒28は、シリンダ12の底部23の平板部24に当接している。
[First Embodiment]
As shown in FIG. 1, the shock absorber 11 of the first embodiment has a bottomed cylindrical cylinder 12 in which a hydraulic fluid L such as an oil liquid is sealed. The cylinder 12 has a cylindrical body portion 22 having an opening 21 at one end, and a bottom portion 23 that closes the other end of the body portion 22 opposite to the opening portion 21. The bottom portion 23 has a circular flat plate-shaped flat plate portion 24 connected to the body portion 22 on the outer peripheral portion, and a bulging portion 25 bulging from the radial center of the flat plate portion 24 to the side opposite to the body portion 22 in the axial direction. Have. The bulging portion 25 is a recess 26 in which the body portion 22 in the axial direction is recessed on the side opposite to the body portion 22 from the flat plate portion 24. An inner cylinder 28 is provided in the cylinder 12 on the bottom 23 side. The inner cylinder 28 is in contact with the flat plate portion 24 of the bottom portion 23 of the cylinder 12.

緩衝器11は、シリンダ12の開口部21にこれを閉鎖するように設けられた開口閉鎖部31と、シリンダ12内に摺動可能に設けられたピストン部32と、基端側がピストン部32に連結され先端側が開口閉鎖部31を介してシリンダ12の開口部21から外部に延びる棒状のロッド33と、を有している。 The shock absorber 11 has an opening closing portion 31 provided in the opening 21 of the cylinder 12 so as to close the opening, a piston portion 32 slidably provided in the cylinder 12, and a piston portion 32 having a proximal end side. It has a rod-shaped rod 33 that is connected and whose tip end side extends outward from the opening 21 of the cylinder 12 via the opening closing portion 31.

緩衝器11は、シリンダ12内のピストン部32よりも底部23側に摺動可能に設けられたフリーピストン41と、シリンダ12内のピストン部32とフリーピストン41との間に設けられた開閉機構42と、を有している。フリーピストン41は、内筒28内に摺動可能に嵌合されている。開閉機構42は、シリンダ12の胴部22と内筒28とに嵌合されている。 The shock absorber 11 is a free piston 41 slidably provided on the bottom 23 side of the piston portion 32 in the cylinder 12, and an opening / closing mechanism provided between the piston portion 32 in the cylinder 12 and the free piston 41. 42 and. The free piston 41 is slidably fitted in the inner cylinder 28. The opening / closing mechanism 42 is fitted to the body portion 22 of the cylinder 12 and the inner cylinder 28.

緩衝器11は、シリンダ12の開口部21を覆うダストカバー44と、シリンダ12の底部23の膨出部25の外側に固定された取付アイ45と、ロッド33の先端に固定された取付アイ46と、を有している。 The shock absorber 11 includes a dust cover 44 that covers the opening 21 of the cylinder 12, a mounting eye 45 fixed to the outside of the bulging portion 25 of the bottom 23 of the cylinder 12, and a mounting eye 46 fixed to the tip of the rod 33. And have.

シリンダ12内は、ピストン部32によって、ピストン部32より開口部21側のロッド側室51と、ピストン部32より底部23側のボトム側室52とに画成されている。シリンダ12の底部23は、ボトム側室52の底部でもある。フリーピストン41は、ボトム側室52に設けられている。フリーピストン41は、ボトム側室52をピストン部32側の作動液室55と底部23側のガス室56とに分離している。開閉機構42は、ボトム側室52に設けられている。開閉機構42は、作動液室55をピストン部32側の室58とフリーピストン41側の室59とに区画している。 The inside of the cylinder 12 is defined by the piston portion 32 into a rod side chamber 51 on the opening 21 side of the piston portion 32 and a bottom side chamber 52 on the bottom 23 side of the piston portion 32. The bottom portion 23 of the cylinder 12 is also the bottom portion of the bottom side chamber 52. The free piston 41 is provided in the bottom side chamber 52. The free piston 41 separates the bottom side chamber 52 into a hydraulic fluid chamber 55 on the piston portion 32 side and a gas chamber 56 on the bottom 23 side. The opening / closing mechanism 42 is provided in the bottom side chamber 52. The opening / closing mechanism 42 divides the hydraulic fluid chamber 55 into a chamber 58 on the piston portion 32 side and a chamber 59 on the free piston 41 side.

ロッド側室51は、胴部22の内周面とピストン部32と開口閉鎖部31とで囲まれて形成されている。室58は、胴部22の内周面とピストン部32と開閉機構42とで囲まれて形成されている。室59は、内筒28の内周面と開閉機構42とフリーピストン41とで囲まれて形成されている。ガス室56は、図2に示すように、内筒28の内周面とフリーピストン41とシリンダ12の底部23とで囲まれた部分と、内筒28の軸方向の底部23側に径方向に貫通して形成された径方向穴60の内側部分と、胴部22の内周面と内筒28の外周面と開閉機構42とシリンダ12の底部23とで囲まれた部分とからなっている。 The rod side chamber 51 is formed by being surrounded by the inner peripheral surface of the body portion 22, the piston portion 32, and the opening closing portion 31. The chamber 58 is formed by being surrounded by the inner peripheral surface of the body portion 22, the piston portion 32, and the opening / closing mechanism 42. The chamber 59 is formed by being surrounded by the inner peripheral surface of the inner cylinder 28, the opening / closing mechanism 42, and the free piston 41. As shown in FIG. 2, the gas chamber 56 has a portion surrounded by an inner peripheral surface of the inner cylinder 28, a free piston 41, and a bottom portion 23 of the cylinder 12, and a radial direction toward the bottom portion 23 side of the inner cylinder 28 in the axial direction. It consists of an inner portion of the radial hole 60 formed through the cylinder 22 and a portion surrounded by the inner peripheral surface of the body portion 22, the outer peripheral surface of the inner cylinder 28, the opening / closing mechanism 42, and the bottom portion 23 of the cylinder 12. There is.

図1に示すように、シリンダ12内には、ロッド側室51と、室58および室59からなる作動液室55とに作動液Lが封入されており、ガス室56にはガスGが封入されている。ロッド側室51と作動液室55とは作動液Lで満たされている。なお、ガス室56は、ガスGが空気である場合、密封されずに大気開放されていても良い。ロッド33およびピストン部32が外力を受けずにシリンダ12に対し所定の中立位置にあるとき、ロッド側室51、作動液室55およびガス室56は、いずれも大気圧である。所定の中立位置は、シリンダ12内に封入される作動液Lの液量で決まる。 As shown in FIG. 1, in the cylinder 12, the hydraulic fluid L is sealed in the rod side chamber 51 and the hydraulic fluid chamber 55 including the chamber 58 and the chamber 59, and the gas G is sealed in the gas chamber 56. ing. The rod side chamber 51 and the hydraulic fluid chamber 55 are filled with the hydraulic fluid L. When the gas G is air, the gas chamber 56 may be open to the atmosphere without being sealed. When the rod 33 and the piston portion 32 are in a predetermined neutral position with respect to the cylinder 12 without receiving an external force, the rod side chamber 51, the hydraulic fluid chamber 55, and the gas chamber 56 are all at atmospheric pressure. The predetermined neutral position is determined by the amount of the hydraulic fluid L sealed in the cylinder 12.

開口閉鎖部31は、ロッドガイド61と、Oリング等のシールリング62と、カバー部材63と、を有している。ロッドガイド61は、シリンダ12内の開口部21側の外端位置にてロッド33の移動をガイドしてその振れを抑制する。シールリング62は、ロッドガイド61とシリンダ12との隙間を閉塞する。カバー部材63は、ロッドガイド61のピストン部32とは反対側に被せられてロッド33とロッドガイド61との隙間への異物の侵入を規制する。開口閉鎖部31は、シール部材64と、規制板65と、を有している。シール部材64は、ロッドガイド61のピストン部32側に隣接して設けられてロッド33とロッドガイド61との隙間を閉塞する。規制板65は、シール部材64のロッドガイド61からの離間を規制する。 The opening closing portion 31 has a rod guide 61, a seal ring 62 such as an O-ring, and a cover member 63. The rod guide 61 guides the movement of the rod 33 at the outer end position on the opening 21 side in the cylinder 12 and suppresses its runout. The seal ring 62 closes the gap between the rod guide 61 and the cylinder 12. The cover member 63 is placed on the side of the rod guide 61 opposite to the piston portion 32 to prevent foreign matter from entering the gap between the rod 33 and the rod guide 61. The opening closing portion 31 has a sealing member 64 and a regulating plate 65. The seal member 64 is provided adjacent to the piston portion 32 side of the rod guide 61 and closes the gap between the rod 33 and the rod guide 61. The regulating plate 65 regulates the separation of the sealing member 64 from the rod guide 61.

ロッドガイド61、シール部材64および規制板65は、軸方向に重ねられた状態でシリンダ12の胴部22の開口部21側に嵌合される。ロッドガイド61の外周部のピストン部32とは反対側の端部が、胴部22の開口部21側の端部の係止部71に係止されている。規制板65の外周部のピストン部32側の端部が、胴部22の軸方向中間の係止部72に係止されている。これにより、ロッドガイド61、シール部材64および規制板65は、シリンダ12に対し軸方向に位置決めされて固定されている。係止部71,72は、いずれも、円環状であって、胴部22の円筒形の主体部70よりも径方向内側に突出している。係止部71,72は、円筒形状をなしていた胴部22の一部を径方向内側に塑性変形させることにより形成されている。ロッドガイド61、シール部材64および規制板65は、胴部22の円筒形の主体部70に嵌合されている。 The rod guide 61, the seal member 64, and the regulation plate 65 are fitted to the opening 21 side of the body portion 22 of the cylinder 12 in a state of being overlapped in the axial direction. The end of the outer peripheral portion of the rod guide 61 opposite to the piston portion 32 is locked to the locking portion 71 of the end portion of the body portion 22 on the opening 21 side. The end portion of the outer peripheral portion of the regulation plate 65 on the piston portion 32 side is locked to the locking portion 72 in the middle in the axial direction of the body portion 22. As a result, the rod guide 61, the seal member 64, and the regulation plate 65 are positioned and fixed in the axial direction with respect to the cylinder 12. The locking portions 71 and 72 are both annular and protrude inward in the radial direction from the cylindrical main body portion 70 of the body portion 22. The locking portions 71 and 72 are formed by plastically deforming a part of the body portion 22 having a cylindrical shape inward in the radial direction. The rod guide 61, the seal member 64, and the regulation plate 65 are fitted to the cylindrical main body portion 70 of the body portion 22.

ダストカバー44は、伸縮可能な蛇腹状であり、一端の嵌合部73がロッド33の開口閉鎖部31よりも外側の部分に嵌合し、他端の嵌合部74がシリンダ12の胴部22の外周部に嵌合している。ダストカバー44の一端の嵌合部73は、ロッド33に対し摺動可能であり、他端の嵌合部74は、胴部22の係止部72の塑性変形により形成される凹状部75に嵌合して固定されている。 The dust cover 44 has a bellows shape that can be expanded and contracted, and the fitting portion 73 at one end is fitted to a portion outside the opening / closing portion 31 of the rod 33, and the fitting portion 74 at the other end is the body portion of the cylinder 12. It is fitted to the outer peripheral portion of 22. The fitting portion 73 at one end of the dust cover 44 is slidable with respect to the rod 33, and the fitting portion 74 at the other end is formed in the concave portion 75 formed by the plastic deformation of the locking portion 72 of the body portion 22. It is fitted and fixed.

ロッド33は、主軸部81と、主軸部81よりも小径の取付軸部82とを有している。
主軸部81は、開口閉鎖部31を貫通している。主軸部81は、開口閉鎖部31のカバー部材63、ロッドガイド61およびシール部材64と、ダストカバー44の嵌合部73とに摺動可能に嵌合されている。取付軸部82は、ロッド33のシリンダ12内に配置される基端側の端部に形成されている。取付軸部82の、主軸部81とは反対側の外周面にオネジ83が形成されている。
ピストン部32は、ロッド33の基端側の取付軸部82に嵌合されている。ピストン部32は、オネジ83に螺合されるナット85と、主軸部81の取付軸部82側の端部とに挟持されることでロッド33の基端側に一体に連結されている。ロッド33は、先端側の主軸部81がロッド側室51および開口閉鎖部31を通ってシリンダ12の外部に延びている。
The rod 33 has a spindle portion 81 and a mounting shaft portion 82 having a diameter smaller than that of the spindle portion 81.
The spindle 81 penetrates the opening and closing portion 31. The spindle 81 is slidably fitted to the cover member 63, the rod guide 61, and the seal member 64 of the opening / closing portion 31 and the fitting portion 73 of the dust cover 44. The mounting shaft portion 82 is formed at an end portion on the base end side arranged in the cylinder 12 of the rod 33. A male screw 83 is formed on the outer peripheral surface of the mounting shaft portion 82 on the side opposite to the spindle portion 81.
The piston portion 32 is fitted to the mounting shaft portion 82 on the base end side of the rod 33. The piston portion 32 is integrally connected to the base end side of the rod 33 by being sandwiched between the nut 85 screwed into the male screw 83 and the end portion of the main shaft portion 81 on the mounting shaft portion 82 side. In the rod 33, the main shaft portion 81 on the distal end side extends to the outside of the cylinder 12 through the rod side chamber 51 and the opening closing portion 31.

ピストン部32は、取付軸部82に嵌合されている。ピストン部32は、取付軸部82における主軸部81側から順に、規制部材91と、複数枚のディスクが積層されて構成されるディスクバルブ92と、ピストン本体93と、複数枚のディスクが積層されて構成されるディスクバルブ94と、規制部材95と、を有している。規制部材91、ディスクバルブ92、ピストン本体93、ディスクバルブ94および規制部材95は、いずれも円環状をなしている。規制部材91が主軸部81の取付軸部82側の端部に当接しており、規制部材95がナット85に当接している。 The piston portion 32 is fitted to the mounting shaft portion 82. In the piston portion 32, the regulation member 91, the disc valve 92 in which a plurality of discs are laminated, the piston body 93, and the plurality of discs are laminated in this order from the main shaft portion 81 side of the mounting shaft portion 82. It has a disc valve 94 and a regulation member 95. The regulating member 91, the disc valve 92, the piston body 93, the disc valve 94, and the regulating member 95 all form an annular shape. The regulating member 91 is in contact with the end portion of the spindle portion 81 on the mounting shaft portion 82 side, and the regulating member 95 is in contact with the nut 85.

ピストン本体93は、シリンダ12の胴部22の主体部70に摺動可能に嵌合されている。ピストン本体93は、ロッド側室51と作動液室55とを画成している。ピストン本体93には、ロッド側室51と作動液室55とを連通可能な複数(図1では断面とした関係上一カ所のみ図示)の通路穴101と、ロッド側室51と作動液室55とを連通可能な複数(図1では断面とした関係上一カ所のみ図示)の通路穴102とが設けられている。 The piston body 93 is slidably fitted to the main body 70 of the body 22 of the cylinder 12. The piston body 93 defines a rod side chamber 51 and a hydraulic fluid chamber 55. The piston body 93 has a plurality of passage holes 101 capable of communicating the rod side chamber 51 and the hydraulic fluid chamber 55 (only one location is shown in FIG. 1 due to the cross section), and the rod side chamber 51 and the hydraulic fluid chamber 55. A plurality of passage holes 102 that can communicate with each other (only one place is shown in FIG. 1 because of the cross section) are provided.

複数の通路穴101は、ピストン本体93の円周方向に、それぞれ間に一カ所の通路穴102を挟んで等ピッチで形成されている。複数の通路穴101は、ピストン本体93の軸方向におけるロッド側室51側の端部よりも、作動液室55側の端部の方がピストン本体93の径方向における内側に開口している。 The plurality of passage holes 101 are formed at equal pitches in the circumferential direction of the piston body 93 with one passage hole 102 sandwiched between them. The plurality of passage holes 101 are opened inward in the radial direction of the piston body 93 at the end on the hydraulic fluid chamber 55 side than at the end on the rod side chamber 51 side in the axial direction of the piston body 93.

複数の通路穴102は、ピストン本体93の円周方向に、それぞれ間に一カ所の通路穴101を挟んで等ピッチで形成されている。複数の通路穴102は、ピストン本体93の軸方向における作動液室55側の端部よりも、ロッド側室51側の端部の方がピストン本体93の径方向における内側に開口している。 The plurality of passage holes 102 are formed at equal pitches in the circumferential direction of the piston body 93 with one passage hole 101 sandwiched between them. The plurality of passage holes 102 are opened inward in the radial direction of the piston body 93 at the end on the rod side chamber 51 side than at the end on the hydraulic fluid chamber 55 side in the axial direction of the piston body 93.

ピストン本体93の作動液室55側に、ディスクバルブ94が設けられている。このディスクバルブ94とピストン本体93の作動液室55側の部分とが、複数の通路穴101内の通路を開閉して減衰力を発生させる減衰力発生部111を構成している。減衰力発生部111は、ピストン部32が移動することによって減衰力を発生させる。減衰力発生部111は、ディスクバルブ94が、複数の通路穴101内の通路を閉じた状態にあるときには、複数の通路穴101内の通路でロッド側室51と作動液室55の室58とを連通させることはない。 A disc valve 94 is provided on the hydraulic fluid chamber 55 side of the piston body 93. The disk valve 94 and the portion of the piston body 93 on the hydraulic fluid chamber 55 side form a damping force generating portion 111 that opens and closes passages in the plurality of passage holes 101 to generate damping force. The damping force generation unit 111 generates a damping force by moving the piston unit 32. When the disc valve 94 is in a state where the passages in the plurality of passage holes 101 are closed, the damping force generating unit 111 connects the rod side chamber 51 and the chamber 58 of the hydraulic fluid chamber 55 with the passages in the plurality of passage holes 101. There is no communication.

減衰力発生部111が作動液室55側に配置されることで、複数の通路穴101内の通路は、ピストン部32のロッド側室51側への移動、つまり緩衝器11の伸び行程において上流側となるロッド側室51から下流側となる作動液室55に向けて作動液Lが流れ出す伸び側の通路となる。これら複数の通路穴101内の通路に対して設けられた減衰力発生部111は、伸び側の複数の通路穴101内の通路から作動液室55への作動液Lの流動を抑制して減衰力を発生する伸び側の減衰力発生機構となっている。規制部材95は、ディスクバルブ94よりも剛性が高い。規制部材95は、ディスクバルブ94のピストン本体93から離れる方向への所定以上の変形をディスクバルブ94に当接して規制する。減衰力発生部111は、ロッド側室51から作動液室55への作動液の流れを許容し、逆方向の作動液の流れを規制する一方向弁である。 By arranging the damping force generating portion 111 on the hydraulic fluid chamber 55 side, the passages in the plurality of passage holes 101 move toward the rod side chamber 51 side of the piston portion 32, that is, on the upstream side in the extension stroke of the shock absorber 11. It is a passage on the extension side where the hydraulic fluid L flows out from the rod side chamber 51 to the hydraulic fluid chamber 55 on the downstream side. The damping force generating unit 111 provided for the passages in the plurality of passage holes 101 suppresses the flow of the hydraulic fluid L from the passages in the plurality of passage holes 101 on the extension side to the hydraulic fluid chamber 55 and damps. It is a damping force generation mechanism on the extension side that generates force. The regulating member 95 has a higher rigidity than the disc valve 94. The regulating member 95 abuts on the disc valve 94 to regulate deformation of the disc valve 94 in a direction away from the piston body 93. The damping force generating unit 111 is a one-way valve that allows the flow of the hydraulic fluid from the rod side chamber 51 to the hydraulic fluid chamber 55 and regulates the flow of the hydraulic fluid in the opposite direction.

ピストン本体93のロッド側室51側に、ディスクバルブ92が設けられている。このディスクバルブ92とピストン本体93のロッド側室51側の部分とが、複数の通路穴102内の通路を開閉して減衰力を発生させる減衰力発生部112を構成している。減衰力発生部112は、ピストン部32が移動することによって減衰力を発生させる。減衰力発生部112は、ディスクバルブ92が、複数の通路穴102内の通路を閉じた状態にあるときに、複数の通路穴102内の通路で作動液室55の室58とロッド側室51とを連通させることはない。 A disc valve 92 is provided on the rod side chamber 51 side of the piston body 93. The disc valve 92 and the portion of the piston body 93 on the rod side chamber 51 side form a damping force generating portion 112 that opens and closes passages in the plurality of passage holes 102 to generate damping force. The damping force generation unit 112 generates a damping force by moving the piston unit 32. When the disc valve 92 is in a state where the passages in the plurality of passage holes 102 are closed, the damping force generating unit 112 includes the chamber 58 of the hydraulic fluid chamber 55 and the rod side chamber 51 in the passages in the plurality of passage holes 102. Will not be communicated.

減衰力発生部112がロッド側室51側に配置されることで、複数の通路穴102内の通路は、ピストン部32の作動液室55側への移動、つまり緩衝器11の縮み行程において上流側となる作動液室55から下流側となるロッド側室51に向けて作動液Lが流れ出す縮み側の通路となる。これら複数の通路穴102内の通路に対して設けられた減衰力発生部112は、縮み側の複数の通路穴102内の通路からロッド側室51への作動液Lの流動を抑制して減衰力を発生する縮み側の減衰力発生機構となっている。規制部材91は、ディスクバルブ92よりも剛性が高い。規制部材91は、ディスクバルブ92のピストン本体93から離れる方向への所定以上の変形をディスクバルブ92に当接して規制する。減衰力発生部112は、作動液室55からロッド側室51への作動液の流れを許容し、逆方向の作動液の流れを規制する一方向弁である。 By arranging the damping force generating portion 112 on the rod side chamber 51 side, the passages in the plurality of passage holes 102 move to the hydraulic fluid chamber 55 side of the piston portion 32, that is, on the upstream side in the contraction stroke of the shock absorber 11. It becomes a passage on the contraction side where the hydraulic fluid L flows out from the hydraulic fluid chamber 55 to the rod side chamber 51 on the downstream side. The damping force generating portion 112 provided for the passages in the plurality of passage holes 102 suppresses the flow of the hydraulic fluid L from the passages in the plurality of passage holes 102 on the contraction side to the rod side chamber 51, and suppresses the damping force. It is a damping force generation mechanism on the contraction side that generates. The regulating member 91 has a higher rigidity than the disc valve 92. The regulating member 91 abuts on the disc valve 92 to regulate deformation of the disc valve 92 in a direction away from the piston body 93 by a predetermined value or more. The damping force generating unit 112 is a one-way valve that allows the flow of the hydraulic fluid from the hydraulic fluid chamber 55 to the rod side chamber 51 and regulates the flow of the hydraulic fluid in the opposite direction.

図2に示すように、フリーピストン41は、フリーピストン本体121と、フリーピストン本体121と内筒28との隙間を密封するOリング等のシールリング122とを有している。フリーピストン本体121は、筒状部125と筒状部125の軸方向の一端を閉塞する閉塞部126とを有する有底筒状である。筒状部125は、円筒状の主体部128と、主体部128の外周面から径方向内方に凹む円環状の凹状部129とを有している。
この凹状部129に、シールリング122が保持されている。フリーピストン41は、フリーピストン本体121の閉塞部126が筒状部125よりも開閉機構42側に位置する向きで、内筒28内に配置されている。なお、内筒28の径方向穴60は、フリーピストン41が内筒28内で最も底部23側に移動しても、シールリング122よりも底部23側に位置する位置に形成されている。
As shown in FIG. 2, the free piston 41 has a free piston main body 121 and a seal ring 122 such as an O-ring that seals a gap between the free piston main body 121 and the inner cylinder 28. The free piston main body 121 has a bottomed tubular shape having a tubular portion 125 and a closing portion 126 that closes one end of the tubular portion 125 in the axial direction. The tubular portion 125 has a cylindrical main body portion 128 and an annular concave portion 129 that is concave inward in the radial direction from the outer peripheral surface of the main body portion 128.
The seal ring 122 is held in the concave portion 129. The free piston 41 is arranged in the inner cylinder 28 so that the closing portion 126 of the free piston main body 121 is located closer to the opening / closing mechanism 42 than the tubular portion 125. The radial hole 60 of the inner cylinder 28 is formed at a position located on the bottom 23 side of the seal ring 122 even if the free piston 41 moves to the bottom 23 side of the inner cylinder 28.

開閉機構42は、仕切部材131を有している。仕切部材131は、作動液室55をピストン部32側の室58とフリーピストン41側の室59とに区画する。仕切部材131は、仕切部材本体132と、Oリング等のシールリング133と、Oリング等のシールリング134と、を有している。仕切部材本体132は、シリンダ12の胴部22の主体部70内に嵌合されると共に内筒28内に嵌合される。シールリング133は、仕切部材本体132と胴部22との隙間を閉塞する。シールリング134は、仕切部材本体132と内筒28との隙間を閉塞する。 The opening / closing mechanism 42 has a partition member 131. The partition member 131 divides the hydraulic fluid chamber 55 into a chamber 58 on the piston portion 32 side and a chamber 59 on the free piston 41 side. The partition member 131 has a partition member main body 132, a seal ring 133 such as an O-ring, and a seal ring 134 such as an O-ring. The partition member main body 132 is fitted in the main body 70 of the body 22 of the cylinder 12 and in the inner cylinder 28. The seal ring 133 closes the gap between the partition member main body 132 and the body portion 22. The seal ring 134 closes the gap between the partition member main body 132 and the inner cylinder 28.

仕切部材本体132は、軸方向一側の大径部136と、軸方向他側の小径部137とを有している。大径部136は、小径部137よりも外径が大きい。仕切部材本体132は、大径部136がシリンダ12の胴部22の主体部70に嵌合されている。大径部136の外周部には、その円筒状の外周面から径方向内側に凹む円環状のシール溝138が形成されている。このシール溝138に、シールリング133が装着されている。
仕切部材本体132は、小径部137が内筒28に嵌合されている。小径部137の外周部には、その円筒状の外周面から径方向内側に凹む円環状のシール溝139が形成されている。このシール溝139に、シールリング134が装着されている。
The partition member main body 132 has a large diameter portion 136 on one side in the axial direction and a small diameter portion 137 on the other side in the axial direction. The large diameter portion 136 has a larger outer diameter than the small diameter portion 137. In the partition member main body 132, the large diameter portion 136 is fitted to the main body portion 70 of the body portion 22 of the cylinder 12. An annular seal groove 138 that is concave inward in the radial direction from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the large diameter portion 136. A seal ring 133 is mounted in the seal groove 138.
In the partition member main body 132, the small diameter portion 137 is fitted to the inner cylinder 28. An annular seal groove 139 that is concave inward in the radial direction from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the small diameter portion 137. A seal ring 134 is mounted in the seal groove 139.

内筒28は、軸方向の一端がシリンダ12の底部23に当接している。この内筒28の軸方向の他端に、仕切部材本体132の大径部136の小径部137側の端部が当接している。この仕切部材本体132の大径部136の小径部137とは反対側の端部は、シリンダ12の胴部22に形成された係止部140に係止されている。これにより、仕切部材本体132は、シリンダ12に対し位置決めされて固定されている。言い換えれば、内筒28は、シリンダ12に仕切部材131を位置決めするための位置決め部材である。 One end of the inner cylinder 28 in the axial direction is in contact with the bottom portion 23 of the cylinder 12. The end portion of the partition member main body 132 on the small diameter portion 137 side of the large diameter portion 136 is in contact with the other end of the inner cylinder 28 in the axial direction. The end of the partition member main body 132 on the opposite side of the large diameter portion 136 from the small diameter portion 137 is locked to the locking portion 140 formed on the body portion 22 of the cylinder 12. As a result, the partition member main body 132 is positioned and fixed with respect to the cylinder 12. In other words, the inner cylinder 28 is a positioning member for positioning the partition member 131 on the cylinder 12.

係止部140は、点形状であって胴部22の周方向に等間隔で複数、具体的には6カ所形成されている。係止部140は、胴部22の円筒状の主体部70よりも径方向内側に突出している。係止部140は、円筒形状の胴部22の一部を径方向内側に塑性変形させることにより形成されている。 The locking portions 140 are point-shaped and are formed at a plurality of, specifically, six locations at equal intervals in the circumferential direction of the body portion 22. The locking portion 140 projects radially inward from the cylindrical main body portion 70 of the body portion 22. The locking portion 140 is formed by plastically deforming a part of the cylindrical body portion 22 inward in the radial direction.

仕切部材本体132には、第1連通穴141と第2連通穴142とが形成されている。第1連通穴141と、第2連通穴142とは、いずれも仕切部材本体132を軸方向に貫通する。第1連通穴141および第2連通穴142は、シリンダ12内の室58と室59とを連通可能となっている。第1連通穴141および第2連通穴142は、同形状であり、仕切部材本体132の軸方向に反転した形状をなしている。 The partition member main body 132 is formed with a first communication hole 141 and a second communication hole 142. Both the first communication hole 141 and the second communication hole 142 penetrate the partition member main body 132 in the axial direction. The first communication hole 141 and the second communication hole 142 can communicate the chamber 58 and the chamber 59 in the cylinder 12. The first communication hole 141 and the second communication hole 142 have the same shape, and have a shape inverted in the axial direction of the partition member main body 132.

第1連通穴141は、軸方向の室58側の第1主穴部151と、軸方向の中間部の第1テーパ穴部152と、軸方向の室59側の第1大径穴部153とを有する。第1主穴部151は、室58側に貫通している。第1主穴部151は、一定内径のストレート穴である。第1テーパ穴部152は、第1主穴部151の室59側の端部から室59側に、室59側ほど径が大きくなるように形成されたテーパ穴である。第1大径穴部153は、第1テーパ穴部152の第1主穴部151とは反対側の端部から室59側に貫通して形成されている。第1大径穴部153は、一定内径のストレート穴である。第1大径穴部153は、第1主穴部151よりも内径が大きい。 The first communication hole 141 includes a first main hole portion 151 on the chamber 58 side in the axial direction, a first tapered hole portion 152 in the intermediate portion in the axial direction, and a first large-diameter hole portion 153 on the chamber 59 side in the axial direction. And have. The first main hole portion 151 penetrates the chamber 58 side. The first main hole portion 151 is a straight hole having a constant inner diameter. The first tapered hole portion 152 is a tapered hole formed from the end portion of the first main hole portion 151 on the chamber 59 side to the chamber 59 side so that the diameter becomes larger toward the chamber 59 side. The first large-diameter hole portion 153 is formed so as to penetrate from the end portion of the first tapered hole portion 152 opposite to the first main hole portion 151 toward the chamber 59 side. The first large-diameter hole portion 153 is a straight hole having a constant inner diameter. The first large-diameter hole portion 153 has a larger inner diameter than the first main hole portion 151.

第2連通穴142は、軸方向の室59側の第2主穴部156と、軸方向の中間部の第2テーパ穴部157と、軸方向の室58側の第2大径穴部158とからなっている。第2主穴部156は、室59側に貫通している。第2主穴部156は、一定内径のストレート穴である。第2テーパ穴部157は、第2主穴部156の室58側の端部から室58側に、室58側ほど径が大きくなるように形成されたテーパ穴である。第2大径穴部158は、第2テーパ穴部157の第2主穴部156とは反対側の端部から室58側に貫通して形成されている。第2大径穴部158は、一定内径のストレート穴である。第2大径穴部158は、第2主穴部156よりも内径が大きい。 The second communication hole 142 has a second main hole portion 156 on the chamber 59 side in the axial direction, a second tapered hole portion 157 in the intermediate portion in the axial direction, and a second large diameter hole portion 158 on the chamber 58 side in the axial direction. It consists of. The second main hole portion 156 penetrates the chamber 59 side. The second main hole portion 156 is a straight hole having a constant inner diameter. The second tapered hole portion 157 is a tapered hole formed from the end portion of the second main hole portion 156 on the chamber 58 side to the chamber 58 side so that the diameter becomes larger toward the chamber 58 side. The second large-diameter hole portion 158 is formed so as to penetrate from the end portion of the second tapered hole portion 157 opposite to the second main hole portion 156 toward the chamber 58 side. The second large-diameter hole portion 158 is a straight hole having a constant inner diameter. The inner diameter of the second large-diameter hole portion 158 is larger than that of the second main hole portion 156.

開閉機構42は、第1連通穴141に挿通される第1弁体161を有している。第1弁体161は、第1主穴部151に挿通される一定外径の第1主軸部162と、第1主軸部162の軸方向の室58側に設けられた第1フランジ部163と、第1主軸部162の軸方向の室59側に設けられた第1頭部164と、を有している。 The opening / closing mechanism 42 has a first valve body 161 inserted into the first communication hole 141. The first valve body 161 includes a first spindle portion 162 having a constant outer diameter inserted into the first main hole portion 151, and a first flange portion 163 provided on the chamber 58 side in the axial direction of the first spindle portion 162. , A first head head 164 provided on the chamber 59 side in the axial direction of the first spindle portion 162.

第1フランジ部163は、外径が第1主軸部162よりも大径であって第1主穴部151よりも大径である。第1頭部164は、外径が第1主軸部162よりも大径であって第1主穴部151よりも大径の第1円板部165と、第1円板部165と第1主軸部162とを繋ぐ第1テーパ部166とを有している。第1テーパ部166は、軸方向の第1円板部165側ほど外径が大径となるテーパ状である。 The outer diameter of the first flange portion 163 is larger than that of the first spindle portion 162 and larger than that of the first main hole portion 151. The first head portion 164 has a first disk portion 165 having an outer diameter larger than that of the first spindle portion 162 and a diameter larger than that of the first main hole portion 151, and the first disk portion 165 and the first. It has a first tapered portion 166 that connects to the main shaft portion 162. The first tapered portion 166 has a tapered shape having an outer diameter larger toward the side of the first disk portion 165 in the axial direction.

第1主軸部162は、第1主穴部151に径方向に所定の隙間をもって挿通されている。第1円板部165は、第1大径穴部153に対し嵌合可能であり摺動可能である。第1テーパ部166は、第1テーパ穴部152と同等のテーパ形状を有する。第1テーパ部166は、第1テーパ穴部152に全周にわたって当接可能となっている。 The first main shaft portion 162 is inserted into the first main hole portion 151 with a predetermined gap in the radial direction. The first disk portion 165 can be fitted and slidably fitted to the first large diameter hole portion 153. The first tapered portion 166 has a tapered shape equivalent to that of the first tapered hole portion 152. The first tapered portion 166 can be brought into contact with the first tapered hole portion 152 over the entire circumference.

開閉機構42は、第1弁体161を付勢する第1弁スプリング171を有している。第1弁スプリング171は、第1弁体161の第1フランジ部163と仕切部材本体132との間に設けられている。第1弁スプリング171は、第1テーパ部166を第1テーパ穴部152に当接させるように第1弁体161を室58側に所定の付勢力で付勢する。第1弁スプリング171はコイルスプリングである。第1弁スプリング171は、内側に第1主軸部162を挿通させた状態で、軸方向の一端が第1フランジ部163に当接し、軸方向の他端が仕切部材本体132に当接している。 The opening / closing mechanism 42 has a first valve spring 171 that urges the first valve body 161. The first valve spring 171 is provided between the first flange portion 163 of the first valve body 161 and the partition member main body 132. The first valve spring 171 urges the first valve body 161 toward the chamber 58 with a predetermined urging force so that the first tapered portion 166 comes into contact with the first tapered hole portion 152. The first valve spring 171 is a coil spring. In the first valve spring 171 with the first spindle portion 162 inserted inside, one end in the axial direction is in contact with the first flange portion 163, and the other end in the axial direction is in contact with the partition member main body 132. ..

第1弁体161は、第1弁スプリング171の付勢力で、第1円板部165を第1大径穴部153に嵌合させ、第1テーパ部166を第1テーパ穴部152に当接させる。これにより、第1弁体161は、第1連通穴141を閉塞して、第1連通穴141を通じた室58と室59との連通を遮断する。この状態が、第1弁体161が仕切部材131に着座して第1連通穴141を閉じる閉状態である。 In the first valve body 161, the first disc portion 165 is fitted into the first large diameter hole portion 153 by the urging force of the first valve spring 171 and the first tapered portion 166 is in contact with the first tapered hole portion 152. Get in touch. As a result, the first valve body 161 closes the first communication hole 141 and blocks the communication between the chamber 58 and the chamber 59 through the first communication hole 141. This state is a closed state in which the first valve body 161 sits on the partition member 131 and closes the first communication hole 141.

また、第1弁体161は、第1弁スプリング171の付勢力に抗して室59側に移動すると、第1テーパ部166を第1テーパ穴部152から離間させると共に、第1円板部165を第1大径穴部153から抜け出させる。その結果、室58と室59とを、第1連通穴141を介して連通させる。この状態が、第1弁体161が仕切部材131から離座して第1連通穴141を開く開状態である。 Further, when the first valve body 161 moves toward the chamber 59 against the urging force of the first valve spring 171, the first tapered portion 166 is separated from the first tapered hole portion 152 and the first disk portion is formed. The 165 is pulled out from the first large-diameter hole portion 153. As a result, the chamber 58 and the chamber 59 are communicated with each other through the first communication hole 141. This state is an open state in which the first valve body 161 is seated away from the partition member 131 and the first communication hole 141 is opened.

仕切部材本体132の第1連通穴141と、第1弁体161と、第1弁スプリング171とが、第1弁機構175を構成している。第1弁機構175は、ロッド33およびピストン部32が縮み側の外力を受けることにより、室58の圧力が大気圧よりも上昇して第1所定圧力値に達する。この第1所定圧力値以上になったときに開弁して、室58と室59とを第1連通穴141を介して連通する。第1弁機構175は、室58から室59への作動液Lの流れを許容し、室59から室58への作動液Lの流れを規制する一方向弁である。 The first communication hole 141 of the partition member main body 132, the first valve body 161 and the first valve spring 171 form the first valve mechanism 175. In the first valve mechanism 175, when the rod 33 and the piston portion 32 receive an external force on the contraction side, the pressure in the chamber 58 rises above the atmospheric pressure and reaches the first predetermined pressure value. When the pressure becomes equal to or higher than the first predetermined pressure value, the valve is opened and the chamber 58 and the chamber 59 are communicated with each other through the first communication hole 141. The first valve mechanism 175 is a one-way valve that allows the flow of the hydraulic fluid L from the chamber 58 to the chamber 59 and regulates the flow of the hydraulic fluid L from the chamber 59 to the chamber 58.

第1弁機構175が開弁して室58と室59とが連通すると、室59の作動液Lの増加が可能となる。その結果、フリーピストン41はシリンダ12に対し可動状態となる。よって、フリーピストン41は、ロッド33およびピストン部32が縮み側の外力を受けることにより、ボトム側室52の圧力が大気圧よりも上昇して第1所定圧力値に達したときにシリンダ12に対し可動状態になる。言い換えれば、作動液室55の室58の圧力が第1所定圧力値以上になったときにシリンダ12に対し可動状態になる。 When the first valve mechanism 175 opens and the chamber 58 and the chamber 59 communicate with each other, the hydraulic fluid L in the chamber 59 can be increased. As a result, the free piston 41 becomes movable with respect to the cylinder 12. Therefore, the free piston 41 refers to the cylinder 12 when the pressure of the bottom side chamber 52 rises above the atmospheric pressure and reaches the first predetermined pressure value due to the external force on the contraction side of the rod 33 and the piston portion 32. It becomes movable. In other words, when the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or higher than the first predetermined pressure value, the cylinder 12 becomes movable.

第1弁機構175は、仕切部材131に設けられている。第1弁機構175は、仕切部材131と共に開閉機構42を構成する。第1弁機構175は、ロッド33およびピストン部32が縮み側の外力を受けることによりピストン部32側の室58の圧力が大気圧より上昇しても、第1所定圧力値未満のときには閉弁している。このため、第1弁機構175は、第1所定圧力値未満のときには、ピストン部32側の室58とフリーピストン41側の室59との第1連通穴141を通じた連通を遮断している。 The first valve mechanism 175 is provided on the partition member 131. The first valve mechanism 175 constitutes the opening / closing mechanism 42 together with the partition member 131. The first valve mechanism 175 closes the valve when the pressure of the chamber 58 on the piston portion 32 side rises above the atmospheric pressure due to the rod 33 and the piston portion 32 receiving an external force on the contraction side, but is less than the first predetermined pressure value. doing. Therefore, when the pressure is less than the first predetermined pressure value, the first valve mechanism 175 blocks the communication between the chamber 58 on the piston portion 32 side and the chamber 59 on the free piston 41 side through the first communication hole 141.

第1弁機構175が開弁してフリーピストン41がシリンダ12に対し可動状態になることで、ロッド33のシリンダ12内への進入量の変化にロッド側室51および作動液室55の容積が追従可能となる。これに対し、フリーピストン41がシリンダ12に対し可動状態にならなければ、ロッド33のシリンダ12内への進入量の変化にロッド側室51および作動液室55の容積が追従可能とはならない。このため、第1弁機構175は、ロッド33およびピストン部32が縮み側の外力を受けてボトム側室52の圧力が大気圧より上昇しても、第1所定圧力値に達しないときにはロッド33およびピストン部32をシリンダ12に対しロックすることになる。言い換えれば、第1弁機構175は、作動液室55の室58の圧力が第1所定圧力値未満のときにロッド33およびピストン部32をシリンダ12に対しロックする。 When the first valve mechanism 175 opens and the free piston 41 becomes movable with respect to the cylinder 12, the volumes of the rod side chamber 51 and the hydraulic fluid chamber 55 follow the change in the amount of the rod 33 entering the cylinder 12. It will be possible. On the other hand, unless the free piston 41 becomes movable with respect to the cylinder 12, the volumes of the rod side chamber 51 and the hydraulic fluid chamber 55 cannot follow the change in the amount of the rod 33 entering the cylinder 12. Therefore, in the first valve mechanism 175, when the rod 33 and the piston portion 32 receive an external force on the contraction side and the pressure of the bottom side chamber 52 rises above the atmospheric pressure, the rod 33 and the first predetermined pressure value are not reached. The piston portion 32 will be locked with respect to the cylinder 12. In other words, the first valve mechanism 175 locks the rod 33 and the piston portion 32 with respect to the cylinder 12 when the pressure in the chamber 58 of the hydraulic fluid chamber 55 is less than the first predetermined pressure value.

開閉機構42は、第2連通穴142に挿通される第2弁体181を有している。第2弁体181は、第1弁体161と共通の部品である。第2弁体181は、第2主穴部156に挿通される一定外径の第2主軸部182と、第2主軸部182の軸方向の室59側に設けられた第2フランジ部183と、第2主軸部182の軸方向の室58側に設けられた第2頭部184と、を有している。 The opening / closing mechanism 42 has a second valve body 181 inserted into the second communication hole 142. The second valve body 181 is a component common to the first valve body 161. The second valve body 181 includes a second main shaft portion 182 having a constant outer diameter inserted through the second main hole portion 156, and a second flange portion 183 provided on the chamber 59 side in the axial direction of the second main shaft portion 182. , A second head 184 provided on the chamber 58 side in the axial direction of the second main shaft portion 182.

第2フランジ部183は、外径が第2主軸部182よりも大径であって第2主穴部156よりも大径である。第2頭部184は、第2円板部185と、第2テーパ部186とを有している。第2円板部185は、外径が第2主軸部182よりも大径であって第2主穴部156よりも大径である。第2テーパ部186は、第2円板部185と第2主軸部182とを繋ぐ。第2テーパ部186は、軸方向の第2円板部185側ほど外径が大きくなるテーパ状である。 The outer diameter of the second flange portion 183 is larger than that of the second main shaft portion 182 and larger than that of the second main hole portion 156. The second head portion 184 has a second disk portion 185 and a second tapered portion 186. The outer diameter of the second disk portion 185 is larger than that of the second main shaft portion 182 and larger than that of the second main hole portion 156. The second tapered portion 186 connects the second disk portion 185 and the second spindle portion 182. The second tapered portion 186 has a tapered shape in which the outer diameter becomes larger toward the second disk portion 185 side in the axial direction.

第2主軸部182は、第2主穴部156に径方向に所定の隙間をもって挿通されている。第2円板部185は、第2大径穴部158に対し嵌合可能であり摺動可能である。第2テーパ部186は、第2テーパ穴部157と同等のテーパ形状を有する。第2テーパ部186は、第2テーパ穴部157に全周にわたって当接可能となっている。 The second main shaft portion 182 is inserted into the second main hole portion 156 with a predetermined gap in the radial direction. The second disk portion 185 can be fitted and slidably fitted to the second large diameter hole portion 158. The second tapered portion 186 has a tapered shape equivalent to that of the second tapered hole portion 157. The second tapered portion 186 can come into contact with the second tapered hole portion 157 over the entire circumference.

開閉機構42は、第2弁体181を付勢する第2弁スプリング191を有している。第2弁スプリング191は、第2弁体181の第2フランジ部183と仕切部材本体132との間に設けられている。第2弁スプリング191は、第2テーパ部186を第2テーパ穴部157に当接させるように第2弁体181を室59側に所定の付勢力で付勢する。第2弁スプリング191はコイルスプリングである。第2弁スプリング191は、内側に第2主軸部182を挿通させた状態で、軸方向の一端が第2フランジ部183に当接し、軸方向の他端が仕切部材本体132に当接している。 The opening / closing mechanism 42 has a second valve spring 191 that urges the second valve body 181. The second valve spring 191 is provided between the second flange portion 183 of the second valve body 181 and the partition member main body 132. The second valve spring 191 urges the second valve body 181 toward the chamber 59 with a predetermined urging force so that the second tapered portion 186 comes into contact with the second tapered hole portion 157. The second valve spring 191 is a coil spring. In the second valve spring 191 with the second spindle portion 182 inserted inside, one end in the axial direction is in contact with the second flange portion 183, and the other end in the axial direction is in contact with the partition member main body 132. ..

第2弁体181は、第2弁スプリング191の付勢力で、第2円板部185を第2大径穴部158に嵌合させ、第2テーパ部186を第2テーパ穴部157に当接させる。これにより、第2弁体181は、第2連通穴142を閉塞して、第2連通穴142を通じた室59と室58との連通を遮断する。この状態が、第2弁体181が仕切部材131に着座して第2連通穴142を閉じる閉状態である。 In the second valve body 181, the second disc portion 185 is fitted into the second large diameter hole portion 158 by the urging force of the second valve spring 191 and the second tapered portion 186 is in contact with the second tapered hole portion 157. Get in touch. As a result, the second valve body 181 closes the second communication hole 142 and blocks the communication between the chamber 59 and the chamber 58 through the second communication hole 142. This state is a closed state in which the second valve body 181 sits on the partition member 131 and closes the second communication hole 142.

第2弁体181は、第2弁スプリング191の付勢力に抗して室58側に移動すると、第2テーパ部186を第2テーパ穴部157から離間させると共に、第2円板部185を第2大径穴部158から抜け出させる。その結果、室59と室58とを、第2連通穴142を介して連通させる。この状態が、第2弁体181が仕切部材131から離座して第2連通穴142を開く開状態である。 When the second valve body 181 moves toward the chamber 58 against the urging force of the second valve spring 191, the second tapered portion 186 is separated from the second tapered hole portion 157 and the second disk portion 185 is separated. It is pulled out from the second large-diameter hole portion 158. As a result, the chamber 59 and the chamber 58 are communicated with each other through the second communication hole 142. This state is an open state in which the second valve body 181 is separated from the partition member 131 and opens the second communication hole 142.

仕切部材本体132の第2連通穴142と、第2弁体181と、第2弁スプリング191とが、第2弁機構195を構成している。第2弁機構195は、ロッド33およびピストン部32が伸び側の外力を受けることにより、室58の圧力が大気圧よりも低下し、第2所定圧力値以下になったときに開弁して室59と室58とを第2連通穴142を介して連通する。第2弁機構195は、室59から室58への作動液Lの流れを許容し、室58から室59への作動液Lの流れを規制する一方向弁である。 The second communication hole 142 of the partition member main body 132, the second valve body 181 and the second valve spring 191 constitute the second valve mechanism 195. The second valve mechanism 195 opens the valve when the pressure in the chamber 58 drops below the atmospheric pressure due to the rod 33 and the piston portion 32 receiving an external force on the extension side and becomes equal to or less than the second predetermined pressure value. The chamber 59 and the chamber 58 are communicated with each other through the second communication hole 142. The second valve mechanism 195 is a one-way valve that allows the flow of the hydraulic fluid L from the chamber 59 to the chamber 58 and regulates the flow of the hydraulic fluid L from the chamber 58 to the chamber 59.

第2弁機構195が開弁して室59と室58とが連通すると、室59の作動液Lの減少が可能となる。その結果、フリーピストン41はシリンダ12に対し可動状態になる。フリーピストン41は、ロッド33およびピストン部32が伸び側の外力を受けることにより、ボトム側室52の圧力が大気圧よりも低下して第2所定圧力値に達したときにシリンダ12に対し可動状態になる。言い換えれば、フリーピストン41は、作動液室55の室58の圧力が第2所定圧力値以下になったときにシリンダ12に対し可動状態になる。 When the second valve mechanism 195 opens and the chamber 59 and the chamber 58 communicate with each other, the hydraulic fluid L in the chamber 59 can be reduced. As a result, the free piston 41 becomes movable with respect to the cylinder 12. The free piston 41 is in a movable state with respect to the cylinder 12 when the pressure of the bottom side chamber 52 drops below the atmospheric pressure and reaches the second predetermined pressure value due to the external force on the extension side of the rod 33 and the piston portion 32. become. In other words, the free piston 41 becomes movable with respect to the cylinder 12 when the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or less than the second predetermined pressure value.

第2弁機構195は、仕切部材131に設けられている。第2弁機構195は、仕切部材131と共に開閉機構42を構成する。第2弁機構195は、ロッド33およびピストン部32が伸び側の外力を受けることによりピストン部32側の室58の圧力が大気圧よりも低下しても、第2所定圧力値より大きいときには閉弁していてフリーピストン41側の室59とピストン部32側の室58との第2連通穴142を通じた連通を遮断する。 The second valve mechanism 195 is provided on the partition member 131. The second valve mechanism 195 constitutes the opening / closing mechanism 42 together with the partition member 131. The second valve mechanism 195 closes when the pressure of the chamber 58 on the piston portion 32 side is lower than the atmospheric pressure due to the rod 33 and the piston portion 32 receiving an external force on the extension side, but is larger than the second predetermined pressure value. The communication between the chamber 59 on the free piston 41 side and the chamber 58 on the piston portion 32 side is blocked through the second communication hole 142.

第2弁機構195が開弁してフリーピストン41がシリンダ12に対し可動状態になることで、ロッド33のシリンダ12からの退出量の変化にロッド側室51および作動液室55の容積が追従可能となる。これに対し、フリーピストン41がシリンダ12に対し可動状態にならなければ、ロッド33のシリンダ12からの退出量の変化にロッド側室51および作動液室55の容積が追従可能とはならない。このため、第2弁機構195は、ロッド33およびピストン部32が伸び側の外力を受けることにより、ボトム側室52の圧力が下降しても第2所定圧力値に達しないときには、ロッド33およびピストン部32をシリンダ12に対しロックすることになる。言い換えれば、第2弁機構195は、作動液室55の室58の圧力が第2所定圧力値より大きいときにはロッド33およびピストン部32をシリンダ12に対しロックする。 When the second valve mechanism 195 opens and the free piston 41 becomes movable with respect to the cylinder 12, the volumes of the rod side chamber 51 and the hydraulic fluid chamber 55 can follow the change in the amount of the rod 33 exiting from the cylinder 12. Will be. On the other hand, unless the free piston 41 becomes movable with respect to the cylinder 12, the volumes of the rod side chamber 51 and the hydraulic fluid chamber 55 cannot follow the change in the amount of the rod 33 exiting from the cylinder 12. Therefore, in the second valve mechanism 195, when the rod 33 and the piston portion 32 receive an external force on the extension side and the pressure in the bottom side chamber 52 drops but does not reach the second predetermined pressure value, the rod 33 and the piston portion 32 have a piston. The portion 32 will be locked to the cylinder 12. In other words, the second valve mechanism 195 locks the rod 33 and the piston portion 32 with respect to the cylinder 12 when the pressure in the chamber 58 of the hydraulic fluid chamber 55 is larger than the second predetermined pressure value.

以上により、第1弁機構175および第2弁機構195を有する開閉機構42は、第1弁機構175および第2弁機構195が、共に閉状態にあるとフリーピストン41の移動を規制する。第1弁機構175および第2弁機構195のいずれか一方が開状態になるとフリーピストン41の移動を許容する。なお、フリーピストン41は、ピストン部32のシリンダ12に対するストロークの中間位置において、ボトム側室52の圧力が所定圧力に達したときに可動状態になる。
中間位置とは、ロッド33のシリンダ12に対する伸び縮みが可能な位置であり、ロッド33がシリンダ12に対して伸び切った最大長位置および縮み切った最小長位置は含まない。
As described above, the opening / closing mechanism 42 having the first valve mechanism 175 and the second valve mechanism 195 restricts the movement of the free piston 41 when both the first valve mechanism 175 and the second valve mechanism 195 are in the closed state. When either the first valve mechanism 175 or the second valve mechanism 195 is in the open state, the free piston 41 is allowed to move. The free piston 41 becomes movable when the pressure of the bottom side chamber 52 reaches a predetermined pressure at the intermediate position of the stroke of the piston portion 32 with respect to the cylinder 12.
The intermediate position is a position where the rod 33 can be expanded and contracted with respect to the cylinder 12, and does not include the maximum length position where the rod 33 is fully extended and contracted with respect to the cylinder 12.

また、開閉機構42は、ロッド33およびピストン部32が縮み側の外力を受けても、作動液室55の室58の圧力が第1所定圧力値未満のときはフリーピストン41をシリンダ12に対し液圧でロックする。これにより、ロッド33およびピストン部32をシリンダ12に対し液圧でロックする。開閉機構42は、ロッド33およびピストン部32が伸び側の外力を受けても、作動液室55の室58の圧力が第2所定圧力値より大きいときはフリーピストン41をシリンダ12に対し液圧でロックする。これにより、ロッド33およびピストン部32をシリンダ12に対し液圧でロックする。言い換えれば、緩衝器11は、開閉機構42を設けることによって、伸縮両方向において、作動液室55とガス室56とを区画するフリーピストン41にセット荷重を作用させて、このセット荷重までは、ロッド33をシリンダ12に対しストロークさせないようになっている。 Further, in the opening / closing mechanism 42, even if the rod 33 and the piston portion 32 receive an external force on the contraction side, when the pressure in the chamber 58 of the hydraulic fluid chamber 55 is less than the first predetermined pressure value, the free piston 41 is attached to the cylinder 12. Lock with hydraulic pressure. As a result, the rod 33 and the piston portion 32 are hydraulically locked to the cylinder 12. In the opening / closing mechanism 42, even if the rod 33 and the piston portion 32 receive an external force on the extension side, when the pressure in the chamber 58 of the hydraulic fluid chamber 55 is larger than the second predetermined pressure value, the free piston 41 is hydraulically pressed with respect to the cylinder 12. Lock with. As a result, the rod 33 and the piston portion 32 are hydraulically locked to the cylinder 12. In other words, by providing the opening / closing mechanism 42, the shock absorber 11 applies a set load to the free piston 41 that separates the hydraulic fluid chamber 55 and the gas chamber 56 in both the expansion and contraction directions, and the rod is up to this set load. The 33 is not stroked with respect to the cylinder 12.

また、開閉機構42は、ロッド33およびピストン部32が縮み側の外力を受けて、作動液室55の室58の圧力が第1所定圧力値以上になるとフリーピストン41をシリンダ12に対し可動状態にする。これにより、ロッド33およびピストン部32をシリンダ12に対し可動状態にする。また、開閉機構42は、ロッド33およびピストン部32が伸び側の外力を受けて、作動液室55の室58の圧力が第2所定圧力値以下になるとフリーピストン41をシリンダ12に対し可動状態にする。これにより、ロッド33およびピストン部32をシリンダ12に対し可動状態にする。 Further, in the opening / closing mechanism 42, when the rod 33 and the piston portion 32 receive an external force on the contraction side and the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or higher than the first predetermined pressure value, the free piston 41 is in a movable state with respect to the cylinder 12. To. As a result, the rod 33 and the piston portion 32 are moved with respect to the cylinder 12. Further, in the opening / closing mechanism 42, when the rod 33 and the piston portion 32 receive an external force on the extension side and the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or less than the second predetermined pressure value, the free piston 41 is in a movable state with respect to the cylinder 12. To. As a result, the rod 33 and the piston portion 32 are moved with respect to the cylinder 12.

内筒28とフリーピストン41と開閉機構42とが、シリンダ12内に設けられてロッド33およびピストン部32のシリンダ12に対するストロークの可および不可を液圧で制御する液圧ロック制御機構200を構成している。 The inner cylinder 28, the free piston 41, and the opening / closing mechanism 42 are provided in the cylinder 12 to form a hydraulic lock control mechanism 200 that controls the possibility of a stroke of the rod 33 and the piston portion 32 with respect to the cylinder 12 by hydraulic pressure. doing.

緩衝器11は、図3に示すように、木造住宅等の建築物の地震による振動を減衰させる減衰機構211を構成する。減衰機構211は、例えば、建築物の壁構造部210内に組み込まれて建築物の振動を制振する。この壁構造部210は、梁212および土台213と、一対の柱214,215と、を有している。梁212および土台213は、いずれも水平に設置された構造部材である。一対の柱214,215は、いずれも鉛直に配置された構造部材である。梁212、土台213および一対の柱214,215は、矩形枠状をなすように連結されている。壁構造部210は、さらに、筋交い216と、緩衝器11を含む減衰機構211と、を有している。筋交い216は、土台213および一方の柱214の交点と梁212および他方の柱215の交点とを斜めに結ぶ構造部材である。減衰機構211は、筋交い216と共に、梁212、土台213および一対の柱214,215と、厚さ方向一側の壁面を形成するボード217と、厚さ方向他側の壁面を形成する図示略のボードとで囲まれた壁部内空間に配置される。 As shown in FIG. 3, the shock absorber 11 constitutes a damping mechanism 211 that attenuates vibration caused by an earthquake in a building such as a wooden house. The damping mechanism 211 is incorporated in, for example, the wall structure portion 210 of the building to suppress the vibration of the building. The wall structure 210 has a beam 212, a base 213, and a pair of columns 214, 215. The beam 212 and the base 213 are both structural members installed horizontally. The pair of columns 214 and 215 are all structural members arranged vertically. The beam 212, the base 213, and the pair of columns 214, 215 are connected so as to form a rectangular frame. The wall structure 210 further includes a brace 216 and a damping mechanism 211 including a shock absorber 11. The brace 216 is a structural member that diagonally connects the intersection of the base 213 and one column 214 with the intersection of the beam 212 and the other column 215. The damping mechanism 211, together with the brace 216, has a beam 212, a base 213, a pair of columns 214, 215, a board 217 forming a wall surface on one side in the thickness direction, and a wall surface on the other side in the thickness direction (not shown). It is placed in the space inside the wall surrounded by the board.

減衰機構211は、上部固定板221と、下部固定板222と、金属製の上側支持部材224と、金属製の下側支持部材225と、を有している。上部固定板221は、梁212に固定されて梁212から下方に延出する。下部固定板222は、土台213に固定されて土台213から上方に延出する。上側支持部材224は、上部固定板221の下端部に固定される。下側支持部材225は、下部固定板222の上端部に固定される。また、減衰機構211は、本実施形態に係る緩衝器11と、上側支持部材224に緩衝器11を連結するボルト等の連結部材226と、下側支持部材225に緩衝器11を連結するボルト等の連結部材227と、を有している。連結部材226は、上側支持部材224に緩衝器11のロッド33に取り付けられた取付アイ46(図1参照)を回動可能に連結している。連結部材227は、下側支持部材225に緩衝器11のシリンダ12に取り付けられた取付アイ45(図1参照)を回動可能に連結している。 The damping mechanism 211 has an upper fixing plate 221, a lower fixing plate 222, a metal upper support member 224, and a metal lower support member 225. The upper fixing plate 221 is fixed to the beam 212 and extends downward from the beam 212. The lower fixing plate 222 is fixed to the base 213 and extends upward from the base 213. The upper support member 224 is fixed to the lower end portion of the upper fixing plate 221. The lower support member 225 is fixed to the upper end portion of the lower fixing plate 222. Further, the damping mechanism 211 includes a shock absorber 11 according to the present embodiment, a connecting member 226 such as a bolt connecting the shock absorber 11 to the upper support member 224, and a bolt or the like connecting the shock absorber 11 to the lower support member 225. It has a connecting member 227 and. The connecting member 226 rotatably connects the mounting eye 46 (see FIG. 1) attached to the rod 33 of the shock absorber 11 to the upper support member 224. The connecting member 227 rotatably connects the mounting eye 45 (see FIG. 1) attached to the cylinder 12 of the shock absorber 11 to the lower support member 225.

上側支持部材224には、壁の厚さ方向に貫通する図示略の貫通穴が形成されている。下側支持部材225にも、壁の厚さ方向に貫通する図示略の貫通穴が形成されている。上部固定板221および下部固定板222は、上側支持部材224の貫通穴と下側支持部材225の貫通穴が、それぞれ壁の厚さ方向に沿って水平に配置され、互いに平行をなして高さ位置および壁の厚さ方向の位置を合わせるように施工される。 The upper support member 224 is formed with a through hole (not shown) that penetrates in the thickness direction of the wall. The lower support member 225 is also formed with a through hole (not shown) that penetrates in the thickness direction of the wall. In the upper fixing plate 221 and the lower fixing plate 222, the through holes of the upper support member 224 and the through holes of the lower support member 225 are arranged horizontally along the thickness direction of the wall, respectively, and are parallel to each other in height. It is constructed so that the position and the position in the thickness direction of the wall are aligned.

上側支持部材224の図示略の貫通穴と取付アイ46とに連結部材226を挿通する。この連結部材226によって上側支持部材224と取付アイ46とを回動可能に連結させる。下側支持部材225の図示略の貫通穴と取付アイ45の内周側とに連結部材227を挿通する。この連結部材227によって下側支持部材225と取付アイ45とを回動可能に連結させる。このようにすることで、緩衝器11は、略水平に配置される。このとき、緩衝器11は、ピストン部32およびロッド33がシリンダ12に対し中立位置にある状態で減衰機構211に組み込まれる。 The connecting member 226 is inserted into the through hole (not shown) of the upper support member 224 and the mounting eye 46. The connecting member 226 rotatably connects the upper support member 224 and the mounting eye 46. The connecting member 227 is inserted into the through hole (not shown) of the lower support member 225 and the inner peripheral side of the mounting eye 45. The lower support member 225 and the mounting eye 45 are rotatably connected by the connecting member 227. By doing so, the shock absorber 11 is arranged substantially horizontally. At this time, the shock absorber 11 is incorporated into the damping mechanism 211 in a state where the piston portion 32 and the rod 33 are in a neutral position with respect to the cylinder 12.

このようにして、壁構造部210の内部に設置された減衰機構211は、筋交い216と交差して設けられる筋交いと同等の強度を壁構造部210に持たせる。具体的に、減衰機構211は、梁212と柱214との交点近傍と、土台213と柱215との交点近傍とを斜めに結ぶ構造部材である筋交いと同等の強度を壁構造部210に持たせる。 In this way, the damping mechanism 211 installed inside the wall structure portion 210 gives the wall structure portion 210 the same strength as the brace provided so as to intersect the brace 216. Specifically, the damping mechanism 211 has the same strength as the brace, which is a structural member that diagonally connects the vicinity of the intersection between the beam 212 and the column 214 and the vicinity of the intersection between the base 213 and the column 215. Let me.

すなわち、減衰機構211を構成する緩衝器11は、ロッド33およびピストン部32が縮み側の外力を受けても、室58の圧力が第1所定圧力値未満であれば、シリンダ12に対しロックされる。緩衝器11は、ロッド33およびピストン部32が伸び側の外力を受けても、室58の圧力が第2所定圧力値より大きいときには、シリンダ12に対しロックされる。このため、緩衝器11は、伸縮いずれの方向で外力を受けても、室58の圧力が第2所定圧力値よりも大きく第1所定圧力値未満の範囲となる所定範囲内の外力であれば、伸縮せず、一定長さの構造部材となる。これにより、上部固定板221および上側支持部材224と、下部固定板222および下側支持部材225とを連結する。このように構成された減衰機構211は、擬似的に構造部材となるような降伏耐力の増加が図られる。 That is, the shock absorber 11 constituting the damping mechanism 211 is locked to the cylinder 12 if the pressure in the chamber 58 is less than the first predetermined pressure value even if the rod 33 and the piston portion 32 receive an external force on the contraction side. NS. The shock absorber 11 is locked to the cylinder 12 when the pressure in the chamber 58 is larger than the second predetermined pressure value even when the rod 33 and the piston portion 32 receive an external force on the extension side. Therefore, the shock absorber 11 is provided with an external force within a predetermined range in which the pressure in the chamber 58 is larger than the second predetermined pressure value and less than the first predetermined pressure value regardless of which direction the shock absorber 11 receives the external force. It does not expand and contract, and becomes a structural member of a certain length. As a result, the upper fixing plate 221 and the upper support member 224 are connected to the lower fixing plate 222 and the lower support member 225. The damping mechanism 211 configured in this way is intended to increase the yield strength so as to be a pseudo structural member.

具体的には、緩衝器11が設けられた壁構造部210が、壁倍率「4」の強度を得るように、緩衝器11はロッド33のシリンダ12に対するロック状態を維持する。ここで、壁倍率「4」は、厚さ4.5cm×幅9cmの木材からなる筋交いを、たすき掛けに入れた場合の値である。したがって、緩衝器11は、これに加わる外力が、壁構造部210における壁倍率「2」に相当する力までは可動状態にならず、壁倍率「2」に相当する力を超えたときに可動状態になるようになっている。 Specifically, the shock absorber 11 maintains the locked state of the rod 33 with respect to the cylinder 12 so that the wall structure portion 210 provided with the shock absorber 11 obtains the strength of the wall magnification “4”. Here, the wall magnification "4" is a value when a brace made of wood having a thickness of 4.5 cm and a width of 9 cm is put in a crosspiece. Therefore, the shock absorber 11 does not move up to the force corresponding to the wall magnification "2" in the wall structure portion 210, and moves when the external force applied to the shock absorber 11 exceeds the force corresponding to the wall magnification "2". It is supposed to be in a state.

より具体的に、緩衝器11は、−4000Nより大きく4000N未満の範囲の外力に対しては、フリーピストン41がシリンダ12に対し動かず、ロッド33およびピストン部32をシリンダ12に対し液圧でロックするように、第1弁スプリング171および第2弁スプリング191のバネ定数等が設定されている。また、緩衝器11は、−4000N以下の外力を受けた場合および4000N以上の外力を受けた場合には、フリーピストン41がシリンダ12に対し動いて、ロッド33およびピストン部32が移動可能になり、緩衝機能を果たす。緩衝器11は、1mm/min程度の加力時に、4000N程度の保持力を持つ。 More specifically, in the shock absorber 11, the free piston 41 does not move with respect to the cylinder 12 with respect to an external force in the range of more than -4000N and less than 4000N, and the rod 33 and the piston portion 32 are subjected to hydraulic pressure with respect to the cylinder 12. The spring constants of the first valve spring 171 and the second valve spring 191 are set so as to lock. Further, when the shock absorber 11 receives an external force of -4000 N or less and an external force of 4000 N or more, the free piston 41 moves with respect to the cylinder 12, and the rod 33 and the piston portion 32 become movable. , Serves a buffering function. The shock absorber 11 has a holding force of about 4000 N when a force of about 1 mm / min is applied.

例えば、建築物の上部構造部の荷重を支える場合、および、これに加えて横風が建築物に吹き付ける場合に、緩衝器11は、ロッド33およびピストン部32に比較的小さな外力を受ける。緩衝器11は、この外力を縮み側に受けた場合、ピストン部32が開閉機構42側に移動しようとして、これらの間の室58の圧力を上昇させる。しかしながら、室58の圧力が第1所定圧力値未満であれば、第1弁機構175は、液圧により第1弁体161に生じる開方向の力が第1弁スプリング171の付勢力よりも小さいため、開くことはない。このとき、第2弁機構195に液圧で生じる力の方向は閉方向である。よって、第1弁機構175および第2弁機構195は共に閉状態となり、室58から室59へ作動液Lが流れることはない。 For example, the shock absorber 11 receives a relatively small external force on the rod 33 and the piston portion 32 when supporting the load of the superstructure portion of the building and, in addition, when the crosswind blows on the building. When the shock absorber 11 receives this external force on the contraction side, the piston portion 32 tends to move to the opening / closing mechanism 42 side and raises the pressure in the chamber 58 between them. However, if the pressure in the chamber 58 is less than the first predetermined pressure value, the force in the opening direction generated in the first valve body 161 by the hydraulic pressure of the first valve mechanism 175 is smaller than the urging force of the first valve spring 171. Therefore, it will not open. At this time, the direction of the force generated by the hydraulic pressure on the second valve mechanism 195 is the closing direction. Therefore, both the first valve mechanism 175 and the second valve mechanism 195 are closed, and the hydraulic fluid L does not flow from the chamber 58 to the chamber 59.

この状態では、ロッド側室51、室58および室59を合わせた容積を増加させることはできない。このため、ロッド33がロッド側室51内へ入り込むことを規制する。よって、ロッド33およびピストン部32のシリンダ12に対する縮み側への移動を規制する。これにより、減衰機構211が筋交い216と交差する筋交いとして機能する。 In this state, the combined volume of the rod side chamber 51, the chamber 58 and the chamber 59 cannot be increased. Therefore, the rod 33 is restricted from entering the rod side chamber 51. Therefore, the movement of the rod 33 and the piston portion 32 to the contraction side with respect to the cylinder 12 is restricted. As a result, the damping mechanism 211 functions as a brace that intersects the brace 216.

また、ロッド33およびピストン部32が上記と同様の比較的小さな外力を伸び側に受けた場合、ピストン部32が開閉機構42とは反対側に移動しようとして、これらの間の室58の圧力を下降させる。しかしながら、室58の圧力が第2所定圧力値より大きければ、第2弁機構195は、液圧により第2弁体181に生じる開方向の力が第2弁スプリング191の付勢力よりも小さいため、開くことはない。このとき、第1弁機構175に液圧で生じる力の方向は閉方向である。よって、第2弁機構195および第1弁機構175は共に閉状態となり、室59から室58へ作動液Lが流れることはない。 Further, when the rod 33 and the piston portion 32 receive a relatively small external force similar to the above on the extension side, the piston portion 32 tries to move to the side opposite to the opening / closing mechanism 42 and applies the pressure of the chamber 58 between them. Lower. However, if the pressure in the chamber 58 is larger than the second predetermined pressure value, the force in the opening direction generated in the second valve body 181 by the hydraulic pressure in the second valve mechanism 195 is smaller than the urging force of the second valve spring 191. , Will not open. At this time, the direction of the force generated by the hydraulic pressure on the first valve mechanism 175 is the closing direction. Therefore, both the second valve mechanism 195 and the first valve mechanism 175 are closed, and the hydraulic fluid L does not flow from the chamber 59 to the chamber 58.

この状態では、ロッド側室51、室58および室59を合わせた容積を減少させることはできない。このため、ロッド33がロッド側室51から伸び出ることを規制する。よって、ロッド33およびピストン部32のシリンダ12に対する伸び側への移動を規制する。これにより、減衰機構211が筋交い216と交差する筋交いとして機能する。 In this state, the combined volume of the rod side chamber 51, the chamber 58 and the chamber 59 cannot be reduced. Therefore, the rod 33 is restricted from extending from the rod side chamber 51. Therefore, the movement of the rod 33 and the piston portion 32 to the extension side with respect to the cylinder 12 is restricted. As a result, the damping mechanism 211 functions as a brace that intersects the brace 216.

また、例えば地震が発生すると、緩衝器11は、ロッド33およびピストン部32に比較的大きな外力を受けることになる。緩衝器11は、この外力を縮み側に受けた場合、ピストン部32が開閉機構42側に移動しようとして、これらの間の室58の圧力を上昇させる。このとき、室58の圧力が第1所定圧力値以上になると、第1弁機構175は、液圧により第1弁体161に生じる開方向の力が第1弁スプリング171の付勢力より大きくなって、開くことになる。このとき、第2弁機構195に液圧で生じる力の方向は閉方向である。よって、第2弁機構195は閉状態のまま、第1弁機構175が開状態となり、バルブリリーフ状態となって、第1連通穴141を介して室58から室59へ作動液Lが流れる。 Further, for example, when an earthquake occurs, the shock absorber 11 receives a relatively large external force on the rod 33 and the piston portion 32. When the shock absorber 11 receives this external force on the contraction side, the piston portion 32 tends to move to the opening / closing mechanism 42 side and raises the pressure in the chamber 58 between them. At this time, when the pressure in the chamber 58 becomes equal to or higher than the first predetermined pressure value, the force in the opening direction generated in the first valve body 161 by the hydraulic pressure of the first valve mechanism 175 becomes larger than the urging force of the first valve spring 171. Will open. At this time, the direction of the force generated by the hydraulic pressure on the second valve mechanism 195 is the closing direction. Therefore, while the second valve mechanism 195 is in the closed state, the first valve mechanism 175 is in the open state and the valve is in the valve relief state, and the hydraulic fluid L flows from the chamber 58 to the chamber 59 through the first communication hole 141.

この状態では、ロッド側室51、室58および室59を合わせた容積は可変となり、ロッド33がロッド側室51内へ入り込むことが可能になる。よって、ロッド33およびピストン部32が縮み側へ移動する。その際に、ピストン部32の縮み側の減衰力発生部112が、ディスクバルブ92を開弁させる。これにより、室58からロッド側室51に複数の通路穴102内の通路と、ディスクバルブ92とピストン本体93との隙間とを介して作動液Lを流しつつ、ロッド33およびピストン部32の移動速度に応じた所定の減衰力を発生させる。これにより、減衰機構211が本来の減衰機構としての機能を発揮して建築物の揺れを抑える。 In this state, the combined volume of the rod side chamber 51, the chamber 58, and the chamber 59 is variable, and the rod 33 can enter the rod side chamber 51. Therefore, the rod 33 and the piston portion 32 move to the contraction side. At that time, the damping force generating portion 112 on the contraction side of the piston portion 32 opens the disc valve 92. As a result, the moving speed of the rod 33 and the piston portion 32 while flowing the hydraulic fluid L from the chamber 58 to the rod side chamber 51 through the passages in the plurality of passage holes 102 and the gap between the disc valve 92 and the piston main body 93. A predetermined damping force is generated according to the above. As a result, the damping mechanism 211 functions as the original damping mechanism and suppresses the shaking of the building.

また、ロッド33およびピストン部32が上記と同様の比較的大きな外力を伸び側に受けた場合、ピストン部32が開閉機構42とは反対側に移動しようとして、これらの間の室58の圧力を下降させる。このとき、室58の圧力が第2所定圧力値以下になると、第2弁機構195は、液圧により第2弁体181に生じる開方向の力が第2弁スプリング191の付勢力より大きくなって、開く。このとき、第1弁機構175に液圧で生じる力の方向は閉方向である。よって、第1弁機構175は閉状態のまま、第2弁機構195が開状態となり、バルブリリーフ状態となって、第2連通穴142を介して室59から室58へ作動液Lが流れる。 Further, when the rod 33 and the piston portion 32 receive a relatively large external force similar to the above on the extension side, the piston portion 32 tries to move to the side opposite to the opening / closing mechanism 42 and applies the pressure of the chamber 58 between them. Lower. At this time, when the pressure in the chamber 58 becomes equal to or less than the second predetermined pressure value, the force in the opening direction generated in the second valve body 181 due to the hydraulic pressure of the second valve mechanism 195 becomes larger than the urging force of the second valve spring 191. And open. At this time, the direction of the force generated by the hydraulic pressure on the first valve mechanism 175 is the closing direction. Therefore, while the first valve mechanism 175 is in the closed state, the second valve mechanism 195 is in the open state and is in the valve relief state, and the hydraulic fluid L flows from the chamber 59 to the chamber 58 through the second communication hole 142.

この状態では、ロッド側室51、室58および室59を合わせた容積は可変となり、ロッド33がロッド側室51から外に伸び出ることが可能になる。よって、ロッド33およびピストン部32が伸び側へ移動する。その際に、ピストン部32の伸び側の減衰力発生部111が、ディスクバルブ94を開弁させて、ロッド側室51から室58に複数の通路穴101内の通路と、ディスクバルブ94とピストン本体93との隙間とを介して作動液Lを流しつつ、ロッド33およびピストン部32の移動速度に応じた所定の減衰力を発生させる。これにより、減衰機構211が本来の減衰機構としての機能を発揮して建築物の揺れを抑える。 In this state, the combined volume of the rod side chamber 51, the chamber 58, and the chamber 59 is variable, and the rod 33 can extend out from the rod side chamber 51. Therefore, the rod 33 and the piston portion 32 move to the extension side. At that time, the damping force generating portion 111 on the extension side of the piston portion 32 opens the disc valve 94, and the passages in the plurality of passage holes 101 from the rod side chamber 51 to the chamber 58, the disc valve 94, and the piston main body. While flowing the hydraulic fluid L through the gap with 93, a predetermined damping force corresponding to the moving speed of the rod 33 and the piston portion 32 is generated. As a result, the damping mechanism 211 functions as the original damping mechanism and suppresses the shaking of the building.

特許文献1には、リザーバ室の体積を変化させてばね特性を変更する緩衝器が記載されている。緩衝器において、効果的に減衰力を立ち上げる特性を求められることがある。 Patent Document 1 describes a shock absorber that changes the volume of the reservoir chamber to change the spring characteristics. In the shock absorber, the characteristic of effectively raising the damping force may be required.

第1実施形態の緩衝器11は、ボトム側室52をピストン部32側の作動液室55とガス室56とに分離するフリーピストン41が、ボトム側室52の圧力が所定圧力に達したときにシリンダ12に対し可動状態になる。これにより、ボトム側室52の圧力が所定圧力に達するまでは、フリーピストン41はシリンダ12に対し可動状態にならず、ピストン部32に連結されたロッド33のシリンダ12内への入り込みあるいは伸び出しが規制される。よって、ロッド33がシリンダ12に対しストロークしようとしても、ボトム側室52の圧力が所定圧力に達するまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11は、効果的に減衰力を立ち上げることが可能となる。よって、緩衝器11を、例えば、上記したような建築物の構造部材として使用することができる。 In the shock absorber 11 of the first embodiment, the free piston 41 that separates the bottom side chamber 52 into the hydraulic fluid chamber 55 and the gas chamber 56 on the piston portion 32 side is a cylinder when the pressure of the bottom side chamber 52 reaches a predetermined pressure. It becomes movable with respect to 12. As a result, the free piston 41 does not move with respect to the cylinder 12 until the pressure of the bottom side chamber 52 reaches a predetermined pressure, and the rod 33 connected to the piston portion 32 enters or extends into the cylinder 12. Be regulated. Therefore, even if the rod 33 tries to stroke with respect to the cylinder 12, it cannot move until the pressure of the bottom side chamber 52 reaches a predetermined pressure. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11 can effectively raise the damping force. Therefore, the shock absorber 11 can be used, for example, as a structural member of a building as described above.

また、緩衝器11は、フリーピストン41が、作動液室55の室58の圧力が第1所定圧力値以上になったときにシリンダ12に対して可動状態になる。このため、緩衝器11は、ロッド33が縮み方向の外力を受けても、作動液室55の室58の圧力が第1所定圧力値未満では、フリーピストン41はシリンダ12に対し可動状態にならず、ロッド33のシリンダ12内への入り込みが規制される。よって、ロッド33がシリンダ12に対し入り込む方向にストロークしようとしても、作動液室55の室58の圧力が第1所定圧力値以上となるまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11は、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。なお、上述するように、作動液室55の室58の圧力が第1所定圧力値以上となるまでは移動できない、と示したが、ここで示す「移動」とは、実質的にストロークしていないことであり、外力を受けることによる初期の微小な可動は実質的に動いていないものとする。 Further, the shock absorber 11 is moved by the free piston 41 with respect to the cylinder 12 when the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or higher than the first predetermined pressure value. Therefore, in the shock absorber 11, even if the rod 33 receives an external force in the contraction direction, if the pressure in the chamber 58 of the hydraulic fluid chamber 55 is less than the first predetermined pressure value, the free piston 41 becomes movable with respect to the cylinder 12. However, the rod 33 is restricted from entering the cylinder 12. Therefore, even if the rod 33 tries to stroke in the direction of entering the cylinder 12, it cannot move until the pressure of the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or higher than the first predetermined pressure value. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11 can effectively raise the damping force against the external force in the contraction direction. As described above, it was shown that the hydraulic fluid chamber 55 cannot move until the pressure in the chamber 58 exceeds the first predetermined pressure value, but the “movement” shown here is substantially a stroke. It is assumed that there is no such thing, and that the initial minute movement caused by receiving an external force is substantially non-moving.

また、緩衝器11は、フリーピストン41が、作動液室55の室58の圧力が第2所定圧力値以下になったときにシリンダ12に対し可動状態になる。このため、緩衝器11は、ロッド33が伸び方向の外力を受けても、作動液室55の室58の圧力が第2所定圧力値より大きければ、フリーピストン41はシリンダ12に対し可動状態にならず、ロッド33のシリンダ12からの伸び出しが規制される。よって、ロッド33がシリンダ12に対し伸び出す方向にストロークしようとしても、作動液室55の室58の圧力が第2所定圧力値以下となるまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11は、伸び方向の外力に対して効果的に減衰力を立ち上げることが可能となる。なお、上述するように、作動液室55の室58の圧力が第2所定圧力値以下となるまでは移動できない、と示したが、ここで示す「移動」とは、実質的にストロークしていないことであり、外力を受けることによる初期の微小な可動は実質的に動いていないものとする。 Further, the shock absorber 11 is moved by the free piston 41 with respect to the cylinder 12 when the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or less than the second predetermined pressure value. Therefore, in the shock absorber 11, even if the rod 33 receives an external force in the extension direction, if the pressure in the chamber 58 of the hydraulic fluid chamber 55 is larger than the second predetermined pressure value, the free piston 41 is in a movable state with respect to the cylinder 12. However, the extension of the rod 33 from the cylinder 12 is restricted. Therefore, even if the rod 33 tries to stroke in the direction extending with respect to the cylinder 12, it cannot move until the pressure in the chamber 58 of the hydraulic fluid chamber 55 becomes equal to or less than the second predetermined pressure value. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11 can effectively raise the damping force with respect to the external force in the extension direction. As described above, it was shown that the hydraulic fluid chamber 55 cannot move until the pressure in the chamber 58 becomes equal to or less than the second predetermined pressure value, but the “movement” shown here is substantially a stroke. It is assumed that there is no such thing, and that the initial minute movement caused by receiving an external force is substantially non-moving.

緩衝器11には、作動液室55をピストン部32側の室58とフリーピストン41側の室59とに区画する仕切部材131が設けられている。この仕切部材131に、ピストン部32側の室58の圧力が第1所定圧力値以上になったときに開弁して室58と室59とを連通する第1弁機構175が設けられている。このため、簡素な構成で、ロッド33に縮み方向の外力を受けた場合のロッド33のシリンダ12内への入り込みを規制することができる。 The shock absorber 11 is provided with a partition member 131 that divides the hydraulic fluid chamber 55 into a chamber 58 on the piston portion 32 side and a chamber 59 on the free piston 41 side. The partition member 131 is provided with a first valve mechanism 175 that opens a valve when the pressure of the chamber 58 on the piston portion 32 side becomes equal to or higher than the first predetermined pressure value to communicate the chamber 58 and the chamber 59. .. Therefore, with a simple configuration, it is possible to restrict the rod 33 from entering the cylinder 12 when the rod 33 receives an external force in the contraction direction.

緩衝器11には、作動液室55をピストン部32側の室58とフリーピストン41側の室59とに区画する仕切部材131が設けられている。この仕切部材131に、ピストン部32側の室58の圧力が第2所定圧力値以下になったときに開弁して室59と室58とを連通する第2弁機構195が設けられている。このため、簡素な構成で、ロッド33に伸び方向の外力を受けた場合のロッド33のシリンダ12からの伸び出しを規制することができる。 The shock absorber 11 is provided with a partition member 131 that divides the hydraulic fluid chamber 55 into a chamber 58 on the piston portion 32 side and a chamber 59 on the free piston 41 side. The partition member 131 is provided with a second valve mechanism 195 that opens a valve when the pressure of the chamber 58 on the piston portion 32 side becomes equal to or less than the second predetermined pressure value to communicate the chamber 59 and the chamber 58. .. Therefore, with a simple configuration, it is possible to regulate the extension of the rod 33 from the cylinder 12 when the rod 33 receives an external force in the extension direction.

また、緩衝器11は、緩衝器11に加わる外力が、壁構造部210における壁倍率2に相当する力までは可動状態にならず、壁構造部210における壁倍率2に相当する力を超えたときに可動状態になる。このため、緩衝器11が組み込まれた壁構造部210に十分な強度が得られることになる。 Further, in the shock absorber 11, the external force applied to the shock absorber 11 did not move up to the force corresponding to the wall magnification 2 in the wall structure portion 210, and exceeded the force corresponding to the wall magnification 2 in the wall structure portion 210. Sometimes it becomes movable. Therefore, sufficient strength can be obtained for the wall structure portion 210 in which the shock absorber 11 is incorporated.

[第2実施形態]
次に、本発明の第2実施形態を主に図4に基づいて第1実施形態との相違部分を中心に説明する。なお、第1実施形態と共通する部位については、同一称呼、同一の符号で表す。
[Second Embodiment]
Next, the second embodiment of the present invention will be described mainly based on FIG. 4, focusing on the differences from the first embodiment. The parts common to the first embodiment are represented by the same name and the same reference numerals.

第2実施形態の緩衝器11Aにおいては、第1実施形態の内筒28とフリーピストン41と開閉機構42とからなる液圧ロック制御機構200にかえて、液圧ロック制御機構200Aが設けられている。これにより、緩衝器11Aは、第1実施形態のボトム側室52とは一部異なるボトム側室52Aを有している。 In the shock absorber 11A of the second embodiment, the hydraulic lock control mechanism 200A is provided instead of the hydraulic lock control mechanism 200 including the inner cylinder 28, the free piston 41, and the opening / closing mechanism 42 of the first embodiment. There is. As a result, the shock absorber 11A has a bottom side chamber 52A that is partially different from the bottom side chamber 52 of the first embodiment.

液圧ロック制御機構200Aは、位置規制部材301と、第1内筒302と、第2内筒303と、第1フリーピストン304と、第2フリーピストン305と、第1係止ピストン306と、第2係止ピストン307と、第1ピストンスプリング308(付勢部材)と、第2ピストンスプリング309(付勢部材)と、第3ピストンスプリング310(付勢部材)と、を有している。よって、液圧ロック制御機構200Aは、第1フリーピストン304および第2フリーピストン305の複数の(具体的に2つの)フリーピストンを有している。 The hydraulic lock control mechanism 200A includes a position regulating member 301, a first inner cylinder 302, a second inner cylinder 303, a first free piston 304, a second free piston 305, and a first locking piston 306. It has a second locking piston 307, a first piston spring 308 (a urging member), a second piston spring 309 (a urging member), and a third piston spring 310 (a urging member). Therefore, the hydraulic lock control mechanism 200A has a plurality of (specifically two) free pistons of the first free piston 304 and the second free piston 305.

位置規制部材301は、位置規制部材本体321と、Oリング等のシールリング322と、を有している。位置規制部材本体321は、シリンダ12の胴部22の主体部70内に嵌合される。シールリング322は、位置規制部材本体321と胴部22との隙間を閉塞する。 The position regulating member 301 has a position regulating member main body 321 and a seal ring 322 such as an O-ring. The position restricting member main body 321 is fitted in the main body 70 of the body 22 of the cylinder 12. The seal ring 322 closes the gap between the position restricting member main body 321 and the body portion 22.

位置規制部材本体321は、円板状である。位置規制部材本体321には、軸方向の一側から軸方向の他側の途中位置まで、同径の複数の(具体的には2カ所の)第1嵌合穴331および第2嵌合穴332が形成されている。第1嵌合穴331および第2嵌合穴332は、互いに平行をなして位置規制部材本体321の径方向に並んで形成されている。位置規制部材本体321には、第1通路穴333と、第2通路穴334とが形成されている。第1通路穴333は、第1嵌合穴331の底部から位置規制部材本体321の軸方向における他側に貫通している。第2通路穴334は、第2嵌合穴332の底部から位置規制部材本体321の軸方向における他側に貫通している。第1通路穴333と第2通路穴334とは同径である。第1通路穴333は、第1嵌合穴331よりも小径であり、第1嵌合穴331と同軸状に形成されている。第2通路穴334は、第2嵌合穴332よりも小径であり、第2嵌合穴332と同軸状に形成されている。 The position restricting member main body 321 has a disk shape. In the position regulating member main body 321, a plurality of (specifically, two) first fitting holes 331 and second fitting holes having the same diameter from one side in the axial direction to an intermediate position on the other side in the axial direction are provided. 332 is formed. The first fitting hole 331 and the second fitting hole 332 are formed so as to be parallel to each other and side by side in the radial direction of the position restricting member main body 321. A first passage hole 333 and a second passage hole 334 are formed in the position restricting member main body 321. The first passage hole 333 penetrates from the bottom of the first fitting hole 331 to the other side in the axial direction of the position restricting member main body 321. The second passage hole 334 penetrates from the bottom of the second fitting hole 332 to the other side in the axial direction of the position restricting member main body 321. The first passage hole 333 and the second passage hole 334 have the same diameter. The first passage hole 333 has a smaller diameter than the first fitting hole 331, and is formed coaxially with the first fitting hole 331. The second passage hole 334 has a smaller diameter than the second fitting hole 332 and is formed coaxially with the second fitting hole 332.

位置規制部材本体321の外周部に、円筒状の外周面よりも径方向内方に凹む円環状のシール溝335が形成されている。このシール溝335にシールリング322が装着されている。シール溝335は、位置規制部材本体321における軸方向の中央よりも第1通路穴333および第2通路穴334の側にずれて形成されている。 An annular seal groove 335 that is concave inward in the radial direction from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the position restricting member main body 321. A seal ring 322 is mounted on the seal groove 335. The seal groove 335 is formed so as to be offset from the center in the axial direction of the position restricting member main body 321 toward the first passage hole 333 and the second passage hole 334.

第1内筒302および第2内筒303は、いずれも円筒体であり、共通の部品である。
第1内筒302は、第1嵌合穴331に嵌合している。第2内筒303は、第2嵌合穴332に嵌合している。第1内筒302および第2内筒303の内径は、第1通路穴333および第2通路穴334の内径よりも大径となっている。第1内筒302および第2内筒303は、それぞれの軸方向の位置規制部材本体321とは反対側の端部がシリンダ12の底部23の平板部24に当接している。第1内筒302および第2内筒303を嵌合させた状態の位置規制部材本体321は、その底部23とは反対側の端部が、シリンダ12の胴部22に形成された第1実施形態と同様の点形状の係止部140に係止されている。
これにより、位置規制部材301、第1内筒302および第2内筒303が、シリンダ12に固定される。
The first inner cylinder 302 and the second inner cylinder 303 are both cylindrical bodies and are common parts.
The first inner cylinder 302 is fitted in the first fitting hole 331. The second inner cylinder 303 is fitted in the second fitting hole 332. The inner diameters of the first inner cylinder 302 and the second inner cylinder 303 are larger than the inner diameters of the first passage hole 333 and the second passage hole 334. The ends of the first inner cylinder 302 and the second inner cylinder 303 on the opposite side of the axial position restricting member main body 321 are in contact with the flat plate portion 24 of the bottom 23 of the cylinder 12. The position regulating member main body 321 in a state where the first inner cylinder 302 and the second inner cylinder 303 are fitted has the end portion opposite to the bottom portion 23 formed on the body portion 22 of the cylinder 12. It is locked to a point-shaped locking portion 140 similar to the shape.
As a result, the position restricting member 301, the first inner cylinder 302, and the second inner cylinder 303 are fixed to the cylinder 12.

第1フリーピストン304は、第1内筒302内に摺動可能に嵌合されている。第1フリーピストン304は、第1フリーピストン本体341と、Oリング等の第1シールリング342とを有している。第1フリーピストン本体341は、第1内筒302に摺動可能に嵌合される。第1シールリング342は、第1フリーピストン本体341と第1内筒302との隙間を密封する。第1フリーピストン本体341は、円板状である。第1フリーピストン本体341の外周部には、円筒状の外周面から径方向内方に凹む円環状の第1凹状部345が形成されている。この第1凹状部345に、第1シールリング342が保持されている。 The first free piston 304 is slidably fitted in the first inner cylinder 302. The first free piston 304 has a first free piston main body 341 and a first seal ring 342 such as an O-ring. The first free piston body 341 is slidably fitted to the first inner cylinder 302. The first seal ring 342 seals the gap between the first free piston main body 341 and the first inner cylinder 302. The first free piston body 341 has a disk shape. An annular first concave portion 345 that is radially inwardly recessed from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the first free piston main body 341. The first seal ring 342 is held in the first concave portion 345.

第2フリーピストン305は、第2内筒303内に摺動可能に嵌合されている。第2フリーピストン305は、第1フリーピストン304と共通の部品である。第2フリーピストン305は、第2フリーピストン本体351と、Oリング等の第2シールリング352とを有している。第2フリーピストン本体351は、第2内筒303に摺動可能に嵌合される。第2シールリング352は、第2フリーピストン本体351と第2内筒303との隙間を密封する。第2フリーピストン本体351は、円板状である。第2フリーピストン本体351の外周部には、円筒状の外周面から径方向内方に凹む円環状の第2凹状部355が形成されている。この第2凹状部355に、第2シールリング352が保持されている。 The second free piston 305 is slidably fitted in the second inner cylinder 303. The second free piston 305 is a component common to the first free piston 304. The second free piston 305 has a second free piston main body 351 and a second seal ring 352 such as an O-ring. The second free piston body 351 is slidably fitted to the second inner cylinder 303. The second seal ring 352 seals the gap between the second free piston main body 351 and the second inner cylinder 303. The second free piston body 351 has a disk shape. An annular second concave portion 355 that is radially inwardly recessed from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the second free piston main body 351. The second seal ring 352 is held in the second concave portion 355.

第1係止ピストン306は、第1内筒302内に摺動可能に嵌合されている。第1係止ピストン306は、第1係止ピストン本体361と、Oリング等の第1シール体362とを有している。第1係止ピストン本体361は、第1内筒302に摺動可能に嵌合される。第1シール体362は、第1係止ピストン本体361と第1内筒302との隙間を密封する。第1係止ピストン本体361は、径方向の中央に第1貫通孔364が形成された有孔円板状である。第1係止ピストン本体361の外周部には、円筒状の外周面から径方向内方に凹む円環状の第1溝部365が形成されている。この第1溝部365に、第1シール体362が保持されている。 The first locking piston 306 is slidably fitted in the first inner cylinder 302. The first locking piston 306 has a first locking piston body 361 and a first sealing body 362 such as an O-ring. The first locking piston body 361 is slidably fitted to the first inner cylinder 302. The first seal body 362 seals the gap between the first locking piston body 361 and the first inner cylinder 302. The first locking piston body 361 has a perforated disk shape in which a first through hole 364 is formed in the center in the radial direction. An annular first groove portion 365 is formed on the outer peripheral portion of the first locking piston main body 361, which is concave inward in the radial direction from the cylindrical outer peripheral surface. The first seal body 362 is held in the first groove portion 365.

第2係止ピストン307は、第2内筒303内に摺動可能に嵌合されている。第2係止ピストン307は、第1係止ピストン306と共通の部品である。第2係止ピストン307は、第2係止ピストン本体371と、Oリング等の第2シール体372とを有している。第2係止ピストン本体371は、第2内筒303に摺動可能に嵌合される。第2シール体372は、第2係止ピストン本体371と第2内筒303との隙間を密封する。第2係止ピストン本体371は、径方向の中央に第2貫通孔374が形成された有孔円板状である。第2係止ピストン本体371の外周部には、円筒状の外周面から径方向内方に凹む円環状の第2溝部375が形成されている。この第2溝部375に、第2シール体372が保持されている。 The second locking piston 307 is slidably fitted in the second inner cylinder 303. The second locking piston 307 is a component common to the first locking piston 306. The second locking piston 307 has a second locking piston main body 371 and a second sealing body 372 such as an O-ring. The second locking piston body 371 is slidably fitted to the second inner cylinder 303. The second seal body 372 seals the gap between the second locking piston main body 371 and the second inner cylinder 303. The second locking piston body 371 has a perforated disk shape in which a second through hole 374 is formed in the center in the radial direction. An annular second groove portion 375 that is concave inward in the radial direction from the cylindrical outer peripheral surface is formed on the outer peripheral portion of the second locking piston main body 371. The second seal body 372 is held in the second groove portion 375.

第1ピストンスプリング308は、コイルスプリングである。第1ピストンスプリング308は、第1内筒302内に配置されて、第1フリーピストン304と第1係止ピストン306との間に介装されている。
第1ピストンスプリング308は、軸方向の一端が第1フリーピストン本体341に当接し、軸方向の他端が第1係止ピストン本体361に当接している。第1ピストンスプリング308は、第1フリーピストン304を位置規制部材301の第1嵌合穴331の底部に当接する方向に付勢し、第1係止ピストン306をシリンダ12の底部23に当接する方向に付勢する。第1フリーピストン304は、軸方向両側に圧力差がなければ、第1ピストンスプリング308の付勢力で、位置規制部材301の第1嵌合穴331の底部に当接している。第1ピストンスプリング308は、第1フリーピストン304をピストン部32の方向に向けてセット荷重をもって付勢する。
The first piston spring 308 is a coil spring. The first piston spring 308 is arranged in the first inner cylinder 302 and is interposed between the first free piston 304 and the first locking piston 306.
One end of the first piston spring 308 is in contact with the first free piston body 341, and the other end in the axial direction is in contact with the first locking piston body 361. The first piston spring 308 urges the first free piston 304 in the direction of abutting the bottom of the first fitting hole 331 of the position regulating member 301, and abuts the first locking piston 306 against the bottom 23 of the cylinder 12. Elevate in the direction. The first free piston 304 is in contact with the bottom of the first fitting hole 331 of the position restricting member 301 by the urging force of the first piston spring 308 if there is no pressure difference on both sides in the axial direction. The first piston spring 308 urges the first free piston 304 toward the piston portion 32 with a set load.

第2ピストンスプリング309は、コイルスプリングである。第2ピストンスプリング309は、第2内筒303内に配置されて、位置規制部材301の第2嵌合穴332の底部と第2フリーピストン305との間に介装されている。
第2ピストンスプリング309は、軸方向の一端が位置規制部材本体321に当接し、軸方向の他端が第2フリーピストン本体351に当接している。
The second piston spring 309 is a coil spring. The second piston spring 309 is arranged in the second inner cylinder 303 and is interposed between the bottom of the second fitting hole 332 of the position restricting member 301 and the second free piston 305.
One end of the second piston spring 309 in the axial direction is in contact with the position regulating member main body 321 and the other end in the axial direction is in contact with the second free piston main body 351.

第3ピストンスプリング310は、コイルスプリングである。第3ピストンスプリング310は、第2内筒303内に配置されて、第2フリーピストン305と第2係止ピストン307との間に介装されている。
第3ピストンスプリング310は、軸方向の一端が第2フリーピストン本体351に当接し、軸方向の他端が第2係止ピストン本体371に当接している。
The third piston spring 310 is a coil spring. The third piston spring 310 is arranged in the second inner cylinder 303 and is interposed between the second free piston 305 and the second locking piston 307.
One end of the third piston spring 310 in the axial direction is in contact with the second free piston body 351 and the other end in the axial direction is in contact with the second locking piston body 371.

第2ピストンスプリング309および第3ピストンスプリング310は、第2フリーピストン305を軸方向両側から反対向きに付勢する。第2フリーピストン305は、軸方向両側に圧力差がなければ、第2ピストンスプリング309と第3ピストンスプリング310との付勢力の釣り合いの位置で止まる。第3ピストンスプリング310は、第2ピストンスプリング309よりも長さが短くバネ定数が高い。また、第3ピストンスプリング310は、第1ピストンスプリング308よりも長さが短くバネ定数が高い。 The second piston spring 309 and the third piston spring 310 urge the second free piston 305 in opposite directions from both sides in the axial direction. The second free piston 305 stops at a position where the urging force of the second piston spring 309 and the third piston spring 310 are balanced if there is no pressure difference on both sides in the axial direction. The third piston spring 310 has a shorter length and a higher spring constant than the second piston spring 309. Further, the third piston spring 310 has a shorter length and a higher spring constant than the first piston spring 308.

第2実施形態においては、第1フリーピストン304および第2フリーピストン305は、ボトム側室52Aに設けられる。第1フリーピストン304および第2フリーピストン305が、ボトム側室52Aをピストン部32側の作動液室55Aとガス室56Aとに分離する。 In the second embodiment, the first free piston 304 and the second free piston 305 are provided in the bottom side chamber 52A. The first free piston 304 and the second free piston 305 separate the bottom side chamber 52A into a hydraulic fluid chamber 55A and a gas chamber 56A on the piston portion 32 side.

作動液室55Aは、胴部22の内周面と、ピストン部32と、位置規制部材301と、第1内筒302と、第1フリーピストン304と、第2内筒303と、第2フリーピストン305と、で囲まれて形成されている。位置規制部材301の第1通路穴333および第2通路穴334も作動液室55Aを構成している。 The hydraulic fluid chamber 55A includes an inner peripheral surface of the body portion 22, a piston portion 32, a position regulating member 301, a first inner cylinder 302, a first free piston 304, a second inner cylinder 303, and a second free. It is formed by being surrounded by a piston 305. The first passage hole 333 and the second passage hole 334 of the position restricting member 301 also constitute the hydraulic fluid chamber 55A.

ガス室56Aは、第1内筒302の内周面と、第1フリーピストン304と、第1係止ピストン306と、底部23の凹部26と、第2係止ピストン307と、第2内筒303の内周面と、第2フリーピストン305と、で囲まれて形成されている。第1係止ピストン306の第1貫通孔364および第2係止ピストン307の第2貫通孔374もガス室56Aを構成している。ガス室56Aは、第1内筒302の内側部分と第2内筒303の内側部分とが、第1貫通孔364と凹部26と第2貫通孔374とを介して常時連通している。 The gas chamber 56A includes an inner peripheral surface of the first inner cylinder 302, a first free piston 304, a first locking piston 306, a recess 26 at the bottom 23, a second locking piston 307, and a second inner cylinder. It is formed by being surrounded by the inner peripheral surface of 303 and the second free piston 305. The first through hole 364 of the first locking piston 306 and the second through hole 374 of the second locking piston 307 also constitute the gas chamber 56A. In the gas chamber 56A, the inner portion of the first inner cylinder 302 and the inner portion of the second inner cylinder 303 are always in communication with each other through the first through hole 364, the recess 26, and the second through hole 374.

シリンダ12内には、ロッド側室51と、作動液室55Aとに作動液Lが封入されている。ガス室56AにはガスGが封入されている。ガスGが空気である場合、ガス室56Aは密封されずに大気開放されていても良い。ピストン部32およびロッド33が外力を受けずにシリンダ12に対し所定の中立位置にあるとき、ロッド側室51、作動液室55Aおよびガス室56Aは、いずれも大気圧である。所定の中立位置は、シリンダ12内に封入される作動液Lの液量で決まる。 In the cylinder 12, the hydraulic fluid L is sealed in the rod side chamber 51 and the hydraulic fluid chamber 55A. Gas G is sealed in the gas chamber 56A. When the gas G is air, the gas chamber 56A may be open to the atmosphere without being sealed. When the piston portion 32 and the rod 33 are in a predetermined neutral position with respect to the cylinder 12 without receiving an external force, the rod side chamber 51, the hydraulic fluid chamber 55A, and the gas chamber 56A are all at atmospheric pressure. The predetermined neutral position is determined by the amount of the hydraulic fluid L sealed in the cylinder 12.

第1ピストンスプリング308および第3ピストンスプリング310は、ガス室56Aに設けられている。第2ピストンスプリング309は作動液室55Aに配置されている。
第1係止ピストン306および第2係止ピストン307は、第1ピストンスプリング308、第2ピストンスプリング309および第3ピストンスプリング310に所定のセット荷重を発生させる。第1係止ピストン306および第2係止ピストン307は、シリンダ12の底部23の平板部24に常時当接している。言い換えれば、第1係止ピストン306および第2係止ピストン307は、シリンダ12に対して軸方向に移動することはない。これに対し、第1フリーピストン304および第2係止ピストン307は、作動液室55Aの圧力で、シリンダ12に対して軸方向に移動する。
The first piston spring 308 and the third piston spring 310 are provided in the gas chamber 56A. The second piston spring 309 is arranged in the hydraulic fluid chamber 55A.
The first locking piston 306 and the second locking piston 307 generate a predetermined set load on the first piston spring 308, the second piston spring 309, and the third piston spring 310. The first locking piston 306 and the second locking piston 307 are always in contact with the flat plate portion 24 of the bottom 23 of the cylinder 12. In other words, the first locking piston 306 and the second locking piston 307 do not move axially with respect to the cylinder 12. On the other hand, the first free piston 304 and the second locking piston 307 move in the axial direction with respect to the cylinder 12 under the pressure of the hydraulic fluid chamber 55A.

ロッド33およびピストン部32がシリンダ12に対し所定の中立位置にあるとき、第1フリーピストン304は、第1嵌合穴331の底部に当接している。この状態から、ロッド33およびピストン部32が縮み側の外力を受けることにより、ボトム側室52Aの作動液室55Aの圧力が大気圧よりも上昇して第3所定圧力値に達したときに、第1フリーピストン304は、第1ピストンスプリング308の付勢力に抗して底部23側に可動な状態になる。言い換えれば、第1フリーピストン304は、作動液室55Aの圧力が第3所定圧力値以上になったときにシリンダ12に対して可動状態になる。 When the rod 33 and the piston portion 32 are in a predetermined neutral position with respect to the cylinder 12, the first free piston 304 is in contact with the bottom portion of the first fitting hole 331. From this state, when the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A rises above the atmospheric pressure due to the rod 33 and the piston portion 32 receiving the external force on the contraction side, the third predetermined pressure value is reached. The 1 free piston 304 becomes movable toward the bottom 23 side against the urging force of the first piston spring 308. In other words, the first free piston 304 becomes movable with respect to the cylinder 12 when the pressure in the hydraulic fluid chamber 55A becomes equal to or higher than the third predetermined pressure value.

第1ピストンスプリング308は、ボトム側室52Aの作動液室55Aの圧力が第3所定圧力値に達したときに、シリンダ12に対して可動状態になるように第1フリーピストン304を付勢する。言い換えれば、第1ピストンスプリング308は、作動液室55Aの圧力が第3所定圧力値以上になったときに、シリンダ12に対して可動状態になるように第1フリーピストン304および第2フリーピストン305のうちの一方の第1フリーピストン304を付勢する。 The first piston spring 308 urges the first free piston 304 so that it becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A reaches the third predetermined pressure value. In other words, the first piston spring 308 has the first free piston 304 and the second free piston so as to be movable with respect to the cylinder 12 when the pressure of the working fluid chamber 55A becomes equal to or higher than the third predetermined pressure value. The first free piston 304 of one of the 305s is urged.

第1フリーピストン304がシリンダ12に対し可動状態になることで、ロッド33のシリンダ12内への進入量の変化が可能となる。これに対し、第1フリーピストン304がシリンダ12に対し実質的な可動状態にならなければ、ロッド33のシリンダ12内への進入量の変化が不可となる。このため、液圧ロック制御機構200Aは、ロッド33およびピストン部32が縮み側の外力を受けてボトム側室52Aの作動液室55Aの圧力が大気圧より上昇しても、第3所定圧力値に達しないときにはロッド33およびピストン部32をシリンダ12に対しロックすることになる。言い換えれば、液圧ロック制御機構200Aは、作動液室55Aの圧力が第3所定圧力値未満のときにロッド33およびピストン部32をシリンダ12に対しロックする。 By moving the first free piston 304 with respect to the cylinder 12, the amount of the rod 33 entering the cylinder 12 can be changed. On the other hand, unless the first free piston 304 is substantially movable with respect to the cylinder 12, the amount of the rod 33 entering the cylinder 12 cannot be changed. Therefore, even if the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A rises above the atmospheric pressure due to the external force on the contraction side of the rod 33 and the piston portion 32, the hydraulic pressure lock control mechanism 200A reaches the third predetermined pressure value. When it does not reach, the rod 33 and the piston portion 32 are locked with respect to the cylinder 12. In other words, the hydraulic pressure lock control mechanism 200A locks the rod 33 and the piston portion 32 with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A is less than the third predetermined pressure value.

なお、作動液室55Aの圧力が大気圧より上昇して第3所定圧力値に達しても、第3所定圧力値よりも大きい第4所定圧力値に達するまでは、第3ピストンスプリング310の付勢力によって第2フリーピストン305はシリンダ12に対し可動状態にならない。 Even if the pressure of the hydraulic fluid chamber 55A rises above the atmospheric pressure and reaches the third predetermined pressure value, the third piston spring 310 is attached until the fourth predetermined pressure value larger than the third predetermined pressure value is reached. Due to the force, the second free piston 305 does not move with respect to the cylinder 12.

第2ピストンスプリング309および第3ピストンスプリング310で保持されている第2フリーピストン305は、ロッド33およびピストン部32が伸び側の外力を受けることにより、ボトム側室52Aの作動液室55Aの圧力が大気圧よりも低下して第5所定圧力値に達したときに、第2ピストンスプリング309の付勢力に抗してシリンダ12に対し可動状態になる。言い換えれば、第2フリーピストン305は、作動液室55Aの圧力が第5所定圧力値以下になったときにシリンダ12に対し可動状態になる。 In the second free piston 305 held by the second piston spring 309 and the third piston spring 310, the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A is increased by the rod 33 and the piston portion 32 receiving the external force on the extension side. When the pressure drops below the atmospheric pressure and reaches the fifth predetermined pressure value, the piston 12 becomes movable against the urging force of the second piston spring 309. In other words, the second free piston 305 becomes movable with respect to the cylinder 12 when the pressure in the hydraulic fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value.

第2ピストンスプリング309は、ボトム側室52Aの作動液室55Aの圧力が第5所定圧力値に達したときにシリンダ12に対し可動状態になるように第2フリーピストン305を付勢する。言い換えれば、第2ピストンスプリング309は、作動液室55Aの圧力が第5所定圧力値以下になったときにシリンダ12に対し可動状態になるように複数の第1フリーピストン304および第2フリーピストン305のうちの一の第2フリーピストン305を付勢する。 The second piston spring 309 urges the second free piston 305 so that it becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A reaches the fifth predetermined pressure value. In other words, the second piston spring 309 has a plurality of first free pistons 304 and second free pistons so as to be movable with respect to the cylinder 12 when the pressure of the working fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value. Encourage the second free piston 305, one of the 305s.

第2ピストンスプリング309は、作動液室55Aに設けられている。第2ピストンスプリング309は、第2フリーピストン305をピストン部32から離間する方向に向けて、セット荷重で付勢する。
液圧ロック制御機構200Aは、第2フリーピストン305を付勢するスプリングとして、第3ピストンスプリング310(第一付勢部材)と、第2ピストンスプリング309(第二付勢部材)とを有している。第3ピストンスプリング310は、第2フリーピストン305をピストン部32に向けて付勢する。第2ピストンスプリング309は、第2フリーピストン305をピストン部32から離間する方向に向けて付勢する。
The second piston spring 309 is provided in the hydraulic fluid chamber 55A. The second piston spring 309 urges the second free piston 305 with a set load toward the direction away from the piston portion 32.
The hydraulic lock control mechanism 200A has a third piston spring 310 (first urging member) and a second piston spring 309 (second urging member) as springs for urging the second free piston 305. ing. The third piston spring 310 urges the second free piston 305 toward the piston portion 32. The second piston spring 309 urges the second free piston 305 in a direction away from the piston portion 32.

第2フリーピストン305がシリンダ12に対し可動状態になることで、ロッド33のシリンダ12内からの退出量の変化が可能となる。これに対し、第2フリーピストン305がシリンダ12に対し実質的な可動状態にならなければ、ロッド33のシリンダ12からの退出量の変化が不可となる。このため、液圧ロック制御機構200Aは、ロッド33およびピストン部32が伸び側の外力を受けることにより、ボトム側室52Aの作動液室55Aの圧力が下降しても第5所定圧力値に達しないときには、ロッド33およびピストン部32をシリンダ12に対しロックする。言い換えれば、液圧ロック制御機構200Aは、作動液室55Aの圧力が第5所定圧力値より大きいときにはロッド33およびピストン部32をシリンダ12に対しロックする。なお、作動液室55Aの圧力が大気圧よりも低下しても、第1フリーピストン304は位置規制部材301に当接していて、シリンダ12に対し可動状態にはならない。 When the second free piston 305 becomes movable with respect to the cylinder 12, the amount of the rod 33 retracting from the cylinder 12 can be changed. On the other hand, unless the second free piston 305 is substantially movable with respect to the cylinder 12, the amount of the rod 33 retracted from the cylinder 12 cannot be changed. Therefore, the hydraulic pressure lock control mechanism 200A does not reach the fifth predetermined pressure value even if the pressure of the hydraulic fluid chamber 55A of the bottom side chamber 52A drops due to the external force on the extension side of the rod 33 and the piston portion 32. Occasionally, the rod 33 and the piston portion 32 are locked to the cylinder 12. In other words, the hydraulic pressure lock control mechanism 200A locks the rod 33 and the piston portion 32 with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A is larger than the fifth predetermined pressure value. Even if the pressure of the hydraulic fluid chamber 55A drops below the atmospheric pressure, the first free piston 304 is in contact with the position regulating member 301 and is not in a movable state with respect to the cylinder 12.

以上により、液圧ロック制御機構200Aは、ロッド33およびピストン部32が縮み側の外力を受けても、作動液室55Aの圧力が第3所定圧力値未満のときは、第1フリーピストン304を第1ピストンスプリング308の付勢力によってシリンダ12に対しロックし、かつ、第2フリーピストン305を第3ピストンスプリング310の付勢力によってシリンダ12に対しロックする。これにより、ロッド33およびピストン部32をシリンダ12に対し液圧でロックする。また、液圧ロック制御機構200Aは、ロッド33およびピストン部32が伸び側の外力を受けても、作動液室55Aの圧力が第5所定圧力値より大きいときは、第2フリーピストン305を第2ピストンスプリング309の付勢力によってシリンダ12に対しロックする。これにより、ロッド33およびピストン部32をシリンダ12に対し液圧でロックする。 As described above, the hydraulic lock control mechanism 200A uses the first free piston 304 when the pressure in the working fluid chamber 55A is less than the third predetermined pressure value even when the rod 33 and the piston portion 32 receive an external force on the contraction side. The urging force of the first piston spring 308 locks the second free piston 305 to the cylinder 12, and the urging force of the third piston spring 310 locks the second free piston 305 to the cylinder 12. As a result, the rod 33 and the piston portion 32 are hydraulically locked to the cylinder 12. Further, the hydraulic pressure lock control mechanism 200A sets the second free piston 305 to the second free piston 305 when the pressure of the hydraulic fluid chamber 55A is larger than the fifth predetermined pressure value even if the rod 33 and the piston portion 32 receive an external force on the extension side. 2 Locks to the cylinder 12 by the urging force of the piston spring 309. As a result, the rod 33 and the piston portion 32 are hydraulically locked to the cylinder 12.

言い換えれば、第1ピストンスプリング308、第2ピストンスプリング309および第3ピストンスプリング310が設けられた緩衝器11Aには、作動液室55Aとガス室56Aとを区画する第1フリーピストン304および第2フリーピストン305にセット荷重が作用させている。緩衝器11Aにおいては、このセット荷重までは、ロッド33およびピストン部32がシリンダ12に対しストロークしない。 In other words, in the shock absorber 11A provided with the first piston spring 308, the second piston spring 309 and the third piston spring 310, the first free piston 304 and the second free piston 304 and the second free piston 304 that separate the hydraulic fluid chamber 55A and the gas chamber 56A are provided. A set load is applied to the free piston 305. In the shock absorber 11A, the rod 33 and the piston portion 32 do not stroke with respect to the cylinder 12 until this set load.

液圧ロック制御機構200Aは、ロッド33およびピストン部32が縮み側の外力を受けて、作動液室55Aの圧力が第3所定圧力値以上になると、第1フリーピストン304をシリンダ12に対し可動状態にする。これにより、ロッド33およびピストン部32をシリンダ12に対し可動状態にする。また、液圧ロック制御機構200Aは、ロッド33およびピストン部32が伸び側の外力を受けて、作動液室55Aの圧力が第5所定圧力値以下になると第2フリーピストン305をシリンダ12に対し可動状態にすることになってロッド33およびピストン部32をシリンダ12に対し可動状態にする。 The hydraulic pressure lock control mechanism 200A moves the first free piston 304 with respect to the cylinder 12 when the rod 33 and the piston portion 32 receive an external force on the contraction side and the pressure in the hydraulic fluid chamber 55A becomes equal to or higher than the third predetermined pressure value. Put it in a state. As a result, the rod 33 and the piston portion 32 are moved with respect to the cylinder 12. Further, in the hydraulic pressure lock control mechanism 200A, when the rod 33 and the piston portion 32 receive an external force on the extension side and the pressure in the hydraulic fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value, the second free piston 305 is applied to the cylinder 12. The rod 33 and the piston portion 32 are made movable with respect to the cylinder 12.

このように、液圧ロック制御機構200Aは、ロッド33およびピストン部32のシリンダ12に対するストロークの可および不可を液圧で制御する。なお、第1フリーピストン304と、第2フリーピストン305とは、ピストン部32のシリンダ12に対するストロークの中間位置において、ボトム側室52Aの圧力が所定圧力に達したときに可動状態になる。ここで、中間位置とは、ロッド33のシリンダ12に対する伸び縮みが可能な位置であり、ロッド33がシリンダ12に対して伸び切った最大長位置および縮み切った最小長位置は含まない。 In this way, the hydraulic lock control mechanism 200A controls the possibility of the stroke of the rod 33 and the piston portion 32 with respect to the cylinder 12 by the hydraulic pressure. The first free piston 304 and the second free piston 305 are in a movable state when the pressure of the bottom side chamber 52A reaches a predetermined pressure at an intermediate position of the stroke of the piston portion 32 with respect to the cylinder 12. Here, the intermediate position is a position where the rod 33 can be expanded and contracted with respect to the cylinder 12, and does not include the maximum length position where the rod 33 is fully extended and contracted with respect to the cylinder 12.

第2実施形態の緩衝器11Aも、図3に示す減衰機構211に、第1実施形態の緩衝器11にかえて設けられる。 The shock absorber 11A of the second embodiment is also provided in the damping mechanism 211 shown in FIG. 3 in place of the shock absorber 11 of the first embodiment.

すなわち、緩衝器11Aは、ロッド33およびピストン部32が縮み側の外力を受けても作動液室55Aの圧力が第3所定圧力値未満であればロックされる。これにより、ロッド33およびピストン部32が伸び側の外力を受けても、作動液室55Aの圧力が第5所定圧力値より大きいときには、緩衝器11Aはロックされる。このため、緩衝器11Aは、伸縮いずれの方向で外力を受けても、作動液室55Aの圧力が第5所定圧力値よりも大きく第3所定圧力値未満の範囲となる所定範囲内の外力であれば、伸縮せず、一定長さの構造部材となる。緩衝器11Aも緩衝器11と同様、これに加わる外力が、壁構造部210における壁倍率「2」に相当する力までは可動状態にならず、壁倍率「2」に相当する力を超えたときに可動状態になるようになっている。 That is, the shock absorber 11A is locked if the pressure in the hydraulic fluid chamber 55A is less than the third predetermined pressure value even if the rod 33 and the piston portion 32 receive an external force on the contraction side. As a result, even if the rod 33 and the piston portion 32 receive an external force on the extension side, the shock absorber 11A is locked when the pressure in the hydraulic fluid chamber 55A is larger than the fifth predetermined pressure value. Therefore, the shock absorber 11A has an external force within a predetermined range in which the pressure of the hydraulic fluid chamber 55A is larger than the fifth predetermined pressure value and less than the third predetermined pressure value regardless of the expansion and contraction directions. If there is, it does not expand and contract, and becomes a structural member of a certain length. Similar to the shock absorber 11, the shock absorber 11A does not move up to the force corresponding to the wall magnification "2" in the wall structure portion 210, and the external force applied to the shock absorber 11A exceeds the force corresponding to the wall magnification "2". Sometimes it becomes movable.

建築物の上部構造部の荷重を支える場合、および、これに加えて横風が建築物に吹き付けた場合に、減衰機構211に組み込まれた緩衝器11Aは、ロッド33およびピストン部32に比較的小さな外力を受ける。緩衝器11Aは、この外力を縮み側に受けた場合、ピストン部32が液圧ロック制御機構200A側に移動しようとして、これらの間の作動液室55Aの圧力を上昇させる。しかしながら、作動液室55Aの圧力が第3所定圧力値未満であれば、液圧ロック制御機構200Aは、液圧により第1フリーピストン304に生じるピストン部32とは反対方向の力が第1ピストンスプリング308の付勢力より小さいため、第1フリーピストン304がシリンダ12に対し移動することはない。また、このとき、液圧により第2フリーピストン305に生じるピストン部32とは反対方向の力が第3ピストンスプリング310の付勢力より小さいため、第2フリーピストン305がシリンダ12に対し移動することもない。 The shock absorber 11A incorporated in the damping mechanism 211 is relatively small on the rod 33 and the piston 32 when supporting the load of the superstructure of the building and in addition to this when crosswinds blow on the building. Receive external force. When the shock absorber 11A receives this external force on the contraction side, the piston portion 32 tends to move to the hydraulic pressure lock control mechanism 200A side and raises the pressure in the hydraulic fluid chamber 55A between them. However, if the pressure in the working fluid chamber 55A is less than the third predetermined pressure value, the hydraulic pressure lock control mechanism 200A exerts a force in the direction opposite to the piston portion 32 generated in the first free piston 304 by the hydraulic pressure in the first piston. Since it is smaller than the urging force of the spring 308, the first free piston 304 does not move with respect to the cylinder 12. Further, at this time, since the force in the direction opposite to the piston portion 32 generated in the second free piston 305 by the hydraulic pressure is smaller than the urging force of the third piston spring 310, the second free piston 305 moves with respect to the cylinder 12. Nor.

この状態では、ロッド側室51および作動液室55Aを合わせた容積を増加させることはできない。このため、ロッド33がロッド側室51内へ入り込むことが規制される。言い換えれば、ロッド33およびピストン部32のシリンダ12に対する縮み側への移動が規制される。これにより、減衰機構211が筋交い216と交差する筋交いとして機能する。 In this state, the combined volume of the rod side chamber 51 and the hydraulic fluid chamber 55A cannot be increased. Therefore, the rod 33 is restricted from entering the rod side chamber 51. In other words, the movement of the rod 33 and the piston portion 32 to the contraction side with respect to the cylinder 12 is restricted. As a result, the damping mechanism 211 functions as a brace that intersects the brace 216.

また、ロッド33およびピストン部32が上記と同様の比較的小さな外力を伸び側に受けた場合、ピストン部32が液圧ロック制御機構200Aとは反対側に移動しようとして、これらの間の作動液室55Aの圧力を下降させる。しかしながら、作動液室55Aの圧力が第5所定圧力値より大きければ、液圧により第2フリーピストン305に生じるピストン部32に向かう方向の力が第2ピストンスプリング309の付勢力より小さいため、第2フリーピストン305がシリンダ12に対し移動することはない。 Further, when the rod 33 and the piston portion 32 receive a relatively small external force similar to the above on the extension side, the piston portion 32 tries to move to the side opposite to the hydraulic pressure lock control mechanism 200A, and the hydraulic fluid between them tends to move. The pressure in the chamber 55A is reduced. However, if the pressure of the working fluid chamber 55A is larger than the fifth predetermined pressure value, the force in the direction toward the piston portion 32 generated in the second free piston 305 by the hydraulic pressure is smaller than the urging force of the second piston spring 309. 2 The free piston 305 does not move with respect to the cylinder 12.

この状態では、ロッド側室51および作動液室55Aを合わせた容積を減少させることはできない。このため、ロッド33がロッド側室51から伸び出ることが規制される。言い換えれば、ロッド33およびピストン部32のシリンダ12に対する伸び側への移動が規制される。これにより、減衰機構211が筋交い216と交差する筋交いとして機能する。 In this state, the combined volume of the rod side chamber 51 and the hydraulic fluid chamber 55A cannot be reduced. Therefore, it is restricted that the rod 33 extends from the rod side chamber 51. In other words, the movement of the rod 33 and the piston portion 32 toward the cylinder 12 is restricted. As a result, the damping mechanism 211 functions as a brace that intersects the brace 216.

また、例えば地震が発生すると、緩衝器11Aには、ロッド33およびピストン部32に比較的大きな外力を受ける。緩衝器11Aは、この外力を縮み側に受けた場合、ピストン部32が液圧ロック制御機構200A側に移動しようとして、これらの間の作動液室55Aの圧力を上昇させる。このとき、作動液室55Aの圧力が第3所定圧力値以上になると、液圧により第1フリーピストン304に生じるピストン部32とは反対方向の力が第1ピストンスプリング308の付勢力より大きくなって、第1フリーピストン304はピストン部32とは反対方向に移動可能な状態になる。 Further, for example, when an earthquake occurs, the shock absorber 11A receives a relatively large external force on the rod 33 and the piston portion 32. When the shock absorber 11A receives this external force on the contraction side, the piston portion 32 tends to move to the hydraulic pressure lock control mechanism 200A side and raises the pressure in the hydraulic fluid chamber 55A between them. At this time, when the pressure of the working fluid chamber 55A becomes equal to or higher than the third predetermined pressure value, the force in the direction opposite to the piston portion 32 generated in the first free piston 304 by the hydraulic pressure becomes larger than the urging force of the first piston spring 308. Therefore, the first free piston 304 is in a state where it can move in the direction opposite to that of the piston portion 32.

この状態では、ロッド側室51および作動液室55Aを合わせた容積は可変となり、ロッド33がロッド側室51内へ入り込むことが可能になる。よって、ロッド33およびピストン部32が縮み側へ移動する。その際に、ピストン部32の縮み側の減衰力発生部112が、ディスクバルブ92を開弁させて、作動液室55Aからロッド側室51に複数の通路穴102内の通路と、ディスクバルブ92とピストン本体93との隙間とを介して作動液Lを流しつつ、ロッド33およびピストン部32の移動速度に応じた所定の減衰力を発生させる。これにより、減衰機構211が本来の減衰機構としての機能を発揮して建築物の揺れを抑える。 In this state, the combined volume of the rod side chamber 51 and the hydraulic fluid chamber 55A is variable, and the rod 33 can enter the rod side chamber 51. Therefore, the rod 33 and the piston portion 32 move to the contraction side. At that time, the damping force generating portion 112 on the contraction side of the piston portion 32 opens the disc valve 92, and the passage in the plurality of passage holes 102 from the hydraulic fluid chamber 55A to the rod side chamber 51, and the disc valve 92. While flowing the hydraulic fluid L through the gap with the piston body 93, a predetermined damping force corresponding to the moving speed of the rod 33 and the piston portion 32 is generated. As a result, the damping mechanism 211 functions as the original damping mechanism and suppresses the shaking of the building.

緩衝器11Aは、さらに大きな外力を縮み側に受けて、作動液室55Aの圧力が第4所定圧力値以上になると、液圧により第2フリーピストン305に生じるピストン部32とは反対方向の力が第3ピストンスプリング310の付勢力より大きくなって、第2フリーピストン305がピストン部32とは反対方向に移動可能な状態になる。第2フリーピストン305がピストン部32とは反対方向に移動することで、緩衝器11Aの破損が抑制される。 The shock absorber 11A receives a larger external force on the contraction side, and when the pressure of the working fluid chamber 55A becomes equal to or higher than the fourth predetermined pressure value, the force generated in the second free piston 305 by the hydraulic pressure in the direction opposite to the piston portion 32. Becomes larger than the urging force of the third piston spring 310, and the second free piston 305 becomes movable in the direction opposite to the piston portion 32. By moving the second free piston 305 in the direction opposite to the piston portion 32, damage to the shock absorber 11A is suppressed.

ロッド33およびピストン部32が上記と同様の比較的大きな外力を伸び側に受けた場合、ピストン部32が液圧ロック制御機構200Aとは反対側に移動しようとして、これらの間の作動液室55Aの圧力を下降させる。このとき、作動液室55Aの圧力が第5所定圧力値以下になると、液圧ロック制御機構200Aは、液圧により第2フリーピストン305に生じるピストン部32に向かう方向の力が第2ピストンスプリング309の付勢力より大きくなって、ピストン部32に向かう方向に移動可能な状態になる。 When the rod 33 and the piston portion 32 receive a relatively large external force similar to the above on the extension side, the piston portion 32 tries to move to the side opposite to the hydraulic lock control mechanism 200A, and the hydraulic fluid chamber 55A between them tends to move. Reduce the pressure of. At this time, when the pressure in the hydraulic chamber 55A becomes equal to or less than the fifth predetermined pressure value, the hydraulic pressure lock control mechanism 200A exerts a force in the direction toward the piston portion 32 generated in the second free piston 305 by the hydraulic pressure in the second piston spring. It becomes larger than the urging force of 309 and becomes movable in the direction toward the piston portion 32.

この状態では、ロッド側室51および作動液室55Aを合わせた容積は可変となり、ロッド33がロッド側室51内から外に伸び出ることが可能になる。よって、ロッド33およびピストン部32が伸び側へ移動する。その際に、ピストン部32の伸び側の減衰力発生部111が、ディスクバルブ94を開弁させて、ロッド側室51から作動液室55Aに複数の通路穴101内の通路と、ディスクバルブ94とピストン本体93との隙間とを介して作動液Lを流しつつ、ロッド33およびピストン部32の移動速度に応じた所定の減衰力を発生させる。これにより、減衰機構211が本来の減衰機構としての機能を発揮して建築物の揺れを抑える。 In this state, the combined volume of the rod side chamber 51 and the hydraulic fluid chamber 55A is variable, and the rod 33 can extend out from the inside of the rod side chamber 51. Therefore, the rod 33 and the piston portion 32 move to the extension side. At that time, the damping force generating portion 111 on the extension side of the piston portion 32 opens the disc valve 94, and the passage in the plurality of passage holes 101 from the rod side chamber 51 to the hydraulic fluid chamber 55A, and the disc valve 94. While flowing the hydraulic fluid L through the gap with the piston body 93, a predetermined damping force corresponding to the moving speed of the rod 33 and the piston portion 32 is generated. As a result, the damping mechanism 211 functions as the original damping mechanism and suppresses the shaking of the building.

なお、緩衝器11Aは、さらに大きな外力を伸び側に受けて、作動液室55Aの圧力が低くなると、位置規制部材301が複数の点形状の係止部140を乗り越えてピストン部32側に移動する。これにより、緩衝器11Aは内部が破損するものの、これが取り付けられた建築物側の損傷を抑制する。 When the pressure of the hydraulic fluid chamber 55A becomes low due to the shock absorber 11A receiving a larger external force on the extension side, the position restricting member 301 overcomes the plurality of point-shaped locking portions 140 and moves to the piston portion 32 side. do. As a result, although the inside of the shock absorber 11A is damaged, the damage on the side of the building to which the shock absorber 11A is attached is suppressed.

第2実施形態の緩衝器11Aは、ボトム側室52Aをピストン部32側の作動液室55Aとガス室56Aとに分離する第1フリーピストン304および第2フリーピストン305が、作動液室55Aの圧力が所定圧力に達したときにシリンダ12に対し可動状態になる。これにより、作動液室55Aの圧力が所定圧力に達するまでは、ピストン部32に連結されたロッド33のシリンダ12内への入り込みあるいは伸び出しが規制される。よって、ロッド33がシリンダ12に対しストロークしようとしても、作動液室55Aの圧力が所定圧力に達するまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11Aは、効果的に減衰力を立ち上げることが可能となる。よって、緩衝器11Aを、例えば、上記したような建築物の構造部材として使用することができる。 In the shock absorber 11A of the second embodiment, the first free piston 304 and the second free piston 305 that separate the bottom side chamber 52A into the hydraulic fluid chamber 55A and the gas chamber 56A on the piston portion 32 side have the pressure of the hydraulic fluid chamber 55A. Is movable with respect to the cylinder 12 when the pressure reaches a predetermined pressure. As a result, until the pressure of the hydraulic fluid chamber 55A reaches a predetermined pressure, the rod 33 connected to the piston portion 32 is restricted from entering or extending into the cylinder 12. Therefore, even if the rod 33 tries to stroke with respect to the cylinder 12, it cannot move until the pressure of the hydraulic fluid chamber 55A reaches a predetermined pressure. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11A can effectively raise the damping force. Therefore, the shock absorber 11A can be used, for example, as a structural member of a building as described above.

また、緩衝器11Aは、第1フリーピストン304が、作動液室55Aの圧力が第3所定圧力値以上になったときにシリンダ12に対し可動状態になる。このため、ロッド33が縮み方向の外力を受けても、作動液室55Aの圧力が第3所定圧力値未満では、ロッド33のシリンダ12内への入り込みが規制される。よって、ロッド33がシリンダ12に対し入り込む方向にストロークしようとしても、作動液室55Aの圧力が第3所定圧力値以上となるまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11Aは、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 Further, the shock absorber 11A becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A becomes equal to or higher than the third predetermined pressure value of the first free piston 304. Therefore, even if the rod 33 receives an external force in the contraction direction, if the pressure of the hydraulic fluid chamber 55A is less than the third predetermined pressure value, the rod 33 is restricted from entering the cylinder 12. Therefore, even if the rod 33 tries to stroke in the direction of entering the cylinder 12, it cannot move until the pressure of the hydraulic fluid chamber 55A becomes equal to or higher than the third predetermined pressure value. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11A can effectively raise the damping force against the external force in the contraction direction.

緩衝器11Aは、第2フリーピストン305が、作動液室55Aの圧力が第5所定圧力値以下になったときにシリンダ12に対し可動状態になる。このため、ロッド33が伸び方向の外力を受けても、作動液室55Aの圧力が第5所定圧力値より大きければ、ロッド33のシリンダ12からの伸び出しが規制される。よって、ロッド33がシリンダ12に対し伸び出す方向にストロークしようとしても、作動液室55Aの圧力が第5所定圧力値以下となるまでは移動できない。その結果、ロッド33のシリンダ12に対するストロークなしで、減衰力が急激に立ち上がる。したがって、緩衝器11Aは、伸び方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 The shock absorber 11A becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value of the second free piston 305. Therefore, even if the rod 33 receives an external force in the extending direction, if the pressure of the hydraulic fluid chamber 55A is larger than the fifth predetermined pressure value, the extension of the rod 33 from the cylinder 12 is restricted. Therefore, even if the rod 33 tries to stroke in the direction extending with respect to the cylinder 12, it cannot move until the pressure of the hydraulic fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value. As a result, the damping force rises sharply without a stroke of the rod 33 with respect to the cylinder 12. Therefore, the shock absorber 11A can effectively raise the damping force with respect to the external force in the extension direction.

緩衝器11Aには、第1ピストンスプリング308と、第2ピストンスプリング309と、が設けられている。第1ピストンスプリング308は、作動液室55Aの圧力が第3所定圧力値に達したときにシリンダ12に対し可動状態になるように第1フリーピストン304を付勢する。第2ピストンスプリング309は、作動液室55Aの圧力が第5所定圧力値に達したときにシリンダ12に対し可動状態になるように第2フリーピストン305を付勢する。このため、緩衝器11Aは、簡素な構造で液圧ロック制御を行うことができる。 The shock absorber 11A is provided with a first piston spring 308 and a second piston spring 309. The first piston spring 308 urges the first free piston 304 so that it becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A reaches the third predetermined pressure value. The second piston spring 309 urges the second free piston 305 so that it becomes movable with respect to the cylinder 12 when the pressure of the hydraulic fluid chamber 55A reaches the fifth predetermined pressure value. Therefore, the shock absorber 11A can perform hydraulic lock control with a simple structure.

また、緩衝器11Aは、第1フリーピストン304および第2フリーピストン305の複数フリーピストンを備えている。緩衝器11Aには、第1ピストンスプリング308が設けられている。第1ピストンスプリング308は、作動液室55Aの圧力が第3所定圧力値以上になったときにシリンダ12に対し可動状態になるように、第1フリーピストン304および第2フリーピストン305のうちの一の第1フリーピストン304を付勢する。このため、緩衝器11Aは、簡素な構造で縮み方向の液圧ロック制御を行うことができる。 Further, the shock absorber 11A includes a plurality of free pistons of the first free piston 304 and the second free piston 305. The shock absorber 11A is provided with a first piston spring 308. The first piston spring 308 is of the first free piston 304 and the second free piston 305 so that the first piston spring 308 becomes movable with respect to the cylinder 12 when the pressure of the working fluid chamber 55A becomes equal to or higher than the third predetermined pressure value. The first free piston 304 is urged. Therefore, the shock absorber 11A can control the hydraulic pressure lock in the contraction direction with a simple structure.

また、緩衝器11Aは、第1フリーピストン304および第2フリーピストン305の複数のフリーピストンを備えている。緩衝器11Aには、第2ピストンスプリング309が設けられている。第2ピストンスプリング309は、作動液室55Aの圧力が第5所定圧力値以下になったときにシリンダ12に対し可動状態になるように、第1フリーピストン304および第2フリーピストン305のうちの一の第2フリーピストン305を付勢する。このため、緩衝器11Aは、簡素な構造で伸び方向の液圧ロック制御を行うことができる。 Further, the shock absorber 11A includes a plurality of free pistons of the first free piston 304 and the second free piston 305. The shock absorber 11A is provided with a second piston spring 309. The second piston spring 309 is of the first free piston 304 and the second free piston 305 so that the second piston spring 309 becomes movable with respect to the cylinder 12 when the pressure of the working fluid chamber 55A becomes equal to or less than the fifth predetermined pressure value. Encourage the first second free piston 305. Therefore, the shock absorber 11A can control the hydraulic pressure lock in the extension direction with a simple structure.

また、緩衝器11Aには、第2ピストンスプリング309が、作動液室55Aに設けられる。第2ピストンスプリング309は、第2フリーピストン305をピストン部32から離間する方向に向けて、セット荷重をもって付勢するスプリングである。このため、緩衝器11Aは、コンパクトな構造で伸び方向の液圧ロック制御を行うことができる。 Further, in the shock absorber 11A, a second piston spring 309 is provided in the hydraulic fluid chamber 55A. The second piston spring 309 is a spring that urges the second free piston 305 in a direction away from the piston portion 32 with a set load. Therefore, the shock absorber 11A has a compact structure and can control the hydraulic pressure lock in the extension direction.

また、緩衝器11Aは、第2フリーピストン305をピストン部32に向けて付勢する第3ピストンスプリング310(第一付勢部材)と、第2フリーピストン305をピストン部32から離間する方向に向けて付勢する第2ピストンスプリング309(第二付勢部材)とを備える。このため、緩衝器11Aの中立位置からの伸びおよび縮みのいずれにおいても、第2フリーピストン305が移動可能となる。これにより、温度変化によるシリンダ12内の作動液Lの体積変化を吸収することができる。 Further, in the shock absorber 11A, the third piston spring 310 (first urging member) that urges the second free piston 305 toward the piston portion 32 and the second free piston 305 are separated from the piston portion 32. A second piston spring 309 (second urging member) for urging toward is provided. Therefore, the second free piston 305 can move in both expansion and contraction from the neutral position of the shock absorber 11A. As a result, it is possible to absorb the volume change of the hydraulic fluid L in the cylinder 12 due to the temperature change.

[第3実施形態]
次に、本発明の第3実施形態を主に図5および図6に基づいて第2実施形態との相違部分を中心に説明する。なお、第2実施形態と共通する部位については、同一称呼、同一の符号で表す。
[Third Embodiment]
Next, the third embodiment of the present invention will be described mainly based on FIGS. 5 and 6, focusing on the differences from the second embodiment. The parts common to the second embodiment are represented by the same name and the same reference numerals.

図5に示すように、第3実施形態の緩衝器11Bにおいては、第2実施形態の液圧ロック制御機構200Aにかえて、これとは一部異なる液圧ロック制御機構200Bが設けられている。また、第3実施形態の緩衝器11Bにおいては、第2実施形態のシリンダ12にかえて、これとは一部異なるシリンダ12Bが設けられている。シリンダ12Bは、第2実施形態と同様の胴部22と、底部23とは一部異なる底部23Bとを有している。この底部23Bには、これを軸方向に貫通する複数の(具体的には2カ所)の第1貫通穴401および第2貫通穴402が形成されている。よって、底部23Bは、第1貫通穴401および第2貫通穴402によってシリンダ12Bの外部と連通する。 As shown in FIG. 5, in the shock absorber 11B of the third embodiment, a hydraulic lock control mechanism 200B slightly different from the hydraulic lock control mechanism 200A of the second embodiment is provided instead of the hydraulic lock control mechanism 200A of the second embodiment. .. Further, in the shock absorber 11B of the third embodiment, a cylinder 12B partially different from the cylinder 12 of the second embodiment is provided instead of the cylinder 12. The cylinder 12B has a body portion 22 similar to that of the second embodiment, and a bottom portion 23B which is partially different from the bottom portion 23. A plurality of (specifically, two places) first through holes 401 and second through holes 402 that penetrate the bottom portion 23B in the axial direction are formed. Therefore, the bottom portion 23B communicates with the outside of the cylinder 12B by the first through hole 401 and the second through hole 402.

液圧ロック制御機構200Bは、第1内筒302とは一部異なる第1内筒302Bを有している。この第1内筒302Bには、軸方向の位置規制部材301とは反対側の端部の内周部に第1メネジ411が形成されている。また、液圧ロック制御機構200Bは、第2内筒303とは一部異なる第2内筒303Bを有している。この第2内筒303Bには、軸方向の位置規制部材301とは反対側の端部の内周部に第2メネジ412が形成されている。第1内筒302Bと第2内筒303Bとは、共通の部品である。 The hydraulic pressure lock control mechanism 200B has a first inner cylinder 302B that is partially different from the first inner cylinder 302. The first female screw 411 is formed on the inner peripheral portion of the end portion of the first inner cylinder 302B opposite to the position restricting member 301 in the axial direction. Further, the hydraulic pressure lock control mechanism 200B has a second inner cylinder 303B which is partially different from the second inner cylinder 303. In the second inner cylinder 303B, a second female screw 412 is formed on the inner peripheral portion of the end portion opposite to the position restricting member 301 in the axial direction. The first inner cylinder 302B and the second inner cylinder 303B are common parts.

液圧ロック制御機構200Bには、第1係止ピストン306にかえて第1調整部材306Bが設けられており、第2係止ピストン307にかえて第2調整部材307Bが設けられている。 The hydraulic lock control mechanism 200B is provided with a first adjusting member 306B instead of the first locking piston 306, and is provided with a second adjusting member 307B instead of the second locking piston 307.

第1調整部材306Bは、径方向の中央に第1工具係合孔421が形成された有孔円板状である。第1調整部材306Bの外周部には第1オネジ422が形成されている。第1工具係合孔421は、第1調整部材306Bを軸方向に貫通している。図6に示すように、第1工具係合孔421は、例えば工具としての六角レンチを係合させることが可能な六角穴となっている。図5に示すように、第1調整部材306Bの第1オネジ422が第1内筒302Bの第1メネジ411に螺合されている。第1ピストンスプリング308は、第1フリーピストン304と第1調整部材306Bとの間に介装されている。第1ピストンスプリング308は、軸方向の一端が第1フリーピストン本体341に当接し、軸方向の他端が第1調整部材306Bに当接している。 The first adjusting member 306B has a perforated disk shape in which a first tool engaging hole 421 is formed in the center in the radial direction. A first male screw 422 is formed on the outer peripheral portion of the first adjusting member 306B. The first tool engaging hole 421 penetrates the first adjusting member 306B in the axial direction. As shown in FIG. 6, the first tool engaging hole 421 is a hexagonal hole into which a hexagon wrench as a tool can be engaged, for example. As shown in FIG. 5, the first male screw 422 of the first adjusting member 306B is screwed into the first female screw 411 of the first inner cylinder 302B. The first piston spring 308 is interposed between the first free piston 304 and the first adjusting member 306B. One end of the first piston spring 308 is in contact with the first free piston body 341, and the other end in the axial direction is in contact with the first adjusting member 306B.

第2調整部材307Bは、第1調整部材306Bと共通の部品である。第2調整部材307Bは、径方向の中央に第2工具係合孔426が形成された有孔円板状である。第2調整部材307Bの外周部には第2オネジ427が形成されている。第2工具係合孔426は、第2調整部材307Bを軸方向に貫通している。図6に示すように、第2工具係合孔426は、例えば工具としての六角レンチを係合させることが可能な六角穴となっている。図5に示すように、第2調整部材307Bの第2オネジ427が第2内筒303Bの第2メネジ412に螺合されている。第3ピストンスプリング310は、第2フリーピストン305と第2調整部材307Bとの間に介装されている。第3ピストンスプリング310は、軸方向の一端が第2フリーピストン本体351に当接し、軸方向の他端が第2調整部材307Bに当接している。 The second adjusting member 307B is a component common to the first adjusting member 306B. The second adjusting member 307B has a perforated disk shape in which a second tool engaging hole 426 is formed in the center in the radial direction. A second male screw 427 is formed on the outer peripheral portion of the second adjusting member 307B. The second tool engaging hole 426 penetrates the second adjusting member 307B in the axial direction. As shown in FIG. 6, the second tool engaging hole 426 is, for example, a hexagonal hole into which a hexagon wrench as a tool can be engaged. As shown in FIG. 5, the second male screw 427 of the second adjusting member 307B is screwed into the second female screw 412 of the second inner cylinder 303B. The third piston spring 310 is interposed between the second free piston 305 and the second adjusting member 307B. One end of the third piston spring 310 in the axial direction is in contact with the second free piston body 351 and the other end in the axial direction is in contact with the second adjusting member 307B.

図6に示すように、緩衝器11Bの周方向において、シリンダ12Bの底部23Bの第1貫通穴401は第1調整部材306Bと位置を合わせており、第2貫通穴402は第2調整部材307Bと位置を合わせている。これにより、底部23Bの第1貫通穴401を通して、緩衝器11Bの外部より第1調整部材306Bに到達することが可能となる。底部23Bの第2貫通穴402を通して、緩衝器11Bの外部より第2調整部材307Bに到達することが可能となる。言い換えれば、底部23Bの第1貫通穴401は、第1調整部材306Bの少なくとも第1工具係合孔421を緩衝器11Bの外部に露出させる。底部23Bの第2貫通穴402は、第2調整部材307Bの少なくとも第2工具係合孔426を緩衝器11Bの外部に露出させる。 As shown in FIG. 6, in the circumferential direction of the shock absorber 11B, the first through hole 401 of the bottom 23B of the cylinder 12B is aligned with the first adjusting member 306B, and the second through hole 402 is the second adjusting member 307B. Is aligned with. This makes it possible to reach the first adjusting member 306B from the outside of the shock absorber 11B through the first through hole 401 of the bottom portion 23B. The second adjusting member 307B can be reached from the outside of the shock absorber 11B through the second through hole 402 of the bottom portion 23B. In other words, the first through hole 401 of the bottom 23B exposes at least the first tool engagement hole 421 of the first adjusting member 306B to the outside of the shock absorber 11B. The second through hole 402 of the bottom 23B exposes at least the second tool engagement hole 426 of the second adjusting member 307B to the outside of the shock absorber 11B.

緩衝器11Bの外部から底部23Bの第1貫通穴401に図示略の六角レンチ等の工具が挿入されることになり、この工具が第1調整部材306Bの第1工具係合孔421に係合される。この状態で、この工具を回転させることにより、第1調整部材306Bが第1内筒302Bに対し回転しつつ軸方向に移動する。これにより、第1調整部材306Bが、位置規制部材301に当接する第1フリーピストン304との距離を変更する。これにより、これらの間に設けられた第1ピストンスプリング308のセット荷重を調整する。 A tool such as a hexagon wrench (not shown) is inserted into the first through hole 401 of the bottom 23B from the outside of the shock absorber 11B, and this tool engages with the first tool engaging hole 421 of the first adjusting member 306B. Will be done. By rotating this tool in this state, the first adjusting member 306B moves in the axial direction while rotating with respect to the first inner cylinder 302B. As a result, the distance between the first adjusting member 306B and the first free piston 304 that abuts on the position restricting member 301 is changed. Thereby, the set load of the first piston spring 308 provided between them is adjusted.

すなわち、位置規制部材301に当接する第1フリーピストン304と第1調整部材306Bとの距離が短くなるにしたがって第1ピストンスプリング308のセット荷重は大きくなる。逆に、第1フリーピストン304と第1調整部材306Bとの距離が長くなるにしたがって第1ピストンスプリング308のセット荷重は小さくなる。 That is, the set load of the first piston spring 308 increases as the distance between the first free piston 304 and the first adjusting member 306B that abut on the position restricting member 301 becomes shorter. On the contrary, as the distance between the first free piston 304 and the first adjusting member 306B becomes longer, the set load of the first piston spring 308 becomes smaller.

緩衝器11Bの外部から底部23Bの第2貫通穴402に図示略の六角レンチ等の工具が挿入される。この工具が第2調整部材307Bの第2工具係合孔426に係合される。この状態で、この工具を回転させることにより、第2調整部材307Bが第2内筒303Bに対し回転しつつ軸方向に移動する。これにより、第2調整部材307Bが、位置規制部材301との距離を変更する。これにより、第2調整部材307Bと第2フリーピストン305との間に設けられた第3ピストンスプリング310のセット荷重と、第2フリーピストン305と位置規制部材301との間に設けられた第2ピストンスプリング309のセット荷重とを調整する。 A tool such as a hexagon wrench (not shown) is inserted into the second through hole 402 of the bottom 23B from the outside of the shock absorber 11B. This tool is engaged with the second tool engaging hole 426 of the second adjusting member 307B. By rotating this tool in this state, the second adjusting member 307B moves in the axial direction while rotating with respect to the second inner cylinder 303B. As a result, the second adjusting member 307B changes the distance from the position restricting member 301. As a result, the set load of the third piston spring 310 provided between the second adjusting member 307B and the second free piston 305, and the second provided between the second free piston 305 and the position restricting member 301. Adjust the set load of the piston spring 309.

すなわち、位置規制部材301と第2調整部材307Bとの距離が短くなるにしたがって第2ピストンスプリング309および第3ピストンスプリング310のセット荷重は共に大きくなる。逆に、位置規制部材301と第2調整部材307Bとの距離が長くなるにしたがって第2ピストンスプリング309および第3ピストンスプリング310のセット荷重は共に小さくなる。 That is, as the distance between the position restricting member 301 and the second adjusting member 307B becomes shorter, the set load of both the second piston spring 309 and the third piston spring 310 increases. On the contrary, as the distance between the position regulating member 301 and the second adjusting member 307B becomes longer, the set load of the second piston spring 309 and the third piston spring 310 both becomes smaller.

このように、緩衝器11Bでは、第1ピストンスプリング308のセット荷重と、第2ピストンスプリング309および第3ピストンスプリング310のセット荷重とが、個別に調整可能となっている。 As described above, in the shock absorber 11B, the set load of the first piston spring 308 and the set load of the second piston spring 309 and the third piston spring 310 can be individually adjusted.

以上の構成により、緩衝器11Bは、第2実施形態と同様の作動液室55Aと、第2実施形態のガス室56Aとは一部異なるガス室56Bとを有する。その結果、緩衝器11Bは、ガス室56Bを有する点が、ガス室56Aを有するボトム側室52Aとは異なるボトム側室52Bを有している。 With the above configuration, the shock absorber 11B has a hydraulic fluid chamber 55A similar to that of the second embodiment and a gas chamber 56B partially different from the gas chamber 56A of the second embodiment. As a result, the shock absorber 11B has a bottom side chamber 52B which is different from the bottom side chamber 52A having the gas chamber 56A in that it has a gas chamber 56B.

具体的に、ガス室56Bは、第1内筒302Bの内周面と、第1フリーピストン304と、第1調整部材306Bと、底部23Bの凹部26と、第2調整部材307Bと、第2内筒303Bの内周面と、第2フリーピストン305と、で囲まれて形成されている。第1調整部材306Bの第1工具係合孔421、および第2調整部材307Bの第2工具係合孔426もガス室56Bを構成している。ガス室56Bは、第1内筒302Bの内側部分と第2内筒303Bの内側部分とが、第1工具係合孔421と凹部26と第2工具係合孔426とを介して常時連通している。また、ガス室56Bは、シリンダ12Bの底部23Bの第1貫通穴401および第2貫通穴402を介して大気に開放されている。 Specifically, the gas chamber 56B includes an inner peripheral surface of the first inner cylinder 302B, a first free piston 304, a first adjusting member 306B, a recess 26 of the bottom 23B, a second adjusting member 307B, and a second. It is formed by being surrounded by the inner peripheral surface of the inner cylinder 303B and the second free piston 305. The first tool engaging hole 421 of the first adjusting member 306B and the second tool engaging hole 426 of the second adjusting member 307B also constitute the gas chamber 56B. In the gas chamber 56B, the inner portion of the first inner cylinder 302B and the inner portion of the second inner cylinder 303B are always in communication with each other via the first tool engagement hole 421, the recess 26, and the second tool engagement hole 426. ing. Further, the gas chamber 56B is open to the atmosphere through the first through hole 401 and the second through hole 402 of the bottom 23B of the cylinder 12B.

第3実施形態の緩衝器11Bは、第2実施形態の緩衝器11Aと同様の効果を奏することができる。その上で、第1調整部材306Bによって、第1ピストンスプリング308のセット荷重を調整することができ、第2調整部材307Bによって、第2ピストンスプリング309のセット荷重と第3ピストンスプリング310のセット荷重とを調整することができる。その結果、セット荷重を調整することで、液圧ロックの力、すなわち緩衝器11Aの降伏耐力を調整することが可能となる。また、例えば、組立時にセット荷重を弱くすることで作業性を向上させることができる。 The shock absorber 11B of the third embodiment can have the same effect as the shock absorber 11A of the second embodiment. Then, the set load of the first piston spring 308 can be adjusted by the first adjusting member 306B, and the set load of the second piston spring 309 and the set load of the third piston spring 310 are adjusted by the second adjusting member 307B. And can be adjusted. As a result, by adjusting the set load, it becomes possible to adjust the force of the hydraulic lock, that is, the yield strength of the shock absorber 11A. Further, for example, workability can be improved by weakening the set load at the time of assembly.

緩衝器11Bは、シリンダ12Bのボトム側室52Bの底部23Bが、シリンダ12Bの外部と連通する第1貫通穴401および第2貫通穴402を有している。第1貫通穴401を通して、外部から第1調整部材306Bに到達することができる。第2貫通穴402を通して、外部から第2調整部材307Bに到達することができる。よって、例えば、緩衝器11Bの完成後や、緩衝器11Bを建築物に装着後に、第1フリーピストン304に与えるセット荷重を外部から容易に調整することができ、また、第2フリーピストン305に与えるセット荷重を外部から容易に調整することができる。 The shock absorber 11B has a first through hole 401 and a second through hole 402 in which the bottom portion 23B of the bottom side chamber 52B of the cylinder 12B communicates with the outside of the cylinder 12B. The first adjusting member 306B can be reached from the outside through the first through hole 401. The second adjusting member 307B can be reached from the outside through the second through hole 402. Therefore, for example, after the shock absorber 11B is completed or after the shock absorber 11B is mounted on the building, the set load applied to the first free piston 304 can be easily adjusted from the outside, and the second free piston 305 can be used. The set load to be applied can be easily adjusted from the outside.

第1〜第3実施形態において、図7に示すように、ピストン本体93とは一部異なるピストン本体93Cを有するピストン部32Cをピストン部32にかえて設けても良い。ピストン本体93Cは、外周部に円筒状の外周面よりも径方向内方に凹む円環状のシール溝501が形成されている。ピストン部32Cは、このシール溝501に設けられるOリング等のシール部材502を有している。このようにピストン部32Cの外周にシール部材502を設けることで、ピストン部32Cの外周部と、胴部22の内周面との隙間を介してロッド側室51とボトム側室52,52A,52Bとが連通することを規制することができる。すなわち、このシール部材502は、ロッド側室51とボトム側室52,52A,52Bとの間をシールする。 In the first to third embodiments, as shown in FIG. 7, the piston portion 32C having the piston main body 93C partially different from the piston main body 93 may be provided in place of the piston portion 32. The piston body 93C has an annular seal groove 501 formed on the outer peripheral portion thereof, which is recessed inward in the radial direction from the cylindrical outer peripheral surface. The piston portion 32C has a seal member 502 such as an O-ring provided in the seal groove 501. By providing the seal member 502 on the outer periphery of the piston portion 32C in this way, the rod side chamber 51 and the bottom side chambers 52, 52A, 52B can be provided through the gap between the outer peripheral portion of the piston portion 32C and the inner peripheral surface of the body portion 22. Can be restricted from communicating with each other. That is, the sealing member 502 seals between the rod side chamber 51 and the bottom side chambers 52, 52A, 52B.

このようにピストン部32Cにシール部材502を設けることで、ピストン部32Cの外周部と胴部22の内周面との隙間を介してロッド側室51とボトム側室52,52A,52Bとが連通することを規制することができる。よって、この隙間を介して作動液が流れることでロッド33およびピストン部32がシリンダ12に対して移動してしまうことを抑制することができる。 By providing the seal member 502 on the piston portion 32C in this way, the rod side chamber 51 and the bottom side chambers 52, 52A, 52B communicate with each other through the gap between the outer peripheral portion of the piston portion 32C and the inner peripheral surface of the body portion 22. Can be regulated. Therefore, it is possible to prevent the rod 33 and the piston portion 32 from moving with respect to the cylinder 12 due to the flow of the hydraulic fluid through this gap.

以上に述べた実施形態の第1態様によれば、緩衝器は、内部に作動液が封入されるシリンダと、前記シリンダ内に設けられ、前記シリンダをロッド側室とボトム側室とに画成し、移動することによって減衰力を発生させる減衰力発生部を有するピストン部と、基端側に前記ピストン部が連結され、先端側が前記ロッド側室を通って前記シリンダの外部に延びるロッドと、前記ボトム側室に設けられ、該ボトム側室を作動液室とガス室とに分離するフリーピストンとを備える。前記フリーピストンは、前記ピストン部のストロークの中間位置において、前記ボトム側室の圧力が所定圧力に達したときに可動状態になる。これにより、効果的に減衰力を立ち上げることが可能となる。 According to the first aspect of the embodiment described above, the shock absorber is provided in the cylinder in which the hydraulic fluid is sealed, and the cylinder is defined as a rod side chamber and a bottom side chamber. A piston portion having a damping force generating portion that generates a damping force by moving, a rod in which the piston portion is connected to the base end side and the tip end side extends to the outside of the cylinder through the rod side chamber, and the bottom side chamber. It is provided with a free piston that separates the bottom side chamber into a hydraulic fluid chamber and a gas chamber. The free piston becomes movable when the pressure in the bottom side chamber reaches a predetermined pressure at an intermediate position of the stroke of the piston portion. This makes it possible to effectively raise the damping force.

第2態様は、第1態様において、前記フリーピストンは、前記作動液室の圧力が所定圧力以上になったときに可動状態になる。これにより、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the second aspect, in the first aspect, the free piston becomes movable when the pressure in the hydraulic fluid chamber becomes equal to or higher than a predetermined pressure. This makes it possible to effectively raise the damping force against the external force in the contraction direction.

第3態様は、第1態様において、前記フリーピストンは、前記作動液室の圧力が所定圧力以下になったときに可動状態になる。これにより、伸び方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the third aspect, in the first aspect, the free piston becomes movable when the pressure in the hydraulic fluid chamber becomes equal to or lower than a predetermined pressure. This makes it possible to effectively raise the damping force against the external force in the stretching direction.

第4態様は、第1態様において、前記フリーピストンの可動状態は、液圧ロック制御機構によって構成する。 In the fourth aspect, in the first aspect, the movable state of the free piston is configured by a hydraulic lock control mechanism.

第5態様は、第1態様において、前記作動液室をピストン部側の室とフリーピストン側の室とに区画する仕切部材を設け、該仕切部材に前記ピストン部側の室の圧力が所定圧力以上になったときに開弁して前記ピストン部側の室と前記フリーピストン側の室とを連通する第1弁機構を設けた。これにより、簡素な構成で、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the fifth aspect, in the first aspect, a partition member for partitioning the working fluid chamber into a chamber on the piston portion side and a chamber on the free piston portion side is provided, and the pressure of the chamber on the piston portion side is a predetermined pressure in the partition member. When the above is reached, the valve is opened to provide a first valve mechanism for communicating the chamber on the piston portion side and the chamber on the free piston side. This makes it possible to effectively raise the damping force against the external force in the contraction direction with a simple configuration.

第6態様は、第5態様において、前記仕切部材に前記ピストン部側の室の圧力が所定圧力以下となったときに開弁して前記ピストン部側の室と前記フリーピストン側の室とを連通する第2弁機構を設けた。これにより、簡素な構成で、伸び方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the sixth aspect, in the fifth aspect, when the pressure of the chamber on the piston portion side becomes equal to or less than a predetermined pressure in the partition member, the valve is opened to form the chamber on the piston portion side and the chamber on the free piston portion side. A second valve mechanism for communication was provided. This makes it possible to effectively raise the damping force against the external force in the extension direction with a simple configuration.

第7態様は、第1態様において、前記ボトム側室の圧力が所定圧力に達したときに可動状態になるように前記フリーピストンを付勢する付勢部材を設けた。これにより、効果的に減衰力を立ち上げることが可能となる。 In the seventh aspect, in the first aspect, an urging member for urging the free piston is provided so that the free piston becomes movable when the pressure of the bottom side chamber reaches a predetermined pressure. This makes it possible to effectively raise the damping force.

第8態様は、第7態様において、前記付勢部材は、前記ガス室に設けられ、前記フリーピストンを前記ピストン部の方向に向けてセット荷重をもって付勢するスプリングである。これにより、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the eighth aspect, in the seventh aspect, the urging member is a spring provided in the gas chamber and urging the free piston toward the piston portion with a set load. This makes it possible to effectively raise the damping force against the external force in the contraction direction.

第9態様は、第1態様において、前記フリーピストンを複数のフリーピストンとし、前記ボトム側室の圧力が所定圧力以下になったときに可動状態になるように前記複数のフリーピストンのうちの一のフリーピストンを付勢する付勢部材を設けた。これにより、縮み方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 In the ninth aspect, in the first aspect, the free piston is made into a plurality of free pistons, and one of the plurality of free pistons is provided so as to be in a movable state when the pressure of the bottom side chamber becomes a predetermined pressure or less. An urging member for urging the free piston was provided. This makes it possible to effectively raise the damping force against the external force in the contraction direction.

第10態様は、第9態様において、前記付勢部材は、前記作動液室に設けられ、前記一のフリーピストンを前記ピストン部から離間する方向に向けて、セット荷重をもって付勢するスプリングである。これにより、伸び方向の外力に対して効果的に減衰力を立ち上げることが可能となる。 A tenth aspect is a spring in which the urging member is provided in the hydraulic fluid chamber and urges the one free piston with a set load in a direction away from the piston portion in the ninth aspect. .. This makes it possible to effectively raise the damping force against the external force in the stretching direction.

第11態様は、第9態様において、前記付勢部材は、前記フリーピストンを前記ピストン部に向けて付勢する第一付勢部材と、前記フリーピストンを前記ピストン部から離間する方向に向けて付勢する第二付勢部材とである。これにより、温度変化によるシリンダ内の作動液の体積変化を吸収することができる。 In the eleventh aspect, in the ninth aspect, the urging member has a first urging member that urges the free piston toward the piston portion and a direction in which the free piston is separated from the piston portion. It is a second urging member to be urged. As a result, it is possible to absorb the volume change of the hydraulic fluid in the cylinder due to the temperature change.

第12態様は、第7または第9態様において、前記付勢部材のセット荷重を調整する調整部材を設けた。これにより、付勢部材のセット荷重を調整することができる。 In the twelfth aspect, in the seventh or ninth aspect, the adjusting member for adjusting the set load of the urging member is provided. Thereby, the set load of the urging member can be adjusted.

第13態様は、第12態様において、前記シリンダの前記ボトム側室の底部は、前記シリンダの外部と連通する貫通穴を有し、該貫通穴は、外部より前記調整部材を臨む。これにより、付勢部材のセット荷重を容易に調整することができる。 In the thirteenth aspect, in the twelfth aspect, the bottom portion of the bottom side chamber of the cylinder has a through hole communicating with the outside of the cylinder, and the through hole faces the adjusting member from the outside. Thereby, the set load of the urging member can be easily adjusted.

第14態様は、第1乃至第13のいずれか一態様において、前記ピストン部の外周にシール部材を備え、該シール部材は、前記ロッド側室と前記ボトム側室との間をシールする。これにより、さらに効果的に減衰力を立ち上げることが可能となる。 In the fourteenth aspect, in any one of the first to thirteenth aspects, a sealing member is provided on the outer periphery of the piston portion, and the sealing member seals between the rod side chamber and the bottom side chamber. This makes it possible to raise the damping force more effectively.

第15態様は、第1乃至第14のいずれか一態様において、前記フリーピストンは、前記緩衝器に加わる外力が、壁倍率2に相当する力を超えたときに可動状態になる。これにより、緩衝器が組み込まれた壁構造部に十分な強度が得られることになる。 In the fifteenth aspect, in any one of the first to the fourteenth aspects, the free piston becomes movable when the external force applied to the shock absorber exceeds the force corresponding to the wall magnification 2. As a result, sufficient strength can be obtained for the wall structure portion in which the shock absorber is incorporated.

上記した緩衝器によれば、効果的に減衰力を立ち上げることが可能となる。 According to the above-mentioned shock absorber, it is possible to effectively raise the damping force.

11,11A,11B 緩衝器
12,12B シリンダ
32,32C ピストン部
33 ロッド
41 フリーピストン
51 ロッド側室
52,52A,52B ボトム側室
55,55A 作動液室
56,56A,56B ガス室
58 ピストン部側の室
59 フリーピストン側の室
111 減衰力発生部
112 減衰力発生部
131 仕切部材
175 第1弁機構
195 第2弁機構
200,200A,200B 液圧ロック制御機構
304 第1フリーピストン
305 第2フリーピストン
306B 第1調整部材
307B 第2調整部材
308 第1ピストンスプリング(付勢部材)
309 第2ピストンスプリング(付勢部材)
310 第3ピストンスプリング(付勢部材)
401 第1貫通穴
402 第2貫通穴
502 シール部材
G ガス
L 作動液
11, 11A, 11B Shock absorber 12, 12B Cylinder 32, 32C Piston part 33 Rod 41 Free piston 51 Rod side chamber 52, 52A, 52B Bottom side chamber 55, 55A Hydraulic fluid chamber 56, 56A, 56B Gas chamber 58 Piston section side chamber 59 Free piston side chamber 111 Damping force generating part 112 Damping force generating part 131 Partition member 175 1st valve mechanism 195 2nd valve mechanism 200, 200A, 200B Hydraulic lock control mechanism 304 1st free piston 305 2nd free piston 306B 1st adjustment member 307B 2nd adjustment member 308 1st piston spring (urging member)
309 2nd piston spring (biasing member)
310 3rd piston spring (biasing member)
401 1st through hole 402 2nd through hole 502 Sealing member G gas L hydraulic fluid

Claims (15)

内部に作動液が封入されるシリンダと、
前記シリンダ内に設けられ、前記シリンダをロッド側室とボトム側室とに画成し、移動することによって減衰力を発生させる減衰力発生部を有するピストン部と、
基端側に前記ピストン部が連結され、先端側が前記ロッド側室を通って前記シリンダの外部に延びるロッドと、
前記ボトム側室に設けられ、該ボトム側室を作動液室とガス室とに分離するフリーピストンと
を備え、
前記フリーピストンは、前記ピストン部のストロークの中間位置において、前記ボトム側室の圧力が所定圧力に達したときに可動状態になる
緩衝器。
A cylinder in which the hydraulic fluid is sealed inside,
A piston portion provided in the cylinder and having a damping force generating portion that generates a damping force by defining the cylinder into a rod side chamber and a bottom side chamber and moving the cylinder.
A rod in which the piston portion is connected to the base end side and the tip end side extends to the outside of the cylinder through the rod side chamber.
It is provided in the bottom side chamber and is provided with a free piston that separates the bottom side chamber into a hydraulic fluid chamber and a gas chamber.
The free piston is a shock absorber that becomes movable when the pressure in the bottom side chamber reaches a predetermined pressure at an intermediate position of the stroke of the piston portion.
請求項1に記載の緩衝器であって、
前記フリーピストンは、前記作動液室の圧力が所定圧力以上になったときに可動状態になる
緩衝器。
The shock absorber according to claim 1.
The free piston is a shock absorber that becomes movable when the pressure in the hydraulic fluid chamber exceeds a predetermined pressure.
請求項1に記載の緩衝器であって、
前記フリーピストンは、前記作動液室の圧力が所定圧力以下になったときに可動状態になる
緩衝器。
The shock absorber according to claim 1.
The free piston is a shock absorber that becomes movable when the pressure in the hydraulic fluid chamber drops below a predetermined pressure.
請求項1に記載の緩衝器であって、
前記フリーピストンの可動状態は、液圧ロック制御機構によって構成される
緩衝器。
The shock absorber according to claim 1.
The movable state of the free piston is a shock absorber configured by a hydraulic lock control mechanism.
請求項1に記載の緩衝器であって、
前記作動液室をピストン部側の室とフリーピストン側の室とに区画する仕切部材を更に設け、
該仕切部材に前記ピストン部側の室の圧力が所定圧力以上になったときに開弁して前記ピストン部側の室と前記フリーピストン側の室とを連通する第1弁機構を設けた
緩衝器。
The shock absorber according to claim 1.
A partition member for partitioning the hydraulic fluid chamber into a chamber on the piston portion side and a chamber on the free piston side is further provided.
The partition member is provided with a first valve mechanism that opens a valve when the pressure of the chamber on the piston portion side exceeds a predetermined pressure and communicates the chamber on the piston portion side with the chamber on the free piston portion. vessel.
請求項5に記載の緩衝器であって、
前記仕切部材に前記ピストン部側の室の圧力が所定圧力以下となったときに開弁して前記ピストン部側の室と前記フリーピストン側の室とを連通する第2弁機構を設けた
緩衝器。
The shock absorber according to claim 5.
The partition member is provided with a second valve mechanism that opens a valve when the pressure of the chamber on the piston portion side becomes equal to or less than a predetermined pressure and communicates the chamber on the piston portion side with the chamber on the free piston portion. vessel.
請求項1に記載の緩衝器において、
前記ボトム側室の圧力が所定圧力に達したときに可動状態になるように前記フリーピストンを付勢する付勢部材が設けられている
緩衝器。
In the shock absorber according to claim 1,
A shock absorber provided with an urging member that urges the free piston so that it becomes movable when the pressure in the bottom side chamber reaches a predetermined pressure.
請求項7に記載の緩衝器において、
前記付勢部材は、前記ガス室に設けられ、前記フリーピストンを前記ピストン部の方向に向けてセット荷重をもって付勢するスプリングである
緩衝器。
In the shock absorber according to claim 7,
The urging member is a shock absorber provided in the gas chamber and is a spring that urges the free piston toward the piston portion with a set load.
請求項1に記載の緩衝器において、
前記フリーピストンを複数のフリーピストンとし、
前記ボトム側室の圧力が所定圧力以下になったときに可動状態になるように前記複数のフリーピストンのうちの一のフリーピストンを付勢する付勢部材を設けた
緩衝器。
In the shock absorber according to claim 1,
The free piston is used as a plurality of free pistons.
A shock absorber provided with an urging member that urges one of the plurality of free pistons so that it becomes movable when the pressure in the bottom side chamber becomes equal to or lower than a predetermined pressure.
請求項9に記載の緩衝器において、
前記付勢部材は、前記作動液室に設けられ、前記一のフリーピストンを前記ピストン部から離間する方向に向けて、セット荷重をもって付勢するスプリングである
緩衝器。
In the shock absorber according to claim 9,
The urging member is a shock absorber provided in the hydraulic fluid chamber and is a spring that urges the one free piston with a set load toward a direction away from the piston portion.
請求項9に記載の緩衝器において、
前記付勢部材は、前記フリーピストンを前記ピストン部に向けて付勢する第一付勢部材と、前記フリーピストンを前記ピストン部から離間する方向に向けて付勢する第二付勢部材とを備える
緩衝器。
In the shock absorber according to claim 9,
The urging member includes a first urging member that urges the free piston toward the piston portion and a second urging member that urges the free piston in a direction away from the piston portion. Equipped with a shock absorber.
請求項7または9に記載の緩衝器であって、
前記付勢部材のセット荷重を調整する調整部材を設けた
緩衝器。
The shock absorber according to claim 7 or 9.
A shock absorber provided with an adjusting member for adjusting the set load of the urging member.
請求項12に記載の緩衝器であって、
前記シリンダの前記ボトム側室の底部は、前記シリンダの外部と連通する貫通穴を有し、
該貫通穴は、外部より前記調整部材に到達することを可能とする
緩衝器。
The shock absorber according to claim 12.
The bottom of the bottom side chamber of the cylinder has a through hole communicating with the outside of the cylinder.
The through hole is a shock absorber that allows the adjusting member to be reached from the outside.
請求項1乃至13のいずれか一項に記載の緩衝器であって、
前記ピストン部の外周にシール部材を備え、
該シール部材は、前記ロッド側室と前記ボトム側室との間をシールする
緩衝器。
The shock absorber according to any one of claims 1 to 13.
A sealing member is provided on the outer circumference of the piston portion.
The sealing member is a shock absorber that seals between the rod side chamber and the bottom side chamber.
請求項1乃至14のいずれか一項に記載の緩衝器であって、
前記フリーピストンは、前記緩衝器に加わる外力が、壁倍率2に相当する力を超えたときに可動状態になる
緩衝器。
The shock absorber according to any one of claims 1 to 14.
The free piston is a shock absorber that becomes movable when an external force applied to the shock absorber exceeds a force corresponding to a wall magnification of 2.
JP2021522272A 2019-05-29 2020-05-20 Buffer Ceased JPWO2020241422A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019100442 2019-05-29
JP2019100442 2019-05-29
PCT/JP2020/019993 WO2020241422A1 (en) 2019-05-29 2020-05-20 Shock absorber

Publications (1)

Publication Number Publication Date
JPWO2020241422A1 true JPWO2020241422A1 (en) 2021-11-18

Family

ID=73553741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021522272A Ceased JPWO2020241422A1 (en) 2019-05-29 2020-05-20 Buffer

Country Status (3)

Country Link
JP (1) JPWO2020241422A1 (en)
TW (1) TW202111232A (en)
WO (1) WO2020241422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022096013A (en) * 2020-12-17 2022-06-29 Kyb株式会社 Sealing device for liquid pressure apparatus and shock absorber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121524A (en) * 1994-10-19 1996-05-14 Toyota Motor Corp Shock absorber
JPH08189540A (en) * 1995-01-10 1996-07-23 Showa:Kk Plural cylinder type hydraulic shock absorber
JPH10299810A (en) * 1997-04-21 1998-11-13 Toyota Motor Corp Hydraulic shock absorber
JP2010101351A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Hydraulic shock absorber
JP2010164191A (en) * 2009-01-19 2010-07-29 Yss (Thailand) Co Ltd Advanced triple piston damper
JP2016528458A (en) * 2013-08-14 2016-09-15 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッドTenneco Automotive Operating Company Inc. Low pressure, high compression damping monotube shock absorber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076481A (en) * 2018-11-09 2020-05-21 株式会社ショーワ Pressure buffer device and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121524A (en) * 1994-10-19 1996-05-14 Toyota Motor Corp Shock absorber
JPH08189540A (en) * 1995-01-10 1996-07-23 Showa:Kk Plural cylinder type hydraulic shock absorber
JPH10299810A (en) * 1997-04-21 1998-11-13 Toyota Motor Corp Hydraulic shock absorber
JP2010101351A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Hydraulic shock absorber
JP2010164191A (en) * 2009-01-19 2010-07-29 Yss (Thailand) Co Ltd Advanced triple piston damper
JP2016528458A (en) * 2013-08-14 2016-09-15 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッドTenneco Automotive Operating Company Inc. Low pressure, high compression damping monotube shock absorber

Also Published As

Publication number Publication date
TW202111232A (en) 2021-03-16
WO2020241422A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US9488244B2 (en) Shock absorber
JP6076433B2 (en) Shock absorber
JP5758235B2 (en) Shock absorber
JP6279759B2 (en) Shock absorber
KR102173633B1 (en) Damper and vehicle using same
US6182687B1 (en) Pressure-dependent valve for a vibration damper
JP2018013208A (en) Attenuation force adjustable buffer
WO2020241422A1 (en) Shock absorber
CN109983249A (en) Frequency dependence damper
JP5851159B2 (en) Shock absorber
JP2010236577A (en) Hydraulic shock absorber of vehicle
JP5212812B2 (en) Hydraulic buffer
JP5798813B2 (en) Shock absorber
JP2023007996A (en) Buffer with vehicle height adjustment function
JP4833955B2 (en) Pneumatic shock absorber
JP4815482B2 (en) Hydraulic shock absorber
JP2009078721A (en) Hydraulic damper
JP2020097997A (en) Fluid pressure shock absorber
JP6567267B2 (en) Structure damping device
JP7465163B2 (en) Shock absorber and shock absorber assembly method
JP7422941B2 (en) buffer
WO2016194548A1 (en) Damper
JP7154199B2 (en) buffer
JP7154166B2 (en) buffer
JP2010007817A (en) Hydraulic shock absorber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20220927