JPWO2020196317A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020196317A5
JPWO2020196317A5 JP2020534999A JP2020534999A JPWO2020196317A5 JP WO2020196317 A5 JPWO2020196317 A5 JP WO2020196317A5 JP 2020534999 A JP2020534999 A JP 2020534999A JP 2020534999 A JP2020534999 A JP 2020534999A JP WO2020196317 A5 JPWO2020196317 A5 JP WO2020196317A5
Authority
JP
Japan
Prior art keywords
film
light source
authentication device
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020534999A
Other languages
Japanese (ja)
Other versions
JPWO2020196317A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/012450 external-priority patent/WO2020196317A1/en
Publication of JPWO2020196317A1 publication Critical patent/JPWO2020196317A1/ja
Publication of JPWO2020196317A5 publication Critical patent/JPWO2020196317A5/ja
Pending legal-status Critical Current

Links

Description

以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。なお、実施例13、実施例14は、現在は参考例1、参考例2である。 EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not necessarily limited to these. Incidentally, Examples 13 and 14 are Reference Examples 1 and 2 at present.

Claims (19)

光源、偏光子、フィルム、および光感度センサーを有する認証デバイスであって、前記のフィルムは偏光子と認証対象物の間に配置され、かつ下記(1)、(2)、(3)および(4)を満足することを特徴とする認証デバイス。
(1)前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
(2)下記(I)式を満足する整数nが存在すること。
(I)A×n-150 ≦ Re ≦ A×n+150
ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、
Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
(3)前記フィルムの面内位相差が400nm以上である。
(4)前記フィルムの主配向軸方向および主配向軸と直交する方向の25℃における破断点伸度がいずれも30%以上300%以下である
An authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is disposed between the polarizer and an authentication object, and the following (1) , (2), (3) and ( 4) An authentication device characterized by satisfying 4) .
(1) The transmittance of light emitted from the light source is 70% or more and 100% or less at the wavelength of the light with the highest intensity.
(2) There exists an integer n that satisfies the following formula (I).
(I) A×n−150≦Re≦A×n+150
Here, A is the wavelength (nm) at which the light emitted from the light source exhibits the strongest intensity,
Re is the in-plane retardation (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0° using the parallel Nicols rotation method.
(3) The in-plane retardation of the film is 400 nm or more.
(4) The elongation at break at 25°C in both the direction of the main orientation axis and the direction perpendicular to the main orientation axis of the film is 30% or more and 300% or less.
前記(I)式を満足するとともに、下記(II)式を満足する整数mが存在する請求項1に記載の認証デバイス。
(II)B×m-150 ≦ Re ≦ B×m+150
ここで、Bは前記光源から出射する光線において2番目に強い強度を示す波長(nm)であり、
Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
2. The authentication device according to claim 1, wherein there is an integer m that satisfies the formula (I) and the formula (II) below.
(II) B×m−150≦Re≦B×m+150
Here, B is the wavelength (nm) showing the second strongest intensity in the light emitted from the light source,
Re is the in-plane retardation (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0° using the parallel Nicols rotation method.
前記フィルムが下記式(III)、および(IV)を満足する請求項1または2に記載の認証デバイス。
(III) PT(45) ≧ 0.65
(IV)1 ≧ PT(45)/ PT(0)≧ 0.6
ここで、PT(45)とPT(0)は下記のとおりで求められる。
(1)偏光子を2枚にカットし、2枚の偏光子の面が50Wタングステンランプを光源とした分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置し、光源消灯状態と光源点灯状態でのバックグラウンド測定を行う。光源消灯状態で測定された透過光量をPT(D)、光源点灯状態で測定された透過光量をPT(L)とする。
(2)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
(3)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線の最も強い強度を持つ波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
(4)下記式よりPT(0)、PT(45)を得る。
PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))。
3. The authentication device according to claim 1, wherein the film satisfies the following formulas (III) and (IV).
(III) PT(45) ≥ 0.65
(IV) 1≧PT(45)/PT(0)≧0.6
Here, PT(45) and PT(0) are obtained as follows.
(1) Cut the polarizer into two pieces so that the surfaces of the two polarizers are perpendicular to the optical axis of a spectrophotometer using a 50 W tungsten lamp as a light source, and the transmission axes of the two polarizers are aligned. are arranged parallel to each other, and the background measurement is performed with the light source turned off and the light source turned on. Let PT(D) be the amount of transmitted light measured with the light source off, and PT(L) be the amount of transmitted light measured with the light source on.
(2) The film is placed between two polarizers so that the plane of the film is perpendicular to the optical axis of the spectrophotometer.
(3) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, measure the amount of transmitted light at the wavelength with the highest intensity of light emitted from the light source. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizers and the main orientation axis of the film is 0°, and let PT'(45) be the amount of transmitted light when the angle is 45°.
(4) PT(0) and PT(45) are obtained from the following equations.
PT(0)=(PT'(0)-PT(D))/(PT(L)-PT(D))
PT(45)=(PT'(45)-PT(D))/(PT(L)-PT(D)).
前記光源から出射する光線において最も強い強度を示すピークの半値幅が5nm以上70nm以下である請求項1から3のいずれかに記載の認証デバイス。 4. The authentication device according to any one of claims 1 to 3, wherein the light beam emitted from the light source has a peak width at half maximum of 5 nm or more and 70 nm or less. 下記(V)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
(V)A×n-120 ≦ Re ≦ A×n+120、 かつ、415 ≦ A ≦ 495。
5. The authentication device according to any one of claims 1 to 4, wherein there is an integer n that satisfies the following formula (V).
(V) A×n−120≦Re≦A×n+120, and 415≦A≦495.
下記(VI)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
(VI)A×n-100 ≦ Re ≦ A×n+100、かつ、495 ≦ A ≦ 570。
5. The authentication device according to any one of claims 1 to 4, wherein there is an integer n that satisfies the following formula (VI).
(VI) A×n−100≦Re≦A×n+100 and 495≦A≦570.
下記(VII)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
(VII)A×n-120 ≦ Re ≦ A×n+120、かつ、570 ≦ A ≦ 800。
5. The authentication device according to any one of claims 1 to 4, wherein there is an integer n that satisfies the following formula (VII).
(VII) A×n−120≦Re≦A×n+120 and 570≦A≦800.
下記(VIII)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
(VIII)A×n-150 ≦ Re ≦ A×n+150、かつ、800 ≦ A ≦ 1600。
5. The authentication device according to any one of claims 1 to 4, wherein there is an integer n that satisfies the following formula (VIII).
(VIII) A×n−150≦Re≦A×n+150 and 800≦A≦1600.
前記フィルムの面内位相差が3000nm以下である請求項1から8のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 8, wherein the film has an in-plane retardation of 3000 nm or less. 前記フィルムが樹脂Aからなる層と樹脂Aとは異なる樹脂からなる層を交互に5層以上積層した積層フィルムである、請求項1から9のいずれかに記載の認証デバイス。 10. The authentication device according to any one of claims 1 to 9, wherein the film is a laminated film obtained by alternately laminating five or more layers made of resin A and layers made of resin C different from resin A. 前記フィルムを構成する樹脂が、シクロヘキサンジメタノール、スピログリコール、ネオペンチルグリコール、イソフタル酸、シクロヘキサンジカルボン酸、イソソルビドのうち、少なくとも一種類を含み、ポリエステルを主成分とすることを特徴とする、請求項10に記載の認証デバイス。 The resin C constituting the film contains at least one of cyclohexanedimethanol, spiroglycol, neopentylglycol, isophthalic acid, cyclohexanedicarboxylic acid, and isosorbide, and is mainly composed of polyester. Item 11. The authentication device according to Item 10. 前記フィルムの主配向軸方向および主配向軸と直交する方向の100℃で30分処理した際の熱収縮率の最大値と最小値の比(最大値/最小値)が1.7以上である請求項1から11のいずれかに記載の認証デバイス。 The ratio of the maximum value to the minimum value (maximum value/minimum value) of the thermal shrinkage rate when the film is treated at 100 ° C. for 30 minutes in the direction of the main orientation axis and in the direction perpendicular to the main orientation axis is 1.7 or more. Authentication device according to any one of claims 1 to 11 . 前記フィルムの主配向軸と、前記偏光子の透過軸のなす角度が10°未満である、請求項1から12のいずれかに記載の認証デバイス。 13. An authentication device according to any one of claims 1 to 12 , wherein the angle between the principal orientation axis of the film and the transmission axis of the polarizer is less than 10[deg.]. 前記フィルムが、フィルム面内において最大長を示す両端(A,B)、点A、Bを結ぶ直線ABと直交し、かつ、直線ABの中点を通る直線のフィルムの両端(C,D)の合計4点の面内位相差において、最大値と最小値の差が200nm以下である、請求項1から13のいずれかに記載の認証デバイス。 Both ends (A, B) of the film exhibiting the maximum length in the film plane, and both ends (C, D) of a straight line perpendicular to a straight line AB connecting points A and B and passing through the midpoint of the straight line AB. 14. The authentication device according to any one of claims 1 to 13 , wherein the difference between the maximum value and the minimum value is 200 nm or less in the in-plane retardation at a total of four points of . 認証可能な領域の面積が10cm以上である、請求項1から14のいずれかに記載の認証デバイス。 15. The authentication device according to any one of claims 1 to 14 , wherein the area of the area that can be authenticated is 10 cm <2> or more. 前記光源が、有機EL(有機エレクトロルミネッセンス素子)、発光ダイオード(LED)のいずれかを含み、前記フィルムの波長380nmの光線透過率が5%以下である、請求項1から15のいずれかに記載の認証デバイス。 16. The light source according to any one of claims 1 to 15 , wherein the light source includes either an organic EL (organic electroluminescence element) or a light emitting diode (LED), and the film has a light transmittance of 5% or less at a wavelength of 380 nm. authentication device. 前記光感度センサーがCMOS(Complementary metal―oxide―semiconductor)センサーである請求項1から16のいずれかに記載の認証デバイス。 17. The authentication device according to any one of claims 1 to 16 , wherein the light sensitive sensor is a CMOS (Complementary metal-oxide-semiconductor) sensor. 光源、偏光子、フィルム、および光感度センサーを有する認証デバイスに用いられるフィルムであって、下記(1)、(2)、(3)および(4)を満足するフィルム。
(1)前記フィルムが、前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
(2)下記(I)式を満足する整数nが存在すること。
(I)A×n-150 ≦ Re ≦ A×n+150
ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、
Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
(3)前記フィルムの面内位相差が400nm以上である。
(4)前記フィルムの主配向軸方向および主配向軸と直交する方向の25℃における破断点伸度がいずれも30%以上300%以下である
A film used in an authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, which satisfies the following (1) , (2), (3) and (4) .
(1) The film has a transmittance of light emitted from the light source of 70% or more and 100% or less at the wavelength with the highest intensity of the light.
(2) There exists an integer n that satisfies the following formula (I).
(I) A×n−150≦Re≦A×n+150
Here, A is the wavelength (nm) at which the light emitted from the light source exhibits the strongest intensity,
Re is the in-plane retardation (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0° using the parallel Nicols rotation method.
(3) The in-plane retardation of the film is 400 nm or more.
(4) The elongation at break at 25°C in both the direction of the main orientation axis and the direction perpendicular to the main orientation axis of the film is 30% or more and 300% or less.
前記フィルムが下記式(III)、および(IV)を満足する請求項18に記載のフィルム。
(III) PT(45) ≧ 0.65
(IV)1 ≧ PT(45)/ PT(0)≧ 0.6
ここで、PT(45)とPT(0)は下記のとおりで求められる。
(1)偏光子を2枚にカットし、2枚の偏光子の面が50Wタングステンランプを光源とした分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置し、バックグラウンド測定を行う。光源消灯状態で測定された透過光量をPT(D)、光源点灯状態で測定された透過光量をPT(L)とする。
(2)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
(3)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線において最も強い強度を示す波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
(4)下記式よりPT(0)、PT(45)を得る。
PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))。
19. The film according to claim 18 , wherein said film satisfies formulas (III) and (IV) below.
(III) PT(45) ≥ 0.65
(IV) 1≧PT(45)/PT(0)≧0.6
Here, PT(45) and PT(0) are obtained as follows.
(1) Cut the polarizer into two pieces so that the surfaces of the two polarizers are perpendicular to the optical axis of a spectrophotometer using a 50 W tungsten lamp as a light source, and the transmission axes of the two polarizers are aligned. background measurement. Let PT(D) be the amount of transmitted light measured with the light source off, and PT(L) be the amount of transmitted light measured with the light source on.
(2) The film is placed between two polarizers so that the plane of the film is perpendicular to the optical axis of the spectrophotometer.
(3) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, measure the amount of transmitted light at the wavelength at which the light emitted from the light source exhibits the highest intensity. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizers and the main orientation axis of the film is 0°, and let PT'(45) be the amount of transmitted light when the angle is 45°.
(4) PT(0) and PT(45) are obtained from the following equations.
PT(0)=(PT'(0)-PT(D))/(PT(L)-PT(D))
PT(45)=(PT'(45)-PT(D))/(PT(L)-PT(D)).
JP2020534999A 2019-03-28 2020-03-19 Pending JPWO2020196317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063197 2019-03-28
PCT/JP2020/012450 WO2020196317A1 (en) 2019-03-28 2020-03-19 Authentication device and film

Publications (2)

Publication Number Publication Date
JPWO2020196317A1 JPWO2020196317A1 (en) 2020-10-01
JPWO2020196317A5 true JPWO2020196317A5 (en) 2023-03-14

Family

ID=72611968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534999A Pending JPWO2020196317A1 (en) 2019-03-28 2020-03-19

Country Status (4)

Country Link
JP (1) JPWO2020196317A1 (en)
KR (1) KR20210143754A (en)
CN (1) CN113574427B (en)
WO (1) WO2020196317A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644916B2 (en) * 2000-07-25 2011-03-09 東レ株式会社 Polyester film for polarizing film lamination
JP5609086B2 (en) * 2009-12-04 2014-10-22 東レ株式会社 Polarized reflector
CN102322880B (en) * 2011-08-18 2013-06-05 天津大学 Polarization sensitive distributive optical frequency domain reflection disturbance sensor and demodulation method
WO2015156199A1 (en) * 2014-04-09 2015-10-15 東レ株式会社 Polarizer-protecting polyester film, and polarization plate obtained using same
WO2017126153A1 (en) 2016-01-22 2017-07-27 コニカミノルタ株式会社 Optical fingerprint authentication device
JP2018189725A (en) * 2017-04-28 2018-11-29 Jsr株式会社 Optical filter and image capturing device using the same
JP2018194620A (en) * 2017-05-15 2018-12-06 Jsr株式会社 Optical filter
EP3851884A4 (en) * 2018-09-12 2022-06-08 Toray Industries, Inc. Laminate film
CN112740304A (en) * 2018-09-28 2021-04-30 东洋纺株式会社 Image display device with fingerprint verification sensor

Similar Documents

Publication Publication Date Title
US10718889B2 (en) Thin-film broadband and wide-angle devices for generating and sampling polarization states
US20100002296A1 (en) circular polarizer composite and an optical system comprising the same
US10139533B2 (en) Circular polarizing filter and application thereof
JP6471162B2 (en) Detection system and detection method
WO2015037369A1 (en) Polarizing plate, method for manufacturing polarizing plate, image display device, method for manufacturing image display device, and method for improving transmittance of polarizing plate
WO2014181799A1 (en) Circularly polarized light separation film, method for producing circularly polarized light separation film, infrared sensor, and sensing system and sensing method utilizing light
JP2001357979A (en) El element
US11550089B2 (en) Single packet reflective polarizer with thickness profile tailored for low color at oblique angles
WO2004063779A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP7265621B2 (en) sensor
JP2010256625A (en) Heat insulating member
WO2019058758A1 (en) Optical system and display device
JPWO2020196317A5 (en)
JP6502282B2 (en) Detection method and detection system
JP6254770B2 (en) Circularly polarized light separating film, method for producing circularly polarized light separating film, and infrared sensor
JP7402975B2 (en) Reflective polarizers and optical systems
WO2019172270A1 (en) Optical device
Nevitt et al. Recent advances in multilayer polymeric interference reflector products
JP6876867B2 (en) Optical device
JP4039605B2 (en) Cholesteric liquid crystal filter
JP2014219551A (en) Circularly polarized light separation film and production method of circularly polarized light separation film, and infrared ray sensor
JP6777289B2 (en) Optical characteristic inspection machine and optical characteristic inspection method
WO2023101014A1 (en) Beam combiner, method for forming alignment film, and method for producing optical element
WO2023090392A1 (en) Transmission-type liquid crystal diffraction element
JP6588517B2 (en) Circularly polarized light separating film, method for producing circularly polarized light separating film, and infrared sensor