JPWO2020170694A1 - Manufacturing method of thermoplastic resin foamed particles, and thermoplastic resin foamed particles - Google Patents

Manufacturing method of thermoplastic resin foamed particles, and thermoplastic resin foamed particles Download PDF

Info

Publication number
JPWO2020170694A1
JPWO2020170694A1 JP2021501727A JP2021501727A JPWO2020170694A1 JP WO2020170694 A1 JPWO2020170694 A1 JP WO2020170694A1 JP 2021501727 A JP2021501727 A JP 2021501727A JP 2021501727 A JP2021501727 A JP 2021501727A JP WO2020170694 A1 JPWO2020170694 A1 JP WO2020170694A1
Authority
JP
Japan
Prior art keywords
foamed particles
foaming
thermoplastic resin
pressure
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021501727A
Other languages
Japanese (ja)
Other versions
JP7394109B2 (en
Inventor
勇貴 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2020170694A1 publication Critical patent/JPWO2020170694A1/en
Application granted granted Critical
Publication of JP7394109B2 publication Critical patent/JP7394109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

低発泡倍率では少なくとも発泡倍率のバラツキが改善され、高発泡倍率では少なくともセル構造が均一になった熱可塑性樹脂発泡粒子を得ることを目的として、本発明の製造方法では、発泡剤として炭酸ガスを使用して、樹脂粒子(9)の分散液を加熱し加圧した後、当該分散液を耐圧容器(7)の絞り盤1から耐圧容器(7)内の内圧よりも低圧雰囲気下の低圧容器(13)に放出し、曲面(14a)に衝突させる。In the production method of the present invention, carbon dioxide gas is used as a foaming agent for the purpose of obtaining thermoplastic resin foamed particles having at least a uniform cell structure at a high foaming ratio and at least improving the variation in the foaming ratio at a low foaming ratio. After heating and pressurizing the dispersion liquid of the resin particles (9), the dispersion liquid is applied from the squeezing plate 1 of the pressure-resistant container (7) to a low-pressure container under a lower pressure atmosphere than the internal pressure in the pressure-resistant container (7). It is emitted to (13) and collides with the curved surface (14a).

Description

本発明は、熱可塑性樹脂発泡粒子の製造方法、および熱可塑性樹脂発泡粒子に関する。 The present invention relates to a method for producing thermoplastic resin foamed particles and a thermoplastic resin foamed particle.

従来技術として、熱可塑性樹脂粒子を耐圧容器内で水系分散媒に分散させ、前記熱可塑性樹脂の軟化温度以上の温度に加熱し加圧した後、該熱可塑性樹脂粒子を前記容器内よりも低圧の雰囲気に放出して発泡させることによって発泡粒子を製造する方法は公知である。また、必要に応じて容器内に発泡剤を分散させる方法も公知である。 As a prior art, the thermoplastic resin particles are dispersed in an aqueous dispersion medium in a pressure-resistant container, heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin and pressurized, and then the thermoplastic resin particles are subjected to a lower pressure than in the container. A method for producing foamed particles by releasing them into the atmosphere of the above and foaming them is known. Further, a method of dispersing the foaming agent in the container as needed is also known.

例えば、特許文献1〜3には、ポリオレフィン系樹脂粒子を前記容器内よりも低圧の雰囲気に放出して発泡させる際に、耐圧容器の放出部から衝突板または容器壁に発泡粒子を衝突させる技術が開示されている。これにより、発泡粒子の発泡倍率のバラツキを低減している。 For example, Patent Documents 1 to 3 describe a technique for causing foamed particles to collide with a collision plate or a container wall from a discharge portion of a pressure-resistant container when the polyolefin-based resin particles are discharged into an atmosphere having a lower pressure than the inside of the container and foamed. Is disclosed. This reduces the variation in the expansion ratio of the foamed particles.

特許第3963720号Patent No. 3963720 特許第4747472号Patent No. 4747472 特許第4818101号Patent No. 4818101

一般的に、発泡倍率が比較的低い発泡粒子は、発泡粒子の発泡倍率のバラツキが大きくなる傾向がある。一方、発泡倍率が比較的高い発泡粒子は、セル構造が不均一になる傾向がある。上述した従来技術では、上記の点で改善の余地がある。 In general, foamed particles having a relatively low foaming ratio tend to have a large variation in the foaming ratio of the foamed particles. On the other hand, foamed particles having a relatively high foaming ratio tend to have a non-uniform cell structure. In the above-mentioned conventional technique, there is room for improvement in the above points.

本発明の一態様は、低発泡倍率では少なくとも発泡倍率のバラツキが改善され、高発泡倍率では少なくともセル構造が均一になった熱可塑性樹脂発泡粒子の製造方法、および熱可塑性樹脂発泡粒子を実現することを目的とする。 One aspect of the present invention realizes a method for producing thermoplastic resin foamed particles in which at least the variation in the foaming ratio is improved at a low foaming ratio and at least the cell structure is uniform at a high foaming ratio, and the thermoplastic resin foamed particles. The purpose is.

上記の課題を解決するために、本発明の一態様に係る熱可塑性樹脂発泡粒子の製造方法は、耐圧容器内で熱可塑性樹脂粒子を水系分散媒に分散させて分散液を調製する分散液調製工程と、発泡剤として炭酸ガスを使用して、前記分散液を前記熱可塑性樹脂粒子の軟化温度以上の温度に加熱し加圧した後、前記耐圧容器内の内圧よりも低圧雰囲気下に放出することによって発泡させる発泡工程と、を含み、前記発泡工程は、前記耐圧容器中の混合物を放出部から放出する際に、当該混合物を曲面に衝突させる衝突工程を含む。 In order to solve the above problems, the method for producing thermoplastic resin foamed particles according to one aspect of the present invention is to prepare a dispersion liquid by dispersing the thermoplastic resin particles in an aqueous dispersion medium in a pressure-resistant container. In the step, using carbon dioxide gas as a foaming agent, the dispersion is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles and pressurized, and then discharged under a lower pressure atmosphere than the internal pressure in the pressure-resistant container. This includes a foaming step of foaming, and the foaming step includes a collision step of causing the mixture to collide with a curved surface when the mixture in the pressure resistant container is discharged from the discharging portion.

また、上記の課題を解決するために、本発明の一態様に係る熱可塑性樹脂発泡粒子は、発泡倍率が10〜25倍であり、構成する粒子セル間のセル径の差が70μm以下である構成である。 Further, in order to solve the above-mentioned problems, the thermoplastic resin foamed particles according to one aspect of the present invention have a foaming magnification of 10 to 25 times, and the difference in cell diameter between the constituent particle cells is 70 μm or less. It is a composition.

本発明の一態様によれば、低発泡倍率では少なくとも発泡倍率のバラツキが改善され、高発泡倍率では少なくともセル構造が均一になった熱可塑性樹脂発泡粒子を得ることができる。 According to one aspect of the present invention, at a low foaming ratio, at least the variation in the foaming ratio is improved, and at a high foaming ratio, thermoplastic resin foam particles having at least a uniform cell structure can be obtained.

本発明の実施形態に係る熱可塑性樹脂発泡粒子の製造方法にて使用される発泡装置の一例の概略構成を示す図である。It is a figure which shows the schematic structure of an example of the foaming apparatus used in the manufacturing method of the thermoplastic resin foamed particles which concerns on embodiment of this invention. 本発明の実施形態に係る熱可塑性樹脂発泡粒子の製造方法にて使用される絞り盤の構成を示す正面図である。It is a front view which shows the structure of the drawing machine used in the manufacturing method of the thermoplastic resin foam particle which concerns on embodiment of this invention. 図2に示す絞り盤1の変形例の構成を示す正面図である。It is a front view which shows the structure of the modification of the diaphragm 1 shown in FIG. 本発明の実施形態に係る熱可塑性樹脂発泡粒子の製造方法にて使用される絞り盤の構成を示す断面図である。It is sectional drawing which shows the structure of the drawing machine used in the manufacturing method of the thermoplastic resin foam particle which concerns on embodiment of this invention.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. Further, the technical scope of the present invention also includes embodiments and examples obtained by appropriately combining the technical means disclosed in different embodiments or examples. Further, by combining the technical means disclosed in each embodiment, new technical features can be formed. In addition, all the academic and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".

1.本実施形態に係る熱可塑性樹脂発泡粒子の製造方法
本発明者は、上記の課題に対して鋭意検討した結果、耐圧容器の内容物を放出部から放出させる際に、特定の構造を有する部材に衝突させることにより、低発泡倍率の発泡粒子を製造する場合、少なくとも発泡倍率のバラツキが改善されるという独自の知見を見出した。さらに、高発泡倍率の発泡粒子を製造する場合には、少なくともセル構造が均一になるという知見を独自に見出した。そして、本発明者は、これらの知見に基づき、本実施形態に至った。
1. 1. Method for Producing Thermoplastic Resin Foamed Particles According to the Present Invention As a result of diligent studies on the above-mentioned problems, the present inventor has made a member having a specific structure when the contents of the pressure-resistant container are discharged from the discharging portion. We have found a unique finding that, when foamed particles having a low foaming ratio are produced by collision, at least the variation in the foaming ratio is improved. Furthermore, we have independently found that when foaming particles with a high foaming magnification are produced, at least the cell structure becomes uniform. Then, the present inventor came to the present embodiment based on these findings.

すなわち、本実施形態に係る熱可塑性樹脂発泡粒子の製造方法(以下、単に本方法と記す)は、耐圧容器内で熱可塑性樹脂粒子を水系分散媒に分散させて分散液を調製する分散液調製工程と、発泡剤として炭酸ガスを使用して、前記分散液を前記熱可塑性樹脂粒子の軟化温度以上の温度に加熱し加圧した後、前記耐圧容器内の内圧よりも低圧雰囲気下に放出することによって発泡させる発泡工程と、を含み、前記発泡工程は、前記耐圧容器中の混合物を放出部から放出する際に、当該混合物を曲面に衝突させる衝突工程を含む。 That is, in the method for producing thermoplastic resin foam particles according to the present embodiment (hereinafter, simply referred to as this method), a dispersion liquid preparation in which the thermoplastic resin particles are dispersed in an aqueous dispersion medium in a pressure resistant container is prepared. In the step, using carbon dioxide gas as a foaming agent, the dispersion is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles and pressurized, and then discharged under a lower pressure atmosphere than the internal pressure in the pressure resistant container. This includes a foaming step of foaming, and the foaming step includes a collision step of causing the mixture to collide with a curved surface when the mixture in the pressure resistant container is discharged from the discharging portion.

2.熱可塑性樹脂発泡粒子の材料
本実施形態にて使用される熱可塑性樹脂粒子の基材樹脂は、一般的な公知の発泡性の熱可塑性樹脂であれば特に限定されない。前記熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリアミド系樹脂、およびこれらの混合物等が挙げられる。前記熱可塑性樹脂は、好ましくは、ポリオレフィン系樹脂、またはポリエステル系樹脂である。ポリエステル系樹脂としては、例えば、脂肪族系ポリエステル樹脂、芳香族系ポリエステル樹脂、脂肪族芳香族系ポリエステル樹脂などが挙げられる。ポリエステル系樹脂の具体例としては、例えば、ポリヒドロキシアルカノエート、ポリブチレンサクシネート(PBS)、ポリ(ブチレンアジペート−co−ブチレンテレフラレート)(PBAT)、ポリエチレンテレフタレート(PET)等が挙げられる。また、ポリヒドロキシアルカノエートは、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(PHBH)、ポリ(3−ヒドロキシブチレート)(P3HB)、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシバリレート)(PHBV)、ポリ(3−ヒドロキシブチレート−コ−4−ヒドロキシブチレート)(P3HB4HB)、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシオクタノエート)、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシオクタデカノエート)からなる群から選択される少なくとも1種である。これらの中でも、ポリオレフィン系樹脂が好適に使用される。以下、熱可塑性樹脂粒子の基材樹脂としてポリオレフィン系樹脂を使用した実施形態について説明する。なお、本実施形態に使用され得る熱可塑性樹脂粒子の基材樹脂は、ポリオレフィン系樹脂に限定されない。
2. 2. Material of Thermoplastic Resin Foaming Particles The base resin of the thermoplastic resin particles used in the present embodiment is not particularly limited as long as it is a generally known foamable thermoplastic resin. Examples of the thermoplastic resin include polyolefin resins, polyester resins, polystyrene resins, polyphenylene ether resins, polyamide resins, and mixtures thereof. The thermoplastic resin is preferably a polyolefin-based resin or a polyester-based resin. Examples of the polyester-based resin include an aliphatic polyester resin, an aromatic polyester resin, and an aliphatic aromatic polyester resin. Specific examples of the polyester resin include polyhydroxy alkanoate, polybutylene succinate (PBS), poly (butylene adipate-co-butylene terephthalate) (PBAT), polyethylene terephthalate (PET) and the like. The polyhydroxy alkanoates are poly (3-hydroxybutyrate-3-hydroxyhexanoate) (PHBH), poly (3-hydroxybutyrate) (P3HB), and poly (3-hydroxybutyrate-co). -3-Hydroxyvariate) (PHBV), Poly (3-Hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), Poly (3-Hydroxybutyrate-3-hydroxyoctanoate), Poly At least one selected from the group consisting of (3-hydroxybutyrate-co-3-hydroxyoctadecanoate). Among these, polyolefin-based resins are preferably used. Hereinafter, embodiments in which a polyolefin-based resin is used as the base resin for the thermoplastic resin particles will be described. The base resin of the thermoplastic resin particles that can be used in this embodiment is not limited to the polyolefin-based resin.

2−1.ポリオレフィン系樹脂
ポリオレフィン系樹脂粒子の基材樹脂となるポリオレフィン系樹脂とは、オレフィン単位を50重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上含む樹脂のことである。ポリオレフィン系樹脂の具体例としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、低分子量ポリエチレン等のポリエチレン類;プロピレンホモポリマー;エチレン−プロピレンランダム共重合体、エチレン−プロピレン−1−ブテンランダム共重合体、プロピレン−1−ブテンランダム共重合体等のα−オレフィン−プロピレンランダム共重合体、並びに、α−オレフィン−プロピレンブロック共重合体等のポリプロピレン類;プロピレンホモポリマー、ポリブテン等のその他のポリオレフィンホモポリマー類;等が挙げられる。これらは単独で用いてもよく、2種類以上併用してもよい。
2-1. Polyolefin-based resin The polyolefin-based resin used as the base resin for the polyolefin-based resin particles is a resin containing 50% by weight or more, preferably 80% by weight or more, and more preferably 90% by weight or more of olefin units. Specific examples of the polyolefin-based resin include polyethylenes such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and low-molecular-weight polyethylene; propylene homopolymers; ethylene-propylene random copolymers, Α-Olefin-propylene random copolymers such as ethylene-propylene-1-butene random copolymers and propylene-1-butene random copolymers, and polypropylenes such as α-olefin-propylene block copolymers; propylene Homopolymers, other polyolefin homopolymers such as polybutene; and the like. These may be used alone or in combination of two or more.

これらの内でも、エチレン−プロピレンランダム共重合体、エチレン−プロピレン−1−ブテンランダム共重合体、およびプロピレン−1−ブテンランダム共重合体が、発泡粒子とするときに良好な発泡性を示すため、好適に使用される。 Among these, the ethylene-propylene random copolymer, the ethylene-propylene-1-butene random copolymer, and the propylene-1-butene random copolymer show good foamability when they are used as foamed particles. , Suitable for use.

また、ポリオレフィン系樹脂発泡粒子の基材樹脂には、ポリオレフィン系樹脂以外に、該ポリオレフィン系樹脂の特性が失われない範囲で、他の熱可塑性樹脂、例えばポリスチレン、ポリブテン、アイオノマー等が混合されていてもよい。 In addition to the polyolefin-based resin, the base resin of the polyolefin-based resin foamed particles is mixed with other thermoplastic resins such as polystyrene, polybutene, and ionomer as long as the characteristics of the polyolefin-based resin are not lost. May be.

また、ポリオレフィン系樹脂は、通常、発泡粒子を製造し易いように、押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、且つ円柱形状、楕円形状、球形状、立方体形状、直方体形状等の樹脂粒子に予め加工しておくことが好ましい。なお、樹脂粒子はペレットとも称する。 Further, the polyolefin-based resin is usually melted by using an extruder, a kneader, a Banbury mixer, a roll, etc. so as to easily produce foamed particles, and has a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. It is preferable to process the resin particles in advance. The resin particles are also referred to as pellets.

ポリオレフィン系樹脂粒子は、一粒の重量が0.1〜30mgであることが好ましく、0.3〜10mgであることがより好ましい。 The weight of each polyolefin-based resin particle is preferably 0.1 to 30 mg, more preferably 0.3 to 10 mg.

2−2.ポリオレフィン系樹脂に加える添加剤
ポリオレフィン系樹脂に添加剤を加える場合には、前記ポリオレフィン系樹脂粒子の製造前に、ブレンダー等を用いてポリオレフィン系樹脂と添加剤とを混合することが好ましい。添加剤の具体例としては、セル造核剤(単に造核剤とも称する)が挙げられる。また、プロパン、ブタン、ペンタン、ヘキサン等の炭化水素系発泡剤を使用する場合には、造核剤としては、タルク、シリカ、炭酸カルシウム、カオリン、酸化チタン、ベントナイト、硫酸バリウム等のような無機造核剤が一般に使用される。セル造核剤の添加量は、使用するポリオレフィン系樹脂の種類、セル造核剤の種類によって異なるので一概には規定できないが、ポリオレフィン系樹脂100重量部に対して、概ね0.001重量部以上、2重量部以下であることが好ましい。
2-2. Additives to be added to the polyolefin resin When adding an additive to the polyolefin resin, it is preferable to mix the polyolefin resin and the additive using a blender or the like before producing the polyolefin resin particles. Specific examples of the additive include a cell nucleating agent (also simply referred to as a nucleating agent). When a hydrocarbon-based foaming agent such as propane, butane, pentane, or hexane is used, the nucleating agent is an inorganic substance such as talc, silica, calcium carbonate, kaolin, titanium oxide, bentonite, barium sulfate, or the like. Nucleating agents are commonly used. The amount of the cell nucleating agent added varies depending on the type of the polyolefin resin used and the type of the cell nucleating agent, so it cannot be unconditionally specified, but it is approximately 0.001 part by weight or more with respect to 100 parts by weight of the polyolefin resin. It is preferably 2 parts by weight or less.

また、発泡剤として炭酸ガス(二酸化炭素)を使用する本方法では、前記無機造核剤および/または親水性物質を使用することが好ましい。水系分散物の分散媒として水を使用する場合には、ポリオレフィン系樹脂中に水が含浸し、含浸した水が他の発泡剤と共にあるいは単独で発泡剤として作用する。 Further, in this method using carbon dioxide gas (carbon dioxide) as a foaming agent, it is preferable to use the inorganic nucleating agent and / or a hydrophilic substance. When water is used as a dispersion medium for an aqueous dispersion, the polyolefin resin is impregnated with water, and the impregnated water acts as a foaming agent together with other foaming agents or alone.

前記親水性物質は、ポリオレフィン系樹脂に含浸される水分量を多くするように作用する。親水性物質の具体例としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の無機物質;あるいは、グリセリン、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物;ポリエチレングリコール、またはポリエチレンオキシド等のポリエーテル、ポリエーテルのポリプロピレン等への付加物、およびこれらのポリマーアロイ;エチレン−(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン−(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等の重合体;等の有機物が挙げられる。これら親水性物質は、単独で用いてもよく、2種類以上併用してもよい。 The hydrophilic substance acts to increase the amount of water impregnated in the polyolefin resin. Specific examples of the hydrophilic substance include inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borosand, and zinc borate; or glycerin, melamine, isocyanuric acid, melamine / isocyanuric acid condensate; polyethylene glycol, polyethylene oxide, and the like. Polyethers, adducts of polyethers to polypropylene, etc., and their polymer alloys; alkali metal salts of ethylene- (meth) acrylic acid copolymers, alkali metal salts of butadiene- (meth) acrylic acid copolymers, Examples thereof include alkali metal salts of carboxylated nitrile rubbers, alkali metal salts of isobutylene-maleic anhydride copolymers, polymers such as alkali metal salts of poly (meth) acrylic acid; and other organic substances. These hydrophilic substances may be used alone or in combination of two or more.

親水性物質の添加量は、ポリオレフィン系樹脂100重量部に対して、0 .005重量部以上、2重量部以下であることが好ましく、0.005重量 部以上、1重量部以下であることがより好ましい。親水性物質の種類および量を調整することにより、ポリオレフィン系樹脂発泡粒子の平均気泡径を調整することができる。 The amount of the hydrophilic substance added was 0. With respect to 100 parts by weight of the polyolefin resin. It is preferably 005 parts by weight or more and 2 parts by weight or less, and more preferably 0.005 parts by weight or more and 1 part by weight or less. By adjusting the type and amount of the hydrophilic substance, the average bubble diameter of the polyolefin resin foamed particles can be adjusted.

さらに、ポリオレフィン系樹脂粒子の製造時には、必要により着色剤、帯電防止剤、酸化防止剤、リン系加工安定剤、ラクトン系加工安定剤、金属不活性剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系光安定剤、ヒンダートアミン系光安定剤、難燃剤、難燃助剤、酸中和剤、結晶核剤、アミド系添加剤等の添加剤を、ポリオレフィン系樹脂の特性を損なわない範囲で添加することができる。 Furthermore, when producing polyolefin resin particles, if necessary, colorants, antistatic agents, antioxidants, phosphorus-based processing stabilizers, lactone-based processing stabilizers, metal deactivators, benzotriazole-based ultraviolet absorbers, and benzoate-based light Add additives such as stabilizers, hindered amine-based light stabilizers, flame retardants, flame retardant aids, acid neutralizers, crystal nucleating agents, and amide-based additives to the extent that the characteristics of the polyolefin-based resin are not impaired. be able to.

2−3.発泡剤
本方法では、前記発泡工程にて使用される発泡剤は炭酸ガス(二酸化炭素)である。なお、本方法は、発泡剤として炭酸ガスを使用した方法であればよく、炭酸ガスと従来公知の発泡剤とを併用した方法も本方法の範疇に含まれる。従来公知の発泡剤としては、プロパン、イソブタン、ブタン、ペンタン、ヘキサン等の揮発性の炭化水素系発泡剤、および空気、窒素、水等の無機ガスを用いることが可能である。
2-3. Foaming agent In this method, the foaming agent used in the foaming step is carbon dioxide gas (carbon dioxide). In addition, this method may be any method using carbon dioxide gas as a foaming agent, and a method in which carbon dioxide gas and a conventionally known foaming agent are used in combination is also included in the category of this method. As conventionally known foaming agents, volatile hydrocarbon-based foaming agents such as propane, isobutane, butane, pentane, and hexane, and inorganic gases such as air, nitrogen, and water can be used.

1−4.分散剤および分散助剤
前記水系分散媒としては水を使用することが好ましい。メタノール、エタノール、エチレングリコール、グリセリン等を水に添加した分散媒も、水系分散剤として使用することができる。
1-4. Dispersant and Dispersion Aid It is preferable to use water as the aqueous dispersion medium. A dispersion medium obtained by adding methanol, ethanol, ethylene glycol, glycerin or the like to water can also be used as an aqueous dispersant.

水系分散媒においては、ポリオレフィン系樹脂粒子同士の融着を防止するために、分散剤を使用することが好ましい。分散剤の具体例としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、酸化チタン、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が挙げられる。これらの中でも、第三リン酸カルシウム、硫酸バリウム、カオリンが、少ない使用量でも耐圧容器内のポリオレフィン系樹脂粒子を含んでなる水系分散物を安定的に分散させることができるため、より好ましい。 In the aqueous dispersion medium, it is preferable to use a dispersant in order to prevent fusion of the polyolefin-based resin particles. Specific examples of the dispersant include inorganic dispersants such as calcium tertiary phosphate, magnesium tertiary phosphate, titanium oxide, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay. Among these, tricalcium phosphate, barium sulfate, and kaolin are more preferable because they can stably disperse an aqueous dispersion containing polyolefin-based resin particles in a pressure-resistant container even in a small amount.

また、分散剤と共に分散助剤を使用することが好ましい。分散助剤の具体例としては、例えば、N−アシルアミノ酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド等のカルボン酸塩型;アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩等のスルホン酸塩型;硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアミド硫酸塩等の硫酸エステル型;および、アルキルリン酸塩、ポリオキシエチレンリン酸塩、アルキルアリルエーテル硫酸塩等のリン酸エステル型;等の陰イオン界面活性剤が挙げられる。また、分散助剤として、マレイン酸共重合体塩;ポリアクリル酸塩等のポリカルボン酸型高分子界面活性剤;および、ポリスチレンスルホン酸塩、ナフタルスルホン酸ホルマリン縮合物塩;等の多価陰イオン高分子界面活性剤も使用することができる。 Further, it is preferable to use a dispersion aid together with the dispersant. Specific examples of the dispersion aid include carboxylate types such as N-acylamino acid salt, alkyl ether carboxylate, and acylated peptide; alkyl sulfonate, alkylbenzene sulfonate, alkylnaphthalene sulfonate, and sulfosuccinate. Sulfate type such as acid salt; sulfate ester type such as sulfated oil, alkyl sulfate, alkyl ether sulfate, alkylamide sulfate; and alkyl phosphate, polyoxyethylene phosphate, alkyl allyl ether sulfate Phosphate ester type such as salt; and anionic surfactants such as. Further, as a dispersion aid, polyvalent salts such as maleic acid copolymer salt; polycarboxylic acid type polymer surfactant such as polyacrylic acid salt; and polystyrene sulfonate, naphthalsulfonic acid formalin condensate salt; etc. Anionic polymer surfactants can also be used.

分散助剤として、スルホン酸塩型の陰イオン界面活性剤を使用することが好ましく、さらには、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩から選ばれる1種もしくは2種類以上の混合物を用いることが好ましい。また、アルキルスルホン酸塩を使用することがより好ましく、疎水基として炭素数10〜18の直鎖状の炭素鎖を持つアルキルスルホン酸塩を使用することが、ポリオレフィン系樹脂の発泡粒子に付着する分散剤を低減することができるため、特に好ましい。 As the dispersion aid, it is preferable to use a sulfonate-type anionic surfactant, and further, it is preferable to use one or a mixture of two or more selected from an alkyl sulfonate and an alkyl benzene sulfonate. .. Further, it is more preferable to use an alkyl sulfonate, and it is preferable to use an alkyl sulfonate having a linear carbon chain having 10 to 18 carbon atoms as a hydrophobic group, which adheres to the foamed particles of the polyolefin resin. It is particularly preferable because the dispersant can be reduced.

そして、本発明の実施形態においては、分散剤として第三リン酸カルシウム、第三リン酸マグネシウム、硫酸バリウムまたはカオリンから選ばれる1種以上と、分散助剤としてn−パラフィンスルホン酸ソーダを併用することが特に好ましい。 Then, in the embodiment of the present invention, one or more selected from tricalcium phosphate, magnesium tribasic phosphate, barium sulfate or kaolin as a dispersant and n-paraffin sulfonic acid sodium as a dispersant aid may be used in combination. Especially preferable.

3.本方法の各工程
3−1.分散液調製工程
前記分散液調製工程では、耐圧容器内で上述したポリオレフィン系樹脂粒子を上述した水系分散媒に分散させて分散液を調製している。
3. 3. Each step of this method 3-1. Dispersion Liquid Preparation Step In the dispersion liquid preparation step, the above-mentioned polyolefin resin particles are dispersed in the above-mentioned aqueous dispersion medium in a pressure-resistant container to prepare a dispersion liquid.

分散剤および分散助剤の使用量は、その種類、または用いるポリオレフィン系樹脂の種類および使用量に応じて異なる。通常、分散剤は、水系分散媒100重量部に対して、0.1重量部以上、5重量部以下で配合することが好ましく、0.2重量部以上、3重量部以下で配合することがより好ましい。分散助剤は、水系分散媒100重量部に対して、0.001重量部以上、0.3重量部以下で配合することが好ましく、0.001重量部以上、0.1重量部以下で配合することがより好ましい。また、ポリオレフィン系樹脂粒子は、水系分散媒中での分散性を良好にするため、通常、水系分散媒100重量部に対して、20重量部以上、100重量部以下で使用することが好ましい。前記構成であれば、ポリオレフィン系樹脂粒子を耐圧容器内で水系分散媒中に安定に分散させることができる。 The amount of the dispersant and the dispersion aid used varies depending on the type thereof or the type and amount of the polyolefin resin used. Usually, the dispersant is preferably blended in an amount of 0.1 parts by weight or more and 5 parts by weight or less, and preferably 0.2 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. More preferred. The dispersion aid is preferably blended in an amount of 0.001 part by weight or more and 0.3 part by weight or less, and more than 0.001 part by weight and 0.1 part by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. It is more preferable to do so. Further, in order to improve the dispersibility in the aqueous dispersion medium, the polyolefin-based resin particles are usually preferably used in an amount of 20 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the aqueous dispersion medium. With the above configuration, the polyolefin-based resin particles can be stably dispersed in the aqueous dispersion medium in the pressure-resistant container.

3−2.発泡工程
前記発泡工程では、発泡剤として炭酸ガスを使用して、前記分散液を前記ポリオレフィン系樹脂粒子の軟化温度以上の温度に加熱し加圧した後、前記耐圧容器内の内圧よりも低圧雰囲気下に放出することによって発泡させる。より具体的には、発泡工程では、前記分散液を前記ポリオレフィン系樹脂組成物の軟化温度以上の温度に加熱し、発泡剤となる炭酸ガスを前記樹脂組成物粒子に含浸させる。その後、無機ガスを耐圧容器内に導入して、耐圧容器内の圧力を0.6〜5.0MPaとし、この圧力を保持しつつ、前記耐圧容器内の内圧よりも低圧の雰囲気中に放出することによって発泡させる。
3-2. Foaming step In the foaming step, carbon dioxide gas is used as a foaming agent to heat the dispersion liquid to a temperature equal to or higher than the softening temperature of the polyolefin resin particles and pressurize the mixture, and then the atmosphere is lower than the internal pressure in the pressure-resistant container. Foam by releasing below. More specifically, in the foaming step, the dispersion is heated to a temperature equal to or higher than the softening temperature of the polyolefin resin composition, and the resin composition particles are impregnated with carbon dioxide gas as a foaming agent. After that, an inorganic gas is introduced into the pressure-resistant container to set the pressure in the pressure-resistant container to 0.6 to 5.0 MPa, and while maintaining this pressure, it is discharged into an atmosphere lower than the internal pressure in the pressure-resistant container. Foam by.

前記分散液を加熱する温度は、前記ポリオレフィン系樹脂粒子の軟化温度以上であれば、特に限定されないが、好ましくは前記ポリオレフィン系樹脂粒子の融点以上、さらに好ましくは融点+5℃以上である。また、前記分散液を加熱する温度は、好ましくは融点+20℃以下、さらに好ましくは融点+15℃以下の温度である。例えば、融点145℃のエチレン−プロピレン共重合体の場合、加熱温度は145〜165℃、さらには150〜160℃が好ましい。加熱温度が145℃未満である場合、ポリオレフィン系樹脂粒子が発泡しにくくなる。また、加熱温度が165℃を超える場合、得られる発泡粒子の機械的強度、耐熱性が充分でなく、耐圧容器内でポリオレフィン系樹脂粒子が融着しやすくなる傾向が生じる。 The temperature for heating the dispersion is not particularly limited as long as it is at least the softening temperature of the polyolefin-based resin particles, but is preferably at least the melting point of the polyolefin-based resin particles, and more preferably at least the melting point of + 5 ° C. The temperature for heating the dispersion is preferably a melting point of +20 ° C. or lower, more preferably a melting point of +15 ° C. or lower. For example, in the case of an ethylene-propylene copolymer having a melting point of 145 ° C., the heating temperature is preferably 145 to 165 ° C., more preferably 150 to 160 ° C. When the heating temperature is less than 145 ° C., the polyolefin-based resin particles are less likely to foam. Further, when the heating temperature exceeds 165 ° C., the mechanical strength and heat resistance of the obtained foamed particles are not sufficient, and the polyolefin-based resin particles tend to be easily fused in the pressure-resistant container.

なお、前記ポリオレフィン系樹脂の融点は、DSC(示差走査熱量計)によって40℃から220℃まで10℃/分の速度で昇温し、10℃/分の速度で40℃まで冷却した後、再度、10℃/分の速度で220℃まで昇温したときに現れる融解ピークの頂点の温度である。 The melting point of the polyolefin resin is raised from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a DSC (differential scanning calorimetry), cooled to 40 ° C. at a rate of 10 ° C./min, and then again. It is the temperature at the peak of the melting peak that appears when the temperature is raised to 220 ° C. at a rate of 10 ° C./min.

前記無機ガスとしては、特に限定されないが、窒素、空気またはこれらを主体(通常、50容量%以上、好ましくは70容量%以上)とし、アルゴン、ヘリウム、キセノンなどの不活性ガスや水蒸気、酸素、水素、オゾンなどを少量(50容量%以下、好ましくは30容量%以下)含む無機ガスなどを使用することができるが、経済性、生産性、環境適合性などの点から窒素が好ましく、安全性、経済性の点から空気が更に好ましい。 The inorganic gas is not particularly limited, but is mainly composed of nitrogen, air or these (usually 50% by volume or more, preferably 70% by volume or more), and is an inert gas such as argon, helium or xenone, water vapor, oxygen, etc. An inorganic gas containing a small amount of hydrogen, ozone, etc. (50% by volume or less, preferably 30% by volume or less) can be used, but nitrogen is preferable from the viewpoint of economy, productivity, environmental compatibility, etc., and is safe. , Air is more preferable from the viewpoint of economy.

前記無機ガスによる保持圧力は、特に限定されないが、発泡倍率の向上、発泡倍率バラツキの低減の点から、前述のように0.6〜5.0MPaが好ましく、1.0〜3.5MPaがより好ましい。保持圧力が0.6MPa未満の場合、無機ガスを導入することによる効果が少なくなり、発泡粒子が充分に発泡しない傾向にあり、所望とする発泡倍率を有する発泡粒子を得ることが困難である傾向がある。また、5.0MPaを超えると得られる発泡粒子の気泡が微細化し、独立気泡率が低下して成形品の収縮、形状安定性、機械的強度、耐熱性が損なわれる傾向にある。無機ガスの導入時期は、発泡粒子の倍率および倍率バラツキ等の品質には大きく影響を及ぼさないので、耐圧容器内の加熱前、加熱途中、加熱後のいずれもよい。 The holding pressure due to the inorganic gas is not particularly limited, but is preferably 0.6 to 5.0 MPa, more preferably 1.0 to 3.5 MPa, as described above, from the viewpoint of improving the foaming ratio and reducing the variation in the foaming ratio. preferable. When the holding pressure is less than 0.6 MPa, the effect of introducing the inorganic gas is reduced, the foamed particles tend not to foam sufficiently, and it tends to be difficult to obtain foamed particles having a desired foaming ratio. There is. Further, when it exceeds 5.0 MPa, the bubbles of the obtained foamed particles become finer, the closed cell ratio decreases, and the shrinkage, shape stability, mechanical strength, and heat resistance of the molded product tend to be impaired. Since the introduction timing of the inorganic gas does not significantly affect the quality such as the magnification and the variation in magnification of the foamed particles, it may be any of before, during, and after heating in the pressure-resistant container.

また、前記無機ガスで加圧して所定の圧力に到達後、前記ポリオレフィン系樹脂粒子を水系分散媒とともに低圧雰囲気中に放出するまでの時間は、特に限定されないが、生産性向上の観点から60分以内であるか、あるいは、できるだけ短いことが好ましい。なお、放出中の容器内圧力は前記到達した圧力を維持することが好ましい。 The time from pressurizing with the inorganic gas to reaching a predetermined pressure until the polyolefin-based resin particles are released into the low-pressure atmosphere together with the aqueous dispersion medium is not particularly limited, but is 60 minutes from the viewpoint of improving productivity. It is preferably within or as short as possible. It is preferable that the pressure inside the container during discharge is maintained at the reached pressure.

また、前記分散液が放出される低圧雰囲気は、耐圧容器内の内圧よりも低圧の圧力の雰囲気であればよいが、通常、大気圧付近の圧力の雰囲気が選ばれる。また、前記雰囲気とは、放出された水系分散物(発泡粒子および水系分散媒)の飛散軌跡を包含する空間を意味するが、一般にはパイプ、ダクト状のもので外気と遮断した装置内をいう。 Further, the low-pressure atmosphere in which the dispersion liquid is discharged may be an atmosphere having a pressure lower than the internal pressure in the pressure-resistant container, but an atmosphere having a pressure near the atmospheric pressure is usually selected. Further, the atmosphere means a space including a scattering locus of the released aqueous dispersion (foaming particles and aqueous dispersion medium), but generally refers to a pipe or duct-like space inside a device that is shielded from the outside air. ..

ここで、ポリオレフィン系樹脂発泡粒子の製造方法においては、前記分散液(ポリオレフィン系樹脂粒子および水系分散媒)は、好ましくは耐圧容器の内圧を保持しつつ耐圧容器から絞り盤を通した後、耐圧容器の内圧よりも低圧雰囲気中に放出される。ここで、本方法にて使用される絞り盤について、以下に説明する。 Here, in the method for producing the polyolefin-based resin foamed particles, the dispersion liquid (polyolefin-based resin particles and the aqueous dispersion medium) is preferably pressure-resistant after passing through a pressure-resistant container from the pressure-resistant container while maintaining the internal pressure of the pressure-resistant container. It is released into a low pressure atmosphere rather than the internal pressure of the container. Here, the diaphragm used in this method will be described below.

<絞り盤>
前記絞り盤は、一般に放出時間の調整、発泡倍率の均一化のために使用される。本方法では、オリフィス板に筒体を付けた筒付き絞り盤を用いている。これにより、放出された分散液の飛散角度を小さくすることができる。その結果、均一な大きさの発泡粒子に発泡させ、かつ、倍率バラツキを少なくできる。前記オリフィス板としては、オリフィス型、ノズル型、ベンチュリ型等を使用することができ、また、これらを組み合わせても使用できる。好ましくは、オリフィス板として、オリフィス型を用いることが好ましい。オリフィス型を用いることにより、簡単な構造で、流出速度を一定に保持でき、高倍率、かつ、倍率バラツキの少ない発泡粒子を得ることができる。
<Aperture board>
The drawing machine is generally used for adjusting the release time and making the foaming ratio uniform. In this method, a diaphragm with a cylinder having a cylinder attached to the orifice plate is used. As a result, the scattering angle of the released dispersion can be reduced. As a result, it is possible to foam the foamed particles having a uniform size and reduce the variation in magnification. As the orifice plate, an orifice type, a nozzle type, a venturi type and the like can be used, and these can also be used in combination. It is preferable to use an orifice type as the orifice plate. By using the orifice type, it is possible to obtain foamed particles having a simple structure, a constant outflow rate, a high magnification, and a small variation in magnification.

図2は、本方法にて使用される絞り盤1の構成を示す正面図である。図3は、図2に示す絞り盤1の変形例の構成を示す正面図である。図4は、絞り盤1の構成を示す断面図である。 FIG. 2 is a front view showing the configuration of the diaphragm 1 used in this method. FIG. 3 is a front view showing a configuration of a modified example of the diaphragm 1 shown in FIG. FIG. 4 is a cross-sectional view showing the configuration of the diaphragm 1.

図2および図4に示されるように、絞り盤1は、筒体2と、オリフィス板3と、を備えている。筒体2は、円筒形状であり、オリフィス板3における分散液の放出側の面に形成されている。また、オリフィス板3には、分散液が通過するオリフィス5が形成されている。筒体2は、その内側面がオリフィス5を囲むように配置されている。より具体的には、オリフィス5の中心と筒体2の中心とがほぼ一致する位置関係となっている。 As shown in FIGS. 2 and 4, the diaphragm 1 includes a tubular body 2 and an orifice plate 3. The tubular body 2 has a cylindrical shape and is formed on the surface of the orifice plate 3 on the discharge side of the dispersion liquid. Further, the orifice plate 3 is formed with an orifice 5 through which the dispersion liquid passes. The tubular body 2 is arranged so that its inner side surface surrounds the orifice 5. More specifically, the center of the orifice 5 and the center of the cylinder 2 are in a positional relationship that substantially coincides with each other.

オリフィス板3を使用する場合、オリフィス5の口径hは、特に限定されないが、6.0mm以上が好ましく、7.0mm以上がより好ましく、8.0mm以上がより好ましい。また、口径hの上限は、特に限定されない。しかし、口径hが大きくなる程、発泡粒子を輸送するための能力の必要性が高くなり、設備費が高くなってしまう。When using an orifice plate 3, the diameter h a of the orifice 5 is not particularly limited, is preferably at least 6.0 mm, more preferably at least 7.0 mm, more 8.0mm is more preferable. The upper limit of the diameter h a is not particularly limited. However, as the diameter h a increases, the need for capacity for transporting expanded particles becomes high, the equipment cost becomes high.

また、オリフィス板3の厚みは、0.2〜10mmが好ましく、0.5〜5mmがより好ましい。厚みが0.2mm未満である場合、放出時の圧力により、オリフィス板3が破損するおそれがある。一方、厚みが10mmを超えると、得られる発泡粒子の発泡倍率が低下して、所望とする発泡倍率を有する発泡粒子を得ることが困難になるとともに、樹脂により開孔部が閉塞するおそれがある。 The thickness of the orifice plate 3 is preferably 0.2 to 10 mm, more preferably 0.5 to 5 mm. If the thickness is less than 0.2 mm, the orifice plate 3 may be damaged due to the pressure at the time of discharge. On the other hand, if the thickness exceeds 10 mm, the expansion ratio of the obtained foamed particles decreases, it becomes difficult to obtain foamed particles having a desired foaming ratio, and the opened portion may be blocked by the resin. ..

また、オリフィス板3に取り付ける筒体2は、オリフィス5における分散液の放出側に一体的に取り付けられる。筒体2の材質は、特に限定されるものではないが、一般的には金属が用いられる。また、筒体2とオリフィス板3とを一体化する方法は、特に限定されず、溶接、嵌合、螺合、接着等を用いてもよい。必要に応じて、オリフィス板3と筒体2とは、同一物として製造されてもよい。 Further, the tubular body 2 attached to the orifice plate 3 is integrally attached to the discharge side of the dispersion liquid in the orifice 5. The material of the cylinder 2 is not particularly limited, but generally metal is used. Further, the method of integrating the tubular body 2 and the orifice plate 3 is not particularly limited, and welding, fitting, screwing, bonding, or the like may be used. If necessary, the orifice plate 3 and the cylinder 2 may be manufactured as the same product.

また、筒体2におけるオリフィス板3と反対側の開口面積は、筒体2の大きさや長さに応じて適宜設定可能であり、一般的には、オリフィス5の開口面積の1.3倍以上である。筒体2の当該開口面積がオリフィス5の開口面積の1.3倍未満である場合は、放出される発泡粒子の凝集や詰まりが起こりやすくなる。なお、筒体2の長さが短ければ上記のような問題は起こらないが、筒体2の効果は起こり難くなる。 Further, the opening area of the tubular body 2 on the opposite side of the orifice plate 3 can be appropriately set according to the size and length of the tubular body 2, and is generally 1.3 times or more the opening area of the orifice 5. Is. When the opening area of the tubular body 2 is less than 1.3 times the opening area of the orifice 5, the released foamed particles are likely to be aggregated or clogged. If the length of the cylinder 2 is short, the above-mentioned problem does not occur, but the effect of the cylinder 2 is less likely to occur.

図2に示す筒体2の形状は、円筒に限定されず、円や楕円の一部を含む円形孔であってもよい。ここでいう円形孔とは、内側壁が円形、楕円形、矩形や正方形の相対する2辺に該辺を直径とする半円がつけ加えられた形状のものなどの形状を構成する貫通孔のことを意味する。 The shape of the cylinder 2 shown in FIG. 2 is not limited to a cylinder, and may be a circular hole including a part of a circle or an ellipse. The circular hole referred to here is a through hole having a shape such as a circular, oval, rectangular or square inner side wall having a semicircle having a diameter added to two opposing sides. Means.

筒体2は、円形孔に限定されない。図3に示されるように、筒体2は、スリット形状4であってもよい。ここでいうスリット形状4の筒体2とは、矩形、正方形、菱形、台形、平行四辺形、他の四角形、三角形、五角形、六角形などの多角形の形状の貫通孔を意味する。 The tubular body 2 is not limited to the circular hole. As shown in FIG. 3, the tubular body 2 may have a slit shape 4. The tubular body 2 of the slit shape 4 referred to here means a through hole having a polygonal shape such as a rectangle, a square, a rhombus, a trapezoid, a parallelogram, another quadrangle, a triangle, a pentagon, or a hexagon.

また、筒体2の形状は角柱や円柱状であってもよい。この場合、筒体2の開口部の形状はスリット形状4または円形状となる。また、このような筒体2は、正面(分散液を放出する側)の幅または短径Hが、0.6mm以上、好ましくは1.2〜25mmであり、筒体2の放出方向の長さMが、5mm以上、好ましくは5〜300mmの形状である。筒体のスリット形状4または円形状の正面の幅または短径Hが0.6mm未満である場合、スリットまたは孔が閉塞しやすくなる。筒体2の長さMが5mm未満である場合は、放出された分散液の飛散軌跡が筒体2の付いていない絞り盤1を使用した場合と差がない。このため、倍率バラツキの低減効果が弱くなる。また、長さMが300mmよりも長い場合は、筒体2の内部にて発泡粒子同士が衝突して融着し、発泡粒子を得ることができなくなるおそれがある。Further, the shape of the tubular body 2 may be a prism or a columnar shape. In this case, the shape of the opening of the tubular body 2 is a slit shape 4 or a circular shape. Moreover, such a cylindrical body 2 has a width or minor axis H a front (the side to release the dispersion liquid), 0.6 mm or more, preferably 1.2~25Mm, the cylindrical body 2 in the discharge direction The length M is 5 mm or more, preferably 5 to 300 mm. If the width or minor axis H a slit-shaped 4 or circular front face of the cylindrical body is less than 0.6 mm, a slit or hole is easily clogged. When the length M of the cylinder 2 is less than 5 mm, the scattering locus of the released dispersion liquid is not different from the case where the diaphragm 1 without the cylinder 2 is used. Therefore, the effect of reducing the variation in magnification is weakened. If the length M is longer than 300 mm, the foamed particles may collide with each other inside the tubular body 2 and fuse with each other, making it impossible to obtain the foamed particles.

また、筒体2の形状は、角錐または円錐形状の一部をなす形状であってもよい。この場合、筒体2におけるオリフィス板3と接する部分の面積は、オリフィス5の開口面積に近い。そして、筒体2を通ってから分散液が放出される時点での筒体2の開口面積は広くなっている。すなわち、筒体2の形状は、当該筒体2の側壁によって囲まれた開口面積が分散液の放出方向へ向かうに従い大きくなる形状である。 Further, the shape of the tubular body 2 may be a shape forming a part of a pyramid or a conical shape. In this case, the area of the portion of the tubular body 2 in contact with the orifice plate 3 is close to the opening area of the orifice 5. Then, the opening area of the cylinder 2 at the time when the dispersion liquid is discharged after passing through the cylinder 2 is wide. That is, the shape of the tubular body 2 is such that the opening area surrounded by the side wall of the tubular body 2 increases toward the discharge direction of the dispersion liquid.

また、筒付きの絞り盤1には、オリフィス板3のオリフィス5の開孔数と同数以下の筒体2が設けられ得る。絞り盤1におけるオリフィス5が複数個である場合には、生産速度が大きくなるので有利である。 Further, the diaphragm 1 with a cylinder may be provided with a cylinder 2 having the same number or less as the number of holes opened in the orifice 5 of the orifice plate 3. When there are a plurality of orifices 5 in the diaphragm 1, the production speed is increased, which is advantageous.

次に、筒付きの絞り盤1の筒体2のスリット形状4または円形状の正面の幅または短径H、筒体2の長さMの求め方について、図1〜図3を参照して説明する。なお、筒体2の寸法は筒体の内径寸法である。Next, refer to FIGS. 1 to 3 for how to obtain the slit shape 4 of the cylinder body 2 of the diaphragm 1 with a cylinder, the width or minor axis Ha a of the front surface of the circular shape, and the length M of the cylinder body 2. I will explain. The dimension of the cylinder 2 is the inner diameter dimension of the cylinder.

まず、長さMは、分散液の放出方向において、筒体2における最もオリフィス板3に近い箇所から最もオリフィス板3から遠い箇所までの距離として規定される。また、幅Hおよび高さは、スリット形状4が矩形である場合、長辺および短辺(正方形の場合はおなじ)である。また、スリット形状4が台形である場合、底辺および高さのうち大きい方の寸法が幅Hであり、小さいほうの寸法が高さとなる。また、スリット形状4がその他の形状である場合、スリット形状4の重心点を通る任意の直線をスリット形状4の辺により切り取った線分のうち、最も長い線分の長さを長径とし、最も短い線分を短径Hとする。また、筒体2が楕円形状である場合、長軸を幅Hまたは長径とし、短軸を高さまたは短径Hとする。First, the length M is defined as the distance from the portion of the tubular body 2 closest to the orifice plate 3 to the location farthest from the orifice plate 3 in the discharge direction of the dispersion liquid. The width H a and height, if slit 4 is rectangular, it is long sides and short sides (the same in the case of a square). Also, if the slit 4 is trapezoidal, the dimensions of the larger of the base and height are the width H a, the size of the smaller is the height. When the slit shape 4 has another shape, the length of the longest line segment among the line segments obtained by cutting an arbitrary straight line passing through the center of gravity of the slit shape 4 by the side of the slit shape 4 is set as the major axis, and the longest. Let the short line segment be the minor axis Ha. Further, the cylindrical body 2 may be elliptical, the long axis and a width H a or major axis, the minor axis and the height or minor axis H a.

筒付きの絞り盤1に2つ以上の筒体が設けられている場合、複数の筒体2のスリット形状4または円形状は、全て同じ形状であってもよいし、全て異なる形状であってもよい。また、一部が同じ形状であり一部が異なる形状であってもよい。 When two or more cylinders are provided on the diaphragm 1 with a cylinder, the slit shapes 4 or the circular shapes of the plurality of cylinders 2 may all have the same shape or all have different shapes. May be good. Further, a part may have the same shape and a part may have a different shape.

3−3.衝突工程
本方法では、前記発泡工程は、前記耐圧容器中の混合物を放出部(例えば絞り盤1)から放出する際に、当該混合物を曲面に衝突させる衝突工程を含む。ここでいう「混合物」とは、ポリオレフィン系樹脂粒子に発泡剤として炭酸ガスを含侵させたものと分散液との混合物を意味する。図1は、本方法にて使用される発泡装置の一例の概略構成を示す図である。図1に示されるように、本方法に発泡装置は、筒付きの絞り盤1と、放出配管6と、耐圧容器7と、バルブ8と、低圧容器13と、衝突板14と、を備えている。
3-3. Collision Step In the present method, the foaming step includes a collision step in which the mixture in the pressure-resistant container is made to collide with a curved surface when the mixture is discharged from a discharge unit (for example, a drawing machine 1). The term "mixture" as used herein means a mixture of polyolefin resin particles impregnated with carbon dioxide gas as a foaming agent and a dispersion liquid. FIG. 1 is a diagram showing a schematic configuration of an example of an effervescent apparatus used in this method. As shown in FIG. 1, in this method, the effervescent apparatus includes a throttler 1 with a cylinder, a discharge pipe 6, a pressure resistant container 7, a valve 8, a low pressure container 13, and a collision plate 14. There is.

放出配管6は、耐圧容器7と低圧容器13との間を連結する配管である。そして、この放出配管6にバルブ8が設けられている。バルブ8は、耐圧容器7の開閉を切り替える弁である。また、絞り盤1は、放出配管6の出口に配置されている。放出配管6と低圧容器13とは、絞り盤1を介して連通している。また、衝突板14は、低圧容器13内に設けられており、絞り盤1の出口と対向するように配置されている。 The discharge pipe 6 is a pipe that connects the pressure-resistant container 7 and the low-pressure container 13. A valve 8 is provided in the discharge pipe 6. The valve 8 is a valve for switching the opening and closing of the pressure resistant container 7. Further, the diaphragm 1 is arranged at the outlet of the discharge pipe 6. The discharge pipe 6 and the low pressure container 13 communicate with each other via the drawing disc 1. Further, the collision plate 14 is provided in the low pressure container 13 and is arranged so as to face the outlet of the drawing disc 1.

耐圧容器7内には、ポリオレフィン樹脂からなる樹脂粒子9を水系分散媒10に分散させた分散液が収容されている。耐圧容器7内部で加熱加圧された分散液は、バルブ8を開けることにより放出配管6を通過し、絞り盤1の出口から低圧容器13内に放出されて発泡粒子11となる。衝突工程では、絞り盤1の出口から放出された発泡粒子11を衝突板14に衝突させている。 The pressure-resistant container 7 contains a dispersion liquid in which resin particles 9 made of a polyolefin resin are dispersed in an aqueous dispersion medium 10. The dispersion liquid heated and pressurized inside the pressure-resistant container 7 passes through the discharge pipe 6 by opening the valve 8 and is discharged into the low-pressure container 13 from the outlet of the drawing disc 1 to become foamed particles 11. In the collision step, the foamed particles 11 discharged from the outlet of the drawing disc 1 are made to collide with the collision plate 14.

本方法において、衝突板14は、絞り盤1から放出される発泡粒子11の飛散方向を変化させるための部材である。通常、発泡時には樹脂粒子9の軟化温度以下になると樹脂が硬化して発泡は終了する。しかし、本方法のように水系分散媒10に樹脂粒子9が分散された分散液を衝突板14に衝突させた場合、発泡雰囲気の温度および湿度がより均一になるためと考えられるが、発泡粒子11個々が均一に発泡し、発泡倍率のバラツキが小さくなる。ここで、本方法において、衝突板14は曲面14aを有する。本方法では、絞り盤1から放出される分散液を曲面14aに衝突させている。この曲面14aは、特に限定されないが、好ましくは分散液の飛散方向に窪んだ凹曲面である。 In this method, the collision plate 14 is a member for changing the scattering direction of the foamed particles 11 emitted from the diaphragm 1. Normally, when the temperature becomes lower than the softening temperature of the resin particles 9 during foaming, the resin is cured and foaming is completed. However, it is considered that when the dispersion liquid in which the resin particles 9 are dispersed in the aqueous dispersion medium 10 is made to collide with the collision plate 14 as in this method, the temperature and humidity of the foaming atmosphere become more uniform. 11 Individuals foam uniformly, and the variation in foaming ratio becomes small. Here, in this method, the collision plate 14 has a curved surface 14a. In this method, the dispersion liquid discharged from the diaphragm 1 is made to collide with the curved surface 14a. The curved surface 14a is not particularly limited, but is preferably a concave curved surface recessed in the scattering direction of the dispersion liquid.

本方法では、特に分散液を曲面14aに衝突させているので、低発泡倍率の発泡粒子11を製造する場合には、少なくとも発泡倍率のバラツキをさらに小さくすることができる。一方、高発泡倍率の発泡粒子11を製造する場合には、少なくともセル構造が均一となった発泡粒子11を得ることが可能である。一般的に、製造する発泡粒子の発泡倍率が高くなる程、製造される発泡粒子のセル構造が不均一となる傾向にある。本発明者は、分散液を曲面14aに衝突させることによって、製造する発泡粒子の発泡倍率が高い場合でもセル構造を均一化できるという知見を見出し、本方法に至った。本方法の知見に基づく技術思想は、従来の知見から予測できるものではなく、本発明者らが独自に完成させたものである。 In this method, in particular, since the dispersion liquid is made to collide with the curved surface 14a, at least the variation in the foaming ratio can be further reduced when the foamed particles 11 having a low foaming ratio are produced. On the other hand, in the case of producing the foamed particles 11 having a high foaming ratio, it is possible to obtain the foamed particles 11 having at least a uniform cell structure. In general, the higher the expansion ratio of the produced foamed particles, the more non-uniform the cell structure of the produced foamed particles tends to be. The present inventor has found that the cell structure can be made uniform even when the foaming particle to be produced has a high foaming ratio by colliding the dispersion liquid with the curved surface 14a, and has arrived at the present method. The technical idea based on the knowledge of this method cannot be predicted from the conventional knowledge, but has been independently completed by the present inventors.

なお、ここでいう「低発泡倍率」とは、発泡倍率が10〜18倍、好ましくは12〜16倍のことを意味し、「高発泡倍率」は、発泡倍率が18〜25倍、好ましくは20〜22倍のことを意味する。 The "low foaming ratio" here means that the foaming ratio is 10 to 18 times, preferably 12 to 16 times, and the "high foaming ratio" means that the foaming ratio is 18 to 25 times, preferably 18 to 25 times. It means 20 to 22 times.

また、衝突板14の曲面14aの曲率半径は、500〜1500mm、好ましくは800〜1200mm、より好ましくは900〜1100mm、さらに好ましくは1000mmである。曲面14aの曲率半径が500mm未満である場合、発泡粒子の流動性が悪化するため好ましくない。曲面14aの曲率半径が1500mmを超える場合、衝突の効果が弱くなるため好ましくない。 The radius of curvature of the curved surface 14a of the collision plate 14 is 500 to 1500 mm, preferably 800 to 1200 mm, more preferably 900 to 1100 mm, and even more preferably 1000 mm. When the radius of curvature of the curved surface 14a is less than 500 mm, the fluidity of the foamed particles deteriorates, which is not preferable. If the radius of curvature of the curved surface 14a exceeds 1500 mm, the effect of collision is weakened, which is not preferable.

衝突板14の大きさは、発泡粒子11を衝突させることができる大きさであればよい。また、放出部(絞り盤1の先端)から衝突板14までの距離Lは、発泡粒子11を衝突させることができる距離であればよい。発泡倍率のバラツキが小さく、かつセル構造が均一な発泡粒子11を製造するには、距離Lは、50mm≦L≦600mm、好ましくは50mm<D<400mm、より好ましくは50mm<D<200mm、さらに好ましくは50mm<D<100mmである。距離Lが50mm以上である場合、絞り盤1と衝突板14との間の隙間で発泡粒子11同士を融着させずに発泡が行えるため好ましい。また、耐圧容器内の加熱、加圧条件による違いはあるが、距離Lが600mm以下の場合、衝突の効果が十分に働き、倍率バラツキ低減効果やセル構造均一化効果が大きくなるため好ましい。衝突板14までの距離Lは長すぎると、衝突するまでに発泡粒子11が冷えて発泡しにくくなり所望の発泡倍率を得るのが困難になる。それゆえ、距離Lは、発泡雰囲気に合わせて設定する必要がある。 The size of the collision plate 14 may be a size that allows the foamed particles 11 to collide with each other. Further, the distance L from the discharging portion (the tip of the drawing disc 1) to the collision plate 14 may be any distance as long as the foamed particles 11 can collide with each other. In order to produce the foamed particles 11 having a small variation in the foaming ratio and a uniform cell structure, the distance L is 50 mm ≦ L ≦ 600 mm, preferably 50 mm <D <400 mm, more preferably 50 mm <D <200 mm, and further. It is preferably 50 mm <D <100 mm. When the distance L is 50 mm or more, foaming can be performed without fusing the foamed particles 11 in the gap between the diaphragm 1 and the collision plate 14, which is preferable. Further, although there are differences depending on the heating and pressurizing conditions in the pressure-resistant container, when the distance L is 600 mm or less, the collision effect works sufficiently, and the magnification variation reduction effect and the cell structure homogenization effect become large, which is preferable. If the distance L to the collision plate 14 is too long, the foamed particles 11 will be cooled and difficult to foam by the time they collide, and it will be difficult to obtain a desired foaming ratio. Therefore, the distance L needs to be set according to the foaming atmosphere.

また、衝突板14の材質は、特に限定されないが、金属、プラスチック、ゴム、フェルト、セラミックス、木材であってもよい。 The material of the collision plate 14 is not particularly limited, but may be metal, plastic, rubber, felt, ceramics, or wood.

また、発泡粒子11の曲面14aに対する衝突角度θは、発泡粒子11が衝突できる角度であればよい。発泡倍率のバラツキが小さく、かつセル構造が均一な発泡粒子11を製造するには、衝突角度θは、好ましくは13°以上、より好ましくは15〜25°であり、さらに好ましくは18〜22°である。ここでいう衝突角度θとは、図1に示されるように、絞り盤1における筒体の軸線Rと衝突板14との交点をPとしたとき、Pにおける衝突板14の接線Gと軸線Rとのなす角度を意味する。 The collision angle θ of the foamed particles 11 with respect to the curved surface 14a may be any angle at which the foamed particles 11 can collide. In order to produce the foamed particles 11 having a small variation in the foaming ratio and a uniform cell structure, the collision angle θ is preferably 13 ° or more, more preferably 15 to 25 °, still more preferably 18 to 22 °. Is. As shown in FIG. 1, the collision angle θ referred to here is the tangent G and the axis R of the collision plate 14 in P, where P is the intersection of the axis R of the cylinder in the drawing disc 1 and the collision plate 14. It means the angle between and.

衝突角度θが13°以上である場合、衝突の効果が強くなり発泡倍率のバラツキ低減効果が大きくなりやすいので好ましい。また、衝突角度θが15〜25°の場合、発泡倍率のバラツキ低減効果が大きく、且つ衝突面(曲面14a)でのセルが微細化しにくくなりセル構造が均一になる傾向があるためより好ましい。 When the collision angle θ is 13 ° or more, the effect of the collision becomes strong and the effect of reducing the variation in the foaming magnification tends to be large, which is preferable. Further, when the collision angle θ is 15 to 25 °, the effect of reducing the variation in the foaming magnification is large, and the cells on the collision surface (curved surface 14a) are less likely to be miniaturized and the cell structure tends to be uniform, which is more preferable.

上述のように、本方法では、オリフィス5の口径hは、6.0mm以上であることが好ましい。一般的に、発泡粒子11を短時間発泡して製造するに際し、口径hを大きくし開口面積を大きくして発泡粒子11を多く放出させる方策が採られる。このように口径hを大きくして発泡粒子11を放出した場合、従来の方法(特許文献1〜3)では、発泡倍率のバラツキが悪化することを本発明者は見出している。本発明者は、衝突板14における発泡粒子11の衝突面を衝突板14とすることによって、大口径のオリフィス5(口径hが6.0mm以上)を用いた短時間発泡であっても、発泡倍率のバラツキを顕著に低減できるという知見を独自に見出した。それゆえ、本方法は、大口径のオリフィスを用いた短時間発泡において、適用されることが好ましい。As described above, in the present method, the diameter h a of the orifice 5 is preferably at least 6.0 mm. Generally, when preparing the foamed particles 11 short foamed to, measures to lot release the foam particles 11 with a larger opening area to increase the diameter h a is taken. If released thus expanded beads 11 to increase the diameter h a, the conventional methods (Patent Documents 1 to 3), the present inventors that variations in the expansion ratio is deteriorated is found. The present inventors have discovered that by the impact surface of the expanded particles 11 in the impingement plate 14 and the impingement plate 14, an orifice 5 having a large diameter (diameter h a is 6.0mm or more) even for a short time foam using, We have independently found that the variation in foaming ratio can be significantly reduced. Therefore, this method is preferably applied in short-time foaming with a large diameter orifice.

このようにして得られるポリオレフィン系樹脂粒子を含む分散液からの発泡粒子は、発泡倍率が約2〜40倍であり、好ましくは3〜30倍である。また、当該発泡粒子は、独立気泡率が約80〜100%であり、好ましくは90〜100%である。さらに、当該発泡粒子は、平均気泡径が約20〜500μmであり、好ましくは100〜400μmである。 The foamed particles from the dispersion liquid containing the polyolefin-based resin particles thus obtained have a foaming ratio of about 2 to 40 times, preferably 3 to 30 times. Further, the foamed particles have a closed cell ratio of about 80 to 100%, preferably 90 to 100%. Further, the foamed particles have an average bubble diameter of about 20 to 500 μm, preferably 100 to 400 μm.

前記発泡倍率が2倍未満の場合、得られる成形体の柔軟性などが不充分となり、また40倍を超える場合、得られる成形体の機械的強度、耐熱性などが不充分となる。また、前記独立気泡率が80%未満の場合、2次発泡力が不足するため、成形時に融着不良が発生し、得られる成形体の機械的強度等が低下する。また、前記平均気泡径が20μm未満の場合、得られる成形体の形状が歪む等の問題が生じ、500μmを超える場合、得られる成形体の機械的強度が低下する。また、前記発泡倍率のバラツキが7%以下である場合、成形体の重量バラツキが少なくなり製品収率が向上する。 If the foaming ratio is less than 2 times, the flexibility of the obtained molded product becomes insufficient, and if it exceeds 40 times, the mechanical strength, heat resistance, etc. of the obtained molded product become insufficient. Further, when the closed cell ratio is less than 80%, the secondary foaming force is insufficient, so that fusion failure occurs during molding, and the mechanical strength of the obtained molded product is lowered. Further, when the average bubble diameter is less than 20 μm, problems such as distortion of the shape of the obtained molded product occur, and when it exceeds 500 μm, the mechanical strength of the obtained molded product is lowered. Further, when the variation in the foaming ratio is 7% or less, the weight variation of the molded product is reduced and the product yield is improved.

また、前記ポリオレフィン系樹脂発泡粒子は、80%以上の独立気泡率を有する。それゆえ、必要に応じて、発泡粒子を耐圧容器中で加熱加圧下、一定時間処理することによって空気含浸を行った後に成形用金型に充填し、蒸気加熱することにより加熱型内発泡成形して金型どおりの成形体を製造してもよい。このようにして得られた発泡成形体は、柔軟性、緩衝性に優れ、しかも寸法収縮率が小さく、形状変形が小さいため、きわめて商品価値が高いものとなる。 Further, the polyolefin-based resin foamed particles have a closed cell ratio of 80% or more. Therefore, if necessary, the foamed particles are air-impregnated by treating them in a pressure-resistant container under heating and pressurization for a certain period of time, then filled in a molding die and steam-heated to perform foam molding in the heating die. You may manufacture the molded product according to the mold. The foam molded product thus obtained is excellent in flexibility and cushioning property, has a small dimensional shrinkage rate, and has a small shape deformation, so that the commercial value is extremely high.

そして、発泡倍率が10〜18倍の低発泡倍率の発泡粒子において、少なくとも発泡倍率のバラツキは、発泡条件等にも左右されるが、通常、10%未満、好ましくは7.0%以下、より好ましくは5.0%以下となる傾向がある。低発泡倍率の発泡粒子を製造する場合、本実施形態に係る製造方法は、従来の発泡方法と比較して、発泡倍率バラツキの小さい良好な発泡粒子を得ることができる。 In the foamed particles having a low foaming ratio of 10 to 18 times, at least the variation in the foaming ratio depends on the foaming conditions and the like, but is usually less than 10%, preferably 7.0% or less. It tends to be preferably 5.0% or less. When producing foamed particles having a low foaming ratio, the production method according to the present embodiment can obtain good foamed particles having a small variation in foaming ratio as compared with the conventional foaming method.

また、発泡倍率が18〜25倍の高発泡倍率の発泡粒子においては、少なくともセル構造の均一性が良好になる。より具体的には、構成する粒子セル間のセル径、言い換えると1つの発泡粒子における最小平均セル径と最大平均セル径との差(以下、単にセル径差と称する場合がある)が70μm以下である。なお、セル径差は、例えば、次のようにして算出することが可能である。まず、発泡粒子を切断し、当該切断面を上下左右に4分割する。次いで、4分割した領域それぞれについて平均セル径を算出する。そして、算出された4つの平均セル径のうち、最大値を最大平均セル径とし最小値を最小平均セル径として、これらの差を前記セル径差とする。当該セル径差は、好ましくは50μm以下であり、より好ましくは30μm以下である。前記セル径差が70μm以下である場合、成形体としての製品の外観が良くなるため好ましい。セル径差は、小さい程好ましい。 Further, in the foamed particles having a high foaming ratio of 18 to 25 times, at least the uniformity of the cell structure becomes good. More specifically, the cell diameter between the constituent particle cells, in other words, the difference between the minimum average cell diameter and the maximum average cell diameter in one foamed particle (hereinafter, may be simply referred to as a cell diameter difference) is 70 μm or less. Is. The cell diameter difference can be calculated, for example, as follows. First, the foamed particles are cut, and the cut surface is divided into four parts vertically and horizontally. Next, the average cell diameter is calculated for each of the four divided regions. Then, of the four calculated average cell diameters, the maximum value is the maximum average cell diameter, the minimum value is the minimum average cell diameter, and the difference between them is the cell diameter difference. The cell diameter difference is preferably 50 μm or less, and more preferably 30 μm or less. When the difference in cell diameter is 70 μm or less, the appearance of the product as a molded product is improved, which is preferable. The smaller the cell diameter difference, the more preferable.

すなわち、本実施形態に係るポリオレフィン系樹脂発泡粒子は、以下の(i)および(ii)を満たす。 That is, the polyolefin-based resin foamed particles according to the present embodiment satisfy the following (i) and (ii).

(i)発泡倍率が18〜25倍である、
(ii)発泡粒子の切断面を4分割した領域それぞれにて算出された4つの平均セル径のうち、最小平均セル径と最大平均セル径との差が70μm以下である。
(I) The foaming ratio is 18 to 25 times.
(Ii) Of the four average cell diameters calculated in each of the regions where the cut surface of the foamed particles is divided into four, the difference between the minimum average cell diameter and the maximum average cell diameter is 70 μm or less.

上述したように、発泡倍率が比較的高い従来の発泡粒子は、セル構造が不均一になる傾向がある。本実施形態に係るポリオレフィン系樹脂発泡粒子は、発泡倍率が高いにも関わらずセル構造が均一であるという特徴がある。 As described above, conventional foamed particles having a relatively high foaming ratio tend to have a non-uniform cell structure. The polyolefin-based resin foamed particles according to the present embodiment are characterized in that the cell structure is uniform despite the high foaming ratio.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the technical means disclosed in each embodiment is also available. It is included in the technical scope of the present invention.

〔まとめ〕
本発明の態様1に係る熱可塑性樹脂発泡粒子の製造方法は、耐圧容器7内で熱可塑性樹脂粒子(樹脂粒子9)を水系分散媒10に分散させて分散液を調製する分散液調製工程と、発泡剤として炭酸ガスを使用して、前記分散液を前記熱可塑性樹脂粒子の軟化温度以上の温度に加熱し加圧した後、前記耐圧容器7内の内圧よりも低圧雰囲気下(低圧容器13)に放出することによって発泡させる発泡工程と、を含み、前記発泡工程は、前記耐圧容器7中の混合物を放出部(絞り盤1)から放出する際に、当該混合物を曲面14aに衝突させる衝突工程を含む。
〔summary〕
The method for producing the thermoplastic resin foamed particles according to the first aspect of the present invention includes a dispersion liquid preparation step in which the thermoplastic resin particles (resin particles 9) are dispersed in an aqueous dispersion medium 10 in a pressure resistant container 7 to prepare a dispersion liquid. Using carbon dioxide gas as a foaming agent, the dispersion is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles and pressurized, and then under a lower pressure atmosphere than the internal pressure in the pressure resistant container 7 (low pressure container 13). ), Including a foaming step of foaming by discharging the mixture into the curved surface 14a when the mixture in the pressure resistant container 7 is discharged from the discharging unit (drawing machine 1). Including the process.

本発明の態様2に係る熱可塑性樹脂発泡粒子の製造方法は、態様1において、前記混合物の前記曲面14aに対する衝突角度θは、13°以上である。 In the method for producing thermoplastic resin foamed particles according to the second aspect of the present invention, in the first aspect, the collision angle θ of the mixture with respect to the curved surface 14a is 13 ° or more.

本発明の態様3に係る熱可塑性樹脂発泡粒子の製造方法は、態様1または2において、前記混合物の前記曲面14aに対する衝突角度θは、15〜25°である。 In the method for producing thermoplastic resin foamed particles according to the third aspect of the present invention, in the first or second aspect, the collision angle θ of the mixture with respect to the curved surface 14a is 15 to 25 °.

本発明の態様4に係る熱可塑性樹脂発泡粒子の製造方法は、態様1〜3の何れかにおいて、前記放出部(絞り盤1)から前記曲面14aまでの距離をLとしたとき、前記衝突工程では、50mm≦L≦600mmで前記混合物を前記曲面14aに衝突させる。 The method for producing thermoplastic resin foamed particles according to the fourth aspect of the present invention is the collision step in any one of the first to third aspects, when the distance from the discharging portion (drawing machine 1) to the curved surface 14a is L. Then, the mixture is made to collide with the curved surface 14a with 50 mm ≦ L ≦ 600 mm.

本発明の態様5に係る熱可塑性樹脂発泡粒子の製造方法は、態様1〜4の何れかにおいて、前記放出部(絞り盤1)は、前記混合物が放出されるオリフィス5を備えており、前記オリフィス5の口径hは、6mm以上である。In the method for producing thermoplastic resin foamed particles according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the discharging unit (squeezing machine 1) includes an orifice 5 from which the mixture is discharged. diameter h a of the orifice 5 is more than 6mm.

本発明の態様6に係る熱可塑性樹脂発泡粒子の製造方法は、態様1〜5の何れかにおいて、製造する発泡粒子の発泡倍率が10〜25倍である。 In the method for producing thermoplastic resin foamed particles according to the sixth aspect of the present invention, the foaming ratio of the foamed particles to be produced is 10 to 25 times in any one of the first to fifth aspects.

本発明の態様7に係る熱可塑性樹脂発泡粒子は、発泡倍率が18〜25倍であり、構成する粒子セル間のセル径の差が70μm以下である。 The thermoplastic resin foamed particles according to the seventh aspect of the present invention have a foaming ratio of 18 to 25 times, and the difference in cell diameter between the constituent particle cells is 70 μm or less.

以下、実施例及び比較例を用いて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されて解釈されるべきではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention should not be construed as being limited to these Examples.

<発泡粒子の発泡倍率のバラツキ測定>
ポリオレフィン系樹脂発泡粒子1kgを、JIS Z8801の標準篩(呼び寸法1、1.18、1.4、1.7、2、2.36、2.8、3.35、4、4.75、5.6の11種の篩)で篩い分けした。各篩に残るポリオレフィン系樹脂発泡粒子の重量分率Wi、発泡倍率Kiを測定し、下記の式(1)から平均発泡倍率Kavを算出する。
<Measurement of variation in foaming magnification of foamed particles>
1 kg of polyolefin resin foamed particles were added to a JIS Z8801 standard sieve (nominal dimensions 1, 1.18, 1.4, 1.7, 2, 2.36, 2.8, 3.35, 4, 4.75, It was sieved with 11 kinds of sieves of 5.6). The weight fraction Wi and the expansion ratio Ki of the polyolefin-based resin foam particles remaining on each sieve are measured, and the average expansion ratio Kav is calculated from the following formula (1).

Figure 2020170694
次に重量分率Wi、発泡倍率Kiおよび平均発泡倍率Kavを用いて式(2)
Figure 2020170694
から発泡倍率の標準偏差δmを計算し、式(3)
Figure 2020170694
から倍率バラツキR(%)を求めた。なお、発泡倍率のバラツキは、10%未満を合格レベルとした。
Figure 2020170694
Next, the formula (2) is used using the weight fraction Wi, the foaming ratio Ki, and the average foaming ratio Kav.
Figure 2020170694
Calculate the standard deviation δm of the foaming magnification from Eq. (3).
Figure 2020170694
The magnification variation R (%) was obtained from. The variation in foaming ratio was set to less than 10% as the pass level.

なお、各篩に残るポリオレフィン系樹脂発泡粒子の発泡倍率Kiは、次のようにして求めた。まず、各篩に残るポリオレフィン系樹脂発泡粒子の重量Giを0.001gまで正確に秤量した(小数点以下4桁目を四捨五入)。次いで、秤量された重量既知のポリオレフィン系樹脂発泡粒子を23℃の水100mlが収容されたメスシリンダー内の水に水没させたときに上昇した目盛りから、ポリオレフィン系樹脂発泡粒子の体積yi(cm)を読み取った。そして、ポリオレフィン系樹脂発泡粒子の重量Gi(g)をポリオレフィン系樹脂発泡粒子の体積yi(cm)で除し、これをg/L単位に換算することにより各篩いのポリオレフィン系樹脂発泡粒子の見かけ密度di求めた。最後に基材樹脂の密度ds(=900g/L)との比から発泡倍率Ki=ds/diを求めた。The expansion ratio Ki of the polyolefin-based resin foam particles remaining on each sieve was determined as follows. First, the weight Gi of the polyolefin-based resin foam particles remaining on each sieve was accurately weighed to 0.001 g (rounded to the fourth decimal place). Next, from the scale raised when the weighed polyolefin-based resin foam particles having a known weight were submerged in water in a measuring cylinder containing 100 ml of water at 23 ° C., the volume of the polyolefin-based resin foam particles yi (cm 3). ) Was read. Then, the weight Gi (g) of the polyolefin-based resin foamed particles is divided by the volume y (cm 3 ) of the polyolefin-based resin foamed particles, and this is converted into g / L units to obtain the polyolefin-based resin foamed particles of each sieve. The apparent density di was obtained. Finally, the foaming ratio Ki = ds / di was determined from the ratio with the density ds (= 900 g / L) of the base resin.

<発泡粒子のセル構造均一性の評価>
気泡膜が破壊されないように充分注意して発泡粒子をほぼ中央で切断した。その切断面について、上下左右に4分割した領域をマイクロスコープで観察し、それぞれの領域での平均セル径を算出した。平均セル径は、長さ1000μmに相当する線分を引き、該線分が通る気泡数nを測定した。そして、上記気泡数nから気泡径を1000/n(μm)で算出した。なお、平均セル径の算出は、発泡粒子30粒それぞれについて行った。
<Evaluation of cell structure uniformity of foamed particles>
The foamed particles were cut almost in the center, being careful not to break the bubble film. With respect to the cut surface, the regions divided into four in the vertical and horizontal directions were observed with a microscope, and the average cell diameter in each region was calculated. For the average cell diameter, a line segment corresponding to a length of 1000 μm was drawn, and the number of bubbles n through which the line segment passed was measured. Then, the bubble diameter was calculated at 1000 / n (μm) from the number of bubbles n. The average cell diameter was calculated for each of the 30 foamed particles.

発泡粒子30粒それぞれについて、最小平均セル径および最大平均セル径を算出した。そして、算出された、最小平均セル径と最大平均セル径との差(セル径差)に基づき、セル構造均一性の評価を以下のように行った。なお、この評価は、30粒の発泡粒子間での前記セル径の平均値に基づいて行われた。 The minimum average cell diameter and the maximum average cell diameter were calculated for each of the 30 foamed particles. Then, based on the calculated difference between the minimum average cell diameter and the maximum average cell diameter (cell diameter difference), the cell structure uniformity was evaluated as follows. This evaluation was performed based on the average value of the cell diameters among the 30 foamed particles.

最小平均セル径と最大平均セル径との差が
30μm未満:5、
30μm以上60μm未満:4、
60μm以上90μm未満:3、
90μm以上120μm未満:2、
120μm以上:1。
The difference between the minimum average cell diameter and the maximum average cell diameter is less than 30 μm: 5,
30 μm or more and less than 60 μm: 4,
60 μm or more and less than 90 μm: 3,
90 μm or more and less than 120 μm: 2,
120 μm or more: 1.

(実施例1)
〔樹脂粒子の製造〕
ポリオレフィン系樹脂であるエチレン−プロピレンランダム共重合体(密度0.90g/cm、エチレン含有率3%、融点145℃、MI=7.5g/10分、曲げ弾性率1000MPa)を26mmφ二軸押出機[東芝機械株式会社製、TEM26−SX]に供給し、溶融混練した。その後、直径1.2mmφの円筒ダイより押し出し、水冷後カッターで切断し、円柱状のポリオレフィン系樹脂からなる樹脂組成物粒子(ペレット)(1.2mg/粒)を得た。得られた樹脂粒子の融点は145℃、JISK7112により測定した密度0.90g/cmであった。
(Example 1)
[Manufacturing of resin particles]
26 mmφ biaxial extrusion of ethylene-propylene random copolymer (density 0.90 g / cm 3 , ethylene content 3%, melting point 145 ° C, MI = 7.5 g / 10 minutes, flexural modulus 1000 MPa), which is a polyolefin resin. It was supplied to a machine [TEM26-SX manufactured by Toshiba Machine Co., Ltd.] and melt-kneaded. Then, it was extruded from a cylindrical die having a diameter of 1.2 mmφ, cooled with water, and cut with a cutter to obtain resin composition particles (pellets) (1.2 mg / grain) made of a columnar polyolefin resin. The melting point of the obtained resin particles was 145 ° C., and the density was 0.90 g / cm 3 measured by JIS K7112.

〔発泡粒子の製造〕
得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム[太平化学産業(株)製]0.5重量部および分散助剤としてアルキルスルホン酸ナトリウム(n−パラフィンスルホン酸ソーダ)[花王(株)製、ラテムルPS]0.03重量部を、水200重量部と共に図1に示す装置の耐圧容器7内に仕込んだ。その後、炭酸ガスを3.5重量部仕込み、耐圧容器7内にて水分散液を攪拌しながら、151℃まで加熱した。このときの耐圧容器7内の圧力は約1.7MPaであった。その後、炭酸ガスを追加圧入して2.2MPaまで昇圧した。前記発泡温度、発泡圧力で20分間保持した後、耐圧容器7下部のバルブ8を開いて水系分散液を、口径hが8mmのオリフィス5を有する1穴の絞り盤1から低圧容器13へ放出した。そして、低圧容器13内にて、水系分散液を曲率半径1000mmの曲面14aに衝突させて、ポリオレフィン系樹脂発泡粒子を得た(衝突工程)。この衝突工程では、絞り盤1と衝突板14との距離Lを150mmとし、衝突角度θを18°とした。また、本実施例1では、製造される発泡粒子の目標発泡倍率を14倍とした。
[Manufacturing of foamed particles]
100 parts by weight of the obtained resin particles, 0.5 part by weight of tertiary calcium phosphate [manufactured by Taihei Kagaku Sangyo Co., Ltd.] as a dispersant, and sodium alkylsulfonate (n-paraffin sulfonic acid soda) as a dispersion aid [Kao Co., Ltd. ), 0.03 part by weight of Latemul PS] was charged into the pressure-resistant container 7 of the apparatus shown in FIG. 1 together with 200 parts by weight of water. Then, 3.5 parts by weight of carbon dioxide gas was charged, and the aqueous dispersion was heated to 151 ° C. while stirring in the pressure-resistant container 7. The pressure in the pressure-resistant container 7 at this time was about 1.7 MPa. Then, carbon dioxide gas was additionally press-fitted to increase the pressure to 2.2 MPa. After holding at the foaming temperature and foaming pressure for 20 minutes, the valve 8 at the bottom of the pressure-resistant container 7 is opened to discharge the aqueous dispersion liquid from the one-hole drawing machine 1 having an orifice 5 having a diameter ha of 8 mm to the low-pressure container 13. did. Then, in the low-pressure container 13, the aqueous dispersion was made to collide with the curved surface 14a having a radius of curvature of 1000 mm to obtain polyolefin-based resin foam particles (collision step). In this collision step, the distance L between the diaphragm 1 and the collision plate 14 was set to 150 mm, and the collision angle θ was set to 18 °. Further, in Example 1, the target foaming ratio of the produced foamed particles was set to 14 times.

得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。 With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例2)
絞り盤1と衝突板14との距離Lを50mmとしたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 2)
Effervescent particles were obtained in the same manner as in Example 1 except that the distance L between the diaphragm 1 and the collision plate 14 was set to 50 mm. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例3)
絞り盤1と衝突板14との距離Lを300mmとしたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 3)
Effervescent particles were obtained in the same manner as in Example 1 except that the distance L between the diaphragm 1 and the collision plate 14 was set to 300 mm. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例4)
絞り盤1と衝突板14との距離Lを600mmとしたこと、および目標発泡倍率を13倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 4)
Foamed particles were obtained in the same manner as in Example 1 except that the distance L between the diaphragm 1 and the collision plate 14 was set to 600 mm and the target foaming magnification was set to 13 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例5)
衝突角度θを15°としたこと、および目標発泡倍率を13倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 5)
Foamed particles were obtained in the same manner as in Example 1 except that the collision angle θ was set to 15 ° and the target foaming magnification was set to 13 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例6)
衝突角度θを25°としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 6)
Effervescent particles were obtained in the same manner as in Example 1 except that the collision angle θ was set to 25 °. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例7)
目標発泡倍率を9倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 7)
Effervescent particles were obtained in the same manner as in Example 1 except that the target foaming ratio was set to 9 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例8)
目標発泡倍率を20倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 8)
Effervescent particles were obtained in the same manner as in Example 1 except that the target foaming ratio was set to 20 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例9)
絞り盤1と衝突板14との距離Lを5mmとしたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 9)
Effervescent particles were obtained in the same manner as in Example 1 except that the distance L between the diaphragm 1 and the collision plate 14 was set to 5 mm. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例10)
絞り盤1と衝突板14との距離Lを700mmとしたこと、および目標発泡倍率を13倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 10)
Foamed particles were obtained in the same manner as in Example 1 except that the distance L between the drawing machine 1 and the collision plate 14 was set to 700 mm and the target foaming magnification was set to 13 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例11)
衝突角度θを13°としたこと、および目標発泡倍率を12倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 11)
Foamed particles were obtained in the same manner as in Example 1 except that the collision angle θ was set to 13 ° and the target foaming magnification was set to 12 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(実施例12)
衝突角度θを30°としたこと、および目標発泡倍率を14倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Example 12)
Foamed particles were obtained in the same manner as in Example 1 except that the collision angle θ was set to 30 ° and the target foaming magnification was set to 14 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(比較例1)
曲面14aの代わりに平板状の衝突板に水系分散液を衝突させたこと、衝突角度θを20°としたこと、絞り盤1と衝突板14との距離Lを300mmとしたこと、および目標発泡倍率を12倍としたこと以外は、実施例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Comparative Example 1)
The aqueous dispersion was made to collide with a flat plate-shaped collision plate instead of the curved surface 14a, the collision angle θ was set to 20 °, the distance L between the diaphragm 1 and the collision plate 14 was set to 300 mm, and the target foaming. Foamed particles were obtained in the same manner as in Example 1 except that the magnification was set to 12 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

(比較例2)
目標発泡倍率を20倍としたこと以外は、比較例1と同様の方法で発泡粒子を得た。得られた発泡粒子について、発泡倍率のバラツキを測定するとともに、セル構造の均一性を評価した。
(Comparative Example 2)
Effervescent particles were obtained in the same manner as in Comparative Example 1 except that the target foaming ratio was set to 20 times. With respect to the obtained foamed particles, the variation in the foaming magnification was measured and the uniformity of the cell structure was evaluated.

実施例1〜12、並びに比較例1および2の発泡粒子の発泡倍率のバラツキおよびセル構造の均一性の評価結果を表1に示す。 Table 1 shows the evaluation results of the variation in the expansion ratio and the uniformity of the cell structure of the foamed particles of Examples 1 to 12 and Comparative Examples 1 and 2.

Figure 2020170694
表1の結果から、実施例1〜12の発泡粒子は、発泡倍率のバラツキが10%以下であり、バラツキが良好であった。一方、比較例1の発泡粒子は、発泡倍率のバラツキが10%を超え、バラツキが良好ではなかった。それゆえ、実施例1〜12の発泡粒子は、比較例1の発泡粒子よりも発泡倍率のバラツキが低減されていることが分かった。また、実施例1〜7、9〜12と比較例1との比較から、目標発泡倍率が12〜14倍程度の低発泡倍率で発泡粒子を製造した場合、曲面14aを有する衝突板14を用いることにより、少なくとも発泡倍率のバラツキを低減できることが分かった。また、衝突角度については、衝突面が曲面であり、且つ衝突角度が13°以上である場合、発泡倍率のバラツキが7%以下となり良好であることがわかった。
Figure 2020170694
From the results in Table 1, the foamed particles of Examples 1 to 12 had a variation in the expansion ratio of 10% or less, and the variation was good. On the other hand, in the foamed particles of Comparative Example 1, the variation in the expansion ratio exceeded 10%, and the variation was not good. Therefore, it was found that the foamed particles of Examples 1 to 12 had a smaller variation in the foaming ratio than the foamed particles of Comparative Example 1. Further, from the comparison between Examples 1 to 7 and 9 to 12 and Comparative Example 1, when the foamed particles are produced at a low foaming ratio having a target foaming ratio of about 12 to 14 times, the collision plate 14 having the curved surface 14a is used. As a result, it was found that at least the variation in the foaming ratio can be reduced. Regarding the collision angle, it was found that when the collision surface is a curved surface and the collision angle is 13 ° or more, the variation in the foaming magnification is 7% or less, which is good.

また、実施例8では、目標発泡倍率が20倍程度の高発泡倍率で発泡粒子を製造している。製造された発泡粒子は、(i)発泡倍率が20倍であり、(ii)セル構造の均一性の評価が4であった。すなわち、(ii)最小平均セル径と最大平均セル径との差が70μm以下であった。 Further, in Example 8, the foamed particles are produced at a high foaming ratio of about 20 times as the target foaming ratio. The produced foamed particles had (i) a foaming ratio of 20 times and (ii) an evaluation of cell structure uniformity of 4. That is, (ii) the difference between the minimum average cell diameter and the maximum average cell diameter was 70 μm or less.

一方、比較例2では、目標発泡倍率が20倍程度の高発泡倍率で発泡粒子を製造した場合、セル構造の均一性の評価が2であった。すなわち、最小平均セル径と最大平均セル径との差が70μmを超えていた。 On the other hand, in Comparative Example 2, when the foamed particles were produced at a high foaming ratio of about 20 times, the evaluation of the uniformity of the cell structure was 2. That is, the difference between the minimum average cell diameter and the maximum average cell diameter exceeded 70 μm.

実施例8と比較例2との比較結果から、目標発泡倍率が20倍程度の高発泡倍率で発泡粒子を製造した場合、曲面14aを有する衝突板14を用いることにより、少なくともセル構造が均一な発泡粒子を得ることができることが分かった。 From the comparison results between Example 8 and Comparative Example 2, when the foamed particles were produced at a high foaming ratio of about 20 times, the cell structure was at least uniform by using the collision plate 14 having the curved surface 14a. It was found that foamed particles could be obtained.

また、実施例1〜4と実施例9および10との比較から、絞り盤1と衝突板14との距離Lが50〜600mmである場合、発泡倍率のバラツキがより低減されるとともに、セル構造も均一になることがわかった。さらに、実施例1、実施例5および6と実施例11および12との比較から、衝突角度θが15°〜25°である場合、発泡倍率のバラツキが5%以下となり非常にバラツキが少なく、且つ、セル構造の均一性の評価が4以上となりセル構造も均一になることがわかった。 Further, from the comparison between Examples 1 to 4 and Examples 9 and 10, when the distance L between the diaphragm 1 and the collision plate 14 is 50 to 600 mm, the variation in the foaming ratio is further reduced and the cell structure is further reduced. Was also found to be uniform. Further, from the comparison between Examples 1, 5 and 6 and Examples 11 and 12, when the collision angle θ is 15 ° to 25 °, the variation in the foaming magnification is 5% or less, and the variation is very small. Moreover, it was found that the evaluation of the uniformity of the cell structure was 4 or more, and the cell structure was also uniform.

本発明は、例えば、緩衝包装材、物流資材、断熱材、土木建築部材、自動車部材などの製造に使用される発泡粒子に好適に用いることが可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for, for example, foamed particles used in the manufacture of cushioning packaging materials, physical distribution materials, heat insulating materials, civil engineering and building materials, automobile members, and the like.

1 絞り盤(放出部)
2 筒体
3 オリフィス板
4 スリット形状
5 オリフィス
6 放出配管
7 耐圧容器
8 バルブ
9 樹脂粒子
10 水系分散媒
11 発泡粒子
14 衝突板
14a 曲面
13 低圧容器
1 Aperture board (release part)
2 Cylinder 3 Orifice plate 4 Slit shape 5 Orifice 6 Discharge pipe 7 Pressure-resistant container 8 Valve 9 Resin particles 10 Aqueous dispersion medium 11 Foam particles 14 Collision plate 14a Curved surface 13 Low-pressure container

Claims (7)

耐圧容器内で熱可塑性樹脂粒子を水系分散媒に分散させて分散液を調製する分散液調製工程と、
発泡剤として炭酸ガスを使用して、前記分散液を前記熱可塑性樹脂粒子の軟化温度以上の温度に加熱し加圧した後、前記耐圧容器内の内圧よりも低圧雰囲気下に放出することによって発泡させる発泡工程と、を含み、
前記発泡工程は、前記耐圧容器中の混合物を放出部から放出する際に、当該混合物を曲面に衝突させる衝突工程を含む、熱可塑性樹脂発泡粒子の製造方法。
A dispersion preparation step in which thermoplastic resin particles are dispersed in an aqueous dispersion medium in a pressure-resistant container to prepare a dispersion, and a dispersion preparation step.
Using carbon dioxide as a foaming agent, the dispersion is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin particles, pressurized, and then foamed by being discharged under a lower pressure atmosphere than the internal pressure in the pressure-resistant container. Including the foaming process and
The foaming step is a method for producing thermoplastic resin foamed particles, which comprises a collision step of causing the mixture to collide with a curved surface when the mixture in the pressure-resistant container is discharged from a discharging portion.
前記混合物の前記曲面に対する衝突角度は、13°以上である、請求項1に記載の熱可塑性樹脂発泡粒子の製造方法。 The method for producing thermoplastic resin foamed particles according to claim 1, wherein the collision angle of the mixture with respect to the curved surface is 13 ° or more. 前記混合物の前記曲面に対する衝突角度は、15°〜25°である、請求項1または2に記載の熱可塑性樹脂発泡粒子の製造方法。 The method for producing thermoplastic resin foamed particles according to claim 1 or 2, wherein the collision angle of the mixture with respect to the curved surface is 15 ° to 25 °. 前記放出部から前記曲面までの距離をLとしたとき、
前記衝突工程では、50mm≦L≦600mmで前記混合物を前記曲面に衝突させる、請求項1〜3の何れか1項に記載の熱可塑性樹脂発泡粒子の製造方法。
When the distance from the emission part to the curved surface is L,
The method for producing thermoplastic resin foamed particles according to any one of claims 1 to 3, wherein in the collision step, the mixture is made to collide with the curved surface at 50 mm ≦ L ≦ 600 mm.
前記放出部は、前記混合物が放出されるオリフィスを備えており、
前記オリフィスの口径は、6mm以上である、請求項1〜4の何れか1項に記載の熱可塑性樹脂発泡粒子の製造方法。
The discharge section comprises an orifice in which the mixture is discharged.
The method for producing thermoplastic resin foamed particles according to any one of claims 1 to 4, wherein the orifice has a diameter of 6 mm or more.
製造する発泡粒子の発泡倍率が10〜25倍である、請求項1〜5の何れか1項に記載の熱可塑性樹脂発泡粒子の製造方法。 The method for producing thermoplastic resin foamed particles according to any one of claims 1 to 5, wherein the foamed particles to be produced have a foaming ratio of 10 to 25 times. 発泡倍率が18〜25倍であり、
構成する粒子セル間のセル径の差が70μm以下である、熱可塑性樹脂発泡粒子。
The foaming ratio is 18 to 25 times,
Thermoplastic resin foamed particles having a difference in cell diameter of 70 μm or less between the constituent particle cells.
JP2021501727A 2019-02-18 2020-01-21 Method for producing expanded thermoplastic resin particles, and expanded thermoplastic resin particles Active JP7394109B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019026285 2019-02-18
JP2019026285 2019-02-18
PCT/JP2020/001944 WO2020170694A1 (en) 2019-02-18 2020-01-21 Method for producing thermoplastic resin foaming particles, and thermoplastic resin foaming particles

Publications (2)

Publication Number Publication Date
JPWO2020170694A1 true JPWO2020170694A1 (en) 2021-12-23
JP7394109B2 JP7394109B2 (en) 2023-12-07

Family

ID=72143463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501727A Active JP7394109B2 (en) 2019-02-18 2020-01-21 Method for producing expanded thermoplastic resin particles, and expanded thermoplastic resin particles

Country Status (3)

Country Link
JP (1) JP7394109B2 (en)
CN (1) CN113454150B (en)
WO (1) WO2020170694A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022163433A1 (en) * 2021-01-28 2022-08-04
WO2023162962A1 (en) * 2022-02-22 2023-08-31 株式会社カネカ Method and device for producing expanded thermoplastic-resin particles, and expanded thermoplastic-resin particles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192464A (en) * 1992-12-24 1994-07-12 Jsp Corp Production of noncrosslinked expanded ethylene polymer particle
JP2000263627A (en) * 1999-03-15 2000-09-26 Kanegafuchi Chem Ind Co Ltd Drawing board and drawing board device using it
JP2000351867A (en) * 1999-06-14 2000-12-19 Kanegafuchi Chem Ind Co Ltd Production of pre-expanded thermoplastic resin particle
JP2002355816A (en) * 2001-05-31 2002-12-10 Kanegafuchi Chem Ind Co Ltd Throttle plate with cylinder
JP2003082148A (en) * 2001-09-11 2003-03-19 Kanegafuchi Chem Ind Co Ltd Method for manufacturing polyolefin resin preliminarily expanded particle
WO2005085337A1 (en) * 2004-03-05 2005-09-15 Kaneka Corporation Method for producing pre-expanded particles of polyolefinic resin
JP2010031265A (en) * 2008-06-27 2010-02-12 Kaneka Corp Polyolefin-based resin preliminarily foamed particle with little variation of foaming ratio and method for manufacturing the same
JP2014098161A (en) * 2014-01-31 2014-05-29 Kaneka Corp Pre-expanded particle of polyolefinic resin and method for producing the same
JP2016222849A (en) * 2015-06-02 2016-12-28 旭化成株式会社 Pre-expanded particle production apparatus and pre-expanded particle production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY168973A (en) * 2012-11-27 2019-01-29 Kaneka Corp Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192464A (en) * 1992-12-24 1994-07-12 Jsp Corp Production of noncrosslinked expanded ethylene polymer particle
JP2000263627A (en) * 1999-03-15 2000-09-26 Kanegafuchi Chem Ind Co Ltd Drawing board and drawing board device using it
JP2000351867A (en) * 1999-06-14 2000-12-19 Kanegafuchi Chem Ind Co Ltd Production of pre-expanded thermoplastic resin particle
JP2002355816A (en) * 2001-05-31 2002-12-10 Kanegafuchi Chem Ind Co Ltd Throttle plate with cylinder
JP2003082148A (en) * 2001-09-11 2003-03-19 Kanegafuchi Chem Ind Co Ltd Method for manufacturing polyolefin resin preliminarily expanded particle
WO2005085337A1 (en) * 2004-03-05 2005-09-15 Kaneka Corporation Method for producing pre-expanded particles of polyolefinic resin
JP2010031265A (en) * 2008-06-27 2010-02-12 Kaneka Corp Polyolefin-based resin preliminarily foamed particle with little variation of foaming ratio and method for manufacturing the same
JP2014098161A (en) * 2014-01-31 2014-05-29 Kaneka Corp Pre-expanded particle of polyolefinic resin and method for producing the same
JP2016222849A (en) * 2015-06-02 2016-12-28 旭化成株式会社 Pre-expanded particle production apparatus and pre-expanded particle production method

Also Published As

Publication number Publication date
JP7394109B2 (en) 2023-12-07
CN113454150A (en) 2021-09-28
CN113454150B (en) 2023-12-26
WO2020170694A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5553476B2 (en) Method for producing expanded polypropylene resin particles and expanded polypropylene resin particles
JPWO2020170694A1 (en) Manufacturing method of thermoplastic resin foamed particles, and thermoplastic resin foamed particles
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP5976097B2 (en) In-mold foam-molded article comprising polypropylene-based resin expanded particles and method for producing the same
JP6564948B2 (en) Foamed particle production apparatus for polyolefin resin particles and method for producing the foamed particles
JP5324804B2 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles, and expanded foam in polypropylene resin mold
JP5364333B2 (en) Foam cushioning material for collective packaging
WO2024204327A1 (en) Production method and production apparatus for thermoplastic resin foam particles
JP7082611B2 (en) Manufacturing method of polypropylene-based resin foamed particles, polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molded product
US10403416B2 (en) Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article
JP5098717B2 (en) Foam cushioning material for collective packaging
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
WO2019189462A1 (en) Method for manufacturing polypropylene resin foamed particles
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP4781998B2 (en) Method for producing polyolefin pre-expanded particles using water as a foaming agent
JP4863542B2 (en) Method for producing polyolefin resin pre-expanded particles
JP3963720B2 (en) Process for producing polyolefin-based pre-expanded particles and pre-expanded particles obtained by the method
WO2022186281A1 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these
JP7382145B2 (en) Polyolefin resin particles and their use
JP4815696B2 (en) Diaphragm with cylinder
JP5256664B2 (en) Method for producing polyolefin resin pre-expanded particles with reduced amount of adhesion dispersant
CN117467219A (en) Thermoplastic resin expanded beads and molded article of thermoplastic resin expanded beads
JPWO2019172204A1 (en) Polypropylene resin foam particles and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7394109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150