WO2005085337A1 - Method for producing pre-expanded particles of polyolefinic resin - Google Patents

Method for producing pre-expanded particles of polyolefinic resin Download PDF

Info

Publication number
WO2005085337A1
WO2005085337A1 PCT/JP2005/002385 JP2005002385W WO2005085337A1 WO 2005085337 A1 WO2005085337 A1 WO 2005085337A1 JP 2005002385 W JP2005002385 W JP 2005002385W WO 2005085337 A1 WO2005085337 A1 WO 2005085337A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
expanded particles
expanded
pressure
polyolefin
Prior art date
Application number
PCT/JP2005/002385
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Tsugawa
Masahide Ebisui
Yutaka Yanagihara
Takayuki Goda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006510631A priority Critical patent/JP4818101B2/en
Publication of WO2005085337A1 publication Critical patent/WO2005085337A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers

Definitions

  • the present invention relates to a method for producing polyolefin resin pre-expanded particles. More specifically, the present invention relates to a method for producing polyolefin-based resin pre-expanded particles which can be suitably used, for example, as a raw material for in-mold foam molded articles. Background art
  • magnification variation of the pre-expanded particles is large, it becomes difficult to obtain the pre-expanded particles of the target magnification in the production process of the pre-expanded particles, so that production control becomes difficult and the yield is deteriorated.
  • the weight variation of the in-mold foam molded article using the pre-expanded particles as a raw material increases, and it becomes difficult to produce an in-mold foam molded article having good characteristics, resulting in an increase in defective products. . Therefore, the variation in magnification is smaller and better.
  • K av is the weight fraction of each of the particles remaining after sieving when sieved with JIS Z88 (standard sieve (8 types of 3.5, 4, 5, 6, 7, 8, 9, and 10 meshes) ⁇ , From expansion ratio Ki.
  • the average ratio obtained by the formula: K av XW.
  • Patent Documents 1 and 2 A method for producing polyolefin resin pre-expanded particles with reduced magnification variation has already been disclosed (for example, see Patent Documents 1 and 2). These methods are characterized in that all the pre-expanded particles released from the discharge section are made to collide with the collision plate or the container wall, but the collision plate substantially reduces the volume in the container, The colliding pre-expanded particles may accumulate in the container and be difficult to send to the subsequent process, which may cause problems in production and production.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-82148
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-192820 Disclosure of the Invention
  • the present invention solves the above-mentioned problems of the prior art, improves the particle feedability with a simple and inexpensive apparatus, and makes it possible to industrially mass-produce polyolefin-based resin pre-expanded particles with a small variation in magnification.
  • the task is to do it.
  • the present inventors disperse the polyolefin resin particles in an aqueous dispersion medium in a pressure vessel and heat the resin to a temperature higher than the softening temperature of the resin stand.
  • Pre-expanded particles are discharged from the discharge section of the pressure-resistant container in a direction different from the axial direction of the discharge distribution when the bubbles are released under a lower-pressure atmosphere, and collide with the collision plate.
  • the particle sending property of the pre-expanded particles is improved, and the present invention has been completed.
  • the polyolefin-based resin particles are dispersed in an aqueous dispersion in a pressure vessel, heated to a temperature equal to or higher than the softening temperature of the resin particles, pressurized, and then subjected to a pressure lower than the internal pressure of the pressure vessel.
  • the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe is discharged from the discharge part of the pressure-resistant container in a direction different from the flowing direction and collides with the collision plate.
  • the present invention also relates to a method for producing pre-expanded polyolefin resin particles.
  • the collision angle when the pre-expanded particles collide with the collision plate is 5 to 85 degrees
  • the discharge portion has a plurality of apertures
  • the impact plate force is the S container wall surface
  • the aperture of the discharge part is a throttle plate with a cylinder
  • Embodiments in which technical elements such as are added to the method for producing the pre-expanded polyolefin-based resin particles can be mentioned.
  • the pre-expanded particles when the polyolefin-based resin particles are pre-expanded, the pre-expanded particles are discharged from the discharge portion of the pressure-resistant container in a direction different from the axial direction of the discharge pipe, and are caused to collide with the collision plate.
  • the pre-expanded particles of the polyolefin resin with small dispersion in magnification can be industrially mass-produced.
  • FIG. 1 is an illustration of a method for producing pre-expanded particles in one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a method for producing pre-expanded particles according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram illustrating an example of an axial cross section of a throttle plate with a cylinder.
  • 1 is a throttle plate
  • 2 is a low-pressure vessel
  • 3 is a collision plate
  • 4 is a pressure vessel
  • 5 is an aqueous dispersion medium
  • 6 is resin particles
  • 7 is a discharge pipe
  • 8 is pulp.
  • Numeral 9 indicates pre-expanded particles
  • 10 indicates a cylinder attached to an orifice
  • 11 indicates an orifice opening.
  • A represents the collision angle
  • D represents the collision distance.
  • Mahiroko The arrow in Fig. 3 indicates the direction in which the expanded particles are released.
  • the polyolefin resin used in the present invention the Orefin based monomer unit virtuous Mashikuho 5 0-1 0 0 Weight 0/0, more preferably 7 0 to: I 0 containing 0%, Orefu I It is a resin containing preferably from 0 to 50%, more preferably from 0 to 30%, of a monomer unit copolymerizable with a monomeric monomer. Since it contains 50% or more of the olefin monomer unit, a molded article that is lightweight and has excellent mechanical strength, workability, electrical insulation, water resistance, and chemical resistance can be obtained.
  • olefin monomer examples include cyclic olefins such as ⁇ -olefin monomer having 2 to 8 carbon atoms such as ethylene, propylene, butene, pentene, hexene, heptene and octene, and norpoleneene monomer. I can fist. These may be used alone or in combination of two or more. Of these, ethylene and propylene are preferred because they are inexpensive and the properties of the resulting polymer are improved.
  • the monomer unit copolymerizable with the olefin monomer is a component that can be appropriately used for modifying adhesiveness, transparency, impact resistance, gas barrier property, and the like.
  • the monomer copolymerizable with the above-mentioned olefin monomer include vinyl acetate / Such as beer alcohol esters, methyl methacrylate, ethyl acrylate, hexyl acrylate, etc., alkyl (meth) acrylate esters having 1 to 6 carbon atoms, bier alcohol, methacrylic acid, vinyl chloride, etc. Can be These may be used alone or in combination of two or more. Of these, vinyl acetate is preferred from the viewpoint of adhesiveness and flexibility; low-temperature characteristics, and methyl methacrylate is preferred from the viewpoint of adhesiveness, flexibility, low-temperature characteristics, and thermal stability.
  • polyolefin-based resin comprising the above-mentioned olefin-based monomer or copolymerizable monomer
  • polyolefin-based resin comprising the above-mentioned olefin-based monomer or copolymerizable monomer
  • polypropylene resin such as homopolypropylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer
  • polyethylene-based resins such as polybutene and polypentene.
  • polyolefin-based dendrites may be used in a non-crosslinked state, or may be used after being crosslinked by peroxide or radiation. These polymers may be used alone or in combination of two or more. Among these,-. Polypropylene resin has less variation in magnification compared to other polyolefin resins, and it is easy to obtain pre-expanded particles with high expansion ratio, and it is manufactured from the obtained pre-expanded particles. This is preferable because the mechanical strength and heat resistance of the molded article are good.
  • the melt index (Ml) of the polyolefin-based resin is, for example, preferably from 0.2 g / 10 minutes to 50 g / 10 minutes for a polypropylene-based resin, more preferably 1 g / 10 minutes. More preferably, it is not more than 30 g Z l 0 min.
  • the melt viscosity is too high, and it may be difficult to obtain preliminary expanded particles having a high expansion ratio.
  • the melt viscosity with respect to the elongation of the resin is low, so that the foam tends to break, and it tends to be difficult to obtain pre-expanded particles having a high expansion ratio.
  • the flexural modulus is, for example, polypropylene In the case of resin-based resins, it is preferably at least 500 OMPa and not more than 200 OMPa, and more preferably at least 800 OMPa and not more than 160 OMPa. If the flexural modulus is less than 50 OMPa, the mechanical strength and heat resistance may be insufficient. If the flexural modulus exceeds 200 OMPa, the flexibility and cushioning properties of the obtained foamed molded product may be insufficient. It tends to be insufficient.
  • the melting point of the polypropylene resin is preferably from 125 ° C to 165 ° C, and more preferably from 130 ° C to 160 ° C.
  • the foaming agent is not particularly limited, and a known one such as a volatile foaming agent, an inorganic gas, and water can be used.
  • volatile foaming agent examples include aliphatic hydrocarbons such as propane, i-butane, n-butane, i-pentane, n-pentane, and hexane; and fats such as cyclobutane, cyclopentane, and cyclohexane.
  • Cyclic hydrocarbons examples include trichloromouth monochloromethane, dichlorodiphenololemethane, dichlorotetrafluoroethane, and trichlorotrifluoroethane, and the like. These may be used in war insects, or in combination of two or more. -.
  • inorganic gas economy, productivity, safety, carbon dioxide from the viewpoint of environmental compatibility, nitrogen, air, or these entities (usually 5 0% by volume or more, further 7 0 volume 0/0 or more). It is preferable to use an inorganic gas containing an inert gas such as argon, helium, xenon, or a small amount of water vapor, oxygen, hydrogen, ozone, etc. (50% by volume or less, more preferably 30% by volume or less). However, nitrogen and air are more preferable because the effect of reducing the variation in magnification is large.
  • an inert gas such as argon, helium, xenon, or a small amount of water vapor, oxygen, hydrogen, ozone, etc.
  • the blowing agent is preferably used in an amount of 2 to 50 parts, more preferably 5 to 40 parts, per 100 parts of the polyolefin-based resin particles. If the amount is less than 2 parts, the desired expansion ratio may not be obtained. If the amount is more than 50 parts, it exceeds the limit of impregnating the resin particles and the pressure rises, which is wasteful. is there.
  • polyolefin resin and hydrophilic polymer When water is used as the blowing agent, polyolefin resin and hydrophilic polymer It is preferable to use polyolefin-based resin particles in combination.
  • the hydrophilic polymer is a polymer having a water absorption of 0.5% or more as measured according to ASTM D570, and is a so-called hygroscopic polymer, a water-absorbing polymer (without being dissolved in water and having its own weight. It is a concept that contains a water-soluble polymer (a polymer that dissolves in water at room temperature or high temperature) and a water-soluble polymer that absorbs water several to several hundred times that of water and is hard to dehydrate under pressure.
  • the molecule of the hydrophilic polymer contains a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, an amide group, an ester group, and a polyoxyethylene group.
  • hygroscopic polymer examples include a carboxyl group-containing polymer, a polymer, a thermoplastic polyester-based elastomer, and a cellulose derivative.
  • lipoxyl group-containing polymer examples include, for example, a terpolymer of ethylene-acrylinoleic acid-maleic anhydride (water absorption: 0.5 to 0.7%), and a copolymer of ethylene-mono (meth) acrylic acid.
  • Carboxylic acid groups are converted into salts with alkali metal ions such as sodium ion and potassium ion, and ionomer resins cross-linked between molecules (water absorption 0.7 to 1.4%), ethylene mono (meth) acrylic acid copolymer Coalescence (water absorption 0.5 to 0.7%).
  • polyamide examples include, for example, nylon-16 (water absorption: 1.3 to 1.9%), nylon-16, 6 (water absorption: 1.1 to 1.5%), copolymer Nylon (EMS—made by CHEMI E AG, trade name: grill tettas, etc.) (water absorption: 1.5 to 3%).
  • thermoplastic polyester-based elastomer examples include, for example, a block copolymer of polybutylene terephthalate and polytetramethylene glycol (water absorption: 0.5 to 0.7%).
  • cellulose derivative examples include, for example, cellulose acetate, cellulose propionate and the like. These may be used in insects or in combination of two or more.
  • hygroscopic polymers a water-containing polyolefin-based resin composition having excellent dispersibility in a polyolefin-based resin, a relatively small amount and a high water content can be obtained, and a pre-expansion having a desired expansion ratio and a small variation in magnification. Particles can be obtained, ionomer type Resins are preferred.
  • water-absorbing polymer examples include, for example, a cross-linked polyacrylate polymer, a starch-acrylic acid graft copolymer, a cross-linked polyvinyl alcohol polymer, a cross-linked polyethylene oxide polymer, and an isobutylene-maleic acid polymer. And copolymers.
  • cross-linked polyacrylate polymer examples include, for example, ⁇ , Aqualic (trade name) manufactured by Nippon Shokubai Co., Ltd., and Diamond: (trade name) manufactured by Mitsubishi Chemical Corporation. And crosslinked poly (sodium acrylate) polymers.
  • specific examples of the crosslinked polybutyl alcohol polymer include various crosslinked polybutyl alcohol polymers represented by, for example, Aqua Reserve GP (trade name) manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • ⁇ thylene oxide-based polymer for example, a crosslinked polyethylene oxide-based polymer represented by acork (trade name) manufactured by Sumitomo Seika Co., Ltd. may be used. .
  • isobutylene-maleic acid-based copolymer examples include, for example, isoptile-maleic acid-based copolymer represented by K-I gel (trade name) manufactured by Kuraray Co., Ltd. These may be used alone or in combination of two or more.
  • crosslinked polyethylene oxide is a dispersant in a polyolefin-based resin and has a high water content with a relatively small amount.
  • water-soluble polymer examples include poly (meth) acrylic acid-based polymer, poly (meth) acrylate-based polymer, polybutyl alcohol-based polymer, polyethylene oxide-based polymer, and water-soluble cell. Mouth derivatives and the like.
  • poly (meth) acrylic acid-based polymer examples include, for example, polyatalylic acid, an allylic acid-ethyl acrylate copolymer, and polyhydroxy / ethyl methacrylate / hydroxyethyl.
  • poly (meth) acrylate polymer examples include ⁇ S and the like such as sodium polyatalylate, sodium polymethacrylate, potassium polyacrylate, and potassium potassium methacrylate.
  • polyvinyl alcohol-based polymer examples include, for example, polyvinyl alcohol. Alcohol, butyl alcohol monoacetate butyl copolymer and the like can be mentioned.
  • polyethylene oxide-based polymer examples include, for example, polyethylene oxide having a molecular weight of tens of thousands to millions.
  • water-soluble cellulose derivative examples include, for example, carboxymethylcellulose and hydroxyethyl cellulose. These may be used alone or in combination of two or more.
  • the above-mentioned hygroscopic polymer, water-absorbing polymer and water-soluble polymer may be used alone or in combination of two or more.
  • the amount of the hydrophilic polymer used varies depending on the type of the hydrophilic polymer, but the polyolefin-based resin particles are dispersed in an aqueous dispersion medium in a pressure vessel, and are preferably at or above the softening temperature of the polyolefin-based resin. It is preferable to obtain polyolefin-based resin particles having a water content of 1 to 50% when heated to a temperature equal to or lower than the softening temperature + 20 ° C. Usually, with respect to 100 parts of the polyolefin-based resin, Thus, the amount is preferably at least 0.05 part, more preferably at least 0.1 part.
  • the production stability and foaming characteristics during the production of the pre-expanded particles are improved, and the molded article obtained from the pre-expanded particles is given excellent mechanical strength and heat resistance, and the dimensional change during water absorption is reduced.
  • the amount is preferably 20 parts or less, more preferably 10 parts or less.
  • the polyolefin-based resin particles used in the present invention contain a filler, that is, an inorganic filler and Z or an organic filler, so that dispersion of the magnification is small, bubbles are uniform, and a relatively high foaming ratio is required. Preferred because foamed particles can be obtained V
  • the inorganic filler examples include talc, calcium carbonate, and hydroxide.
  • talc is preferred in that it has low expansion ratio, uniform cells, and gives pre-expanded particles having a relatively high expansion ratio.
  • the organic filler is not particularly limited as long as it is solid at a temperature equal to or higher than the softening temperature of the polyolefin resin.
  • Specific examples of the organic filler include, for example, a fluororesin powder, a silicone resin powder, and a thermoplastic polyester resin powder. End.
  • the filler may be used in war insects, or two or more kinds may be used in combination.
  • the average particle diameter of the filler is such that pre-expanded particles having uniform cells and a relatively high expansion ratio can be obtained, and a molded article having excellent mechanical strength, flexibility, and the like can be obtained from the pre-expanded particles. From the viewpoint of being obtainable, it is preferably 50 ⁇ ⁇ ⁇ ⁇ or less, more preferably 10 ⁇ m or less, and preferably 0.5 ⁇ m or more, more preferably 0.5 m from the viewpoint of secondary aggregation and handling workability. The above is preferable.
  • the amount of the filler to be used is preferably at least 0.01 part with respect to 100 parts of the polyolefin-based resin, and more preferably at least 0, in order to obtain pre-expanded particles having a relatively high expansion ratio. It is preferable that the content be 0.05 parts or more. Further, when forming using the pre-expanded particles, excellent fusion properties are exerted, and the pre-expanded particles have excellent mechanical strength and flexibility. From the viewpoint of obtaining a molded product, the amount is preferably 3 parts or less, more preferably 2 parts or less.
  • the polyolefin-based resin particles containing the polyolefin-based resin and, if necessary, a hydrophilic polymer, a filler, and the like, are usually melt-kneaded using an extruder, a kneader, a pan-pally mixer, a roll, or the like, and then have a columnar or oval shape. It is preferably obtained by molding into a desired resin particle shape which is utilized for foaming, such as columnar, spherical, cubic, or rectangular parallelepiped.
  • the conditions for producing the resin particles, the size of the resin particles, and the like are not particularly limited.For example, resin particles obtained by melt-kneading in an extruder are usually 0.5 to 5 mg / particle. It is.
  • the resin particles as described above are dispersed in an aqueous dispersion medium containing a dispersant and a dispersing agent in a pressure vessel, and the resin particles are heated to a temperature equal to or higher than the softening temperature of the polyolefin resin, and the foaming agent is converted into resin particles. Impregnate.
  • the aqueous dispersion medium in which the resin particles are dispersed may be any solvent that does not dissolve the polyolefin resin. Normally, water or water and one or more of ethylene glycol, glycerin, methanol, ethanol, and the like, or two or more thereof are used. Mixtures with more than one species are exemplified, but water is preferred from the environmental and economical aspects.
  • dispersant examples include, for example, tricalcium phosphate, basic magnesium carbonate
  • examples include inorganic salts such as nesium, basic zinc carbonate and calcium carbonate, and clays such as bentonite and potassium phosphate.
  • tricalcium phosphate is preferred because of its strong dispersing power.
  • the dispersing aid examples include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium n-paraffin sulfonate, sodium ⁇ -olefin sulfonate, and sodium alkylnaphthalene sulfonate; And other cationic surfactants.
  • anionic surfactants such as sodium dodecylbenzenesulfonate, sodium n-paraffin sulfonate, sodium ⁇ -olefin sulfonate, and sodium alkylnaphthalene sulfonate
  • sodium alkylnaphthalene sulfonate cationic surfactants.
  • sodium ⁇ -paraffin sulfonate is preferred because it gives a good dispersing power and is easily produced.
  • the amount of the polyolefin-based resin particles dispersed in the aqueous dispersion medium is preferably from 3 to 100 parts of the polyolefin-based resin particles to 100 parts of the aqueous dispersion medium, and more preferably from ⁇ to 5 parts. 0 parts or less are preferable. If the amount of the polyolefin-based resin particles is less than 3 parts, the productivity may be reduced and the economy may not be economical. If the amount is more than 100 parts, there is a possibility that the resin particles tend to fuse together in the container during the heat of calo. There is.
  • the amount of the dispersing agent and the dispersing agent is not particularly limited, and any commonly used amount may be used. However, the dispersing agent is used in an amount of 0.0 with respect to 100 parts of the polyolefin resin particles.
  • the content is preferably 5 parts or more and 10 parts or less, and the dispersing aid is preferably 0.005 parts or more and 1 part or less with respect to 100 parts of the polyolefin resin particles! /.
  • the polyolefin-based resin particles are dispersed in an aqueous dispersion medium, and then heated and pressurized to a temperature equal to or higher than the softening point of the polyolefin-based resin.
  • the polyolefin-based resin particles should be expanded to a temperature and pressure at which they can be expanded by adjusting the quality of the pre-expanded particles such as the magnification and the variation in the magnification. Since there is no influence, either heating or pressurization may be performed first.
  • the temperature at which the polyolefin-based resin particles are dispersed and heated is a temperature equal to or higher than the softening temperature of the polyolefin-based resin to be used, specifically, equal to or higher than the melting point, preferably equal to or higher than the melting point + 5 ° C. + 20 ° C or less, more preferably
  • the lower limit is 145 ° C, preferably 150 ° C.
  • the upper limit is preferably 165 ° C, more preferably 165 ° C.
  • the temperature is lower than 144 ° C, foaming becomes difficult. If the temperature exceeds 165 ° C, the mechanical strength and heat resistance of the obtained pre-expanded particles are not sufficient, and the resin particles are fused and chewed in the container. May be.
  • the volatile foaming agent and / or the inorganic gas described above can be used as the gas for pressurizing the inside of the pressure vessel.
  • the holding pressure in the pressure vessel is 0.6 ⁇
  • 7.5 MPa is preferred, and 1.0 to 3.0 OMPa is more preferred.
  • the holding pressure is less than 0.6 MPa, the polyolefin-based resin particles may not foam, and pre-expanded particles having a desired expansion ratio may not be obtained.
  • the pressure exceeds 7.5 MPa, the bubbles of the pre-expanded particles obtained become too small, and the closed cell rate tends to decrease, resulting in a tendency for molded articles to shrink, to lose shape stability, mechanical strength, and heat resistance. is there.
  • the resin particles are dispersed in an aqueous dispersion medium, heated, and stirred, for example, for 30 minutes to 12 hours, so that the water content of the resin particles is 1 to 50%.
  • an inorganic gas is introduced into the pressure-resistant container to set the pressure of the pressure-resistant container to 0.6 to 7.5 MPa, and while maintaining this pressure, in an atmosphere having a pressure lower than the internal pressure of the pressure-resistant container.
  • the polyolefin-based resin pre-expanded particles are produced by causing the water-containing resin particles to be discharged after passing through a squeezing machine with a tube.
  • the adjustment of the water content can be performed by adjusting the heating temperature, the heating time, and the like.
  • the kishi foam ratio tends to be less than twice.
  • the preferred moisture content is 2% or more. If the content exceeds 50%, the dispersibility of the polyolefin-based resin particles in the aqueous dispersion medium is reduced, and the polyolefin-based resin particles become lump in the pressure vessel during the production of the pre-expanded particles, and cannot be uniformly foamed.
  • Cheap The preferred water content is 30% or less.
  • the water absorption of the hydrophilic polymer is a value measured at room temperature, and the water content is a value measured at a high temperature (resin melting point), for example, the water absorption of the used hydrophilic polymer is 0.5% or more. If so, a water content of 1% or more can be obtained.
  • the polyolefin-based resin particles may be mixed with a polyolefin-based resin. Or more, so that the water content is usually 1 to 50%, and the foaming ratio is preferably about 2 to 43 times, more preferably about 3 to 15 times, and the prefoaming is low in magnification variation. Particles can be obtained. Further, in the present invention, the polyolefin-based resin particles do not clump in the pressure-resistant container during the production of the pre-expanded particles, and uniform pre-expanded particles can be obtained.
  • the softening temperature of the polyolefin-based resin is determined from the temperature at the top of the melting peak when measured by a DSC (differential scanning calorimeter) at a heating rate of 10 ° CZ.
  • the water content is the water content under the water vapor pressure at the temperature or higher, and is obtained as follows.
  • the water content in the case where a filler or the like is contained in the resin particles of the polyolefin resin is a water content based on the total amount of the polyolefin resin and the hydrophilic polymer.
  • the polyolefin resin particles After reaching the specified pressure by pressurizing with gas, the polyolefin resin particles are There is no particular limitation on the time required for release into the low-pressure atmosphere together with the dispersion medium, but it is preferable that the time be as short as possible from the viewpoint of improving productivity. In addition, it is preferable that the pressure in the container during the discharge be maintained at the ultimate pressure.
  • the pressure lower than the internal pressure in the pressure-resistant container may be lower than the internal pressure in the pressure-resistant container, and may be a pressure. Usually, a pressure near the atmospheric pressure is selected.
  • the atmosphere refers to a space containing the scattered trajectory of the discharged aqueous dispersion (pre-expanded particles and aqueous dispersion medium), but is generally a pipe or duct-shaped device that is shielded from the outside air. Go inside.
  • the production of the polyolefin-based resin pre-expanded particles is carried out by discharging a mixture of the polyolefin-based resin particles and the aqueous dispersion medium in an atmosphere having a pressure lower than the internal pressure of the pressure vessel. During the release of the mixture, it is desirable to introduce an inorganic gas or the like into the pressure-resistant container to maintain the internal pressure of the pressure-resistant container in order to obtain pre-expanded particles having a certain magnification.
  • a discharge pipe having pulp is usually arranged between the pressure vessel and the discharge section.
  • the discharge section of the pressure vessel is used to discharge the mixture of the polyolefin-based resin particles and the aqueous dispersion medium.
  • the mixture is discharged in a direction different from the flowing direction of the mixture in the discharge pipe.
  • the discharge pipe may not be straight (L-shaped, etc.). In such a case, it refers to the direction in which the mixture of the polyolefin resin particles and the aqueous dispersion medium closest to the discharge section flows.
  • the released pre-expanded particles be immediately transferred to the subsequent process.
  • a method of mechanically sending the pre-expanded particles in a scraping manner Combined with the method of flushing with water or air, the particle feedability is further improved.
  • a squeezing disk in the discharge section for adjusting the release time and making the expansion ratio uniform.
  • the use of an orifice plate is preferable because the flow rate can be kept constant, high-magnification, pre-bubble particles with little variation in magnification can be obtained, and the structure is simple.
  • the orifice plate is an orifice type , Nozzle type, bench lily type, etc., and these may be combined.
  • the orifice diameter (ha) should be between 0.5 and 0.5
  • the thickness (b) of the orifice plate is preferably 0.2 to 10 mm, more preferably 0.5 to 5 mm. If the thickness is less than 0.2 mm, the orifice plate is likely to be damaged by the pressure at the time of discharge.If the thickness exceeds 10 mm, the expansion ratio of the obtained pre-expanded foam particles is reduced, and the desired expansion ratio is obtained. It becomes difficult to obtain pre-expanded particles, and the resin may block the openings.
  • the discharge section Since the production speed increases with the number of holes, mass production can be performed efficiently.
  • the upper limit of the number of apertures is not particularly limited, but in the case of an industrial process, it is preferable to appropriately adjust the processing capacity so as not to exceed the processing capacity of a post-process.
  • the collision plate referred to in the present invention is a device provided at a position where the water-containing particles discharged from the discharge section collide.
  • the size of the impingement plate may be a size capable of causing the pre-expanded particles to collide, and the shape may be a flat plate or a convex plate or a concave plate in the scattering direction of the pre-expanded particles. It is preferable to use a pipe or duct-shaped container wall as a collision plate installed at a position surrounding the plurality of discharge portions because the device is simpler. Of course, when adjusting the collision distance or collision angle, the collision plate may be installed when the container wall is used as the collision plate.
  • the lower limit of the distance (D) from the discharge section to the collision plate is preferably 5 mm, more preferably 1 Omm.
  • the upper limit is preferably 1500 mm, more preferably 1000 mm, and particularly preferably 80 Omm. If the distance is less than 5 mm, the distance between the discharge portion and the impact plate is too small, and the pre-expanded particles tend to fuse together at the discharge portion and hardly foam. Also, depending on the heating and pressurizing conditions in the pressure vessel, magnification variation may occur if the distance is more than 150 Omm. The luster reduction effect may be reduced.
  • the pre-expanded particles cool down before the collision and become difficult to expand, and the magnification is lost.At the same time, the unevenness in cooling between the pre-expanded particles before the collision causes a large variation in magnification. Because there is, it is preferable to decide according to the comfort bubble conditions.
  • the material of the impact plate is not particularly limited, but may be metal, plastic, rubber, felt, ceramics, or wood.
  • the resin hardens and foaming ends.
  • the temperature and humidity of the foaming atmosphere become more uniform. Foams uniformly, and the variation in magnification is reduced.
  • the collision angle in the present invention refers to the angle of incidence when the pre-expanded particles collide with the collision plate, 90 degrees when colliding from directly in front, and 0 degrees when scattered in parallel with the collision plate and does not collide. Then, it can take a value between 0 degrees and 90 degrees or less.
  • the collision angle may be any angle at which the pre-expanded particles can collide, and is not particularly limited. From the viewpoint that pre-expanded particles having a more uniform cell diameter can be obtained, the collision angle is preferably 5 degrees or more. More preferably, it is 0 degree or more. In addition, it is preferably at most 85 degrees, more preferably at most 45 degrees, from the viewpoint that the pre-expanded particles after the collision are more easily sent. In the present invention, the collision angle can be adjusted by both the discharge part and the collision plate.
  • the pre-expanded particles released from the plurality of openings are each the same. It is desirable to hit the impact plate. In other words, it is desirable to install apertures and impact plates so that the collision angle and collision distance of the pre-expanded particles released from the multiple apertures are equal! /.
  • the collision plate is installed at a position surrounding the discharge part so as to correspond to each opening.
  • an orifice plate for the discharge part, it is possible to arrange a plurality of flat orifice plates side by side in order to provide openings in the radial direction. It is preferable to provide a plurality of openings in the orifice plate because they can be simplified and downsized.
  • an orifice plate with an opening on the side of a cylindrical or polygonal column an orifice plate with an opening on the side of a cone or polygon, or a spherical or hemispherical surface with an opening on the side.
  • An orifice plate having an opening may be used. In order to achieve this easily, for example, as shown in FIG. 1 or FIG.
  • the low-pressure vessel has a shape that is axisymmetric about the central axis, for example, a cylindrical shape or a polygonal column, and is installed around the discharge part, What is necessary is just to make the discharge
  • the collision plate may be installed for the discharge section in any direction, though the device becomes complicated.
  • the shape of the cylindrical body of the throttle plate with a cylinder will be described with reference to FIG.
  • the diameter of the cylinder is the inner diameter. It is preferable that the cylinder is integrally attached to the discharge side of the orifice plate.
  • the material of the cylindrical body is not particularly limited, but generally, a metal is used and is integrally formed with the orifice plate.
  • the method of integration is welding, fitting, screwing, It does not matter whether it is bonded or not, and in some cases, it can be made as the same product.
  • the opening area on the opposite side where the cylinder is attached to the orifice plate cannot be specified unconditionally depending on the size and length of the cylinder, but in general, it is sufficient if it is at least 1.3 times the opening area of the orifice. is there. If the ratio is 1.3 times or less, the pre-expanded particles to be released tend to agglomerate or clog. If the length of the cylinder is short, the above problem does not occur, but the effect of the cylinder is less likely to occur.
  • the shape of the cylindrical body may be a prism or a column.
  • the shape of the opening of the cylindrical body is a square.
  • the width or minor axis (H a) of the front is 0.6 mm or more, preferably 1.2 to 25 mm, and the tube length (L) is 5 mm or more, preferably 5 to It has a shape of 30 O mm. If the width or minor axis (H a) of the front of the slit or circle of the cylindrical body is less than 0.6 mm, the slit or hole is likely to be closed.
  • the scattering trajectory of the released aqueous dispersion is not different from the case of using a diaphragm with no cylinder, and there is no effect of reducing the variation in magnification. If the length is longer than O mm, the pre-expanded particles may collide with each other and fuse in the cylinder, so that the pre-expanded particles may not be obtained.
  • the shape of the cylindrical body may be a part of a pyramid or a conical shape.
  • the area of the portion in contact with the orifice plate is close to the opening area of the orifice, but after passing through the cylindrical body the The opening area of the cylinder at the time when the dispersion is released is large.
  • the slit shape in the present invention means a through hole having a polygonal shape such as a rectangle, a square, a rhombus, a trapezoid, a parallelogram, another square, a triangle, a pentagon, and a hexagon, and the circular hole is a circle.
  • a through hole having a shape such as an elliptical shape, a rectangular shape, or a shape in which a semicircle having a diameter on the opposite side is added to two opposite sides of a rectangle or square.
  • the width or major axis of the rectangle is the height or minor axis, respectively, the long side and the minor side (the same is true for a square), and the trapezoid is the larger of the base or height is the smaller of the width or major axis.
  • the longest line segment of the straight line passing through the center of gravity of the opening shape and cut by the side is the major axis, and the shortest is the minor axis.
  • the major axis and minor axis are the width or major axis height or minor axis, respectively.
  • a straight line passing through the center of gravity of the opening shape is a line segment cut by a side. The longest one is the S major axis, and the shortest one is the minor axis.
  • each cylinder has a slit shape or a circular shape, and may have the same shape or may have different shapes.
  • the present invention can be carried out, for example, as follows. If necessary, polyolefin-based resin particles containing a hydrophilic polymer and a filler are dispersed in an aqueous dispersion medium containing a dispersant and a dispersing aid in a pressure-resistant container, and the polyolefin resin particles are converted into a polyolefin-based resin. Heat to a temperature equal to or higher than the temperature to impregnate the resin particles with the foaming agent. After dispersing the polyolefin resin particles in an aqueous dispersion medium, the dispersion is heated to a temperature higher than the softening point of the polyolefin resin, preferably
  • the pressure vessel Pressurize the pressure vessel until the pressure reaches 0.6 to 7.5 MPa. Pressurization may be performed first and then heating may be performed.
  • the water content of the polyolefin resin particles is preferably adjusted to 1 to 50% by adjusting the heating and pressurizing temperatures.
  • the polyolefin resin particles having the desired water content as described above are discharged, for example, under a low-pressure atmosphere at atmospheric pressure, which is constituted by a pipe or duct-like device that is isolated from the outside air.
  • the mixture is discharged from the discharge portion of the pressure-resistant container in a direction different from the direction in which the mixture flows in the discharge pipe, and the mixture is made to collide with a container wall such as a pipe or a duct. Further, it is preferable from the viewpoint of productivity that the discharge section has a plurality of openings.
  • the pre-expanded particles from the polyolefin-based resin particles thus obtained preferably have an expansion ratio of about 2 to 43 times, more preferably about 3 15 times.
  • the expansion ratio is less than about 2 times, it may not be enough to obtain a molded article requiring flexibility, cushioning properties, and the like. Strength and heat resistance may be insufficient.
  • the closed cell rate is preferably 80 to 100%, more preferably 90 to 100 ° / 0 , and the average cell diameter is preferably 10 to 500 ⁇ , More preferably, it has a size of 50 to 300 ⁇ m. If the closed cell ratio is less than 80%, the secondary foaming power may be insufficient, and poor fusion may occur at the time of molding, and the mechanical strength of the obtained molded article may be reduced.
  • the polyolefin resin foam particles having a closed cell ratio of 80% or more can be air-impregnated by subjecting the pre-expanded foam particles to heating and pressurization in a pressure vessel for a certain period of time, if necessary, for molding. It is possible to produce a molded product according to the mold by filling in the mold and subjecting it to foam heating by steam heating. Further, if the average cell diameter is less than 10 ⁇ m, there is a possibility that a problem such as distortion of the shape of the obtained molded article may occur, If it exceeds 500 ⁇ , the mechanical strength of the obtained molded article may decrease.
  • the foamed molded article thus obtained has excellent flexibility and cushioning properties, and has a small dimensional shrinkage and small shape deformation, so that it has extremely high commercial value. ⁇ Example ⁇
  • a hydrophilic polymer an ionomer obtained by neutralizing the carboxyl group of an ethylene-methacrylic acid copoly
  • the pressure inside the pressure vessel at this time was about 0.5 MPa. After that, the internal pressure of the pressure vessel is adjusted to 0.8 to 3. OMPa by air pressure so that the expansion ratio becomes 10 times, and the valve 8 at the lower part of the pressure vessel is immediately opened to mix the resin particles and the aqueous dispersion medium. was released from the discharge section 1 to obtain pre-expanded particles having a closed cell structure. Pressure in pressure vessel during discharge The pressure was maintained with air so that the pressure did not decrease.
  • the orifice plate of the discharge part has an orifice port with a diameter (ha) of 3.0 mm on the side surface of a circular pipe with an outer diameter of 30 mm and a thickness (b) of 5 mm at an equal interval of 72 degrees.
  • a metal cylindrical duct container with an inner diameter of 63 mm is installed at the discharge section, and an orifice is set at the center of the duct, parallel to the flow direction of the mixture of polyolefin resin particles and the aqueous dispersion medium in the discharge pipe. It was installed as follows.
  • the collision distance (D) was 300 mm
  • the discharge angle (the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe and the discharge direction of the pre-expanded particles) Angle) is 90 degrees
  • the collision angle (A) is 90 degrees.
  • the released pre-expanded particles were sent to the post-process by a blower, and all the charged resin was released to obtain pre-expanded particles.
  • the magnification variation was as good as 6%.
  • the orifice plate of the discharge part is located at an angle of 70 degrees from the central axis.
  • the thickness (b) is 5 mm.
  • An orifice plate with an inner diameter (Ha) of 7.0 mm and a length of 30 mm (L) was used.
  • a metal cylindrical duct container with an inner diameter of 235 mm was installed around the orifice so as to be parallel to the flow direction of the mixture of polyolefin resin particles and aqueous dispersion medium in the discharge pipe. .
  • the collision distance (D) is 300 mm
  • the emission angle is 20 degrees
  • the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 1, pre-expanded particles were obtained.
  • the released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and while being smoothly sent to the subsequent process, all the charged resin was released and pre-expanded particles could be obtained. .
  • the magnification variation was as good as 4%.
  • the orifice plate of the discharge part is located on the side of a conical plate with a thickness (b) of 5 mm and an angle of 70 degrees with the central axis.
  • the diameter (ha) of the orifice is 3. Omm.
  • Five orifice plates provided at equal intervals of 72 degrees were used.
  • the low-pressure vessel uses a metal cylindrical duct vessel with an inner diameter of 235 mm, and the orifice is installed at the center of the low-pressure vessel so as to be parallel to the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe. did.
  • the collision distance (D) is 300 mm
  • the emission angle is 20 degrees
  • the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 1, pre-expanded particles were obtained.
  • the released pre-foamed particles are reflected by the collision plate and scatter to the back of the duct container, and are smoothly sent to the post-process, whereupon all the charged resin is released to obtain pre-foamed particles.
  • the magnification was 6%, which was good.
  • the orifice plate of the discharge part is composed of five orifices with a cylinder inner diameter (Ha) of 7. Omm and a cylinder length (L) of 30 mm attached to each orifice opening of the orifice plate of Example 3. Using a board ( Figure 3). At this time, as shown in Table 1, the collision distance
  • the released pre-foamed particles are reflected by the collision plate and scatter to the back of the duct container, and are smoothly sent to the post-process, whereupon all the charged resin is released to obtain pre-foamed particles.
  • the magnification variation was 4%, which was even better than in Example 3.
  • talc average particle size 7.111
  • the pulp 8 is opened while the pressure in the pressure-resistant container 4 is maintained with butane so that the expansion ratio becomes 15 times, and the mixture of the resin particles and the aqueous dispersion medium is released from the discharge portion 1 to have a closed cell structure. Pre-expanded particles were obtained.
  • the discharge part had the same structure as that of Example 4 (FIG. 3).
  • the collision distance (D) is 300 mm
  • the emission angle is 20 degrees
  • the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 4, pre-expanded particles were obtained. (The device shown in Fig. 2)
  • the released pre-expanded particles are reflected by the collision plate and scatter to the back of the T duct container, and are smoothly sent to the subsequent process, whereupon all of the charged resin can be released to obtain pre-expanded particles.
  • the magnification variation was as good as 7%.
  • Pre-expanded particles were obtained in the same manner as in Example 4, except that the heating temperature of the pressure-resistant container 4 was set to 152.0 ° C. and the expansion ratio was set to 8 times.
  • Table 2 shows the results.
  • the released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all of the charged resin was released to obtain pre-expanded particles. .
  • the magnification variation was as good as 7%.
  • Example 6 except that 0.5 parts of melamine (trade name: Melamine, manufactured by BASF) was added. W
  • Resin particles (pellets) (1.8 mg / particle) were obtained in the same manner as in Example 26. Pre-expanded particles were obtained in the same manner as in Example 4, except that the heating temperature of the pressure-resistant container 4 was set to 152.0 ° C. and the expansion ratio was set to 24 times.
  • Table 2 shows the results.
  • the released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all of the charged resin was released to obtain pre-expanded particles. .
  • the magnification variation was as good as 1%.
  • the discharge angle of the orifice plate was 25 degrees, the collision angle (A) was 25 degrees, and the collision distance (D) was 243 mm. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained. (The device shown in Fig. 2)
  • Table 2 shows the results.
  • the released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all the charged resin was released to obtain pre-expanded particles. .
  • the magnification variation was good at 3%. (Example 9)
  • the discharge angle of the orifice plate was 15 degrees, the collision angle (A) was 15 degrees, and the collision distance (D) was 3996 mm. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained. (The device shown in Fig. 2)
  • the orifice plate of the discharge part is provided with 5 orifices at a distance of ⁇ 30 mm from the center of the orifice with a diameter (ha) of 3.0 mm on a flat plate with a thickness (b) of 5 mm. Used orifice plate.
  • a metal cylindrical duct container with an inner diameter of 635 mm is installed, and in front of the orifice, it is perpendicular to the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe.
  • a flat collision plate was installed as follows. At this time, as shown in Table 1, the collision distance (D) is 300 mm, the discharge angle is 0 degree, and the collision angle (A) is 90 degrees. Otherwise, the pre-expanded particles were prepared in the same manner as in Example 1. Obtained.
  • the pre-expanded particles released at this time had a good magnification variation of 6%, but could not be sent to the subsequent process because they were blocked by the impingement plate even with the use of a blower. Production was suspended.
  • the orifice plate of Comparative Example 1 was used as the orifice plate at the discharge part. No collision plate was installed. Otherwise in the same manner as in Comparative Example 1, pre-expanded particles were obtained.
  • the released pre-expanded particles were scattered to the back of the duct container without collision, and while being smoothly sent to the subsequent process, all the charged resin was released to obtain pre-expanded particles.
  • the magnification variation was 15%, which was not as good as in Examples 1 to 4.
  • the orifice plate of Comparative Example 1 was used as the orifice plate at the discharge part. No collision plate was installed. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained.
  • the released pre-expanded particles were scattered to the back of the duct container without collision, and while being smoothly sent to the subsequent process, all the charged resin was released to obtain pre-expanded particles.
  • the magnification variation was 22%, which was not as good as in Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A method for producing pre-expanded particles wherein polyolefinic resin particles are dispersed in an aqueous dispersant in a pressure vessel, are heated to a temperature higher than the softening temperature of the resin particles under pressure, and then are released into an atmosphere having a pressure lower than the pressure in the inside of the pressure vessel to pre-expand, characterized in that the pre-expanded resin particles are released from the releasing port of the pressure vessel in a direction different from that of the axis of the pipe for releasing and are collided with a collision plate. The above method can be advantageously employed for producing good pre-expanded polyolefinic resin particles with simplicity and ease by the use of a process wherein particles are collided with a collision plate or a wall surface of a vessel at the time of pre-expansion.

Description

明 細 書  Specification
ポリオレフィン系樹脂予備発泡粒子の製造方法 技術分野  Method for producing polyolefin resin pre-expanded particles
本発明は、 ポリオレフイン系樹脂予備発泡粒子の製造方法に関する。 さらに詳 しくは、 例えば型内発泡成形品の原料として好適に使用し得るポリオレフイン系 樹脂予備発泡粒子の製造方法に関する。 背景技術  The present invention relates to a method for producing polyolefin resin pre-expanded particles. More specifically, the present invention relates to a method for producing polyolefin-based resin pre-expanded particles which can be suitably used, for example, as a raw material for in-mold foam molded articles. Background art
従来より、 耐圧容器内でポリオレフィン系樹脂粒子を水系分散媒に分散させて 加熱し、 揮発性発泡剤を含浸させた後、 低圧の容器内に放出してポリオレフイン 系樹脂予備発泡粒子を製造する方法が一般に行われている。 , 予備発泡粒子の倍率バラツキは、 次式 (式 1 ) で表されるが、 通常は倍率バラ ツキは小さい方が良い。 もし予備発泡粒子の倍率バラツキが大きいと、 予備発泡 粒子の製造工程において目標とする倍率の予備発泡粒子が得られにくくなるため に生産管理が難しくなるとともに収率が悪化してしまう。 また、 予備発泡粒子を 原料とする型内発泡成形体の重量バラツキが増加し、 良好な特性を有する型内発 泡成形体を製造することが難しくなり、 不良品が増加してしまう問題が起こる。 したがって倍率パラツキは小さレ、方が良レ、。 Conventionally, a method of manufacturing polyolefin resin pre-expanded particles by dispersing polyolefin-based resin particles in an aqueous dispersion medium in a pressure-resistant container, heating and impregnating with a volatile foaming agent, and then discharging into a low-pressure container. Is commonly done. The variation in the magnification of the pre-expanded particles is expressed by the following equation (Equation 1). Generally, the smaller the variation in the magnification, the better. If the magnification variation of the pre-expanded particles is large, it becomes difficult to obtain the pre-expanded particles of the target magnification in the production process of the pre-expanded particles, so that production control becomes difficult and the yield is deteriorated. In addition, the weight variation of the in-mold foam molded article using the pre-expanded particles as a raw material increases, and it becomes difficult to produce an in-mold foam molded article having good characteristics, resulting in an increase in defective products. . Therefore, the variation in magnification is smaller and better.
5 Five
2  2
(式 1) 倍率バラツキ xlOO(Equation 1) Variation in magnification xlOO
Figure imgf000004_0001
ノ 式中、 Kavは JIS Z88( 標準篩 (3.5,4,5,6, 7,8,9,10メッシュの 8種)で 篩い分けしたときの各篩残発泡粒子の重量分率 ^、発泡倍率 Kiから. 式: Kav = X W で求められる平均倍率。
Figure imgf000004_0001
In the formula, K av is the weight fraction of each of the particles remaining after sieving when sieved with JIS Z88 (standard sieve (8 types of 3.5, 4, 5, 6, 7, 8, 9, and 10 meshes) ^, From expansion ratio Ki. The average ratio obtained by the formula: K av = XW.
rmは 828801標準篩(3.5,4,5,6,7,8,9,10メッシュの8種)で篩ぃ分け したときの各篩残発泡粒子の重量分率 Wi、発泡倍率 から、 式:び m = Wi X (KaV - Ki )2 で求められる標準偏 ¾ r m is the weight fraction Wi of each sieve residual foamed particles upon screened I divided by 828,801 standard sieve (3.5,4,5,6,7,8,9,10 eight mesh), the expansion ratio, the formula : Standard deviation obtained by m = W i X ( K a V - K i) 2 ¾
既に、 倍率バラツキを低減したポリオレフィン系樹脂予備発泡粒子の製造方法 が開示されている (例えば、 特許文献 1, 2参照) 。 これらの方法は、 放出部か ら放出された全ての予備発泡粒子を衝突板もしくは容器壁に衝突させることを特 徴とするが、 衝突板が容器内の容積を実質的に狭くしており、 衝突した予備発泡 粒子が容器内に堆積してしまい後工程へ送りにくいことがあり、 生産†生の面で問 題が生じることがあった。 A method for producing polyolefin resin pre-expanded particles with reduced magnification variation has already been disclosed (for example, see Patent Documents 1 and 2). These methods are characterized in that all the pre-expanded particles released from the discharge section are made to collide with the collision plate or the container wall, but the collision plate substantially reduces the volume in the container, The colliding pre-expanded particles may accumulate in the container and be difficult to send to the subsequent process, which may cause problems in production and production.
もし予備発泡粒子の送粒性がスムーズに行えないままに大量生産しょうとする と、 衝突した粒子が容器内に次第に堆積し、 内部が閉塞してしまうため生産でき なくなる可能性もある。 場合によっては装置破損に至るトラブルにもなりうる。 〔特許文献 1〕 特開 2003— 82148号公報  If mass production is not performed before the pre-expanded particles can be sent smoothly, the collision particles may gradually accumulate in the container and block the interior, making production impossible. In some cases, it may be a trouble that leads to damage to the device. [Patent Document 1] Japanese Patent Application Laid-Open No. 2003-82148
〔特許文献 2〕 特開 2003— 192820号公報 発明の開示  [Patent Document 2] Japanese Patent Application Laid-Open No. 2003-192820 Disclosure of the Invention
本発明は、 上記従来技術の問題点を解決し、 安価な簡単な装置によって送粒性 を改善し、 倍率パラツキの小さなポリォレフィン系樹脂予備発泡粒子を工業的に 大量生産することを可能とする製造方法を することを課題とする。 本発明者らは鋭意研究を重ねた結果、 ポリオレフィン系榭脂粒子を耐圧容器 内で水系分散媒に分散させ、 前記樹脂 立子の軟化温度以上の温度に加熱 ·加 iE後 、 耐圧容器內の内圧よりも低圧雰囲気下に放出することによって予備努泡さ^ Γる 際に、 耐圧容器の放出部から、 放出配嘈の軸方向と異なる方向に予備発泡粒 を 放出し、 衝突板に衝突させることで予 発泡粒子の送粒性が改善されること 見 出し、 本発明を完成するに至った。 The present invention solves the above-mentioned problems of the prior art, improves the particle feedability with a simple and inexpensive apparatus, and makes it possible to industrially mass-produce polyolefin-based resin pre-expanded particles with a small variation in magnification. The task is to do it. As a result of intensive studies, the present inventors disperse the polyolefin resin particles in an aqueous dispersion medium in a pressure vessel and heat the resin to a temperature higher than the softening temperature of the resin stand. Pre-expanded particles are discharged from the discharge section of the pressure-resistant container in a direction different from the axial direction of the discharge distribution when the bubbles are released under a lower-pressure atmosphere, and collide with the collision plate. As a result, it has been found that the particle sending property of the pre-expanded particles is improved, and the present invention has been completed.
すなわち、 本発明は、 ポリオレフィン系樹脂粒子を耐圧容器内で水系分散髌に 分散させ、 前記樹脂粒子の軟化温度以 の温度に加熱'加圧後、 耐圧容器內 O内 圧よりも低圧雰囲気下に放出することによって予備発泡させる際に、 耐圧容器の 放出部から、 放出配管中のポリオレフィン系樹脂粒子と水系分散媒の混合物 o流 れる方向と異なる方向に該混合物を放出し、 衝突板に衝突させることを特徴とす るポリオレフイン系樹脂予備発泡粒子の製造方法に関する。  That is, in the present invention, the polyolefin-based resin particles are dispersed in an aqueous dispersion in a pressure vessel, heated to a temperature equal to or higher than the softening temperature of the resin particles, pressurized, and then subjected to a pressure lower than the internal pressure of the pressure vessel. During prefoaming by discharging, the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe is discharged from the discharge part of the pressure-resistant container in a direction different from the flowing direction and collides with the collision plate. The present invention also relates to a method for producing pre-expanded polyolefin resin particles.
好ましい実施態様としては、  In a preferred embodiment,
( 1 ) 予備発泡粒子が衝突板に衝突する際の衝突角度が 5〜8 5度である、 ( 2 ) 前記放出部が複数の開孔を有している、  (1) the collision angle when the pre-expanded particles collide with the collision plate is 5 to 85 degrees, (2) the discharge portion has a plurality of apertures,
( 3 ) 予備発泡粒子が衝突板に衝突する際に、 放出部の複数の開孔から放出され る予備発泡粒子の衝突角度および衝突距離が略等しい、  (3) When the pre-expanded particles collide with the impingement plate, the collision angle and collision distance of the pre-expanded particles released from the plurality of openings of the discharge section are substantially equal.
( 4 ) 前記衝突板力 S容器壁面である、  (4) The impact plate force is the S container wall surface,
( 5 ) 放出部の開孔が筒付き絞り板である、  (5) The aperture of the discharge part is a throttle plate with a cylinder,
等の技術的要素を、 上記ポリオレフィ ン系樹脂予備発泡粒子の製造方法に付加し た実施態様を挙げることができる。 Embodiments in which technical elements such as are added to the method for producing the pre-expanded polyolefin-based resin particles can be mentioned.
本発明によれば、 ポリオレフイン系樹脂粒子を予備発泡させる際に、 耐圧容器 の放出部から、 放出配管の軸方向と異なる方向に予備発泡粒子を放出し、 衝突板 に衝突させることによって、 送粒性が改善され、 倍率バラツキの小さなポリ レ フィン系樹脂予備発泡粒子を工業的に大量に製造することができる。 図面の簡単な説明  According to the present invention, when the polyolefin-based resin particles are pre-expanded, the pre-expanded particles are discharged from the discharge portion of the pressure-resistant container in a direction different from the axial direction of the discharge pipe, and are caused to collide with the collision plate. Thus, the pre-expanded particles of the polyolefin resin with small dispersion in magnification can be industrially mass-produced. Brief Description of Drawings
図 1は、 本癸明の一実施例における予備発泡粒子の製造方法の説明図である。 図 2は、 本発明の一実施例における予備発泡粒子の製造方法の説明図である 図 3は、 筒付き絞り板の軸方向の断面の一例を示す説明図である。 図中、 1は絞り板を、 2は低圧容器を、 3は衝突板を、 4は耐圧容器を、 5ほ 水系分散媒を、 6は樹脂粒子を、 7は放出配管を、 8はパルプを、 9は予備発泡 粒子を、 1 0はオリフィスに取り付けた筒体を、 1 1はオリフィス口を、 それぞ れ表す。 なお、 図 1およぴ図 2中の Aは衝突角度を、 Dは衝突距離を表す。 ま广こ 図 3中の矢印は、 発泡粒子の放出方向を示している。 発明を実施するための最良の形態 FIG. 1 is an illustration of a method for producing pre-expanded particles in one embodiment of the present invention. FIG. 2 is an explanatory diagram of a method for producing pre-expanded particles according to one embodiment of the present invention. FIG. 3 is an explanatory diagram illustrating an example of an axial cross section of a throttle plate with a cylinder. In the figure, 1 is a throttle plate, 2 is a low-pressure vessel, 3 is a collision plate, 4 is a pressure vessel, 5 is an aqueous dispersion medium, 6 is resin particles, 7 is a discharge pipe, and 8 is pulp. Numeral 9 indicates pre-expanded particles, 10 indicates a cylinder attached to an orifice, and 11 indicates an orifice opening. In FIGS. 1 and 2, A represents the collision angle, and D represents the collision distance. Mahiroko The arrow in Fig. 3 indicates the direction in which the expanded particles are released. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。 なお、 以下、 「%」 「部」 は断りのない限り 重量基準である。  Hereinafter, the present invention will be described in detail. Hereinafter, “%” and “parts” are based on weight unless otherwise specified.
本発明で使用されるポリオレフィン系樹脂とは、 ォレフィン系単量体単位を好 ましくほ 5 0〜1 0 0重量0 /0、 さらに好ましくは 7 0〜: I 0 0 %含有し、 ォレフ ィン系単量体と共重合可能な単量体単位を好ましくは 0 ~ 5 0 %、 さらに好まし くは 0〜 3 0 %含有する樹脂である。 ォレフィン系単量体単位を 5 0 %以上含有 するため、 軽量で機械的強度、 加工性、 電気絶縁性、 耐水性、 耐薬品性に優れた 成形体が得られる。 The polyolefin resin used in the present invention, the Orefin based monomer unit virtuous Mashikuho 5 0-1 0 0 Weight 0/0, more preferably 7 0 to: I 0 containing 0%, Orefu I It is a resin containing preferably from 0 to 50%, more preferably from 0 to 30%, of a monomer unit copolymerizable with a monomeric monomer. Since it contains 50% or more of the olefin monomer unit, a molded article that is lightweight and has excellent mechanical strength, workability, electrical insulation, water resistance, and chemical resistance can be obtained.
前記ォレフィン系単量体の具体例としては、 エチレン、 プロピレン、 プテン、 ペンテン、 へキセン、 ヘプテン、 ォクテンなどの炭素数 2〜 8の α—ォレフィン 単量体やノルポルネン系モノマーなどの環状ォレフィンなどが拳げられる。 これ らは単独で用いてもよく、 2種以上を併用してもよい。 これらのうちではェチレ ン、 プロピレンが安価であり、 得られる重合体の物性が良好になる点から好まし い。  Specific examples of the above-mentioned olefin monomer include cyclic olefins such as α-olefin monomer having 2 to 8 carbon atoms such as ethylene, propylene, butene, pentene, hexene, heptene and octene, and norpoleneene monomer. I can fist. These may be used alone or in combination of two or more. Of these, ethylene and propylene are preferred because they are inexpensive and the properties of the resulting polymer are improved.
前記ォレフィン系単量体と共重合可能な単量体単位は、 接着性、 透明性、 耐衝 撃性、 ガスバリァ性などの改質のために適宜使用されうる成分である。  The monomer unit copolymerizable with the olefin monomer is a component that can be appropriately used for modifying adhesiveness, transparency, impact resistance, gas barrier property, and the like.
前記ォレフィン系単量体と共重合可能な単量体の具体例としては、 酢酸ビ二/レ などのビエルアルコールエステル、 メチルメタクリレート、 ェチルァクリレー ト、 へキシルァクリレートなどのアルキル基の炭素数が 1〜6の (メタ) アタリ ル酸アルキルエステル、 ビエルアルコール、 メタクリル酸、 塩化ビニルなどが挙 げられる。 これらは単独で用いてもよく、 2種以上を併用してもよい。 これらの うちでは、 酢酸ビニルが接着性、 柔軟性;' 低温特性の点から好ましく、 メチルメ タクリレートが接着性、 柔軟性、 低温特性、 熱安定性の点から好ましい。 Specific examples of the monomer copolymerizable with the above-mentioned olefin monomer include vinyl acetate / Such as beer alcohol esters, methyl methacrylate, ethyl acrylate, hexyl acrylate, etc., alkyl (meth) acrylate esters having 1 to 6 carbon atoms, bier alcohol, methacrylic acid, vinyl chloride, etc. Can be These may be used alone or in combination of two or more. Of these, vinyl acetate is preferred from the viewpoint of adhesiveness and flexibility; low-temperature characteristics, and methyl methacrylate is preferred from the viewpoint of adhesiveness, flexibility, low-temperature characteristics, and thermal stability.
前記ォレフィン系単量体や共重合可能な単量体からなるポリオレフィン系樹脂 の具体例としては、 例えば、 エチレン一プロピレンランダム共重合体、 エチレン 一プロピレン一ブテンランダム 3元共重合体、 ポリエチレン一ポリプロピレンプ ロック共重合体、 ホモポリプロピレンなどのポリプロピレン系樹脂、 低密度ポリ エチレン、 中密度ポリエチレン、 高密度ポリエチレン、 直鎖状低密度ポリエチレ ン、 エチレン一酢酸ビニル共重合体、 エチレンーメチルメタクリレート共重合体 などのポリエチレン系樹脂、 ポリブテン、 ポリペンテンなどが挙げられる。 これ らのポリオレフイン系樹月旨は、 無架橋の状態で用いてもよく、 パーオキサイドや 放射線などにより架橋させて用いてもよい。 これらのポリマーは単独で用いても よく、. 2種以上を併用してもよい。. これらのうちでは、 -.ポリプロピレン系樹脂が 、 他のポリオレフイン系樹脂と比べて、 倍率パラツキが小さく、 高発泡倍率の予 備発泡粒子が得られやすく、 また、 得られた予備発泡粒子から製造された成形体 の機械的強度や耐熱性が良好であるため好ましい。  Specific examples of the polyolefin-based resin comprising the above-mentioned olefin-based monomer or copolymerizable monomer include, for example, ethylene-propylene random copolymer, ethylene-propylene-butene random terpolymer, polyethylene-polypropylene Block copolymer, polypropylene resin such as homopolypropylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer And polyethylene-based resins, such as polybutene and polypentene. These polyolefin-based dendrites may be used in a non-crosslinked state, or may be used after being crosslinked by peroxide or radiation. These polymers may be used alone or in combination of two or more. Among these,-. Polypropylene resin has less variation in magnification compared to other polyolefin resins, and it is easy to obtain pre-expanded particles with high expansion ratio, and it is manufactured from the obtained pre-expanded particles. This is preferable because the mechanical strength and heat resistance of the molded article are good.
前記ポリオレフイン系樹脂のメルトインデックス (M l ) としては、 たとえば ポリプロピレン系樹脂では 0 . 2 g / 1 0分以上 5 0 g / 1 0分以下であること が好ましく、 さらには 1 g / 1 0分以上 3 0 g Z l 0分以下であることが好まし レ、。  The melt index (Ml) of the polyolefin-based resin is, for example, preferably from 0.2 g / 10 minutes to 50 g / 10 minutes for a polypropylene-based resin, more preferably 1 g / 10 minutes. More preferably, it is not more than 30 g Z l 0 min.
前記 M Iが 0 . 2 g / 1 0分未満の場合、 溶融粘度が高すぎて高発泡倍率の予 備発泡粒子が得られにくい場合があり、 5 0 g / 1 0分を超える場合、 発泡時の 樹脂の伸びに対する溶融粘度が低く破泡しやすくなり、 高発泡倍率の予備発泡粒 子が得られにくくなる傾向にある。  When the MI is less than 0.2 g / 10 minutes, the melt viscosity is too high, and it may be difficult to obtain preliminary expanded particles having a high expansion ratio. The melt viscosity with respect to the elongation of the resin is low, so that the foam tends to break, and it tends to be difficult to obtain pre-expanded particles having a high expansion ratio.
また、 曲げ弾性率 (J I S K 7 2 0 3 ) としては、 たとえばポリプロピレ ン系樹脂では 5 0 O MP a以上 2 0 0 O MP a以下であることが好ましく、 さ らには 8 0 0 MP a以上 1 6 0 O MP a以下のものが好ましレ、。 前記曲げ弾性率 が 5 0 OMP a未満の場合、 機械的強度、 耐熱性が不十分である場合があり、 2 0 0 O MP aを超える場合、 得られる発泡成形体の柔軟性、 緩衝特性が不十分 となる傾向にある。 融点としては、 たとえばポリプロピレン系樹脂では 1 2 5 °C 以上 1 6 5 °C以下であるものが好ましく、 さらには 1 3 0 °C以上 1 6 0 °C以下の ものが好ましい。 融点が 1 2 5 °C未満の 、 耐熱性が不足する場合があり、 1 6 5 °Cを超える場合、 成形時の融着性、 二次発泡力不足となる傾向がある。 本発明においては発泡剤としては、 特に限定はなく、 揮発性発泡剤や無機ガス 、 水等公知のものを使用することが出来る。 The flexural modulus (JISK 7203) is, for example, polypropylene In the case of resin-based resins, it is preferably at least 500 OMPa and not more than 200 OMPa, and more preferably at least 800 OMPa and not more than 160 OMPa. If the flexural modulus is less than 50 OMPa, the mechanical strength and heat resistance may be insufficient.If the flexural modulus exceeds 200 OMPa, the flexibility and cushioning properties of the obtained foamed molded product may be insufficient. It tends to be insufficient. For example, the melting point of the polypropylene resin is preferably from 125 ° C to 165 ° C, and more preferably from 130 ° C to 160 ° C. When the melting point is lower than 125 ° C, the heat resistance may be insufficient. When the melting point is higher than 165 ° C, the adhesiveness during molding and the secondary foaming power tend to be insufficient. In the present invention, the foaming agent is not particularly limited, and a known one such as a volatile foaming agent, an inorganic gas, and water can be used.
揮発性発泡剤の具体例としては、 例えばプロパン、 i—ブタン、 n—ブタン、 i—ペンタン、 n—ペンタン、 へキサンなどの脂肪族炭化水素類;シクロブタン 、 シクロペンタン、 シクロへキサンなどの脂環式炭化水素類; トリクロ口モノフ ノレォロメタン、 ジクロロジフノレオロメタン、 ジクロロテトラフルォロェタン、 ト リクロロトリフルォロエタンなどのハ口ゲン化炭化水素類などが挙げられる。 こ れらは戰虫で用いてもよく、 .2種以上を併用してもよい。 -.  Specific examples of the volatile foaming agent include aliphatic hydrocarbons such as propane, i-butane, n-butane, i-pentane, n-pentane, and hexane; and fats such as cyclobutane, cyclopentane, and cyclohexane. Cyclic hydrocarbons: Examples include trichloromouth monochloromethane, dichlorodiphenololemethane, dichlorotetrafluoroethane, and trichlorotrifluoroethane, and the like. These may be used in war insects, or in combination of two or more. -.
無機ガスとしては、 経済性、 生産性、 安全性、 環境適合性などの点から二酸化 炭素、 チッ素、 空気またはこれらを主体 (通常、 5 0容量%以上、 さらには 7 0 容量0 /0以上) とし、 アルゴン、 ヘリウム、 キセノンなどの不活性ガスや水蒸気、 酸素、 水素、 オゾンなどを少量 (5 0容量%以下、 さらには 3 0容量%以下) 含 む無機ガスなどを使用することが好ましいが、 倍率バラツキ低減効果が大きいこ とからチッ素、 空気が更に好ましい。 As the inorganic gas, economy, productivity, safety, carbon dioxide from the viewpoint of environmental compatibility, nitrogen, air, or these entities (usually 5 0% by volume or more, further 7 0 volume 0/0 or more It is preferable to use an inorganic gas containing an inert gas such as argon, helium, xenon, or a small amount of water vapor, oxygen, hydrogen, ozone, etc. (50% by volume or less, more preferably 30% by volume or less). However, nitrogen and air are more preferable because the effect of reducing the variation in magnification is large.
これら揮発性発泡剤や無機ガスを発泡剤として使用する場合、 ポリオレフイン 系樹脂粒子 1 0 0部に対し、 発泡剤が好ましくは 2〜 5 0部、 更に好ましくは 5 〜4 0部使用される。 該使用量が 2部未満になると所望の発泡倍率が得られない 場合があり、 5 0部を超えて使用すると樹脂粒子に含浸される限度を超え圧力上 昇が起こるのみで無駄となる^がある。  When these volatile blowing agents or inorganic gases are used as the blowing agent, the blowing agent is preferably used in an amount of 2 to 50 parts, more preferably 5 to 40 parts, per 100 parts of the polyolefin-based resin particles. If the amount is less than 2 parts, the desired expansion ratio may not be obtained.If the amount is more than 50 parts, it exceeds the limit of impregnating the resin particles and the pressure rises, which is wasteful. is there.
発泡剤として水を使用する場合には、 ポリオレフィン系樹脂と親水性ポリマー を併用してポリオレフィン系樹脂粒子を使用するのが好ましい。 When water is used as the blowing agent, polyolefin resin and hydrophilic polymer It is preferable to use polyolefin-based resin particles in combination.
前記親水性ポリマーとは、 A S TM D 570に準拠して測定された吸水率が 0. 5%以上のポリマーのことであり、 いわゆる吸湿性ポリマー、 吸水性ポリマ 一 (水に溶けることなく、 自重の数倍から数百倍の水を吸収し、 圧力がかかって も脱水されがたいポリマー) および水溶性ポリマー (常温ないし高温状態で水に 溶解するポリマー) を含有する概念である。 前記親水性ポリマーの分子内には、 カルボキシル基、 水酸基、 アミノ基、 アミ ド基、 エステル基、 ポリオキシェチレ ン基などの親水性基が含有される。  The hydrophilic polymer is a polymer having a water absorption of 0.5% or more as measured according to ASTM D570, and is a so-called hygroscopic polymer, a water-absorbing polymer (without being dissolved in water and having its own weight. It is a concept that contains a water-soluble polymer (a polymer that dissolves in water at room temperature or high temperature) and a water-soluble polymer that absorbs water several to several hundred times that of water and is hard to dehydrate under pressure. The molecule of the hydrophilic polymer contains a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, an amide group, an ester group, and a polyoxyethylene group.
前記吸湿性ポリマーの例としては、 例えば、 カルボキシル基含有ポリマー、 ポ リア ド、 熱可塑性ポリエステル系エラストマ一、 セルロース誘導体などが挙げ られる。  Examples of the hygroscopic polymer include a carboxyl group-containing polymer, a polymer, a thermoplastic polyester-based elastomer, and a cellulose derivative.
前記力ルポキシル基含有ポリマーの具体例としては、 例えば、 エチレンーァク リノレ酸—無水マレイン酸 3元共重合体 (吸水率 0. 5〜0. 7%) 、 エチレン一 (メタ) アクリル酸共重合体のカルボン酸基をナトリウムイオン、 カリウムィォ ンなどのアルカリ金属イオンで塩にし、 分子間を架橋させたアイオノマー系樹脂 (吸水率 0·. 7〜1. 4%) 、 エチレン一 (メタ) アクリル酸共重合体 (吸水率 0. 5〜0. 7%) などが挙げられる。 また、 前記ポリアミ ドの具体例としては 、 例えば、 ナイロン一 6 (吸水率 1. 3〜; 1. 9%) 、 ナイロン一 6, 6 (吸水 率 1. 1〜1. 5%) 、 共重合ナイロン (EMS— CHEMI E AG社製、 商 品名 :グリルテッタスなど) (吸水率 1 · 5〜 3 %) などが挙げられる。 さらに 、 前記熱可塑性ポリエステル系エラストマ一の具体例としては、 例えば、 ポリブ チレンテレフタレートとポリテトラメチレングリコールとのプロック共重合体 ( 吸水率 0. 5〜0. 7%) などが挙げられる。 そして、 前記セルロース誘導体の 具体例としては、 例えば、 酢酸セルロース、 プロピオン酸セルロースなどが挙げ られる。 これらは 虫で用いてもよく 2種以上を併用してもよレ、。  Specific examples of the above-mentioned lipoxyl group-containing polymer include, for example, a terpolymer of ethylene-acrylinoleic acid-maleic anhydride (water absorption: 0.5 to 0.7%), and a copolymer of ethylene-mono (meth) acrylic acid. Carboxylic acid groups are converted into salts with alkali metal ions such as sodium ion and potassium ion, and ionomer resins cross-linked between molecules (water absorption 0.7 to 1.4%), ethylene mono (meth) acrylic acid copolymer Coalescence (water absorption 0.5 to 0.7%). Specific examples of the polyamide include, for example, nylon-16 (water absorption: 1.3 to 1.9%), nylon-16, 6 (water absorption: 1.1 to 1.5%), copolymer Nylon (EMS—made by CHEMI E AG, trade name: grill tettas, etc.) (water absorption: 1.5 to 3%). Further, specific examples of the thermoplastic polyester-based elastomer include, for example, a block copolymer of polybutylene terephthalate and polytetramethylene glycol (water absorption: 0.5 to 0.7%). And specific examples of the cellulose derivative include, for example, cellulose acetate, cellulose propionate and the like. These may be used in insects or in combination of two or more.
前記吸湿性ポリマーのうちでは、 ポリオレフィン系樹脂中での分散性に優れ、 比較的少量で高含水率の含水ポリオレフィン系樹脂組成物が得られ、 所望の発泡 倍率を有し倍率パラツキの小さい予備発泡粒子を得られるため、 アイオノマー系 樹脂が好ましい。 Among the hygroscopic polymers, a water-containing polyolefin-based resin composition having excellent dispersibility in a polyolefin-based resin, a relatively small amount and a high water content can be obtained, and a pre-expansion having a desired expansion ratio and a small variation in magnification. Particles can be obtained, ionomer type Resins are preferred.
前記吸水性ポリマーの例としては、 例えば、 架橋ポリアクリノレ酸塩系重合体、 澱粉—アクリル酸グラフト共重合体、 架橋ポリビニルアルコーノレ系重合体、 架橋 ポリエチレンォキサイド系重合体、 イソプチレン一マレイン酸系共重合体などが 挙げられる。  Examples of the water-absorbing polymer include, for example, a cross-linked polyacrylate polymer, a starch-acrylic acid graft copolymer, a cross-linked polyvinyl alcohol polymer, a cross-linked polyethylene oxide polymer, and an isobutylene-maleic acid polymer. And copolymers.
前記架橋ポリアクリル酸塩系重合体の具体例としては、 例え ί 、 (株) 日本触 媒製のアクアリック (商品名) 、 三菱化学 (株) 製のダイヤゥ:^ット (商品名) などで代表される架橋ポリアクリル酸ナトリゥム系重合体など力 挙げられる。 前 記架橋ポリビュルアルコール系重合体の具体例としては、 例え 、 日本合成化学 工業 (株) 製のアクアリザーブ G P (商品名) などで代表され 種々の架橋ポリ ビュルアルコール系重合体が挙げられる。 また、 前記架橋ポリ:^チレンォキサイ ド系重含体の具体例としては、 例えば、 住友精化 (株) 製のァ アコーク (商品 名) などで代表される架橋ポリエチレンオキサイド系重合体が拳げられる。 そし て、 前記イソブチレン一マレイン酸系共重合体の具体例としてほ、 例えば、 (株 ) クラレ製の Κ Iゲル (商品名) などで代表されるィソプチレ 一マレイン酸系 共重合体が挙げられる。 これらは単独で用いてもよく、 2.種以 を併用してもよ レ、。  Specific examples of the cross-linked polyacrylate polymer include, for example, ί, Aqualic (trade name) manufactured by Nippon Shokubai Co., Ltd., and Diamond: (trade name) manufactured by Mitsubishi Chemical Corporation. And crosslinked poly (sodium acrylate) polymers. Specific examples of the crosslinked polybutyl alcohol polymer include various crosslinked polybutyl alcohol polymers represented by, for example, Aqua Reserve GP (trade name) manufactured by Nippon Synthetic Chemical Industry Co., Ltd. Further, as a specific example of the crosslinked poly: ^ thylene oxide-based polymer, for example, a crosslinked polyethylene oxide-based polymer represented by acork (trade name) manufactured by Sumitomo Seika Co., Ltd. may be used. . Specific examples of the isobutylene-maleic acid-based copolymer include, for example, isoptile-maleic acid-based copolymer represented by K-I gel (trade name) manufactured by Kuraray Co., Ltd. These may be used alone or in combination of two or more.
前記吸水性ポリマーのうちでは、 架橋ポリエチレンォキサイドがポリオレフィ ン系樹脂中での分散性、 比較的少量で高含水率がえられる点から 子ましレヽ。  Among the water-absorbing polymers, crosslinked polyethylene oxide is a dispersant in a polyolefin-based resin and has a high water content with a relatively small amount.
前記水溶性ポリマーの例としては、 例えば、 ポリ (メタ) ア^リル酸系重合体 、 ポリ (メタ) アクリル酸塩系重合体、 ポリビュルアルコール系重合体、 ポリエ チレンォキサイド系重合体、 水溶性セル口ース誘導体などが挙げられる。  Examples of the water-soluble polymer include poly (meth) acrylic acid-based polymer, poly (meth) acrylate-based polymer, polybutyl alcohol-based polymer, polyethylene oxide-based polymer, and water-soluble cell. Mouth derivatives and the like.
前記ポリ (メタ) アクリル酸系重合体の具体例としては、 例;^ば、 ポリアタリ ル酸、 アタリル酸ーアタリル酸ェチル共重合体、 ポリメタタリ /レ酸 2—ヒ ドロキ シェチルなどが挙げられる。 また、 前記ポリ (メタ) アクリル酸塩系重合体の具 体例としては、 例えば、 ポリアタリル酸ナトリウム、 ポリメタクリル酸ナトリウ ム、 ポリアクリル酸カリウム、 ポリメタクリル酸カリウムなど^ S挙げられる。 ま た、 前記ポリビュルアルコール系重合体の具体例としては、 例えば、 ポリビニノレ アルコール、 ビュルアルコール一酢酸ビュル共重合体などが挙げられる。 さら に、 前記ポリエチレンオキサイド系重合体の具体例としては、 例えば、 分子量数 万〜数百万のポリエチレンオキサイドなどが挙げられる。 そして、 前記水溶性セ ルロース誘導体の具体例としては、 例えばカルポキシメチルセルロース、 ヒドロ キシェチルセルロースなどが挙げられる。 これらは単独で用いてもよく、 2種以 上を併用してもよい。 Specific examples of the poly (meth) acrylic acid-based polymer include, for example, polyatalylic acid, an allylic acid-ethyl acrylate copolymer, and polyhydroxy / ethyl methacrylate / hydroxyethyl. Further, specific examples of the poly (meth) acrylate polymer include ^ S and the like such as sodium polyatalylate, sodium polymethacrylate, potassium polyacrylate, and potassium potassium methacrylate. Further, specific examples of the polyvinyl alcohol-based polymer include, for example, polyvinyl alcohol. Alcohol, butyl alcohol monoacetate butyl copolymer and the like can be mentioned. Further, specific examples of the polyethylene oxide-based polymer include, for example, polyethylene oxide having a molecular weight of tens of thousands to millions. Specific examples of the water-soluble cellulose derivative include, for example, carboxymethylcellulose and hydroxyethyl cellulose. These may be used alone or in combination of two or more.
前記吸湿性ポリマー、 吸水性ポリマーおょぴ水溶性ポリマーは単独で用いても よく、 2種以上を ί并用してもよい。  The above-mentioned hygroscopic polymer, water-absorbing polymer and water-soluble polymer may be used alone or in combination of two or more.
前記親水性ポリマーの使用量は、 前記親水性ポリマーの種類によつて異なるが 、 ポリオレフイン系樹脂粒子を耐圧容器内で水系分散媒に分散させ、 ポリオレフ ィン系樹脂の軟化温度以上で、 好ましくは軟化温度 + 2 0 °C以下の温度に加熱し たときの含水率が 1〜 5 0 %になるポリオレフィン系樹脂粒子を得るようにする ことが好ましく、 通常、 ポリオレフイン系樹脂 1 0 0部に対して、 0 . 0 5部以 上が好ましく、 更に好ましくは 0 . 1部以上である。 また、 予備発泡粒子の製造 時の生産安定性や発泡特性を良好にし、 予備発泡粒子から得られる成形体に優れ た機械的強度や耐熱性を付与するとともに、 吸水時の寸法変化を小さくする点か らは、 好ましくは 2 0部以下、 更に好ましくは 1 0部以下である。  The amount of the hydrophilic polymer used varies depending on the type of the hydrophilic polymer, but the polyolefin-based resin particles are dispersed in an aqueous dispersion medium in a pressure vessel, and are preferably at or above the softening temperature of the polyolefin-based resin. It is preferable to obtain polyolefin-based resin particles having a water content of 1 to 50% when heated to a temperature equal to or lower than the softening temperature + 20 ° C. Usually, with respect to 100 parts of the polyolefin-based resin, Thus, the amount is preferably at least 0.05 part, more preferably at least 0.1 part. In addition, the production stability and foaming characteristics during the production of the pre-expanded particles are improved, and the molded article obtained from the pre-expanded particles is given excellent mechanical strength and heat resistance, and the dimensional change during water absorption is reduced. The amount is preferably 20 parts or less, more preferably 10 parts or less.
本発明で用いられるポリオレフイン系樹脂粒子には、 充填剤、 すなわち無機充 填剤及び Z又は有機充填剤を含有せしめるのが、 倍率バラツキが小さく、 かつ気 泡が均一で比較的高発泡倍率の予備発泡粒子を得ることができるという点から好 まし V  The polyolefin-based resin particles used in the present invention contain a filler, that is, an inorganic filler and Z or an organic filler, so that dispersion of the magnification is small, bubbles are uniform, and a relatively high foaming ratio is required. Preferred because foamed particles can be obtained V
前記無機充填剤の具体例としては、 例えばタルク、 炭酸カルシウム、 水酸化力 ルシゥムなどが挙げられる。 これらの無機充填剤の中では、 タルクが、 倍率パラ ツキが小さく、 気泡が均一で、 比較的高発泡倍率の予備発泡粒子を与える点から 好ましい。  Specific examples of the inorganic filler include talc, calcium carbonate, and hydroxide. Among these inorganic fillers, talc is preferred in that it has low expansion ratio, uniform cells, and gives pre-expanded particles having a relatively high expansion ratio.
前記有機充填剤としては、 前記ポリオレフイン系樹脂の軟ィヒ温度以上の温度で 固体状のものであればよく、 とくに限定はない。 前記有機充填剤の具体例として は、 例えばフッ素樹脂粉末、 シリコーン樹脂粉末、 熱可塑性ポリエステル樹脂粉 末などが挙げられる。 The organic filler is not particularly limited as long as it is solid at a temperature equal to or higher than the softening temperature of the polyolefin resin. Specific examples of the organic filler include, for example, a fluororesin powder, a silicone resin powder, and a thermoplastic polyester resin powder. End.
前記充填剤は、 戦虫で用いてもよく、 2種以上を併用してもよい。  The filler may be used in war insects, or two or more kinds may be used in combination.
前記充填剤の平均粒子径は、 気泡が均一で比較的高発泡倍率を有する予備発泡 粒子を得ることができ、 また、 該予備発泡粒子から機械的強度や柔軟性などに優 れた成形体を得ることができる点から、 5 0 μ ΐη以下が好ましく、 さらには 1 0 m以下であるのが好ましく、 2次凝集や取扱作業性の点から 0 . l t m以上が 好ましく、 さらには 0 . 5 m以上であるのが好ましい。  The average particle diameter of the filler is such that pre-expanded particles having uniform cells and a relatively high expansion ratio can be obtained, and a molded article having excellent mechanical strength, flexibility, and the like can be obtained from the pre-expanded particles. From the viewpoint of being obtainable, it is preferably 50 μ 得 る η or less, more preferably 10 μm or less, and preferably 0.5 μm or more, more preferably 0.5 m from the viewpoint of secondary aggregation and handling workability. The above is preferable.
前記充填剤を使用する場合の使用量は、 比較的高発泡倍率の予備発泡粒子を得 る点から、 ポリオレフイン系樹脂 1 0 0部に対して 0 . 0 0 1部以上が好ましく 、 さらには 0 . 0 0 5部以上にするのが好ましく、 また予備発泡粒子を用いて成 形する際に、 優れた融着性を努現させ、 該予備発泡粒子から機械的強度や柔軟性 などに優れた成形体を得る点から、 3部以下が好ましく、 更に好ましくは 2部以 下である。  The amount of the filler to be used is preferably at least 0.01 part with respect to 100 parts of the polyolefin-based resin, and more preferably at least 0, in order to obtain pre-expanded particles having a relatively high expansion ratio. It is preferable that the content be 0.05 parts or more. Further, when forming using the pre-expanded particles, excellent fusion properties are exerted, and the pre-expanded particles have excellent mechanical strength and flexibility. From the viewpoint of obtaining a molded product, the amount is preferably 3 parts or less, more preferably 2 parts or less.
前記ポリオレフイン系樹脂、 必要により、 親水性ポリマー、 充填剤などを含有 する前記ポリオレフイン系樹脂粒子は、 通常、 押出機、 ニーダー、 パンパリーミ キサ一、 ロールなどを用いて溶融混練し、 ついで円柱状、 楕円柱状、 球状、 立方 体状、 直方体状など発泡に利用しゃすい所望の樹脂粒子形状に成形することで得 るのが好ましい。 前記樹脂粒子を製造する際の条件、 樹脂粒子の大きさなどにも とくに限定はないが、 例えば、 押出機中で溶融混練して得られる樹脂粒子は、 通 常 0 . 5〜5 m g /粒である。  The polyolefin-based resin particles containing the polyolefin-based resin and, if necessary, a hydrophilic polymer, a filler, and the like, are usually melt-kneaded using an extruder, a kneader, a pan-pally mixer, a roll, or the like, and then have a columnar or oval shape. It is preferably obtained by molding into a desired resin particle shape which is utilized for foaming, such as columnar, spherical, cubic, or rectangular parallelepiped. The conditions for producing the resin particles, the size of the resin particles, and the like are not particularly limited.For example, resin particles obtained by melt-kneading in an extruder are usually 0.5 to 5 mg / particle. It is.
前記のごとき樹脂粒子を耐圧容器内で分散剤および、 分散助剤を含む水系分散 媒に分散させ、 前記樹脂粒子を前記ポリオレフィン系樹脂の軟化温度以上の温度 に加熱し、 発泡剤を樹脂粒子に含浸せしめる。  The resin particles as described above are dispersed in an aqueous dispersion medium containing a dispersant and a dispersing agent in a pressure vessel, and the resin particles are heated to a temperature equal to or higher than the softening temperature of the polyolefin resin, and the foaming agent is converted into resin particles. Impregnate.
前記樹脂粒子を分散させる水系分散媒は、 前記ポリオレフィン系樹脂を溶解さ. せない溶媒であればよく、 通常水または水とエチレングリコール、 グリセリン、 メタノール、 ェタノールなどのうちの 1種類またはそれらの 2種以上との混合物 が例示されるが、 環境面、 経済性などから水が好ましい。  The aqueous dispersion medium in which the resin particles are dispersed may be any solvent that does not dissolve the polyolefin resin. Normally, water or water and one or more of ethylene glycol, glycerin, methanol, ethanol, and the like, or two or more thereof are used. Mixtures with more than one species are exemplified, but water is preferred from the environmental and economical aspects.
前記分散剤の具体例としては、 例えば第三リン酸カルシウム、 塩基性炭酸マグ ネシゥム、 塩基性炭酸亜鉛、 炭酸カルシウムなどの無機塩やベントナイト、 力 ォリンなどの粘土類が挙げられる。 これらのうちで第三リン酸カルシウムが、 分 散力が強く好ましい。 Specific examples of the dispersant include, for example, tricalcium phosphate, basic magnesium carbonate Examples include inorganic salts such as nesium, basic zinc carbonate and calcium carbonate, and clays such as bentonite and potassium phosphate. Of these, tricalcium phosphate is preferred because of its strong dispersing power.
また、 前記分散助剤としては、 例えばドデシルベンゼンスルホン酸ソーダ、 n 一パラフィンスルホン酸ソーダ、 α—ォレフインスルホン酸ソーダ、 アルキルナ フタレンスルホン酸ソーダなどのァニオン性界面活性剤、 塩ィ匕ベンザルコユウム などのカチオン性界面活性剤が挙げられる。 これらのうちで η—パラフインスル ホン酸ソーダが良好な分散力を与え、 生 ϋ率されやすいことから好ましい。  Examples of the dispersing aid include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium n-paraffin sulfonate, sodium α-olefin sulfonate, and sodium alkylnaphthalene sulfonate; And other cationic surfactants. Among these, sodium η-paraffin sulfonate is preferred because it gives a good dispersing power and is easily produced.
前記水系分散媒に分散させるポリオレフイン系樹脂粒子の量としては、 水系分 散媒 1 0 0部に対してポリオレフィン系樹脂粒子 3部以上 1 0 0部以下が好まし く、 さらには ΓΟ部以上 5 0部以下が好ましい。 ポリオレフイン系樹脂粒子の量 が 3部未満になると生産性が低下し、 経済的でない場合があり、 1 0 0部を超え るとカロ熱中に容器内で樹脂粒子同士が融着する傾向が生じる恐れがある。  The amount of the polyolefin-based resin particles dispersed in the aqueous dispersion medium is preferably from 3 to 100 parts of the polyolefin-based resin particles to 100 parts of the aqueous dispersion medium, and more preferably from ΓΟ to 5 parts. 0 parts or less are preferable. If the amount of the polyolefin-based resin particles is less than 3 parts, the productivity may be reduced and the economy may not be economical.If the amount is more than 100 parts, there is a possibility that the resin particles tend to fuse together in the container during the heat of calo. There is.
また、 分散剤および分散助剤の使用量については、 特別な限定はなく、 一般に 使用される量を使用すればよいが、 分散剤は、 ポリオレフイン系樹脂粒子 1 0 0 部に対して 0 . 0 5部以上 1 0部以下が好ましく、 分散助剤は、 ポリオレフイン 系樹脂粒子 1 0 0部に対して 0. 0 0 0 5部以上 1部以下が好まし!/、。  The amount of the dispersing agent and the dispersing agent is not particularly limited, and any commonly used amount may be used. However, the dispersing agent is used in an amount of 0.0 with respect to 100 parts of the polyolefin resin particles. The content is preferably 5 parts or more and 10 parts or less, and the dispersing aid is preferably 0.005 parts or more and 1 part or less with respect to 100 parts of the polyolefin resin particles! /.
本発明においては、 ポリオレフイン系樹脂粒子を水系分散媒に分散させた後、 ポリオレフイン系樹脂の軟化点以上の温度に加熱 ·加圧する。 ポリオレフイン系 樹脂粒子を耐圧容器内で水系分散媒に分散させた後、 該ポリオレフイン系樹脂粒 子を発泡可能な温度 ·圧力にするためには、 予備発泡粒子の倍率および倍率バラ ツキ等の品質に影響はないので加熱と加圧はどちらが先でもよい。  In the present invention, the polyolefin-based resin particles are dispersed in an aqueous dispersion medium, and then heated and pressurized to a temperature equal to or higher than the softening point of the polyolefin-based resin. After dispersing the polyolefin-based resin particles in an aqueous dispersion medium in a pressure vessel, the polyolefin-based resin particles should be expanded to a temperature and pressure at which they can be expanded by adjusting the quality of the pre-expanded particles such as the magnification and the variation in the magnification. Since there is no influence, either heating or pressurization may be performed first.
ポリオレフィン系樹脂粒子を分散させて加熱する温度は、 使用するポリオレフ イン系樹脂の軟化温度以上の温度、 具体的には融点以上、 好ましくは融点 + 5 °C 以上であり、 上限は、 好ましくは融点 + 2 0 °C以下、 さらに好ましくは  The temperature at which the polyolefin-based resin particles are dispersed and heated is a temperature equal to or higher than the softening temperature of the polyolefin-based resin to be used, specifically, equal to or higher than the melting point, preferably equal to or higher than the melting point + 5 ° C. + 20 ° C or less, more preferably
融点 + 1 5 °C以下の温度である。 例えば、 融点 1 4 5 °Cのエチレン一プロピレン 共重合体を使用する場合には、 下限は 1 4 5 °Cであり、 好ましくは 1 5 0 °Cであ る。 上限は好ましくは 1 6 5 °Cであり、 更に好ましくは 1 6 0 °Cである。 Melting point + 15 ° C or less. For example, when using an ethylene-propylene copolymer having a melting point of 145 ° C, the lower limit is 145 ° C, preferably 150 ° C. The The upper limit is preferably 165 ° C, more preferably 165 ° C.
1 4 5 °C未満では発泡しにくくなり、 1 6 5 °Cを超えると、 得られる予備発泡粒 子の機械的強度、 耐熱性が充分でなく、 容器内で樹脂粒子が融着しゃすくなる場 合がある。  If the temperature is lower than 144 ° C, foaming becomes difficult.If the temperature exceeds 165 ° C, the mechanical strength and heat resistance of the obtained pre-expanded particles are not sufficient, and the resin particles are fused and chewed in the container. May be.
耐圧容器内を加圧させるためのガスとしては、 前述の揮発性発泡剤及び/又は 無機ガスを用いることができる。 耐圧容器内の保持圧力は、 0. 6〜  As the gas for pressurizing the inside of the pressure vessel, the volatile foaming agent and / or the inorganic gas described above can be used. The holding pressure in the pressure vessel is 0.6 ~
7. 5 MP aが好ましく、 1 . 0〜3. OMP aがより好ましい。  7.5 MPa is preferred, and 1.0 to 3.0 OMPa is more preferred.
保持圧力が 0 . 6 MP a未満ではポリオレフィン系樹脂粒子は発泡しない場合が あり、 所望とする発泡倍率を有する予備発泡粒子が得られない恐れがある。 また 7 . 5 MP aを超えると得られる予備発泡粒子の気泡が小さくなりすぎ、 独立気 泡率が低下して成形品の収縮、 形状安定性、 機械的強度、 耐熱性が損なわれる傾 向にある。 If the holding pressure is less than 0.6 MPa, the polyolefin-based resin particles may not foam, and pre-expanded particles having a desired expansion ratio may not be obtained. On the other hand, if the pressure exceeds 7.5 MPa, the bubbles of the pre-expanded particles obtained become too small, and the closed cell rate tends to decrease, resulting in a tendency for molded articles to shrink, to lose shape stability, mechanical strength, and heat resistance. is there.
前記発泡剤が水の場合、 樹脂粒子を水系分散媒に分散させて加熱し、 例えば 3 0分〜 1 2時間攪拌することにより、 樹脂粒子の含水率を 1〜 5 0 %の含水樹 脂粒子にしたのち、 無機ガスを耐圧容器内に導入して耐圧容器の圧力を 0 . 6〜 7 . 5 MP aとし、 この圧力を保持しつつ前記耐圧容器の内圧より.も低圧の雰囲 気中に筒付き絞り盤を通したのち放出させ、 前記含水樹脂粒子を発泡させること により、 ポリオレフィン系樹脂予備発泡粒子が製造される。  When the foaming agent is water, the resin particles are dispersed in an aqueous dispersion medium, heated, and stirred, for example, for 30 minutes to 12 hours, so that the water content of the resin particles is 1 to 50%. After that, an inorganic gas is introduced into the pressure-resistant container to set the pressure of the pressure-resistant container to 0.6 to 7.5 MPa, and while maintaining this pressure, in an atmosphere having a pressure lower than the internal pressure of the pressure-resistant container. The polyolefin-based resin pre-expanded particles are produced by causing the water-containing resin particles to be discharged after passing through a squeezing machine with a tube.
前記含水率の調整は、 加熱温度、 加熱時間などを調整することによって行うこ とができる。 含水率が 1 %未満の場合、 癸泡倍率が 2倍末満となりやすい。 好ま しい含水率は 2 %以上である。 また、 5 0 %を超えると、 ポリオレフイン系樹脂 粒子の水系分散媒に対する分散性が低下し、 予備発泡粒子製造時に耐圧容器内で ポリオレフィン系樹脂粒子が塊状になり、 均一に発泡させることができなくなり やすい。 好ましい含水率は 3 0 %以下である。 なお、 親水性ポリマーの吸水率は 常温で測定する値であり、 前記含水率は高温 (樹脂融点) で測定する値であるた め、 例えば用いた親水性ポリマーの吸水率が 0 . 5 %以上であれば、 1 %以上の 含水率が得られる。  The adjustment of the water content can be performed by adjusting the heating temperature, the heating time, and the like. When the water content is less than 1%, the kishi foam ratio tends to be less than twice. The preferred moisture content is 2% or more. If the content exceeds 50%, the dispersibility of the polyolefin-based resin particles in the aqueous dispersion medium is reduced, and the polyolefin-based resin particles become lump in the pressure vessel during the production of the pre-expanded particles, and cannot be uniformly foamed. Cheap. The preferred water content is 30% or less. Since the water absorption of the hydrophilic polymer is a value measured at room temperature, and the water content is a value measured at a high temperature (resin melting point), for example, the water absorption of the used hydrophilic polymer is 0.5% or more. If so, a water content of 1% or more can be obtained.
本発明では、 前記ポリオレフイン系樹脂粒子をポリオレフィン系樹脂の軟ィ匕温 度以上の温度に加熱するので含水率は通常 1〜 5 0 %となり、 発泡倍率が好ま しくは約 2〜 4 3倍さらに好ましくは約 3〜 1 5倍で、 且つ倍率パラツキが小さ い予備発泡粒子を得ることができる。 また本発明では、 予備発泡粒子製造時に耐 圧容器内でポリオレフィン系樹脂粒子が塊状にならず、 均一な予備発泡粒子を得 ることができる。 In the present invention, the polyolefin-based resin particles may be mixed with a polyolefin-based resin. Or more, so that the water content is usually 1 to 50%, and the foaming ratio is preferably about 2 to 43 times, more preferably about 3 to 15 times, and the prefoaming is low in magnification variation. Particles can be obtained. Further, in the present invention, the polyolefin-based resin particles do not clump in the pressure-resistant container during the production of the pre-expanded particles, and uniform pre-expanded particles can be obtained.
なお、 前記ポリオレフイン系樹脂の軟化温度は、 D S C (示差走査熱量計) に よって 1 0 °CZ分の昇温速度で測定したときの、 融解ピークの頂点の温度より求 められる。  The softening temperature of the polyolefin-based resin is determined from the temperature at the top of the melting peak when measured by a DSC (differential scanning calorimeter) at a heating rate of 10 ° CZ.
また、 含水率はその温度以上における水蒸気圧下での含水率であり、 以下のよ うにして求められる。  The water content is the water content under the water vapor pressure at the temperature or higher, and is obtained as follows.
すなわち、 3 0 0 c c耐圧アンプル中に前記ポリオレフイン系榭脂組成物から なる樹脂粒子 5 0 g、 水 1 5 0 g、 分散剤としてパウダー状塩基性第三リン酸カ ルシゥム 0 . 5 g、 分散助剤として n—パラフィンスルホン酸ソーダ 0 . 0 3 g を入れ、 密閉後に前記ポリオレフィン系樹脂の軟化温度以上の温度に設定した油 浴中で 3時間加熱処理する。 さらに室温まで冷却後、 取り出し、 充分水洗して分 散剤を除去したのち、 得ちれたポリオレフイン系樹脂組成物の含水樹脂粒子の表 面付着水分を除去したものの重量 (X) を求め、 ついでそのポリオレフイン系樹 脂粒子の融点よりも 2 0 °C高い温度に設定されたオーブン中で 3時間乾燥させ、 デシケータ中で室温まで冷却させたあとの重量 (Y) を求め、 次式 (数 2 ) にし たがって求められる。 ポリオレフイン系樹脂からの樹脂粒子中に充填剤などを含 む場合の含水率は、 ポリオレフィン系樹脂おょぴ親水性ポリマーの合計量に対す る含水率である。  That is, in a 300 cc pressure-resistant ampoule, 50 g of resin particles comprising the polyolefin resin composition, 150 g of water, 0.5 g of powdery basic calcium phosphate tribasic as a dispersing agent, and dispersion were conducted. After adding 0.33 g of sodium n-paraffin sulfonate as an auxiliary agent, after sealing, heat treatment is performed for 3 hours in an oil bath set at a temperature not lower than the softening temperature of the polyolefin resin. After cooling to room temperature, the resin was taken out, washed thoroughly with water to remove the dispersing agent, and the weight (X) of the obtained water-containing resin particles of the polyolefin resin composition obtained by removing the water adhering to the surface was obtained. After drying in an oven set at a temperature 20 ° C higher than the melting point of the polyolefin resin particles for 3 hours, the weight (Y) after cooling to room temperature in a desiccator is determined, and the following equation (Equation 2) is obtained. It is required accordingly. The water content in the case where a filler or the like is contained in the resin particles of the polyolefin resin is a water content based on the total amount of the polyolefin resin and the hydrophilic polymer.
(数 2 ) 含水率 (%) = ^1 _^ χ 100 (Equation 2) Moisture content (%) = ^ 1 _ ^ χ 100
また、 ガスで加圧して所定の圧力に到達後、 ポリオレフイン系樹脂粒子を水系 分散媒とともに低圧雰囲気中に放出するまでの時間にはとくに限定はないが、 生産性向上の観点からできるだけ短いことが好ましい。 なお、 放出中の容器内圧 力は前記到達圧力を維持することが好ましレ、。 After reaching the specified pressure by pressurizing with gas, the polyolefin resin particles are There is no particular limitation on the time required for release into the low-pressure atmosphere together with the dispersion medium, but it is preferable that the time be as short as possible from the viewpoint of improving productivity. In addition, it is preferable that the pressure in the container during the discharge be maintained at the ultimate pressure.
前記耐圧容器内の内圧より低圧というのは、 耐圧容器内の内圧よりも低 、圧力 であればよく、 通常は大気圧付近の圧力が選ばれる。 また、 前記雰囲気とは、 放 出された水系分散物 (予備発泡粒子および水系分散媒) の飛散軌跡を包含する空 間を意味するが、 一般にはパイプ、 ダクト状のもので外気と遮断した装置内をい う。  The pressure lower than the internal pressure in the pressure-resistant container may be lower than the internal pressure in the pressure-resistant container, and may be a pressure. Usually, a pressure near the atmospheric pressure is selected. The atmosphere refers to a space containing the scattered trajectory of the discharged aqueous dispersion (pre-expanded particles and aqueous dispersion medium), but is generally a pipe or duct-shaped device that is shielded from the outside air. Go inside.
ポリオレフィン系樹脂予備発泡粒子の製造は、 耐圧容器の内圧よりも低圧雰囲 気中に、 ポリオレフイン系樹脂粒子および水系分散媒の混合物を放出させること により行われる。 混合物の放出中は、 無機ガスなどを耐圧容器内に導入して耐圧 容器の内圧を保持することが、 一定の倍率の予備発泡粒子を得るためには望まし い。  The production of the polyolefin-based resin pre-expanded particles is carried out by discharging a mixture of the polyolefin-based resin particles and the aqueous dispersion medium in an atmosphere having a pressure lower than the internal pressure of the pressure vessel. During the release of the mixture, it is desirable to introduce an inorganic gas or the like into the pressure-resistant container to maintain the internal pressure of the pressure-resistant container in order to obtain pre-expanded particles having a certain magnification.
耐圧容器と放出部の間は、 通常パルプを有した放出配管が配置されているが、 本発明においては、 ポリオレフイン系樹脂粒子と水系分散媒の混合物を放出させ る際に、 耐圧容器の放出部から.、 放出配管中の該混合物の流れる方向.とは異なる 方向に該混合物を放出させる。 設備構造上、 放出配管が直線状ではない場合 (L 字型等) があるが、 その場合は、 放出部に最近接部のポリオレフイン系樹脂粒子 と水系分散媒の混合物の流れる方向を言う。 このように放出部で衝突角度を制御 することで、 衝突板を設置する位置や角度等に自由度が増し送粒性が向上する。 工業的に連続または半連続に大量生産しょうとする場合、 放出された予備発泡粒 子は速やかに後工程に移送することが好ましいが、 例えば機械的に予備発泡粒子 をかきとり式で送る方法や、 水や空気によって押し流す方法などを併用すること でより送粒性が向上する。  A discharge pipe having pulp is usually arranged between the pressure vessel and the discharge section. In the present invention, the discharge section of the pressure vessel is used to discharge the mixture of the polyolefin-based resin particles and the aqueous dispersion medium. The mixture is discharged in a direction different from the flowing direction of the mixture in the discharge pipe. Due to the structure of the equipment, the discharge pipe may not be straight (L-shaped, etc.). In such a case, it refers to the direction in which the mixture of the polyolefin resin particles and the aqueous dispersion medium closest to the discharge section flows. By controlling the collision angle at the discharge section in this manner, the degree of freedom in the position and angle of the collision plate is increased, and the particle feedability is improved. When industrial mass production is to be carried out continuously or semi-continuously, it is preferable that the released pre-expanded particles be immediately transferred to the subsequent process.For example, a method of mechanically sending the pre-expanded particles in a scraping manner, Combined with the method of flushing with water or air, the particle feedability is further improved.
前記放出部には、 一般に放出時間の調整、 発泡倍率の均一化のために絞り盤を 使用することが好ましい。 中でも、 オリフィス板を使用することが流出速度を一 定に保持でき、 高倍率、 かつ、 倍率バラツキの少ない予備努泡粒子を得ることが でき、 構造が簡単である点から好ましい。 前記オリフィス板とは、 オリフィス型 、 ノズル型、 ベンチユリ型などを含む概念であり、 またこれらを組み合わせて もよい。 In general, it is preferable to use a squeezing disk in the discharge section for adjusting the release time and making the expansion ratio uniform. Among them, the use of an orifice plate is preferable because the flow rate can be kept constant, high-magnification, pre-bubble particles with little variation in magnification can be obtained, and the structure is simple. The orifice plate is an orifice type , Nozzle type, bench lily type, etc., and these may be combined.
オリフィス板を使用する場合、 オリフィスの口径 (h a) は 0. 5〜  When using an orifice plate, the orifice diameter (ha) should be between 0.5 and
6. Omm、 さらには 1. 0〜4. Ommが好ましい。 口径が 0. 5 mm未満で は、 樹脂により開孔部が閉塞しやすくなり、 6. Ommを超えると、 得られる予 備発泡粒子の倍率バラツキが悪ィ匕する。  6. Omm, more preferably 1.0 to 4.0 Omm. When the diameter is less than 0.5 mm, the opening is easily closed by the resin, and when the diameter exceeds 6. Omm, the variation in magnification of the obtained pre-expanded foam particles deteriorates.
また、 オリフィス板の厚み (b) は 0. 2〜10mm、 さらには 0. 5〜 5 mmが好ましい。 厚みが 0. 2 mm未満では、 放出時の圧力により、 オリフィ ス板が破損するおそれが大きく、 10mmを超えると、 得られる予備 泡粒子の 発泡倍率が低下して、 所望とする発泡倍率を有する予備発泡粒子を得るのが困難 になるとともに、 樹脂により開孔が閉塞するおそれがある。  Further, the thickness (b) of the orifice plate is preferably 0.2 to 10 mm, more preferably 0.5 to 5 mm. If the thickness is less than 0.2 mm, the orifice plate is likely to be damaged by the pressure at the time of discharge.If the thickness exceeds 10 mm, the expansion ratio of the obtained pre-expanded foam particles is reduced, and the desired expansion ratio is obtained. It becomes difficult to obtain pre-expanded particles, and the resin may block the openings.
本努明においては放出部に複数の開孔を設けることが好ましい。 開孔の数に応 じて生産速度が大きくなるので、 効率よく大量生産することができる。 開孔の上 限数は特に制限ないが、 工業プロセスの場合は後工程の処理能力を超えないよう に適宜調整することが好ましレ、。  In this effort, it is preferable to provide a plurality of openings in the discharge section. Since the production speed increases with the number of holes, mass production can be performed efficiently. The upper limit of the number of apertures is not particularly limited, but in the case of an industrial process, it is preferable to appropriately adjust the processing capacity so as not to exceed the processing capacity of a post-process.
本発明でいう衝突板とは'、 放出部から放出される含水粒子が衝突す.る位置に設 置した装置である。 衝突板の大きさは、 予備発泡粒子を衝突させることができる 大きさであればよく、 形状は平板、 あるいは予備発泡粒子の飛散方向に対し凸板 もしくは凹板でもよい。 前記複数の放出部を取り囲む位置に設置する衝突板とし て、 パイプまたはダクト状の形をした容器壁面を利用すれば、 装置として簡単で ある為好ましい。 もちろん、 衝突距離や衝突角度を調節するなどのために、 容器 壁面を衝突板として利用する際に衝突板を併用設置しても構わな ヽ。  The collision plate referred to in the present invention is a device provided at a position where the water-containing particles discharged from the discharge section collide. The size of the impingement plate may be a size capable of causing the pre-expanded particles to collide, and the shape may be a flat plate or a convex plate or a concave plate in the scattering direction of the pre-expanded particles. It is preferable to use a pipe or duct-shaped container wall as a collision plate installed at a position surrounding the plurality of discharge portions because the device is simpler. Of course, when adjusting the collision distance or collision angle, the collision plate may be installed when the container wall is used as the collision plate.
倍率バラッキの小さ ヽ予備発泡粒子を製造するには、 放出部から衝突板の距離 (D) は、 下限が、 好ましくは 5mmであり、 更に好ましくは 1 Ommである。 上限は好ましくは 1500 mmであり、 更に好ましくは 1000 mmであり、 特 に好ましくは 80 Ommである。 5 mmより距離が近いと放出部と衝突板の間隔 が狭すぎて、 放出部で予備発泡粒子同士が融着して発泡しにくい傾向がある。 ま た、 耐圧容器内の加熱、 加圧条件によっては、 150 Ommより遠いと倍率バラ ツキ低減効果は小さくなる場合がある。 衝突板までの距離は長すぎると衝突す るまでに予備発泡粒子が冷えて発泡じにくくなり倍率がでなくなるのと同時に衝 突までに予備発泡粒子間の冷却ムラで倍率パラツキが大きくなる欠陥があるので 、 楽泡条件に合わせて決めることが好ましレ、。 In order to produce the pre-expanded particles having a small magnification variation, the lower limit of the distance (D) from the discharge section to the collision plate is preferably 5 mm, more preferably 1 Omm. The upper limit is preferably 1500 mm, more preferably 1000 mm, and particularly preferably 80 Omm. If the distance is less than 5 mm, the distance between the discharge portion and the impact plate is too small, and the pre-expanded particles tend to fuse together at the discharge portion and hardly foam. Also, depending on the heating and pressurizing conditions in the pressure vessel, magnification variation may occur if the distance is more than 150 Omm. The luster reduction effect may be reduced. If the distance to the impingement plate is too long, the pre-expanded particles cool down before the collision and become difficult to expand, and the magnification is lost.At the same time, the unevenness in cooling between the pre-expanded particles before the collision causes a large variation in magnification. Because there is, it is preferable to decide according to the comfort bubble conditions.
衝突板の材質は、 特に限定されないが、 金属、 プラスチック、 ゴム、 フェルト 、 セラミックス、 木材でも良い。  The material of the impact plate is not particularly limited, but may be metal, plastic, rubber, felt, ceramics, or wood.
通常、 予備発泡時にはポリオレフイン系樹脂粒子の軟化温度以下になると樹脂 が硬化して発泡は終了する。 し力 し、 本発明のようにポリオレフイン系樹脂粒子 と水系分散媒の混合物を衝突板に衝突させた場合、 発泡雰囲気の温度、 湿度がよ り均一になるためと考えられるが、 予備発泡粒子個々が均一に発泡し、 倍率バラ ツキが小さくなる。  Usually, at the time of prefoaming, when the temperature falls below the softening temperature of the polyolefin-based resin particles, the resin hardens and foaming ends. When the mixture of the polyolefin resin particles and the aqueous dispersion medium collides with the collision plate as in the present invention, it is considered that the temperature and humidity of the foaming atmosphere become more uniform. Foams uniformly, and the variation in magnification is reduced.
本発明でいう衝突角度とは、 予備発泡粒子が衝突板に衝突するときの入射角を いい、 真正面から衝突する場合を 9 0度、 衝突板と平行に飛散して衝突しない場 合を 0度とすると、 0度より大きく 9 0度以下の間の値をとりうる。 衝突角度は 、 予備発泡粒子が衝突できる角度であればよく、 特に限定されないが、 セル径の より均一な予備発泡粒子が得られる点から、 5度以上であることが好ましく、 さ らには 1 0度以上であることがより好ましい。 また、 衝突した後の予備発泡粒子' がよりスムーズに送粒されやすくなる点から 8 5度以下が好ましく、 更には 4 5 度以下であることが好ましい。 本発明においては衝突角度は、 放出部と衝突板の 双方で調整することが出来る。  The collision angle in the present invention refers to the angle of incidence when the pre-expanded particles collide with the collision plate, 90 degrees when colliding from directly in front, and 0 degrees when scattered in parallel with the collision plate and does not collide. Then, it can take a value between 0 degrees and 90 degrees or less. The collision angle may be any angle at which the pre-expanded particles can collide, and is not particularly limited. From the viewpoint that pre-expanded particles having a more uniform cell diameter can be obtained, the collision angle is preferably 5 degrees or more. More preferably, it is 0 degree or more. In addition, it is preferably at most 85 degrees, more preferably at most 45 degrees, from the viewpoint that the pre-expanded particles after the collision are more easily sent. In the present invention, the collision angle can be adjusted by both the discharge part and the collision plate.
放出部に複数の開孔を有する場合、 本発明の目的である倍率パラツキの少ない 予備発泡粒子を得るためには、 前記複数の開孔から放出される予備発泡粒子がそ れぞれ同じように衝突板に衝突することが望ましい。 すなわち、 複数の開孔から 放出される予備発泡粒子の衝突角度および衝突距離が等しくなるように開孔およ ぴ衝突板を設置することが望まし!/、。  In the case where the discharge portion has a plurality of openings, in order to obtain pre-expanded particles having a small variation in magnification, which is the object of the present invention, the pre-expanded particles released from the plurality of openings are each the same. It is desirable to hit the impact plate. In other words, it is desirable to install apertures and impact plates so that the collision angle and collision distance of the pre-expanded particles released from the multiple apertures are equal! /.
その為には、 例えば予備発泡粒子の放出の方向は、 放出配管の軸方向から見て 放射状になるように、 放射状の方向に向けて開孔を設けることが好ましい。 また 、 衝突板は、 それぞれの開孔に対応するように、 放出部を取り囲む位置に設置す 2385 For this purpose, for example, it is preferable to provide openings in the radial direction so that the direction of release of the pre-expanded particles is radial as viewed from the axial direction of the discharge pipe. In addition, the collision plate is installed at a position surrounding the discharge part so as to correspond to each opening. 2385
17 ることが好ましい。  17 is preferred.
放出部にオリフィス板を使用する場合、 放射状の方向に向けて開孔を設けるに は、 平面形のオリフィス板を複数個並べて配置することも可能であるが、 多面形 あるいは曲面形の 1個のオリフィス板に複数の開孔をつける方が、 簡単かつ小型 化することができ望ましい。 例えば、 円柱形や多角柱形の側面に開口を設けたォ リフィス板、 または、 円錐形や多角錐形の側面に開口を設けたオリフィス板、 ま たは、 球形や半球形の面に側面に開口を設けたォリフィス板などが挙げられる。 簡単にこれを実現するには、 例えば図 1あるいは図 2に示すように、 低圧容器 は中心軸に軸対称な形状、 例えば円筒形や多角柱形にし、 放出部を中心に設置し 、 複数の放出部が中心軸からそれぞれ等しい角度になるようにすれば良い。 ある いは装置が複雑になるが、 任意の方向に向けた放出部に対してそれぞれ衝突板を 設置しても構わない。  When using an orifice plate for the discharge part, it is possible to arrange a plurality of flat orifice plates side by side in order to provide openings in the radial direction. It is preferable to provide a plurality of openings in the orifice plate because they can be simplified and downsized. For example, an orifice plate with an opening on the side of a cylindrical or polygonal column, an orifice plate with an opening on the side of a cone or polygon, or a spherical or hemispherical surface with an opening on the side. An orifice plate having an opening may be used. In order to achieve this easily, for example, as shown in FIG. 1 or FIG. 2, the low-pressure vessel has a shape that is axisymmetric about the central axis, for example, a cylindrical shape or a polygonal column, and is installed around the discharge part, What is necessary is just to make the discharge | emission part each become an equal angle from a center axis. Alternatively, the collision plate may be installed for the discharge section in any direction, though the device becomes complicated.
予備発泡粒子を放出部から放出する際に、 放出部に筒付き絞り板を設置し、 こ れを通して放出することが望ましい。 これは、 筒を通すことによって放出された 予備発泡粒子が広がりにくくなり、 個々の粒子がより均一に近い衝突距離おょぴ 衝突角度で衝突するからである。  When releasing the pre-expanded particles from the discharge section, it is desirable to install a throttle plate with a tube in the discharge section and discharge through this. This is because the pre-expanded particles released by passing through the cylinder are less likely to spread, and the individual particles collide at a more uniform collision distance and collision angle.
筒付き絞り盤の筒体の形状について図 3に従って説明する。 なお筒体の径とは 内径寸法である。 前記の筒体は、 オリフィス板の放出側に一体的に取り付けられ ることが、 好ましい。 該筒体の材質は特に限定'されるものではないが、 一般的に は金属が用いられ、 オリフィス板と一体ィ匕されるのであるが、 一体化する方法は 溶接、 嵌合、 螺合、 接着等を問わないし、 場合によっては同一物として作られて も差し支えはない。  The shape of the cylindrical body of the throttle plate with a cylinder will be described with reference to FIG. The diameter of the cylinder is the inner diameter. It is preferable that the cylinder is integrally attached to the discharge side of the orifice plate. The material of the cylindrical body is not particularly limited, but generally, a metal is used and is integrally formed with the orifice plate. The method of integration is welding, fitting, screwing, It does not matter whether it is bonded or not, and in some cases, it can be made as the same product.
筒体がオリフィス板に取り付けられる反対側の開口面積は、 筒体の大きさや長 さによっても一概には言えないが、 一般的にはオリフィス開口面積の 1 · 3倍以 上であれば充分である。 1 . 3倍以下の場合は、 放出される予備発泡粒子の凝集 や詰まりが起こりやすくなる。 筒体の長さが短ければ上記のような問題は起こら ないが、 筒体の効果は起こり難くなる。  The opening area on the opposite side where the cylinder is attached to the orifice plate cannot be specified unconditionally depending on the size and length of the cylinder, but in general, it is sufficient if it is at least 1.3 times the opening area of the orifice. is there. If the ratio is 1.3 times or less, the pre-expanded particles to be released tend to agglomerate or clog. If the length of the cylinder is short, the above problem does not occur, but the effect of the cylinder is less likely to occur.
筒体の形状は角柱や円柱状であってもよく、 この場合該筒体の開口部形状はス リットまたは円となるが、 その正面の幅または短径 (H a ) が 0 . 6 mm以上 、 好ましくは 1 . 2〜2 5 mm、 筒長さ (L) が 5 mm以上、 好ましくは 5〜 3 0 O mmの形状のものである。 筒体のスリットまたは円の正面の幅または短径 (H a ) が 0 . 6 mm未満になるとスリットまたは孔が閉塞しやすくなる。 筒長 さ (L) が 5 mm未満の場合は、 放出された水系分散物の飛散軌跡が筒の付いて いない絞り盤を使用した場合と差がなくて倍率パラツキの低減効果がなく、 3 0 O mmより長い場合は筒内部で予備発泡粒子同士が衝突して融着し、 予備発 泡粒子が得られなくなる場合がある。 The shape of the cylindrical body may be a prism or a column. In this case, the shape of the opening of the cylindrical body is a square. The width or minor axis (H a) of the front is 0.6 mm or more, preferably 1.2 to 25 mm, and the tube length (L) is 5 mm or more, preferably 5 to It has a shape of 30 O mm. If the width or minor axis (H a) of the front of the slit or circle of the cylindrical body is less than 0.6 mm, the slit or hole is likely to be closed. When the cylinder length (L) is less than 5 mm, the scattering trajectory of the released aqueous dispersion is not different from the case of using a diaphragm with no cylinder, and there is no effect of reducing the variation in magnification. If the length is longer than O mm, the pre-expanded particles may collide with each other and fuse in the cylinder, so that the pre-expanded particles may not be obtained.
また、 筒体の形状は角錐または円錐形状の一部をなすものであってもよく、 ォ リフィス板と接する部分の面積はオリフィスの開口面積に近いものであるが、 筒 体を通ってから水系分散物が放出される時点での筒体の開口面積は広くなってい るものである。  Further, the shape of the cylindrical body may be a part of a pyramid or a conical shape.The area of the portion in contact with the orifice plate is close to the opening area of the orifice, but after passing through the cylindrical body the The opening area of the cylinder at the time when the dispersion is released is large.
本発明におけるスリット形状とは、 矩形、 正方形、 菱形、 台形、 平行四辺形、 他の四角形、 三角形、 五角形、 六角形などの多角形の形状の貫通孔のことを意味 し、 円形孔とは円形、 楕円形、 矩形や正方形の相対する 2辺に該辺を直径とする 半円がつけ加えられた形状のものなどの形状の貫通孔のことを意味する。 矩形の 幅または長径おょぴ高さまたは短径はそれぞれ長辺およぴ短辺 (正方形の場合は 同じ) 、 台形の場合は底辺と高さのうち大きい方が幅または長径で小さい方が高 さまたは短径、 その他の場合、 開口部形状の重心点を通る直線で辺によって切り とられた線分のうち最も長いものが長径、 最も短いものが短径となる。 また、 楕 円形の場合は長軸と短軸がそれぞれ幅または長径おょぴ高さまたは短径、 その他 の場合、 開口部形状の重心点を通る直線で辺によって切りとられた線分のうち最 も長いもの力 S長径、 最も短いものが短径となる。  The slit shape in the present invention means a through hole having a polygonal shape such as a rectangle, a square, a rhombus, a trapezoid, a parallelogram, another square, a triangle, a pentagon, and a hexagon, and the circular hole is a circle. A through hole having a shape such as an elliptical shape, a rectangular shape, or a shape in which a semicircle having a diameter on the opposite side is added to two opposite sides of a rectangle or square. The width or major axis of the rectangle is the height or minor axis, respectively, the long side and the minor side (the same is true for a square), and the trapezoid is the larger of the base or height is the smaller of the width or major axis. In the height or minor axis, in other cases, the longest line segment of the straight line passing through the center of gravity of the opening shape and cut by the side is the major axis, and the shortest is the minor axis. In the case of an ellipse, the major axis and minor axis are the width or major axis height or minor axis, respectively.In other cases, a straight line passing through the center of gravity of the opening shape is a line segment cut by a side. The longest one is the S major axis, and the shortest one is the minor axis.
前記筒付き絞り盤の筒体を 2以上設ける場合、 それぞれの筒体はスリツト形状 または円形状であって、 すべて同じ形状のものであってもよく、 すべて異なる形 状のものであってもよく、 一部が同じで一部が異なる形状のものであってもよい 以上によって、 本発明は例えば、 次のように行うことができる。 必要により、 親水性ポリマー、 充填剤などを含有するポリオレフイン系樹脂 粒子を耐圧容器内で分散剤および、 分散助剤を含む水系分散媒に分散させ、 ポリ ォレフィン樹脂粒子をポリオレフイン系樹脂の軟ィ匕温度以上の温度に加熱し、 発 泡剤を樹脂粒子に含浸せしめる。 ポリオレフイン系樹脂粒子を水系分散媒に分散 させた後、 ポリオレフイン系樹脂の軟化点以上の に加熱し、 好ましくはWhen two or more cylinders of the throttle plate with a cylinder are provided, each cylinder has a slit shape or a circular shape, and may have the same shape or may have different shapes. However, the present invention can be carried out, for example, as follows. If necessary, polyolefin-based resin particles containing a hydrophilic polymer and a filler are dispersed in an aqueous dispersion medium containing a dispersant and a dispersing aid in a pressure-resistant container, and the polyolefin resin particles are converted into a polyolefin-based resin. Heat to a temperature equal to or higher than the temperature to impregnate the resin particles with the foaming agent. After dispersing the polyolefin resin particles in an aqueous dispersion medium, the dispersion is heated to a temperature higher than the softening point of the polyolefin resin, preferably
0 . 6〜7 . 5 M P aになるまで耐圧容器内を加圧する。 加圧を先に行いその後 加熱を行つても良い。 加熱 ·加圧温度の調整によってポリオレフィン樹脂粒子の 含水率を好ましくは 1〜 5 0 %になるように調整する。 このように所望の含水率 になったポリオレフィン樹脂粒子を、 例えば大気圧である、 パイプ、 ダクト状で 外気と遮断した装置で構成された低圧雰囲気下に放出する。 Pressurize the pressure vessel until the pressure reaches 0.6 to 7.5 MPa. Pressurization may be performed first and then heating may be performed. The water content of the polyolefin resin particles is preferably adjusted to 1 to 50% by adjusting the heating and pressurizing temperatures. The polyolefin resin particles having the desired water content as described above are discharged, for example, under a low-pressure atmosphere at atmospheric pressure, which is constituted by a pipe or duct-like device that is isolated from the outside air.
その際、 本発明においては耐圧容器の放出部から、 放出配管中の該混合物の流 れる方向とは異なる方向に該混合物を放出させ、 パイプ、 ダクト等の容器壁に衝 突させることが好ましい。 また、 放出部に複数の開孔を有することが生産性の点 で好ましい。  At this time, in the present invention, it is preferable that the mixture is discharged from the discharge portion of the pressure-resistant container in a direction different from the direction in which the mixture flows in the discharge pipe, and the mixture is made to collide with a container wall such as a pipe or a duct. Further, it is preferable from the viewpoint of productivity that the discharge section has a plurality of openings.
このようにして得られるポリオレフイン系樹脂粒子からの予備発泡粒子は、 発 泡倍率が好ましくは約 2〜 4 3倍、 さらに好ましくは約 3 1 5倍である。 前記 発泡倍率が約 2倍未満の場合、 柔軟性、 緩衝特性などが要求される成形体を得る には充分でない場合があり、 また、 約 4 3倍を超える場合、 得られる成形体の機 械的強度、 耐熱性などが不充分となる場合がある。 また、 独立気泡率は、 好まし くは 8 0〜 1 0 0 %、 更に好ましくは 9 0〜 1 0 0 °/0であり、 および平均気泡径 は好ましくは 1 0〜5 0 0 μ ηι、 更に好ましくは 5 0〜 3 0 0 μ mを有する。 独 立気泡率が 8 0 %未満の場合、 2次発泡力が不足する場合があり、 成形時に融着 不良が発生し、 得られる成形体の機械的な強度などが低下する場合がある。 8 0 %以上の独立気泡率を有するポリオレフィン系樹脂発泡粒子は、 要すればこの予 備発泡粒子を而圧容器中で加熱加圧下、 一定時間処理することによって空気含浸 を行つたのちに成形用金型に充填し、 蒸気加熱することにより型内発泡成形して 金型どおりの成形体を製造することが可能である。 また、 前記平均気泡径が 1 0 μ m未満の場合、 得られる成形体の形状が歪むなどの問題が生じる恐れがあり、 500 μηιを超える場合、 得られる成形体の機械的強度が低下する場合がある 。 かくして得られる発泡成形体は、 柔軟性、 緩衝性に優れ、 しかも寸法収縮率が 小さく、 形状変形が小さいため、 きわめて商品価値が高い。 〔実施例〕 The pre-expanded particles from the polyolefin-based resin particles thus obtained preferably have an expansion ratio of about 2 to 43 times, more preferably about 3 15 times. When the expansion ratio is less than about 2 times, it may not be enough to obtain a molded article requiring flexibility, cushioning properties, and the like. Strength and heat resistance may be insufficient. Further, the closed cell rate is preferably 80 to 100%, more preferably 90 to 100 ° / 0 , and the average cell diameter is preferably 10 to 500 μηι, More preferably, it has a size of 50 to 300 μm. If the closed cell ratio is less than 80%, the secondary foaming power may be insufficient, and poor fusion may occur at the time of molding, and the mechanical strength of the obtained molded article may be reduced. The polyolefin resin foam particles having a closed cell ratio of 80% or more can be air-impregnated by subjecting the pre-expanded foam particles to heating and pressurization in a pressure vessel for a certain period of time, if necessary, for molding. It is possible to produce a molded product according to the mold by filling in the mold and subjecting it to foam heating by steam heating. Further, if the average cell diameter is less than 10 μm, there is a possibility that a problem such as distortion of the shape of the obtained molded article may occur, If it exceeds 500 μηι, the mechanical strength of the obtained molded article may decrease. The foamed molded article thus obtained has excellent flexibility and cushioning properties, and has a small dimensional shrinkage and small shape deformation, so that it has extremely high commercial value. 〔Example〕
つぎに、 本発明の製造方法を実施例に基づいて説明する力 本努明はかかる実 施例のみに限定されるものではなレ、。  Next, the ability to explain the production method of the present invention based on examples will not be limited to only these examples.
(実施例 1)  (Example 1)
ポリオレフイン系樹脂であるエチレン一プロピレンランダム共重合体 (密度 0. 91 gZcm3、 エチレン含有率 3%、 融点 145°C、 Ml = 5. 5 g/10 分、 曲げ弾性率;! O O OMP a) 100部に対し、 親水性ポリマー (エチレン一 メタタリル酸共重合体のカルボキシル基をナトリウムイオンで中和させたアイォ ノマー (エチレン単位 85%とメタクリル酸単位 15%とからなり、 メタクリル 酸単位の 60 %が塩を形成しているもの、 MI -0. 9 g 10分、 融点 89 °C 、 吸水率 1%) ) 2部おょぴ無機充填剤としてタルク (平均粒径 7 μπι) 0. 3 部を.添加し、 50 mm φ単軸押出機に供給し、 .溶融混練したのち、 直径 . Ethylene-propylene random copolymer, a polyolefin resin (density 0.91 gZcm 3 , ethylene content 3%, melting point 145 ° C, Ml = 5.5 g / 10 min, flexural modulus; OO OMP a) 100 parts by weight of a hydrophilic polymer (an ionomer obtained by neutralizing the carboxyl group of an ethylene-methacrylic acid copolymer with sodium ions (consisting of 85% ethylene units and 15% methacrylic acid units, 60% of methacrylic acid units) Is a salt, MI -0.9 g 10 min, melting point 89 ° C, water absorption 1%)) 2 parts Talc (average particle size 7 μπι) 0.3 parts as inorganic filler Is added and fed to a 50 mm φ single screw extruder.
1. 5 mm ψの円筒ダイより押し出し、 水冷後カツタ で切断し、 円柱状のポリ ォレフィン系樹脂組成物からの樹脂粒子 (ペレット) ( 1. 8 m g /粒) を得た 得られた樹脂粒子 (前記含水率の測定方法で油浴の温度を 154. 5 °Cとして 測定した含水率は 5. 0 %) 100部 (500 k g) 、 分散剤として第三リン酸 カルシウム 0. 5部および分散助剤として n—パラフィンスルホン酸ソーダ 0. 01部を、 水 300部と共に図 1に示す装置の耐圧容器 4内に仕込んだのち 、 容器内水分散物を攪拌しながら、 155. 0 °Cまで加熱した。 このときの耐圧 容器内の圧力は約 0. 5 M P aであった。 そののち、 発泡倍率が 10倍になるよ うに、 空気加圧により耐圧容器の内圧を 0. 8〜3. OMPaとし、 すぐに耐圧 容器下部のバルブ 8を開いて樹脂粒子および水系分散媒の混合物を放出部 1から 放出して独立気泡構造を有する予備発泡粒子を得た。 放出中は耐圧容器内の圧力 が低下しないように、 空気で圧力を保持した。 Extruded from a 1.5 mm mm cylindrical die, water-cooled and cut with a cutter to obtain resin particles (pellets) (1.8 mg / particle) from a cylindrical polyolefin resin composition. (Water content measured at an oil bath temperature of 154.5 ° C by the above-mentioned water content measurement method was 5.0%, and the water content was 5.0%) 100 parts (500 kg), 0.5 parts of tribasic calcium phosphate as a dispersant and dispersion After charging 0.01 part of n-paraffin sodium sulfonate as an auxiliary agent together with 300 parts of water into the pressure-resistant container 4 of the apparatus shown in FIG. 1, while stirring the aqueous dispersion in the container to 155.0 ° C. Heated. The pressure inside the pressure vessel at this time was about 0.5 MPa. After that, the internal pressure of the pressure vessel is adjusted to 0.8 to 3. OMPa by air pressure so that the expansion ratio becomes 10 times, and the valve 8 at the lower part of the pressure vessel is immediately opened to mix the resin particles and the aqueous dispersion medium. Was released from the discharge section 1 to obtain pre-expanded particles having a closed cell structure. Pressure in pressure vessel during discharge The pressure was maintained with air so that the pressure did not decrease.
この際、 放出部のオリフィス板は、 外径が 3 0 mm、 厚さ (b ) が 5 mmの円 管の側面に口径 (h a ) が 3 . 0 mmのオリフィス口を 7 2度の等間隔に 5っ設 けたオリフィス板を使った。 放出部には、 内径 6 3 0 mmの金属製の円柱形ダク ト容器を設置し、 その中心にオリフィスを、 放出配管中のポリオレフイン系樹脂 粒子と水系分散媒の混合物の流れる方向と平行になるように設置した。 このとき 表 1に示すように衝突距離 (D) は 3 0 0 mm、 放出角度 (放出配管中のポリオ レフィン系樹脂粒子と水系分散媒の混合物の流れる方向と、 予備発泡粒子の放出 方向とのなす角度) は 9 0度、 衝突角度 (A) は 9 0度となる。 (図 1に示す装 置)  At this time, the orifice plate of the discharge part has an orifice port with a diameter (ha) of 3.0 mm on the side surface of a circular pipe with an outer diameter of 30 mm and a thickness (b) of 5 mm at an equal interval of 72 degrees. We used orifice plates that were installed at five locations. A metal cylindrical duct container with an inner diameter of 63 mm is installed at the discharge section, and an orifice is set at the center of the duct, parallel to the flow direction of the mixture of polyolefin resin particles and the aqueous dispersion medium in the discharge pipe. It was installed as follows. At this time, as shown in Table 1, the collision distance (D) was 300 mm, and the discharge angle (the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe and the discharge direction of the pre-expanded particles) Angle) is 90 degrees, and the collision angle (A) is 90 degrees. (Device shown in Fig. 1)
放出された予備発泡粒子は、 送風機によって後工程に送りながら、 仕込んだ樹 脂をすベて放出して予備発泡粒子を得ることができた。 倍率パラツキは 6 %と、 良好であった。  The released pre-expanded particles were sent to the post-process by a blower, and all the charged resin was released to obtain pre-expanded particles. The magnification variation was as good as 6%.
(発泡倍率) 予備発泡粒子 3〜 1 0 g程度を量り取り、 6 0 °Cで 6時間以上乾燥 した後、 重量 wを測定後、 7没法にて体積 Vを測定し、 発泡粒子の真比重  (Expansion ratio) Pre-expanded particles weigh about 3 to 10 g, dry at 60 ° C for 6 hours or more, measure weight w, measure volume V by 7 dip method, specific gravity
p b = wZvを求め、 原料組成物の密度 P rとの比により、発泡倍率 K= P rZi) b を求めた。 seeking p b = wZv, the ratio between the density P r of the material composition was determined expansion ratio K = P r Zi) b.
表 1 table 1
Figure imgf000024_0001
Figure imgf000024_0001
(実施例 2) (Example 2)
放出部のオリフィス板は、 中心軸との角度が 70度をなす厚さ (b) が 5 mm の円錐板の側面に口径 (h a) が 3. Ommのオリフィス口を軸から φ 30ミリ の位置に 1つ設け、 さらに筒の内径 (Ha) が 7. 0mm、 筒の長さ (L) カ 30mmの筒体を取り付けたオリフィス板を使った。 放出部には、 内径 23 5m mの金属製の円柱形ダクト容器をオリフィスを中心に、 放出配管中のポリオレフ ィン系樹脂粒子と水系分散媒の混合物の流れる方向と平行になるように設置した 。 このとき表 1.に示すように衝突距離 (D) は 300mm、 放出角度は 20度、 衝突角度 (A) は 20度となる。 それ以外は実施例 1と同様にして予備発泡粒子 を得た。 放出された予備発泡粒子は、 衝突板に反射してダクト容器の奥方に飛散し、 スムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子 を得ることができた。 倍率パラツキは 4%と、 良好であった。 The orifice plate of the discharge part is located at an angle of 70 degrees from the central axis. The thickness (b) is 5 mm. An orifice plate with an inner diameter (Ha) of 7.0 mm and a length of 30 mm (L) was used. At the discharge section, a metal cylindrical duct container with an inner diameter of 235 mm was installed around the orifice so as to be parallel to the flow direction of the mixture of polyolefin resin particles and aqueous dispersion medium in the discharge pipe. . At this time, as shown in Table 1, the collision distance (D) is 300 mm, the emission angle is 20 degrees, and the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 1, pre-expanded particles were obtained. The released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and while being smoothly sent to the subsequent process, all the charged resin was released and pre-expanded particles could be obtained. . The magnification variation was as good as 4%.
(実施例 3)  (Example 3)
放出部のオリフィス板は、 中心軸との角度が 70度をなす厚さ (b) が 5mm の円錐板の側面に口径 (h a) が 3. Ommのオリフィス口を軸から φ 30ミリ の位置に 72度の等間隔に 5つ設けたオリフィス板を使った。 低圧容器は内径 23 5 mmの金属製の円柱形ダクト容器を使い、 オリフィスを低圧容器の中心に 、 放出配管中のポリオレフィン系樹脂粒子と水系分散媒の混合物の流れる方向と 平行になるように設置した。 このとき表 1に示すように衝突距離 (D) は 300 mm、 放出角度は 20度、 衝突角度 (A) は 20度となる。 それ以外は実施例 1 と同様にして予備発泡粒子を得た。  The orifice plate of the discharge part is located on the side of a conical plate with a thickness (b) of 5 mm and an angle of 70 degrees with the central axis. The diameter (ha) of the orifice is 3. Omm. Five orifice plates provided at equal intervals of 72 degrees were used. The low-pressure vessel uses a metal cylindrical duct vessel with an inner diameter of 235 mm, and the orifice is installed at the center of the low-pressure vessel so as to be parallel to the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe. did. At this time, as shown in Table 1, the collision distance (D) is 300 mm, the emission angle is 20 degrees, and the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 1, pre-expanded particles were obtained.
放出された予備発泡粒子は、 衝突板に反射してダクト容器の奥方に飛散し、 ス ムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子を 得ることができた。 倍率ノ ラツキは 6%と、 良好であった。  The released pre-foamed particles are reflected by the collision plate and scatter to the back of the duct container, and are smoothly sent to the post-process, whereupon all the charged resin is released to obtain pre-foamed particles. Was. The magnification was 6%, which was good.
(実施例 4)  (Example 4)
放出部のォリフィス板は、 実施例 3のオリフィス板のそれぞれのォリフィス口 に筒の内径 (Ha) が 7. Omm、 筒の長さ (L) が 30 mmの筒体を 5つ取り 付けたオリフィス板を使った (図 3) 。 このとき表 1に示すように衝突距離  The orifice plate of the discharge part is composed of five orifices with a cylinder inner diameter (Ha) of 7. Omm and a cylinder length (L) of 30 mm attached to each orifice opening of the orifice plate of Example 3. Using a board (Figure 3). At this time, as shown in Table 1, the collision distance
(D) は 300mm、 放出角度は 20度、 衝突角度 (A) は 20度となる。 それ 以外は実施例 3と同様にして予備発泡粒子を得た。 (図 2に示す装置)  (D) is 300 mm, the release angle is 20 degrees, and the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 3, pre-expanded particles were obtained. (The device shown in Fig. 2)
放出された予備発泡粒子は、 衝突板に反射してダクト容器の奥方に飛散し、 ス ムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子を 得ることができた。 倍率バラツキは 4%となり、 実施例 3よりもさらに良好であ つた。  The released pre-foamed particles are reflected by the collision plate and scatter to the back of the duct container, and are smoothly sent to the post-process, whereupon all the charged resin is released to obtain pre-foamed particles. Was. The magnification variation was 4%, which was even better than in Example 3.
(実施例 5)  (Example 5)
ポリオレフイン系樹脂であるエチレン一プロピレンランダム共重合体 (密度 0. 91 g/c エチレン含有率 3 %、 融点 145。C、 MI = 5. 5 gZl O分、 曲げ弾性率 100 OMP a) 100部に対し、 無機 充填剤としてタルク (平均粒径 7. 111) 0. 1部を添加し、 5 Omm φ単軸押出 機に供給し、 溶融混練したのち、 直径 1. 5 mm φの円筒ダイより押し出し、 水 冷後カッターで切断し、 円柱状のポリオレフイン系樹脂組成物からの樹脂粒子 ( ペレット) (1. 8mg Z粒) を得た。 Ethylene-propylene random copolymer, a polyolefin resin (density 0.91 g / c, ethylene content 3%, melting point 145.C, MI = 5.5 gZlO content, flexural modulus 100 OMP a) To 100 parts, 0.1 part of talc (average particle size 7.111) was added as an inorganic filler, and the mixture was fed to a 5 Omm φ single screw extruder. After feeding, melt-kneading, extruding through a cylindrical die with a diameter of 1.5 mm φ, cooling with water and cutting with a cutter, resin particles (pellets) from columnar polyolefin resin composition (1.8 mg Z particles) Got.
得られた樹脂粒子 (前記含水率の測定方法で油浴の温度を 154. 5 °Cとして 測定した含水率は 5. 0%) 100部 (3000 k g) 、 分散剤として第三リン 酸カルシウム 1. 5部および分散助剤として n—パラフィンスルホン酸ソーダ 0. 03部を、 水 300部と共に図 2に示す装置の耐圧容器 4内に仕込んだのち 、 容器内水分散物を攪拌しながら、 ブタン 12部を圧入し 140 °Cまで加熱した 。 このときの耐圧容器内の圧力は約 1. 3MPaであった。 そののち、 耐圧容器 4内の圧力を発泡倍率が 15倍になるようにブタンで保持しながらパルプ 8を開 いて樹脂粒子および水系分散媒の混合物を放出部 1から放出して独立気泡構造を 有する予備発泡粒子を得た。  100 parts (3000 kg) of the obtained resin particles (water content measured at an oil bath temperature of 154.5 ° C by the above-described method of measuring water content at 154.5 ° C), 100 parts (3000 kg), and 1% calcium tertiary phosphate as a dispersant After charging 5 parts and 0.03 part of sodium n-paraffin sulfonate as a dispersing aid together with 300 parts of water in the pressure vessel 4 of the apparatus shown in FIG. 2, while stirring the aqueous dispersion in the vessel, butane was added. 12 parts were press-fitted and heated to 140 ° C. At this time, the pressure in the pressure vessel was about 1.3 MPa. After that, the pulp 8 is opened while the pressure in the pressure-resistant container 4 is maintained with butane so that the expansion ratio becomes 15 times, and the mixture of the resin particles and the aqueous dispersion medium is released from the discharge portion 1 to have a closed cell structure. Pre-expanded particles were obtained.
この際、 放出部は、 実施例 4 (図 3) と同じ構造とした。 このとき表 1に示す ように衝突距離 (D) は 300mm、 放出角度は 20度、 衝突角度 (A) は 20 度となる。 それ以外は実施例 4と同様にして予備発泡粒子を得た。 (図 2に示す 装置)  At this time, the discharge part had the same structure as that of Example 4 (FIG. 3). At this time, as shown in Table 1, the collision distance (D) is 300 mm, the emission angle is 20 degrees, and the collision angle (A) is 20 degrees. Otherwise in the same manner as in Example 4, pre-expanded particles were obtained. (The device shown in Fig. 2)
放出された予備発泡粒子は、 衝突板に反射し Tダクト容器の奥方に飛散し、 ス ムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子を 得ることができた。 倍率パラツキは 7%と、 良好であった。  The released pre-expanded particles are reflected by the collision plate and scatter to the back of the T duct container, and are smoothly sent to the subsequent process, whereupon all of the charged resin can be released to obtain pre-expanded particles. Was. The magnification variation was as good as 7%.
(実施例 6)  (Example 6)
•ポリオレフイン系樹脂であるエチレン一プロピレンランダム共重合体 (密度 • Polyolefin-based ethylene-propylene random copolymer (density
0. 91 gZcm3、 エチレン含有率 3%、 融点 142°C、 Ml =7. O g/10 分) 100部に対し、 親水性ポリマーとしてエチレン一 (メタ) アクリル酸共重 合体をカリウムイオン架橋したエチレン系アイオノマー樹脂 (商品名ハイミラン SD 100 三井デュポンポリケミカル社製) 2部、 メラミン (商品名メラミン BASFネ環) 0. 2部、 および無機充填剤としてタルク (平均粒径 7 μπι) 0. 3部を添加し、 実施例 1と同様にして樹脂粒子 (ペレット) ( 1. 8 m g Z粒) を得た。 0.91 gZcm 3 , ethylene content 3%, melting point 142 ° C, Ml = 7. Og / 10 min) Potassium ion crosslinking of ethylene- (meth) acrylic acid copolymer as hydrophilic polymer to 100 parts 2 parts of ethylene ionomer resin (trade name: Himilan SD100, manufactured by DuPont Mitsui Polychemicals), 0.2 part of melamine (trade name: Melamine BASF Ne-ring), and talc as an inorganic filler (average particle size: 7 μπι) 0.3 parts were added, and resin particles (pellets) (1.8 mg Z particles) were obtained in the same manner as in Example 1.
耐圧容器 4の加熱温度を 1 52. 0°Cとして、 発泡倍率が 8倍となるようにし た他は実施例 4と同様にして予備発泡粒子を得た。  Pre-expanded particles were obtained in the same manner as in Example 4, except that the heating temperature of the pressure-resistant container 4 was set to 152.0 ° C. and the expansion ratio was set to 8 times.
結果を表 2に示す。 放出された予備発泡粒子は、 衝突板に反射してダクト容器 の奥方に飛散し、 スムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出 して予備発泡粒子を得ることができた。 倍率パラツキは 7 %と、 良好であった。 表 2  Table 2 shows the results. The released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all of the charged resin was released to obtain pre-expanded particles. . The magnification variation was as good as 7%. Table 2
Figure imgf000027_0001
Figure imgf000027_0001
(実施例 7) (Example 7)
メラミン (商品名メラミン BASF社製) を 0. 5部添加した他は実施例 6 W Example 6 except that 0.5 parts of melamine (trade name: Melamine, manufactured by BASF) was added. W
26 と同様にして樹脂粒子 (ペレット) (1 . 8 m g /粒) を得た。 耐圧容器 4の 加熱温度を 1 5 2 . 0 °Cとして、 発泡倍率が 2 4倍となるようにした他は実施例 4と同様にして予備発泡粒子を得た。  Resin particles (pellets) (1.8 mg / particle) were obtained in the same manner as in Example 26. Pre-expanded particles were obtained in the same manner as in Example 4, except that the heating temperature of the pressure-resistant container 4 was set to 152.0 ° C. and the expansion ratio was set to 24 times.
結果を表 2に示す。 放出された予備発泡粒子は、 衝突板に反射してダクト容器 の奥方に飛散し、 スムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出 して予備発泡粒子を得ることができた。 倍率パラツキは 1 %と、 良好であった。 Table 2 shows the results. The released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all of the charged resin was released to obtain pre-expanded particles. . The magnification variation was as good as 1%.
(実施例 8 ) (Example 8)
放出部のオリフィス板は、 放出角度は 2 5度、 衝突角度 (A) は 2 5度とし、 衝突距離 (D) は 2 4 3 mmとなるようにした。 それ以外は実施例 5と同様にし て予備発泡粒子を得た。 (図 2に示す装置)  The discharge angle of the orifice plate was 25 degrees, the collision angle (A) was 25 degrees, and the collision distance (D) was 243 mm. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained. (The device shown in Fig. 2)
結果を表 2に示す。 放出された予備発泡粒子は、 衝突板に反射してダクト容器 の奥方に飛散し、 スムーズに後工程に送られながら、 仕込んだ樹脂をすぺて放出 して予備発泡粒子を得ることができた。 倍率パラツキは 3 %と、 良好であった。 (実施例 9 )  Table 2 shows the results. The released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all the charged resin was released to obtain pre-expanded particles. . The magnification variation was good at 3%. (Example 9)
放出部のオリフィス板は、 放出角度は 1 5度、 衝突角度 (A) は 1 5度とし、 衝突距離 (D) は 3 9 6 mmとなるようにした。 それ以外は実施例 5と同様にし て予備発泡粒子を得た。 (図 2に示す装置)  The discharge angle of the orifice plate was 15 degrees, the collision angle (A) was 15 degrees, and the collision distance (D) was 3996 mm. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained. (The device shown in Fig. 2)
結果を表 2に示す。 放出された予備発泡粒子は、 衝突板に反射してダクト容器 の奥方に飛散し、 スムーズに後工程に送られながら、 仕込んだ樹脂をすベて放出 して予備発泡粒子を得ることができた。 倍率パラツキは 6 %と、 良好であった。 (比較例 1 ) '  Table 2 shows the results. The released pre-expanded particles were reflected by the collision plate and scattered to the back of the duct container, and were smoothly sent to the subsequent process, and all of the charged resin was released to obtain pre-expanded particles. . The magnification variation was as good as 6%. (Comparative Example 1) '
放出部のオリフィス板は、 厚さ (b ) が 5 mmの平板に口径 (h a ) が 3 . 0 mmのオリフィス口を中心から φ 3 0ミリの位置に 7 2度の等間隔に 5つ設けた オリフィス板を使った。 放出部には、 内径 6 3 5 mmの金属製の円柱形ダクト容 器を設置し、 更にオリフィスの正面に、 放出配管中のポリオレフイン系樹脂粒子 と水系分散媒の混合物の流れる方向と垂直になるように平板の衝突板を設置した 。 このとき表 1に示すように衝突距離 (D) は 3 0 0 mm、 放出角度は 0度、 衝 突角度 (A) は 9 0度となる。 それ以外は実施例 1と同様にして予備発泡粒子を 得た。 The orifice plate of the discharge part is provided with 5 orifices at a distance of φ30 mm from the center of the orifice with a diameter (ha) of 3.0 mm on a flat plate with a thickness (b) of 5 mm. Used orifice plate. At the discharge part, a metal cylindrical duct container with an inner diameter of 635 mm is installed, and in front of the orifice, it is perpendicular to the flow direction of the mixture of the polyolefin resin particles and the aqueous dispersion medium in the discharge pipe. A flat collision plate was installed as follows. At this time, as shown in Table 1, the collision distance (D) is 300 mm, the discharge angle is 0 degree, and the collision angle (A) is 90 degrees. Otherwise, the pre-expanded particles were prepared in the same manner as in Example 1. Obtained.
このとき放出された予備発泡粒子は、 倍率パラツキは 6 %と良好であつたが、 送風機を用いても衝突板に遮られて後工程に送ることができず、 低圧容器が粒子 で閉塞したところで生産を中断した。  The pre-expanded particles released at this time had a good magnification variation of 6%, but could not be sent to the subsequent process because they were blocked by the impingement plate even with the use of a blower. Production was suspended.
(比較例 2 )  (Comparative Example 2)
放出部のオリフィス板は、 比較例 1のオリフィス板を使つた。 衝突板は設置し なかつた。 それ以外は比較例 1と同様にして予備発泡粒子を得た。  The orifice plate of Comparative Example 1 was used as the orifice plate at the discharge part. No collision plate was installed. Otherwise in the same manner as in Comparative Example 1, pre-expanded particles were obtained.
放出された予備発泡粒子は、 衝突せずにダクト容器の奥方に飛散し、 スムーズ に後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子を得るこ とができた。 倍率パラツキは 1 5 %と、 実施例 1〜 4のように良好ではなかった  The released pre-expanded particles were scattered to the back of the duct container without collision, and while being smoothly sent to the subsequent process, all the charged resin was released to obtain pre-expanded particles. The magnification variation was 15%, which was not as good as in Examples 1 to 4.
(比較例 3 ) (Comparative Example 3)
放出部のオリフィス板は、 比較例 1のオリフィス板を使った。 衝突板は設置し なかつた。 それ以外は実施例 5と同様にして予備発泡粒子を得た。  The orifice plate of Comparative Example 1 was used as the orifice plate at the discharge part. No collision plate was installed. Otherwise in the same manner as in Example 5, pre-expanded particles were obtained.
放出された予備発泡粒子は、 衝突せずにダクト容器の奥方に飛散し、 スムーズ に後工程に送られながら、 仕込んだ樹脂をすベて放出して予備発泡粒子を得るこ とができた。 倍率パラツキは 2 2 %と、 実施例 5のように良好ではなかった。  The released pre-expanded particles were scattered to the back of the duct container without collision, and while being smoothly sent to the subsequent process, all the charged resin was released to obtain pre-expanded particles. The magnification variation was 22%, which was not as good as in Example 5.

Claims

請求の範囲 The scope of the claims
1 . ポリオレフィン系樹脂粒子を耐圧容器内で水系分散媒に分散させ、 前記樹 脂粒子の軟化温度以上の温度に加熱 ·加圧後、 耐圧容器内の内圧よりも低圧雰囲 気下に放出することによって予備発泡させる際に、 耐圧容器の放出部から、 放出 配管中のポリオレフイン系樹脂粒子と水系分散媒の混合物の流れる方向と異なる 方向に該混合物を放出し、 衝突板に衝突させることを特徴とするポリオレフイン 系樹脂予備発泡粒子の製造方法。  1. Polyolefin-based resin particles are dispersed in an aqueous dispersion medium in a pressure-resistant container, heated to a temperature higher than the softening temperature of the resin particles, pressurized, and then released in an atmosphere having a pressure lower than the internal pressure in the pressure-resistant container. During prefoaming, the mixture is discharged from the discharge part of the pressure-resistant container in a direction different from the flow direction of the mixture of the polyolefin-based resin particles and the aqueous dispersion medium in the discharge pipe, and collides with the collision plate. A method for producing pre-expanded polyolefin resin particles.
2 . 予備発泡粒子が衝突板に衝突する際の衝突角度が 5〜 8 5度であることを 特徴とする請求の範囲第 1項に記載のポリオレフイン系樹脂予備発泡粒子の製造 方法。  2. The method for producing pre-expanded polyolefin resin particles according to claim 1, wherein the collision angle at which the pre-expanded particles collide with the collision plate is 5 to 85 degrees.
3 . 前記放出部が複数の開孔を有していることを特徴とする請求の範囲第 1項 または第 2項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。  3. The method for producing polyolefin resin pre-expanded particles according to claim 1, wherein the discharge section has a plurality of openings.
4. 予備発泡粒子が衝突板に衝突する際に、 放出部の複数の開孔から放出され る予備発泡粒子の衝突角度および衝突距離が略等しいことを特徴とする請求の範 囲第 1項〜第 3項のいずれか一項に記載のポリオレフィン系樹脂予備発泡粒子の 製造方法。  4. When the pre-expanded particles collide with the impingement plate, the collision angle and collision distance of the pre-expanded particles released from the plurality of openings of the discharge section are substantially equal. 4. The method for producing pre-expanded polyolefin resin particles according to any one of claim 3.
5 . 前記衝突板が容器壁面であることを特徴とする請求の範囲第 1項〜第 4項 のいずれか一項に記載のポリオレフイン系樹脂予備発泡粒子の製造方法。  5. The method for producing polyolefin resin pre-expanded particles according to any one of claims 1 to 4, wherein the collision plate is a container wall surface.
6 . 放出部の開孔が筒付き絞り板であることを特徴とする請求の範囲第 1項〜 第 5項のいずれ力、一項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。 6. The method for producing pre-expanded polyolefin resin particles according to any one of claims 1 to 5, wherein the opening of the discharge portion is a throttle plate with a cylinder.
PCT/JP2005/002385 2004-03-05 2005-02-09 Method for producing pre-expanded particles of polyolefinic resin WO2005085337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510631A JP4818101B2 (en) 2004-03-05 2005-02-09 Method for producing polyolefin resin pre-expanded particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004061716 2004-03-05
JP2004-061716 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005085337A1 true WO2005085337A1 (en) 2005-09-15

Family

ID=34918082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002385 WO2005085337A1 (en) 2004-03-05 2005-02-09 Method for producing pre-expanded particles of polyolefinic resin

Country Status (2)

Country Link
JP (1) JP4818101B2 (en)
WO (1) WO2005085337A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141551A (en) * 2013-01-22 2014-08-07 Kaneka Corp Polyethylene-based resin foamed particles, polyethylene-based resin in-mold foam-molded article and method for producing the same
EP3482903A4 (en) * 2016-07-06 2020-03-04 Kaneka Corporation Foaming particle manufacturing device using polyolefin-based resin particle and method for manufacturing said foaming particle
WO2020158061A1 (en) 2019-01-31 2020-08-06 株式会社カネカ Foamed particle dehydration device and dehydration method, and use thereof
WO2020170694A1 (en) * 2019-02-18 2020-08-27 株式会社カネカ Method for producing thermoplastic resin foaming particles, and thermoplastic resin foaming particles
WO2022163433A1 (en) * 2021-01-28 2022-08-04 株式会社カネカ Manufacturing method and manufacturing device for foamed particles
WO2022186281A1 (en) * 2021-03-04 2022-09-09 株式会社カネカ Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these
WO2024204327A1 (en) * 2023-03-28 2024-10-03 株式会社カネカ Production method and production apparatus for thermoplastic resin foam particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355816A (en) * 2001-05-31 2002-12-10 Kanegafuchi Chem Ind Co Ltd Throttle plate with cylinder
JP2003082148A (en) * 2001-09-11 2003-03-19 Kanegafuchi Chem Ind Co Ltd Method for manufacturing polyolefin resin preliminarily expanded particle
JP2003192820A (en) * 2001-12-27 2003-07-09 Kanegafuchi Chem Ind Co Ltd Method of production for polyolefin pre-expanded beads and pre-expanded beads obtained by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355816A (en) * 2001-05-31 2002-12-10 Kanegafuchi Chem Ind Co Ltd Throttle plate with cylinder
JP2003082148A (en) * 2001-09-11 2003-03-19 Kanegafuchi Chem Ind Co Ltd Method for manufacturing polyolefin resin preliminarily expanded particle
JP2003192820A (en) * 2001-12-27 2003-07-09 Kanegafuchi Chem Ind Co Ltd Method of production for polyolefin pre-expanded beads and pre-expanded beads obtained by the method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141551A (en) * 2013-01-22 2014-08-07 Kaneka Corp Polyethylene-based resin foamed particles, polyethylene-based resin in-mold foam-molded article and method for producing the same
EP3482903A4 (en) * 2016-07-06 2020-03-04 Kaneka Corporation Foaming particle manufacturing device using polyolefin-based resin particle and method for manufacturing said foaming particle
US11498247B2 (en) 2016-07-06 2022-11-15 Kaneka Corporation Foaming particle manufacturing device using polyolefin-based resin particle and method for manufacturing said foaming particle
WO2020158061A1 (en) 2019-01-31 2020-08-06 株式会社カネカ Foamed particle dehydration device and dehydration method, and use thereof
WO2020170694A1 (en) * 2019-02-18 2020-08-27 株式会社カネカ Method for producing thermoplastic resin foaming particles, and thermoplastic resin foaming particles
CN113454150A (en) * 2019-02-18 2021-09-28 株式会社钟化 Method for producing thermoplastic resin foamed particles, and thermoplastic resin foamed particles
JPWO2020170694A1 (en) * 2019-02-18 2021-12-23 株式会社カネカ Manufacturing method of thermoplastic resin foamed particles, and thermoplastic resin foamed particles
JP7394109B2 (en) 2019-02-18 2023-12-07 株式会社カネカ Method for producing expanded thermoplastic resin particles, and expanded thermoplastic resin particles
CN113454150B (en) * 2019-02-18 2023-12-26 株式会社钟化 Method for producing thermoplastic resin foam particles, and thermoplastic resin foam particles
WO2022163433A1 (en) * 2021-01-28 2022-08-04 株式会社カネカ Manufacturing method and manufacturing device for foamed particles
WO2022186281A1 (en) * 2021-03-04 2022-09-09 株式会社カネカ Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these
WO2024204327A1 (en) * 2023-03-28 2024-10-03 株式会社カネカ Production method and production apparatus for thermoplastic resin foam particles

Also Published As

Publication number Publication date
JPWO2005085337A1 (en) 2008-01-17
JP4818101B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP3717942B2 (en) Water-containing polyolefin resin composition, pre-expanded particles comprising the same, method for producing the same, and foam-molded product
US6130266A (en) Pre-expanded particles of propylene resin, process for preparing the same and flow-restricting device
WO2005085337A1 (en) Method for producing pre-expanded particles of polyolefinic resin
JP2001131327A (en) Molded foam of polypropylene resin composition
EP1262513B1 (en) Process for preparing polyolefin pre-expanded particles
US6627668B2 (en) Process for preparing polyolefin pre-expanded particles
EP1016690B1 (en) Water-containing polypropylene resin composition and pre-expanded particles made thereof
JP2000290420A (en) Method for producing pre-foamed granule of polyolefin- based resin composition
JP4747472B2 (en) Method for producing polyolefin resin pre-expanded particles
JP5491083B2 (en) Polyolefin resin pre-expanded particles with little variation in magnification and method for producing the same
JP3963720B2 (en) Process for producing polyolefin-based pre-expanded particles and pre-expanded particles obtained by the method
JP4815696B2 (en) Diaphragm with cylinder
JP2000095891A (en) Production of pre-expanded particle of polyolefin-based resin composition
JP4863542B2 (en) Method for producing polyolefin resin pre-expanded particles
JPWO2003097728A1 (en) In-mold foam molding method for polyolefin resin foam
JPH11106547A (en) Preliminary foaming particulate of polyolefin-based resin composition
JP2001328132A (en) In-mold molding method for polypropylene resin prefoamed particles
JP4283822B2 (en) Manufacturing method of core material for automobile bumper
JPH1199531A (en) Core material for automobile bumper
JP2002347025A (en) Method of manufacturing polyolefin resin composition prefoamed particles
JP2002338724A (en) Polyolefinic resin composition particle and method for manufacturing pre-expanded particle using the same
JP2000290419A (en) Method for washing pre-foamed granule of polyolefin- based resin
JP3641098B2 (en) Polyolefin resin composition pre-expanded particles, process for producing the same, and molded article comprising the pre-expanded particles
JP3626000B2 (en) Method for producing pre-expanded particles of polyolefin resin composition
JPH11100457A (en) Production of preliminary foamed particle from polyolefinic resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510631

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase