JPWO2020137130A1 - 端末装置、基地局、方法及び記録媒体 - Google Patents

端末装置、基地局、方法及び記録媒体 Download PDF

Info

Publication number
JPWO2020137130A1
JPWO2020137130A1 JP2020562858A JP2020562858A JPWO2020137130A1 JP WO2020137130 A1 JPWO2020137130 A1 JP WO2020137130A1 JP 2020562858 A JP2020562858 A JP 2020562858A JP 2020562858 A JP2020562858 A JP 2020562858A JP WO2020137130 A1 JPWO2020137130 A1 JP WO2020137130A1
Authority
JP
Japan
Prior art keywords
packet
transmission
transmitting
terminal device
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020562858A
Other languages
English (en)
Other versions
JP7439768B2 (ja
Inventor
博允 内山
寿之 示沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2020137130A1 publication Critical patent/JPWO2020137130A1/ja
Application granted granted Critical
Publication of JP7439768B2 publication Critical patent/JP7439768B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、を備える端末装置。

Description

本開示は、端末装置、基地局、方法及び記録媒体に関する。
セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE)」、「LTE-Advanced(LTE-A)」、「LTE-Advanced Pro(LTE-A Pro)」、「5G(第5世代)」「New Radio(NR)」、「New Radio Access Technology(NRAT)」、「Evolved Universal Terrestrial Radio Access(EUTRA)」、または「Further EUTRA(FEUTRA)」とも称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。なお、以下の説明において、LTEは、LTE-A、LTE-A Pro、およびEUTRAを含み、NRは、NRAT、およびFEUTRAを含む。LTEおよびNRでは、基地局装置(基地局)はLTEにおいてeNodeB(evolved NodeB)およびNRにおいてgNodeB、端末装置(移動局、移動局装置、端末)はUE(User Equipment)とも称する。LTEおよびNRは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
NRは、LTEに対する次世代の無線アクセス方式として、LTEとは異なるRAT(Radio Access Technology)である。NRは、eMBB(Enhanced mobile broadband)、mMTC(Massive machine type communications)およびURLLC(Ultra reliable and low latency communications)を含む様々なユースケースに対応できるアクセス技術である。NRは、それらのユースケースにおける利用シナリオ、要求条件、および配置シナリオなどに対応する技術フレームワークを目指して検討される。
NRでは、複数の送信方法が検討されている。例えば、それらの送信方法は、グラントベース送信(グラント有り送信)及びグラントフリー送信(グラント無し送信)を含む。グラント有無は、衝突防止のための所定の手続きの有無に対応する。グラント有りの場合は衝突防止のための所定の手続きが実施された上で送信が行われ、グラント無しの場合は衝突防止のための所定の手続きが実施されずに送信が行われる。ここで、衝突防止のための所定の手続きとは、基地局によるリソースの割り当て、及び/又は衝突防止のための所定のセンシング等を含む。グラントフリー送信は、衝突防止のための所定の手続きを省略可能であるため、グラントベース送信と比較して低遅延での送信が可能である。グラントフリー送信に関し、例えば、下記特許文献1に、アップリンクにおけるグラントフリー送信の関する技術が開示されている。
他方、端末同士の直接通信のための通信リンクであるサイドリンクに関する技術も、近年盛んに検討されている。とりわけ、将来の自動運転の実現のため、近年、車載通信(V2X通信)への期待が高まってきている。V2X通信とは、Vehicle to X通信の略であり、車と“何か”が通信を行うシステムである。ここでの“何か”の例として、車両(Vehicle)、設備(Infrastructure)、ネットワーク(Network)、及び歩行者(Pedestrian)等が挙げられる(V2V、V2I、V2N、及びV2P)。また、車用の無線通信としては、これまで主に、802.11pベースのDSRC(Dedicated Short Range Communication)の開発が進められてきたが、近年になり、LTEベースの車載通信である“LTE−based V2X”の標準規格化が行われた。LTEベースのV2X通信では、基本的なセーフティメッセージ等のやり取りなどがサポートされている。
特開2018−504089号公報
上記特許文献1において検討されたアップリンクにおけるグラントフリー送信の他に、サイドリンクにおけるグラントフリー送信も想定される。サイドリンクにおけるグラントフリー送信は、例えば、自動運転車両の急ブレーキを示す情報や、ファクトリーオートメーションにおける警報などの、緊急度の高い情報を低遅延で送信するために利用され得る。ただし、グラントフリー送信では衝突防止のための所定の手続きが省略されるので、グラントフリー送信されたパケットは、他の端末間で送受信される他のパケットと衝突し得る。サイドリンクでの通信が、基地局等による中央集権的な制御を経ない場合があることを考慮すれば、サイドリンクでのグラントベース送信においても同様の衝突が生じ得る。
そこで、本開示では、サイドリンクで送信されたパケットと衝突した他のパケットのリカバリを可能にするための仕組みを提供する。
本開示によれば、サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、を備える端末装置が提供される。
また、本開示によれば、サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、を備える端末装置が提供される。
また、本開示によれば、第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、を備える基地局が提供される。
また、本開示によれば、サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信すること、を含む、プロセッサにより実行される方法が提供される。
また、本開示によれば、サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御すること、を含む、プロセッサにより実行される方法が提供される。
また、本開示によれば、第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御すること、を含む、プロセッサにより実行される方法が提供される。
また、本開示によれば、コンピュータを、サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、として機能させるためのプログラムが記録された記録媒体が提供される。
また、本開示によれば、コンピュータを、サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、として機能させるためのプログラムが記録された記録媒体が提供される。
また、本開示によれば、コンピュータを、第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、として機能させるためのプログラムが記録された記録媒体が提供される。
V2X通信の概要について示した図である。 V2X通信の全体像の一例について説明するための説明図である。 V2X通信のユースケースの一例を示した図である。 V2Xオペレーションシナリオの一例を説明するための図である。 V2Xオペレーションシナリオの一例を説明するための図である。 V2Xオペレーションシナリオの一例を説明するための図である。 V2Xオペレーションシナリオの一例を説明するための図である。 V2Xオペレーションシナリオの一例を説明するための図である。 V2Xオペレーションシナリオの一例を説明するための図である。 サイドリンク通信の拡張例を説明するための図である。 サイドリンク通信の拡張例を説明するための図である。 サイドリンク通信の拡張例を説明するための図である。 サイドリンク通信の拡張例を説明するための図である。 サイドリンクリソース割り当て方式を説明するための図である。 サイドリンク通信に割り当てられたリソースの構成の一例について示した図である。 Mode4リソース割り当てに基づき端末装置がパケットを送信する場合の動作タイムラインの一例について説明するための説明図である。 リソースプール内からリソースを選択するためのセンシングの動作の一例について説明するための説明図である。 本開示の一実施形態に係るシステムの概略的な構成の一例を示す図である。 同実施形態に係る基地局の論理的な構成の一例を示すブロック図である。 同実施形態に係る端末装置の論理的な構成の一例を示すブロック図である。 グラントベース送信の処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行されるグラントフリー送信及びリカバリ処理の流れの一例を示すシーケンス図である。 同実施形態に係る送信端末により実行される第1のパケットの送信処理及び事後処理の流れの一例を示すフローチャートである。 同実施形態に係る基地局により実行されるリカバリ処理の流れの一例を示すフローチャートである。 同実施形態に係る送信報告情報の黙示的な通知方法の一例を説明するための図である。 同実施形態に係る送信報告情報の黙示的な通知方法の一例を説明するための図である。 同実施形態に係る送信報告情報の黙示的な通知方法の一例を説明するための図である。 同実施形態に係るシステムにおいて実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行されるセンシングレス送信及びリカバリ処理の流れの一例を示すシーケンス図である。 同実施形態に係る送信端末により実行される第1のパケットの送信処理及び事後処理の流れの一例を示すフローチャートである。 同実施形態に係る周辺送信端末により実行されるリカバリ処理の流れの一例を示すフローチャートである。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて端末装置200A、200B及び200Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置200A、200B及び200Cを特に区別する必要が無い場合には、単に端末装置200と称する。
なお、説明は以下の順序で行うものとする。
1.はじめに
1.1.V2X通信
1.2.サイドリンク通信の拡張例
1.3.サイドリンクリソース割り当て方式
2.提案技術の概要
2.1.システム構成例
2.2.技術的課題
2.3.提案技術の概要
3.構成例
3.1.基地局の構成例
3.2.端末装置の構成例
4.技術的特徴
4.1.Mode3リソース割り当て環境における処理
4.1.1.概要
4.1.2.グラントベース送信
4.1.3.グラントフリー送信及びリカバリ処理
4.1.4.各装置の動作
4.1.5.変形例
4.2.Mode4リソース割り当て環境における処理
4.2.1.センシングレス送信及びリカバリ処理
4.2.2.各装置の動作
5.応用例
5.1.基地局に関する応用例
5.2.端末装置に関する応用例
6.まとめ
<<1.はじめに>>
<1.1.V2X通信>
以下、V2X通信について概要を説明する。V2X通信とは、Vehicle to X通信の略であり、車と“何か”が通信を行うシステムである。例えば、図1は、V2X通信の概要について示した図である。ここでの“何か”の例としては、例えば、図1に示すように、車両(Vehicle)、設備(Infrastructure)、ネットワーク(Network)、及び歩行者(Pedestrian)等が挙げられる(V2V、V2I、V2N、及びV2P)。
(V2X通信の全体像)
また、図2は、V2X通信の全体像の一例について説明するための説明図である。図2に示す例では、クラウドサーバとしてV2Xのアプリケーションサーバ(APPサーバ)が保有され、当該アプリケーションサーバにより、コアネットワーク側でV2X通信の制御が実施される。基地局は、端末装置とのUuリンクの通信を行う一方で、V2V通信やV2P通信等の直接通信の通信制御を実施する。また、基地局の他に、路肩のインフラストラクチャ(Infrastructure)としてRSU(Road Side Unit)が配置される。RSUとしては、基地局型のRSUと、UE型のRSUと、の二つが考えられる。RSUにおいてはV2Xアプリケーション(V2X APP)の提供やデータリレー等のサポートが行われる。
(V2X通信のユースケース)
自動車向けの無線通信としては、これまで主に、802.11pベースのDSRC(Dedicated Short Range Communication)の開発が進められてきたが、近年になり、LTEベースの車載通信である“LTE-based V2X(LTEベースのV2X通信)”の標準規格化が行われた。LTEベースのV2X通信では、基本的なセーフティメッセージ等のやり取りなどがサポートされている。一方で、さらなるV2X通信の改善をめざし、近年5G技術(NR:New Radio)を用いたNR V2X通信の検討が行われている。例えば、図3は、V2X通信のユースケースの一例を示した図である。
NR V2X通信では、これまでLTEベースのV2Xではサポートが困難であったような、高信頼性、低遅延、高速通信、ハイキャパシティを必要とする新たなユースケースがサポートされる。具体的な一例として、図3に示す例のうち、例えば、ダイナミックマップの提供やリモートドライビング等が挙げられる。また、この他にも、車車間や路車間でセンサデータのやり取りを行うようなセンサデータシェアリングや、隊列走行向けのプラトゥーニングユースケースが挙げられる。このようなNR V2X通信のユースケース及び要求事項については、3GPP TR22.886において規定されている。参考として、以下にユースケースの一例について概要を説明する。
(1)Vehicles Platooning
複数の車両が隊列となり、同じ方向に走行する、隊列走行のユースケースであり、隊列走行を主導する車と他の車との間で隊列走行を制御するための情報のやり取りが行われる。これらの情報のやりとりにより、例えば、隊列走行の車間距離をより詰めることが可能となる。
(2)Extended Sensors
センサ関連の情報(データ処理前のRawデータや、処理後のデータ)を車車間等において交換可能とするユースケースである。センサ情報は、ローカルセンサ、ライブビデオイメージ(例えば、周辺の車両、RSU、及び歩行者との間のライブビデオイメージ)、及びV2Xアプリケーションサーバ等を通して集められる。車両はこれらの情報交換により、自身のセンサ情報では得られない情報を入手することが可能となり、より広範囲の環境を認知/認識することが可能となる。なお、本ユースケースでは、多くの情報を交換する必要があるため、通信には高いデータレートが求められる。
(3)Advanced Driving
準自動走行や、完全自動走行を可能とするユースケースである。本ユースケースでは、RSUが自身のセンサ等から得られた認知/認識情報を周辺車両へとシェアすることで、それぞれの車両が、軌道や操作を他の車両と同期、協調しながら調整することができる。また、それぞれの車両は、ドライビングの意図や意思を周辺車両とシェアすることも可能となる。
(4)Remote Driving
遠隔操縦者やV2Xアプリケーションに遠隔操縦させるユースケースである。遠隔操作は、運転を行うことが困難な人に替わって他者が運転を行う場合や、危険地域での車両の操作等に用いられる。ルートや走行する道がある程度決まっているような公共交通機関に対しては、例えば、クラウドコンピューティングベースの操縦を適用することも可能である。本ユースケースでは、高い信頼性と低い伝送遅延が通信に求められる。
(物理レイヤエンハンスメント)
上述した要求事項を達成するためには、LTE V2Xから物理レイヤのさらなるエンハンスメントが必要となる。対象となるリンクは、UuリンクやPC5リンク(サイドリンク)が挙げられる。Uuリンクは、基地局やRSU(Road Side Unit)等のインフラストラクチャと、端末装置との間のリンクである。また、PC5リンク(サイドリンク)は、端末装置間のリンクである。主なエンハンスメントのポイントを以下に示す。
エンハンスメントの一例としては、以下が挙げられる。
−チャネルフォーマット
−サイドリンクフィードバック通信
−サイドリンクリソース割り当て方式
−車両位置情報推定技術
−端末間リレー通信
−ユニキャスト通信、マルチキャスト通信のサポート
−マルチキャリア通信、キャリアアグリゲーション
−MIMO/ビームフォーミング
−高周波周波数対応(例: 6GHz以上)
…等
また、チャネルフォーマットとしては、例えば、Flexible numerology、short TTI(Transmission Time Interval)、マルチアンテナ対応、及びWaveform等が挙げられる。また、サイドリンクフィードバック通信としては、例えば、HARQ、CSI(Channel Status Information)等が挙げられる。
(V2Xオペレーションシナリオ)
以下に、V2Xの通信オペレーションシナリオの一例について述べる。V2N通信においては、基地局−端末装置間のDL/UL通信のみでシンプルであった。これに対して、V2V通信では、多様な通信経路が考えられる。以降では、主にV2V通信の例に着目して、各シナリオの説明を行うが、V2PやV2Iについても同様の通信オペレーションを適用可能である。なお、V2PやV2Iにおいては、通信先がPedestrianやRSUとなる。
例えば、図4〜図9は、V2Xオペレーションシナリオの一例を説明するための図である。具体的には、図4は、車両同士が基地局(E−UTRAN)を介さずに直接通信を行うシナリオを示している。図5は、車両同士が基地局を介して通信を行うシナリオを示している。図6及び図7は、車両同士が端末装置(UE、ここではRSU)及び基地局を介して通信を行うシナリオを示している。図8及び図9は、車両同士が端末装置(UE、ここではRSUや他の車両)を介して通信を行うシナリオを示している。
なお、図4〜図9において、「サイドリンク」は、端末装置間の通信リンクに相当し、PC5とも称される。サイドリンクの具体的な一例として、V2V、V2P、及びV2Iの通信リンクが挙げられる。「Uuインタフェース」は、端末装置−基地局間の無線インタフェースに相当する。Uuインタフェースの具体的な一例として、V2Nの通信リンクが挙げられる。「PC5インタフェース」は、端末装置間の無線インタフェースに相当する。
<1.2.サイドリンク通信の拡張例>
サイドリンク通信には、多様な拡張例が考えられる。例えば、上述したV2X通信は、サイドリンク通信の拡張例のひとつである。他にも、サイドリンク通信の拡張例として、D2D(Device to Device)通信、MTC(Machine−type communication)、ムービングセル、及びリレー通信等が考えられる。以下、図10〜図13を参照しながら、サイドリンク通信の拡張例を説明する。
図10は、車両に搭載された車載基地局によりサイドリンク通信が使用される例を示している。図10に示すように、車載基地局は、周囲の端末装置(例えば、同一の車両内のUE)との間での通信、又は他の車両との間での車車間通信を、サイドリンク通信により行う。車載基地局は、UEであってもよいし、RSU等であってもよい。
図11は、UEにより提供されるウェアラブル端末向けのリレー通信にサイドリンク通信が使用される例を示している。図11に示すように、UEは、ウェアラブル端末との間でサイドリンク通信を行い、ウェアラブル端末と基地局との間の通信を中継する。
図12は、ドローンに搭載されたドローン基地局によりサイドリンク通信が使用される例を示している。図12に示すように、ドローン基地局は、周囲のUEとの間でサイドリンク通信を行い、UEと基地局との間の通信を中継する。
図13は、UEに搭載された端末基地局によりサイドリンク通信が使用される例を示している。図13に示すように、端末基地局は、周囲のUEとの間でサイドリンク通信を行い、UEと基地局との間の通信を中継する。
他にも、サイドリンク通信の拡張例として、ファクトリーオートメーションが挙げられる。その場合、工場内のロボット間の通信にサイドリンク通信が使用され得る。例えば、緊急停止信号をロボット群にブロードキャストして生産ラインを緊急停止するようなユースケースにおいて、サイドリンク通信が使用される。また、サイドリンク通信の拡張例として、ドローン間の通信が挙げられる。
<1.3.サイドリンクリソース割り当て方式>
続いて、サイドリンクへのリソース割り当ての方式について概要を説明する。サイドリンクへのリソース割り当ての方式としては、基地局がサイドリンクのリソースを割り当てる「Mode3リソース割り当て」の方式と、端末装置自身でセンシングを行いサイドリンクのリソース選択を行う「Mode4リソース割り当て」の方式とがある。これらについて、図14を参照しながら説明する。
図14は、サイドリンクリソース割り当て方式を説明するための図である。図14の左図は、Mode3リソース割り当ての一例を示している。Mode3リソース割り当てでは、リソースプールが予め割り当てられ、端末に送信パケットが発生すると、リソースプールのうち当該パケットの送信に使用すべきリソースが基地局により割り当てられる。Mode3リソース割り当てでは、送信パケットが発生する度に基地局によりリソース割り当てが行われるので、パケットの衝突が発生しない一方で、高いシグナリングオーバーヘッドが発生する。図14の右図は、Mode4リソース割り当ての一例を示している。Mode4リソース割り当てでは、リソースプールが予め割り当てられ、送信パケットが発生すると、リソースプールのうち当該パケットの送信に使用するリソースを端末が自律的に選択する。Mode4リソース割り当てでは、シグナリングオーバーヘッドが少ない一方で、パケットの衝突が発生し得る。
−リソースプール割り当て
Mode3リソース割り当て又はMode4リソース割り当てを行うに当たり、事前にリソースプールの割り当てが行われる。当該リソースプールの割り当ては、例えば、基地局により行われる。また、他の一例として、Pre-configurationにより、当該リソースプールの割り当てが行われていてもよい。Mode4リソース割り当てにおいては、端末装置は、割り当てられたリソースプールから、サイドリンク通信用のリソースをセンシングし、適切なリソースを自ら選択して通信を行う。
例えば、図15は、サイドリンク通信に割り当てられたリソース(リソースプール)の構成の一例について示した図であり、周波数分割多重(FDM:Frequency Division Multiplexing)が適用される場合の一例について示している。図15に示すように、リソースプールは、SA(Scheduling Assignment)領域とData領域とに分けられ、各領域により、PSCCH(Physical Sidelink Control Channel)及びPSSCH(Physical Sidelink Shared Channel)が送信される。なお、以降では、図15に示すようにFDMが適用される場合に着目して説明するが、必ずしも本開示に係る技術の適用先を限定するものではない。具体的な一例として、時間分割多重(TDM:Time Division Multiplexing)が適用される場合においても、以降で説明する本開示に係る技術を適用することが可能である。なお、TDMが適用される場合には、SA領域とData領域とは時間軸上で直交することとなる。
−Mode4リソース割り当て
図16を参照して、Mode4リソース割り当ての概要について説明する。図16は、Mode4リソース割り当てに基づき端末装置がパケットを送信する場合の動作タイムラインの一例について説明するための説明図である。図16に示すように、パケットを送信する端末装置は、まず、当該パケットの送信に利用するリソースをリソースプール内から発見するためにセンシングを行う。次いで、端末装置は、当該センシングの結果に基づき、当該リソースプール内からのリソースの選択を行う。そして、端末装置は、選択したリソースを利用してパケットの送信を行う。また、このとき端末装置は、必要に応じて、以降におけるパケットの送信に利用するリソースの予約を行う。
ここで、図17を参照して、上記センシングの動作の一例について説明する。図17は、リソースプール内からリソースを選択するためのセンシングの動作の一例について説明するための説明図である。
具体的には、端末装置は、センシングウィンドウ内における干渉パターンの測定結果や、当該センシングウィンドウ内におけるリソースの予約状況に基づき、リソース選択ウィンドウ内におけるリソースの選択や、将来のリソースの予約を行う。具体的な一例として、図17に示す例では、端末装置は、送信対象となるパケットDが発生した場合に、センシングの結果に基づき、未来のリソースの使用状況、例えば、将来的に他のパケットA〜Cの送信に利用されるリソースを予測する。端末装置は、当該予測の結果を利用することで、当該パケットDの送信に利用可能なリソース、即ち、他のパケットの送信に利用されないことが予測されるリソースの選択や予約が可能となる。
<<2.提案技術の概要>>
<2.1.システム構成例>
続いて、図18を参照しながら、提案技術が適用されるシステムの概略的な構成の一例を説明する。図18は、本開示の一実施形態に係るシステム1の概略的な構成の一例を示す図である。図18に示すように、システム1は、基地局100、端末装置200(200A〜200D)、コアネットワーク(Core Network)20、及びPDN(Packet Data Network)30を含む。
基地局100は、セル11を運用し、セル11の内部に位置する1つ以上の端末装置200へ無線サービスを提供する通信装置である。セル11は、例えばLTE又はNR等の任意の無線通信方式に従って運用され得る。基地局100は、コアネットワーク20に接続される。コアネットワーク20は、PDN30に接続される。
コアネットワーク20は、例えばMME(Mobility Management Entity)、S−GW(Serving gateway)、P−GW(PDN gateway)、PCRF(Policy and Charging Rule Function)及びHSS(Home Subscriber Server)を含み得る。若しくは、コアネットワーク20は、これらと同様の機能を有するNRのエンティティを含み得る。MMEは、制御プレーンの信号を取り扱う制御ノードであり、端末装置の移動状態を管理する。S−GWは、ユーザプレーンの信号を取り扱う制御ノードであり、ユーザデータの転送経路を切り替えるゲートウェイ装置である。P−GWは、ユーザプレーンの信号を取り扱う制御ノードであり、コアネットワーク20とPDN30との接続点となるゲートウェイ装置である。PCRFは、ベアラに対するQoS(Quality of Service)等のポリシー及び課金に関する制御を行う制御ノードである。HSSは、加入者データを取り扱い、サービス制御を行う制御ノードである。
端末装置200は、他の装置と無線通信する通信装置である。例えば、端末装置200は、基地局100による制御に基づいて基地局100と無線通信する。その場合、端末装置200は、Uuリンクにおいて、基地局100にアップリンク信号を送信して、基地局100からダウンリンク信号を受信する。また、例えば、端末装置200は、基地局100による制御に基づいて、又は自律的に、他の端末装置200と無線通信する。その場合、端末装置200は、PC5リンクにおいて、他の端末装置200にサイドリンク信号を送信して、他の端末装置200からサイドリンク信号を受信する。例えば、端末装置200Aは端末装置200Bに、端末装置200Cは端末装置200Dに、それぞれサイドリンク信号を送信する。端末装置200は、いわゆるユーザ端末(User Equipment:UE)であってもよい。
<2.2.技術的課題>
既存のサイドリンク通信においては、Mode3リソース割り当てにおける基地局からのリソース割り当て、又はMode4リソース割り当てにおけるセンシング等の、衝突防止のための所定の手続きが実施された上で送信が行われる。従って、パケット発生からパケット送信に至るまでに遅延が発生してしまう。なお、パケットの衝突とは、少なくとも一部が重複するリソース(時間リソース及び周波数リソース)を使用して、複数のパケットの送受信が行われることを指す。
URLLCのような、緊急のパケットを低遅延且つ高信頼に送信するユースケースにおいては、このような遅延が発生せずに且つ高信頼にパケットを送信可能にする仕組みが求められる。特に、サイドリンク通信においては、基地局がすべて制御を行う通常のUuリンクのグラントフリー送信とは異なり、送信主体が複数の端末装置となるため、パケットの衝突が発生したときの対応がより複雑になる。
<2.3.提案技術の概要>
そこで、本開示では、サイドリンクで送信されたパケットと衝突した他のパケットのリカバリを可能にするための仕組みを提供する。とりわけ、本開示では、サイドリンクでグラントフリー送信されたパケットと衝突した他のパケットのリカバリを可能にするための仕組みを提供する。ここでのリカバリとは、例えば再送信である。
端末装置200は、パケットをグラントフリー送信すると、かかるグラントフリー送信に関する情報を他の装置(例えば、基地局100又は他の端末装置200)に報告する。かかる報告を受けた基地局100又は他の端末装置200は、衝突の発生有無を判定し、衝突したと判定したパケットの再送のための処理を行う。これにより、グラントフリー送信されたパケットと衝突した他のパケットが再送される。このように、グラントフリー送信によりパケットの低遅延を実現しつつ、グラントフリー送信されたパケットと衝突した他のパケットのリカバリが実現される。
以下では、図18に示した例において、端末装置200A(第1の端末装置に相当)が、端末装置200Bへのパケットをグラントフリー送信するものとする。そして、端末装置200C(第2の端末装置に相当)が端末装置200Dへ送信したパケットが、端末装置200Aによりグラントフリー送信されたパケットと衝突するものとする。以下、端末装置200Aを送信端末200A、端末装置200Bを受信端末200B、端末装置200Cを周辺送信端末200C、端末装置200Dを周辺受信端末200Dとも称する。他方、これらを特に区別する必要が無い場合、単に端末装置200とも総称する。また、なお、以下では、送信端末200Aが送信するパケットを第1のパケットとも称し、周辺送信端末200Cが送信するパケットを第2のパケットとも称する場合がある。
また、以下では、NR V2X通信におけるサイドリンク通信(V2V/I/P)にフォーカスする。NR V2X通信では緊急メッセージであるURLLCパケットの送信を行う場合がでてくる。そこで、以下では、サイドリンクにおける低遅延で高信頼(少なくとも低遅延)なURLLCパケット送信方法について説明する。なお、URLLCパケットとは、URLLCのユースケースにおいて送信されるパケットである。
<<3.構成例>>
以下、提案技術に関与する各装置の構成例を説明する。
<3.1.基地局の構成例>
図19は、本実施形態に係る基地局100の論理的な構成の一例を示すブロック図である。図19に示すように、本実施形態に係る基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を含む。
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置からのアップリンク信号を受信し、端末装置へのダウンリンク信号を送信する。
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
制御部150は、基地局100の様々な機能を提供する。例えば、制御部150は、通信制御部151を含む。通信制御部151は、端末装置200へのリソースプールの割り当て、送信パケットが発生した端末装置200へのリソースの割り当て、衝突したパケットの再送指示等の、制御下の端末装置200によるサイドリンク通信を制御する機能を有する。制御部150は、通信制御部151以外の他の構成要素をさらに含み得る。即ち、制御部150は、通信制御部151の動作以外の動作も行い得る。
<3.2.端末装置の構成例>
図20は、本実施形態に係る端末装置200の論理的な構成の一例を示すブロック図である。図20に示すように、本実施形態に係る端末装置200は、アンテナ部210、無線通信部220、記憶部230及び制御部240を含む。
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。また、無線通信部220は、他の端末装置200との間でサイドリンク信号(V2P信号/V2V信号/V2I信号等)を送受信する。
記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
制御部240は、端末装置200の様々な機能を提供する。例えば、制御部240は、送信処理部241及び受信処理部243を含む。送信処理部241は、上位層から入力されたパケットのグラントベース送信、グラントフリー送信、及び再送等を行う機能を有する。受信処理部243は、パケットを受信及び復号して上位層に出力する機能を有する。制御部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部150は、これらの構成要素の動作以外の動作も行い得る。
<<4.技術的特徴>>
<4.1.Mode3リソース割り当て環境における処理>
以下では、Mode3リソース割り当て環境における衝突防止のための所定の手続きが省略されて送信された(即ち、グラントフリー送信された)パケットに衝突したパケットの、リカバリについて説明する。本例での衝突防止のための所定の手続きとは、リソースの割り当て(即ち、グラント)である。
<4.1.1.概要>
送信端末200Aは、第1のパケットをグラントフリー送信(Configured Grant送信とも称される)し、かかるグラントフリー送信に関する情報を、基地局100に報告する。基地局100は、Mode3リソース割り当てを行う関係で、周辺送信端末200Cが第2のパケットの送信に使用したリソースを把握しており、衝突の発生有無を判定可能である。基地局100は、衝突が発生したと判定した第2のパケットの再送を周辺送信端末200Cに指示する。
送信端末200Aは、グラントフリー送信に関する情報を、周辺の他の端末装置200(例えば、周辺送信端末200C)に報告してもよい。その場合、周辺送信端末200Cは、パケットの衝突発生有無を判定し、衝突が発生したと判定したパケットの再送を行う。
<4.1.2.グラントベース送信>
以下、比較のために、図21を参照しながら、通常のグラントベース送信の処理の流れを説明する。図21は、グラントベース送信の処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図21に示すように、まず、基地局100は、制御下の端末装置200(200A〜200D)の各々に、サイドリンク通信に関する制御情報を通知する(ステップS12)。かかる制御情報は、例えば、リソースプールの割り当て情報、送信電力の設定情報、及びMCS(Modulation and Coding Scheme)の設定情報等の、各種設定情報を含む。次いで、基地局100は、送信パケットが発生した端末装置200に対しリソース割り当てを行い(ステップS14)、リソースの割り当て結果を含むサイドリンクリソースグラントを送信する(ステップS16)。次に、送信端末200Aは、割り当てられたリソースを使用して第1のパケットを送信し(ステップS18)、受信端末200Bは、第1のパケットを受信する(ステップS20)。他方、周辺送信端末200Cは、割り当てられたリソースを使用して第2のパケットを送信し(ステップS22)、周辺受信端末200Dは、第2のパケットを受信する(ステップS24)。
<4.1.3.グラントフリー送信及びリカバリ処理>
続いて、図22を参照しながら、提案技術に係るグラントフリー送信及びリカバリ処理の流れを説明する。図22は、本実施形態に係るシステム1において実行されるグラントフリー送信及びリカバリ処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図22に示すように、まず、基地局100は、制御下の端末装置200(200A〜200D)の各々に、サイドリンク通信に関する制御情報を通知する(ステップS102)。次いで、基地局100は、送信すべき第2のパケットが発生した端末装置200に対しリソース割り当てを行い(ステップS104)、リソースの割り当て結果を含むサイドリンクリソースグラントを送信する(ステップS106)。次に、周辺送信端末200Cは、割り当てられたリソースを使用して第2のパケットを送信し(ステップS108)、周辺受信端末200Dは、第2のパケットを受信する(ステップS110)。
一方、送信端末200Aは、送信すべき第1のパケット(ここでは、URLLCパケット)が発生すると(ステップS112)、第1のパケットをグラントフリー送信し(ステップS114)、受信端末200Bは、第1のパケットを受信する(ステップS116)。
衝突防止のための所定の手続き(即ち、リソースグラント)を省略して第1のパケットが送信されるので、低遅延が実現される。一方で、送信端末200Aがグラントフリー送信を行っていることから、第1のパケットと第2のパケットとに衝突が発生する可能性がある。この衝突に起因する第2のパケットの受信失敗のリカバリのために、送信端末200Aは、事後処理を実施する。
具体的には、送信端末200Aは、第1のパケットをグラントフリー送信した旨を基地局100に報告する、パケット送信報告を行う(ステップS118)。詳しくは、送信端末200Aは、第1のパケットのグラントフリー送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報を、基地局100に送信する。その後、基地局100は、受信した送信報告情報に基づいて、第2のパケットに対する自らのリソース割り当て結果と第1のパケットの送信に使用されたリソースとを比較し、衝突の発生有無を確認する(ステップS120)。衝突が発生していた場合、周辺受信端末200Dが第2のパケットの受信に失敗している可能性があることから、基地局100は、リカバリ処理を実施する(ステップS122)。基地局100によるリカバリ処理は、例えば、周辺送信端末200Cに再送手続きを行うよう指示することを含む。その場合、基地局100は、サイドリンクリソースの再割り当てを行い、再割り当て結果を含むサイドリンクリソースグラント及び第2のパケットのリカバリ指示を、周辺送信端末200Cに送信する。周辺送信端末200Cは、リカバリ指示を受信すると、再度割り当てられたリソースを使用して第2のパケットを再送し(ステップS124)、周辺受信端末200Dは、再送された第2のパケットを受信する(ステップS126)。このようにして、ステップS110において周辺受信端末200Dが第2のパケットの受信に失敗していた場合、ステップS126において第2のパケットの受信に成功させることができる。
なお、図22に示した例では、送信報告情報が基地局100に送信されていたが、本技術はかかる例に限定されない。例えば、送信報告情報は、周辺送信端末200Cに直接的に送信されてもよい。その場合、周辺送信端末200Cが、衝突の発生有無を確認し、衝突が発生したと判定した場合にリカバリ処理を行う。周辺送信端末200Cによるリカバリ処理は、例えば、リソース要求を基地局100に送信し、割り当てられたリソースを使用して第2のパケットを再送することを含む。なお、リソース要求とは、リソース割り当ての要求である。
<4.1.4.各装置の動作>
以上、Mode3リソース割り当て環境における処理の概要を説明した。以下では、各ノードの動作を詳細に説明する。
(1)送信端末200Aの動作
−第1のパケット発生時の判断
送信端末200A(例えば、送信処理部241)は、URLLCパケットである第1のパケットが発生した場合、以下の判断を行い得る。
送信端末200Aは、第1のパケットを送信可能な割り当てリソースがあるか否かを判定してもよい。割り当てリソースが有ると判定された場合、送信端末200Aは、割り当てリソースを使用して第1のパケットを送信する。他方、割り当てリソースが無いと判定された場合、送信端末200Aは、基地局100にリソース要求を送信する。なお、URLLCパケットを送信可能なリソースは、基地局100からのRRC(Radio Resource Control)シグナリングにより事前に割り当てられ得る。
送信端末200Aは、仮に基地局100にリソース要求を送信した場合に遅延要求が満たされるか否かを判定してもよい。即ち、送信端末200Aは、リソース要求を送信した場合に基地局100により割り当てられると想定されるリソースを使用して第1のパケットを送信する場合に、遅延要求が満たされるか否かを判定する。遅延要求が満たされると判定された場合、送信端末200Aは、リソース要求を送信する。他方、遅延要求が満たされないと判定された場合、送信端末200Aは、グラントフリー送信を行う。
−グラントフリー送信
上述したように、グラントフリー送信とは、パケットの衝突防止のための所定の手続きが実施されずにパケットが送信される方法である。換言すると、グラントフリー送信とは、パケットの衝突防止のための所定の基準を満たせない(即ち、パケットの衝突が発生し得る)送信方法である。
ここでの所定の手続きは、パケットの送信のためのリソースの割り当てを受けることを含む。即ち、グラントフリー送信では、基地局100によるリソースの割り当てを経ずに、パケットが送信される。
なお、グラントフリー送信に先立って、センシング又はLBT(Listen Before Talk)が実施されてもよい。ここでのセンシングは、3GPP LTE V2Xで規定されているような、所定時間(1秒など)のセンシングである。また、LBTとは、より短期間のセンシングを指し、例えばWi−Fi(登録商標)で用いられているような、送信前の数msオーダーのセンシングである。センシングの実施可否は、基地局100により設定される。
グラントフリー送信用のリソースプールが、基地局100からのRRCシグナリングにより事前に割り当てられてもよい。カバレッジ外の場合、グラントフリー送信用のリソースプールが、端末装置200にPre-configurationされてもよい。グラントフリー送信用のリソースプールは、通常の(即ち、グラントベース送信用の)リソースプールと同一であってもよいし、時間方向及び/又は周波数方向に制限されていてもよい。
グラントフリー送信用のリソースプールに関するRRCシグナリングは、リソースプールの時間方向の位置を示す情報、及び周波数方向の位置を示す情報、並びに繰り返し送信のための繰り返し送信回数を示す情報等を含む。なお、リソースプールの時間方向の位置を示す情報は、シンボル単位、スロット単位、又はサブフレーム単位の、時間方向における所定の時間周期に関する情報を含み得る。また、リソースプールの周波数方向の位置を示す情報は、リソースブロック又はリソースエレメントに関する情報を含み得る。
グラントフリー送信では、送信端末200Aは自ら送信リソースをランダムに選択してもよい。また、送信端末200Aは、所定の選択基準に従って送信リソースを選択してもよい。所定の選択基準は、例えば、基地局100により設定され得る。
−送信報告情報の送信
送信端末200A(例えば、送信処理部241)は、サイドリンクで第1のパケットをグラントフリー送信した後、第1のパケットのグラントフリー送信に関する情報を含む送信報告情報を送信する。送信報告情報が送信されることで、送信報告情報の受信側での第1のパケットと第2のパケットとの衝突の発生有無の確認が可能となり、衝突が発生していた場合に第2パケットの再送が実現される。とりわけ、送信端末200Aは、パケットの衝突防止のための所定の手続き(即ち、リソース割り当て)が実施されずに第1のパケットを送信する場合に、送信報告情報を送信する。パケットの衝突が発生し得る場合に限定して送信報告情報が送信されるので、シグナリングオーバーヘッドを抑制することができる。
送信端末200Aは、送信報告情報をUuリンク及び/又はサイドリンクで送信する。即ち、送信端末200Aは、送信報告情報を基地局100に送信してもよいし、送信報告情報を他の端末装置200(即ち、周辺送信端末200C)に送信してもよい。送信報告情報の送信には、物理層の制御チャネルが使用される。送信報告情報が基地局100に送信される場合、予め規定又は設定されたアップリンク制御チャネル(PUCCH)が使用される。送信報告情報が他の端末装置200に送信される場合、予め規定又は設定されたサイドリンク制御チャネルが使用される。
送信端末200Aは、第1のパケットの送信に使用されるリソースと時間方向に所定の関係にあるリソースを使用して、送信報告情報を送信してもよい。例えば、第1のパケットの送信に使用されるリソースに基づいて、送信報告情報の送信に使用されるリソースが決定される。送信報告情報の送信に使用されるスロットは、第1のパケットの送信に使用されるスロットと同じスロット又は次のスロットであってもよい。ここで、送信報告情報の送信に使用されるスロットは、第1のパケットの送信に使用されるシンボルに応じて決定されてもよい。例えば、第1のパケットの送信が、あるスロット内の所定のシンボルよりも前に行われる場合、送信報告情報の送信に使用されるスロットは、第1のパケットの送信に使用されるスロットと同じスロットに決定される。他方、第1のパケットの送信が、あるスロット内の所定のシンボルよりも後に行われる場合、送信報告情報の送信に使用されるスロットは、第1のパケットの送信に使用されるスロットの次のスロットに決定される。基地局100又は周辺送信端末200Cは、上述した所定の関係を利用して、送信報告情報を容易に受信することができる。詳しくは、基地局100又は周辺送信端末200Cは、第2のパケットの送信に使用されるリソースと時間方向に上述した所定の関係にあるリソースを常時監視する。これにより、実際に衝突が発生して送信報告情報が送信された場合に、基地局100又は周辺送信端末200Cは、送信報告情報を受信することができる。
−送信報告情報の内容
送信報告情報は、送信端末200Aが第1のパケットのグラントフリー送信に使用したリソースの時間及び周波数を示す情報を含む。例えば、送信報告情報は、リソースブロック番号、シンボル番号、スロット番号、及び/又はシステムフレーム番号を含んでいてもよい。また、例えば、送信報告情報は、送信リソースのスタート番号及び送信リソースのエンド番号を含んでいてもよい。なお、情報量削減のため、報告用のリソースが予め規定又は設定され、グラントフリー送信に実際に使用されたリソースを包含する報告用のリソースを示す情報が、送信報告情報に含まれてもよい。報告用のリソースは、グラントフリー送信に使用され得るリソースの大きさよりも大きく規定又は設定されることが望ましい。送信報告情報が時間周波数情報を含むことで、送信報告情報の受信側で、衝突の発生有無を判断することが可能となる。
送信報告情報は、以下に示す情報の少なくともいずれかをさらに含み得る。
−第1のパケットの送信に使用したリソースプールを示す情報
−第1のパケットの送信に使用した周波数帯域を示す情報
−第1のパケットの送信繰り返し回数を示す情報
−第1のパケットの送信に使用した送信電力を示す情報
−第1のパケットの優先度を示す情報
−第1のパケットを送信したときの送信端末200Aの位置情報
−第1のパケットの送信時のMCS情報
−第1のパケットの送信時のトランスミッションモード情報
−第1のパケットの送信時のQCL(Quasi−Colocation)情報
−処理の流れ
以下、図23を参照しながら、送信端末200Aによる処理の流れの一例を説明する。図23は、本実施形態に係る送信端末200Aにより実行される第1のパケットの送信処理及び事後処理の流れの一例を示すフローチャートである。
図23に示すように、まず、送信端末200Aにおいて、送信すべき第1のパケット(例えば、URLLCパケット)が発生する(ステップS132)。すると、送信端末200Aは、第1のパケットを送信可能な割り当てリソースがあり、且つそのリソースを使用した場合に遅延要求が満たされるかを判定する(ステップS134)。ステップS134がYESの場合、送信端末200Aは、当該割り当てリソースを使用して第1のパケットを送信する(ステップS136)。ステップS134がNOの場合、送信端末200Aは、基地局100にリソース要求を送信した場合に遅延要求が満たされるかを判定する(ステップS138)。ステップS138がYESの場合、送信端末200Aは、リソース要求を基地局100に送信し(ステップS140)、基地局100から割り当てられたリソースを使用して第1のパケットを送信する(ステップS136)。他方、ステップS138がNO場合、送信端末200Aは、グラントフリー送信の実施を決定し(ステップS142)、第1のパケットをグラントフリー送信する(ステップS144)。そして、送信端末200Aは、第1のパケットのグラントフリー送信に関する情報を含む送信報告情報を送信する(ステップS146)。
(2)受信端末200Bの動作
受信端末200B(例えば、受信処理部243)は、送信端末200Aから送信された第1のパケットを受信し、復号する。
(3)基地局100の動作
−リソース割り当て
基地局100(例えば、通信制御部151)は、制御下の端末装置200に送信パケットが発生した場合に、かかるパケットを送信するためのリソースを割り当てる。基地局100は、送信端末200Aに対し、事前にURLLCパケット送信用のリソース割り当てを実施してもよい。この場合、基地局100は、RRCシグナリングを用いて事前の割り当て結果を送信端末200Aに送信する。
−リカバリ処理
基地局100(例えば、通信制御部151)は、送信端末200Aによるサイドリンクでの第1のパケットのグラントフリー送信に関する情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した周辺送信端末200Cによる第2のパケットの再送を制御する。詳しくは、まず、基地局100は、送信報告情報に基づいて、第1のパケットと第2のパケットとの衝突の発生有無を判定する。具体的には、基地局100は、送信報告情報が示す第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを、他の端末装置200に割り当てたか否かを確認する。ここでの所定の関係にあるリソースとは、例えば、第1のパケットの送信に使用されたリソースと、同一のリソース、又は少なくとも一部が重複するリソースである。基地局100は、第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを他の端末装置200に割り当てていた場合に衝突が発生したと判定し、そうでない場合に衝突は発生していないと判定する。そして、基地局100は、第1のパケットと第2のパケットとが衝突したと判定された場合に、リカバリ指示を周辺送信端末200Cに送信することで、第2のパケットの再送を指示する。他方、基地局100は、第1のパケットと第2のパケットとが衝突していないと判定された場合に、再送を指示しない。これにより、パケットの衝突が発生した場合に限定して再送が指示されるので、シグナリングオーバーヘッドを抑制することができる。
基地局100は、第1のパケットと第2のパケットとが衝突したと判定された場合、第2のパケットを再送した場合に第2のパケットの遅延要求が満たされるか否かにさらに基づいて、再送を制御してもよい。例えば、基地局100は、第2のパケットを再送しても第2のパケットの遅延要求が満たされる場合に再送を指示し、満たされない場合に再送を指示しない。この場合、周辺送信端末200Cによる第2のパケットの再送は実施されない。これにより、パケットの衝突が発生し、且つ再送しても遅延要求が満たされる場合に限定して再送が指示されるので、シグナリングオーバーヘッドを抑制することができる。
−リカバリ指示の内容
リカバリ指示は、第2のパケットの再送を指示する情報である。よって、リカバリ指示により、周辺送信端末200Cによる第2のパケットの再送をトリガすることができる。
リカバリ指示は、第2のパケットの再送のために割り当てられたリソースを示す情報を含み得る。この場合、基地局100は、第2のパケットの送信のためのリソースを再度割り当て、リカバリ指示は、再度のリソースの割り当て結果を含む。
リカバリ指示は、第2のパケットの再送のための送信パラメータを含み得る。再送のための送信パラメータは、例えば、送信電力、MCS、及び送信繰り返し回数等を含み得る。
−処理の流れ
以下、図24を参照しながら、基地局100による処理の流れの一例を説明する。図24は、本実施形態に係る基地局100により実行されるリカバリ処理の流れの一例を示すフローチャートである。
図24に示すように、まず、基地局100は、URLLCパケット送信用のリソース割り当てを行う(ステップS152)。ただし、本ステップはオプションであり、実行されなくてもよい。次いで、基地局100は、第1のパケットをグラントフリー送信した送信端末200Aから送信報告情報を受信する(ステップS154)。次に、基地局100は、送信報告情報が示す第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを、他の端末装置200に割り当てたか否かを確認することで、衝突の発生有無を確認する(ステップS156)。そして、衝突が発生したと判定された場合(ステップS158/YES)、基地局100は、第1のパケットと衝突した第2のパケットを送信した周辺送信端末200Cにリカバリ指示を送信する(ステップS160)。他方、衝突が発生していないと判定された場合(ステップS158/NO)、基地局100は、何も実行しない。
(4)周辺送信端末200Cの動作
周辺送信端末200C(例えば、送信処理部241)は、基地局100による制御に基づいて、サイドリンクで第2のパケットを送信する。詳しくは、周辺送信端末200Cは、基地局100により割り当てられたリソースを使用して、第2のパケットを送信する。ただし、周辺送信端末200Cは、基地局100からリカバリ指示を受信した場合に、リカバリ指示に基づいて第2のパケットを再送する。詳しくは、周辺送信端末200Cは、リカバリ指示が示す再送用のリソースを使用して、第2のパケットを送信する。
(5)周辺受信端末200Dの動作
周辺受信端末200D(例えば、受信処理部243)は、周辺送信端末200Cから送信された第2のパケットを受信し、復号する。
<4.1.5.変形例>
上記では、送信報告情報が、基地局100へアップリンク制御チャネルを用いて送信される例を主に説明したが、本技術はかかる例に限定されない。例えば、送信報告情報は、サイドリンクで送信されてもよい。
−サイドリンクでの通知
送信端末200Aは、グラントフリー送信する第1のパケットのSCI(Sidelink Control Information)に、グラントフリー送信するパケットであることを示す情報を含めてもよい。受信側は、PSCCH(Physical Sidelink Control Channel)をデコードすることで、第1のパケットがグラントフリー送信されたことを認識することができる。さらに、かかるSCIは、第1のパケットのグラントフリー送信に用いるリソースの時間及び周波数を示す情報を含んでいてもよい。これにより、受信側は、第1のパケットのグラントフリー送信に用いるリソースを認識し、衝突確認に用いることができる。なお、グラントフリー送信は、繰り返し送信などが行われることが想定されるため、全繰り返し送信内の1パケットを受信した場合でも、全繰り返し送信の時間周波数リソースを把握可能となる方法が望ましい。そのため、制御領域が上述の情報を含む方法以外に、データ領域が各繰り返し送信の時間周波数リソースを示す情報を含む方法が採用されてもよい。
−黙示的なパケット送信報告
送信端末200Aは、送信報告情報を、黙示的に通知してもよい。送信方向情報の黙示的な通知について、図25〜図27を参照しながら説明する。
図25及び図26は、本実施形態に係る送信報告情報の黙示的な通知方法の一例を説明するための図である。図25に示した例では、第1のパケットを構成する制御チャネル及びデータチャネルの各々が繰り返し送信されており、各々のチャネルの周波数オフセットが示す周波数ホッピングパターンが、送信報告情報に対応している。即ち、図25に示した例では、送信報告情報に対応する周波数ホッピングパターンが、第1のパケットの繰り返し送信に使用される。図26に示した例では、第1のパケットを構成する制御チャネル及びデータチャネルの各々が繰り返し送信されており、各々のチャネルの時間オフセットが示す時間間隔パターンが、送信報告情報に対応している。即ち、図26に示した例では、送信報告情報に対応する時間間隔パターンが、第1のパケットの繰り返し送信に使用される。
このように、送信端末200Aは、第1のパケットをグラントフリーに且つ繰り返し送信しつつ、繰り返し送信パターン(周波数ホッピングパターン及び/又は時間間隔パターン)により送信報告情報を通知してもよい。繰り返し送信パターンは、Pre-configureされていてもよいし、基地局100からのRRCシグナリングにより設定されてもよい。
図27は、本実施形態に係る送信報告情報の黙示的な通知方法の一例を説明するための図である。図27に示した例では、第1のパケットを構成する制御チャネル及びデータチャネルが送信されており、隣接するチャネル間の時間オフセット値が、送信報告情報に対応している。即ち、図27に示した例では、送信報告情報に対応する時間オフセット値が、第1のパケットの送信に使用される。同様に、送信報告情報に対応する周波数オフセット値が、第1のパケットの送信に使用されてもよい。なお、図27に示した例では、第1のパケットは繰り返し送信されなくてもよい。
他に、送信電力により送信報告情報が通知されてもよい。例えば、送信端末200Aは、グラントベース送信よりも大きな送信電力でグラントフリー送信を行ってもよい。その場合、周辺送信端末200Cは、所定の閾値よりも大きな受信電力を検知した場合に、グラントフリー送信されたことを認識する。所定の閾値は、Pre-configureされていてもよいし、基地局100からのRRCシグナリングにより設定されてもよい。
−黙示的な通知に基づくリカバリ処理
以下、図28〜図30を参照しながら、黙示的な通知に基づくリカバリ処理について説明する。
−基地局100が黙示的な通知を検出する例
図28は、本実施形態に係るシステム1において実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図28に示したステップS202〜S212に係る処理は、図22に示したステップS102〜S112に係る処理と同様である。ステップS212の後、送信端末200Aは、第1のパケットをグラントフリー送信しつつ、送信報告情報を黙示的に送信する黙示的なパケット送信報告を行う(ステップS214)。受信端末200Bは、第1のパケットを受信する(ステップS216)。他方、基地局100は、黙示的に送信された送信報告情報に基づいて、第1のパケットがグラントフリー送信されたことを検出する(ステップS218)。その後のステップS220〜S226に係る処理は、図22に示したステップS120〜S126に係る処理と同様である。
なお、基地局100が黙示的に送信された送信報告情報を検出するためには、サイドリンク信号を受信するか、又は第1のパケットがグラントフリー送信されたことを示す情報を周辺受信端末200D等から報告されることが望ましい。
−周辺送信端末200Cが黙示的な通知を検出する例
図29は、本実施形態に係るシステム1において実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図29に示したステップS232〜S246に係る処理は、図28に示したステップS202〜S216に係る処理と同様である。ステップS246の後、周辺送信端末200Cは、黙示的に送信された送信報告情報に基づいて、第1のパケットがグラントフリー送信されたことを検出する(ステップS248)。次いで、周辺送信端末200Cは、送信報告情報に基づいて、自らが第2のパケットの送信に使用したリソースと第1のパケットの送信に使用されたリソースとを比較し、衝突の発生有無を確認する(ステップS250)。衝突が発生していた場合、周辺受信端末200Dが第2のパケットの受信に失敗している可能性があることから、周辺送信端末200Cは、リカバリ処理を実施する(ステップS252)。周辺送信端末200Cによるリカバリ処理は、例えば、第2のパケットの再送のためのリソース要求を基地局100に送信すること、及び割り当てられたリソースを使用して第2のパケットを再送することを含む。周辺送信端末200Cは、再度割り当てられたリソースを使用して第2のパケットを再送し(ステップS254)、周辺受信端末200Dは、再送された第2のパケットを受信する(ステップS256)。
−周辺受信端末200Dが黙示的な通知を検出する例
図30は、本実施形態に係るシステム1において実行される送信報告情報の黙示的な通知に基づくリカバリ処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図30に示したステップS262〜S276に係る処理は、図28に示したステップS202〜S216に係る処理と同様である。ステップS276の後、周辺受信端末200Dは、黙示的に送信された送信報告情報に基づいて、第1のパケットがグラントフリー送信されたことを検出する(ステップS278)。次いで、周辺受信端末200Dは、送信報告情報に基づいて、第2のパケットの受信に使用したリソースと第1のパケットの送信に使用されたリソースとを比較し、衝突の発生有無を確認する(ステップS280)。衝突が発生していた場合、周辺受信端末200Dが第2のパケットの受信に失敗している可能性があることから、周辺受信端末200Dは、リカバリ処理を実施する(ステップS282)。周辺受信端末200Dによるリカバリ処理は、例えば、周辺送信端末200Cに再送手続きを行うよう指示することを含む。その場合、周辺受信端末200Dは、第2のパケットのリカバリ指示を、周辺送信端末200Cに送信する。周辺送信端末200Cは、リカバリ指示を受信すると、リカバリ処理を実施する(ステップS284)。周辺送信端末200Cによるリカバリ処理は、例えば、第2のパケットの再送のためのリソース要求を基地局100に送信すること、及び割り当てられたリソースを使用して第2のパケットを再送することを含む。周辺送信端末200Cは、再度割り当てられたリソースを使用して第2のパケットを再送し(ステップS286)、周辺受信端末200Dは、再送された第2のパケットを受信する(ステップS288)。
<4.2.Mode4リソース割り当て環境における処理>
以下では、Mode4リソース割り当て環境における衝突防止のための所定の手続きが省略されて送信された(即ち、グラントフリー送信された)パケットに衝突したパケットの、リカバリについて説明する。本例での衝突防止のための所定の手続きとは、センシングである。Mode4におけるグラントフリー送信を、Mode3におけるグラントフリー送信と特別するために、以下ではセンシングレス送信とも称する。
送信端末200Aは、第1のパケットをセンシングレス送信し、かかるセンシングレス送信に関する情報を、周辺の他の端末装置200(例えば、周辺送信端末200C)に報告する。周辺送信端末200Cは、自らが第2のパケットの送信に使用したリソースを把握しているので、衝突の発生有無を判定可能である。周辺送信端末200Cは、衝突が発生したと判定した第2のパケットの再送を行う。
なお、以下では、Mode3リソース割り当て環境における動作と同一の動作については記載を省略し、差分について記載するものとする。
<4.2.1.センシングレス送信及びリカバリ処理>
以下、図31を参照しながら、提案技術に係るセンシングレス送信及びリカバリ処理の流れを説明する。図31は、本実施形態に係るシステム1において実行されるセンシングレス送信及びリカバリ処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100、送信端末200A、受信端末200B、周辺送信端末200C、及び周辺受信端末200Dが関与する。
図31に示すように、まず、基地局100は、制御下の端末装置200(200A〜200D)の各々に、サイドリンク通信に関する制御情報を通知する(ステップS302)。周辺送信端末200Cは、送信すべき第2のパケットが発生すると、所定のセンシングを行い(ステップS304)、空きを確認したリソースを使用して第2のパケットを送信する(ステップS306)。周辺受信端末200Dは、第2のパケットを受信する(ステップS308)。
一方、送信端末200Aは、送信すべき第1のパケット(ここでは、URLLCパケット)が発生すると(ステップS310)、第1のパケットをセンシングレス送信する(ステップS312)。受信端末200Bは、第1のパケットを受信する(ステップS314)。
衝突防止のための所定の手続き(即ち、センシング)を省略して第1のパケットが送信されるので、低遅延が実現される。一方で、送信端末200Aがセンシングレス送信を行っていることから、第1のパケットと第2のパケットとに衝突が発生する可能性がある。この衝突に起因する第2のパケットの受信失敗のリカバリのために、送信端末200Aは、事後処理を実施する。
具体的には、送信端末200Aは、第1のパケットをセンシングレス送信した旨を周辺の他の端末装置200に報告する、パケット送信報告を行う(ステップS316)。詳しくは、送信端末200Aは、第1のパケットのセンシングレス送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報を、周辺の他の端末装置200(例えば、周辺送信端末200C)に送信する。その後、周辺送信端末200Cは、受信した送信報告情報に基づいて、自らが第2のパケットの送信に使用したリソースと第1のパケットの送信に使用されたリソースとを比較し、衝突の発生有無を確認する(ステップS318)。衝突が発生していた場合、周辺受信端末200Dが第2のパケットの受信に失敗している可能性があることから、周辺送信端末200Cは、リカバリ処理を実施する(ステップS320)。周辺送信端末200Cによるリカバリ処理は、例えば、第2のパケットを再送することを含む。周辺送信端末200Cは、再度割り当てられたリソースを使用して第2のパケットを再送し(ステップS322)、周辺受信端末200Dは、再送された第2のパケットを受信する(ステップS324)。
なお、図31に示した例では、送信報告情報が周辺送信端末200Cに直接的に送信されているが、本技術はかかる例に限定されない。例えば、送信報告情報は、基地局100を介して周辺送信端末200Cに送信されてもよい。その場合、送信端末200Aは、Uuリンクで送信報告情報を送信し、周辺送信端末200CはUuリンクで送信報告情報を受信する。
<4.2.2.各装置の動作>
以上、Mode4リソース割り当て環境における処理の概要を説明した。以下では、各ノードの動作を詳細に説明する。
(1)送信端末200Aの動作
−第1のパケット発生時の判断
送信端末200A(例えば、送信処理部241)は、URLLCパケットである第1のパケットが発生した場合、以下の判断を行い得る。
送信端末200Aは、第1のパケットを送信可能な割り当てリソースがあるか否かを判定してもよい。割り当てリソースが有ると判定された場合、送信端末200Aは、割り当てリソースを使用して第1のパケットを送信する。他方、割り当てリソースが無いと判定された場合、送信端末200Aは、センシングレス送信を実施する。ただし、バックグラウンドでセンシングを実施していた場合、送信端末200Aは、かかるセンシングの結果を使用してもよい。また、センシングを実施しても遅延要求が満たされる場合、送信端末200Aは、センシングを実施してもよい。なお、URLLCパケットを送信可能なリソースは、基地局100からのRRCシグナリングにより事前に割り当てられ得る。
−センシングレス送信
センシング送信とは、パケットの衝突防止のための所定のセンシングが実施されずに、パケットが送信される方法である。換言すると、センシングレス送信とは、パケットの衝突防止のための所定の基準を満たせない(即ち、パケットの衝突が発生し得る)送信方法である。
所定のセンシングは、3GPP LTE V2Xで規定されているような、所定時間(1秒など)のセンシングであってもよい。他にも、所定のセンシングは、LBT(Listen Before Talk)であってもよい。LBTとは、より短期間のセンシングを指し、例えばWi−Fiで用いられているような、送信前の数msオーダーのセンシングである。センシングレス送信では、上述した所定のセンシングが実施されずに、パケットが送信される。ただし、所定のセンシング以外の(具体的には、より貧弱な)センシングが実施された上でパケットが送信されることも、センシングレス送信の一例である。所定のセンシング以外のセンシングとは、例えば極短い時間(例えば、数シンボル、略ゼロ)のセンシング等の、パケットの衝突防止のための所定の基準を満たせないセンシングである。
センシングレス送信用のリソースプールが、基地局100からのRRCシグナリングにより事前に割り当てられてもよい。カバレッジ外の場合、センシングレス送信用のリソースプールが、端末装置200にPre-configurationされてもよい。センシングレス送信用のリソースプールは、通常の(即ち、センシングを伴う送信用の)リソースプールと同一であってもよいし、時間方向及び/又は周波数方向に制限されていてもよい。
センシングレス送信では、送信端末200Aは自ら送信リソースをランダムに選択してもよい。また、送信端末200Aは、所定の選択基準に従って送信リソースを選択してもよい。所定の選択基準は、例えば、基地局100により設定され得る。
−送信報告情報の送信
送信端末200A(例えば、送信処理部241)は、サイドリンクで第1のパケットをセンシングレス送信した後、第1のパケットのセンシングレス送信に関する情報を含む送信報告情報を送信する。送信報告情報が送信されることで、送信報告情報の受信側での第1のパケットと第2のパケットとの衝突の発生有無の確認が可能となり、衝突が発生していた場合に第2パケットの再送が実現される。とりわけ、送信端末200Aは、パケットの衝突防止のための所定の手続き(即ち、所定のセンシング)が実施されずに第1のパケットを送信する場合に、送信報告情報を送信する。パケットの衝突が発生し得る場合に限定して送信報告情報が送信されるので、シグナリングオーバーヘッドを抑制することができる。
送信端末200Aは、送信報告情報をUuリンク及び/又はサイドリンクで送信する。即ち、送信端末200Aは、送信報告情報を基地局100経由で、又は直接的に他の端末装置200に送信する。
送信端末200Aは、第1のパケットの送信に使用されるリソースと時間方向に所定の関係にあるリソースを使用して、送信報告情報を送信してもよい。
−送信報告情報の内容
送信報告情報の内容は、Mode3リソース割り当ての場合と同様である。即ち、送信報告情報は、送信端末200Aが第1のパケットのセンシングレス送信に使用したリソースの時間及び周波数を示す情報を含む。また、送信報告情報は、以下に示す情報の少なくともいずれかをさらに含み得る。
−第1のパケットの送信に使用したリソースプールを示す情報
−第1のパケットの送信に使用した周波数帯域を示す情報
−第1のパケットの送信繰り返し回数を示す情報
−第1のパケットの送信に使用した送信電力を示す情報
−第1のパケットの優先度を示す情報
−第1のパケットを送信したときの送信端末200Aの位置情報
−第1のパケットの送信時のMCS情報
−第1のパケットの送信時のトランスミッションモード情報
−第1のパケットの送信時のQCL(Quasi−Colocation)情報
−処理の流れ
以下、図32を参照しながら、送信端末200Aによる処理の流れの一例を説明する。図32は、本実施形態に係る送信端末200Aにより実行される第1のパケットの送信処理及び事後処理の流れの一例を示すフローチャートである。
図32に示すように、まず、送信端末200Aにおいて、送信すべき第1のパケット(例えば、URLLCパケット)が発生する(ステップS332)。すると、送信端末200Aは、第1のパケットを送信可能な割り当てリソースがあり、且つそのリソースを使用した場合に遅延要求が満たされるかを判定する(ステップS334)。ステップS334がYESの場合、送信端末200Aは、当該割り当てリソースを使用して第1のパケットを送信する(ステップS336)。ステップS334がNOの場合、送信端末200Aは、センシングレス送信の実施を決定し(ステップS338)、第1のパケットをセンシングレス送信する(ステップS340)。そして、送信端末200Aは、第1のパケットのセンシングレス送信に関する情報を含む送信報告情報を送信する(ステップS342)。
(2)周辺送信端末200Cの動作
周辺送信端末200C(例えば、送信処理部241)は、基地局100による制御に基づいて、サイドリンクで第2のパケットを送信する。詳しくは、周辺送信端末200Cは、基地局100により割り当てられたリソースを使用して、第2のパケットを送信する。
ただし、周辺送信端末200Cは、送信端末200Aによるセンシングレス送信に関する情報を含む送信報告情報を受信する場合がある。その場合、周辺送信端末200Cは、サイドリンクで第2のパケットを送信した後、送信報告情報に基づいて第2のパケットの再送を制御する。
詳しくは、まず、周辺送信端末200Cは、送信報告情報に基づいて、第1のパケットと第2のパケットとの衝突の発生有無を判定する。具体的には、周辺送信端末200Cは、送信報告情報が示す第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを、第2のパケットの送信に使用したか否かを確認する。ここでの所定の関係にあるリソースとは、例えば、第1のパケットの送信に使用されたリソースと、同一のリソース、又は少なくとも一部が重複するリソースである。周辺送信端末200Cは、第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを第2のパケットの送信に使用していた場合に衝突が発生したと判定し、そうでない場合に衝突は発生していないと判定する。そして、周辺送信端末200Cは、第1のパケットと第2のパケットとが衝突したと判定された場合に、リカバリ処理を実施する。これにより、パケットの衝突が発生した場合に限定してリカバリ処理を実施することが可能となる。
周辺送信端末200Cは、送信報告情報に基づいて第1のパケットと第2のパケットとが衝突したと判定された場合に、リカバリ処理として、第2のパケットを再送する。例えば、周辺送信端末200Cは、所定のセンシングを行って空きを確認したリソースを使用して、第2のパケットを再送する。当該所定のセンシングは、周辺送信端末200Cにより代理で実施されてもよい。その場合、送信報告情報は、空きが確認された再送用のリソースの時間及び周波数を示す情報を含む。再送のための送信パラメータは、基地局100により事前に設定されていてもよいし、送信端末200Aにより指示されてもよい。再送のための送信パラメータは、例えば、送信電力、MCS、及び送信繰り返し回数等を含み得る。
周辺送信端末200Cは、第1のパケットと第2のパケットとが衝突したと判定された場合、第2のパケットを再送した場合に第2のパケットの遅延要求が満たされるか否かにさらに基づいて、再送を制御してもよい。例えば、周辺送信端末200Cは、第2のパケットを再送しても第2のパケットの遅延要求が満たされる場合に再送し、満たされない場合に再送しない。これにより、パケットの衝突が発生し、且つ再送しても遅延要求が満たされる場合に限定して再送が実施されるので、リソース効率の低下を抑制することができる。
−処理の流れ
以下、図33を参照しながら、周辺送信端末200Cによる処理の流れの一例を説明する。図33は、本実施形態に係る周辺送信端末200Cにより実行されるリカバリ処理の流れの一例を示すフローチャートである。
図33に示すように、まず、周辺送信端末200Cは、第1のパケットをグラントフリー送信した送信端末200Aから送信報告情報を受信する(ステップS352)。次に、周辺送信端末200Cは、送信報告情報が示す第1のパケットの送信に使用されたリソースと所定の関係にあるリソースを、第2のパケットの送信に使用したか否かを確認することで、衝突の発生有無を確認する(ステップS354)。衝突が発生したと判定された場合(ステップS356/YES)、周辺送信端末200Cは、第2のパケットを再送した場合に第2のパケットの遅延要求が満たされるか否かを判定する(ステップS358)。第2のパケットを再送しても第2のパケットの遅延要求が満たされると判定された場合(ステップS358/YES)、周辺送信端末200Cは、リカバリ処理として、第2のパケットの再送処理を実施する(ステップS360)。他方、衝突が発生していないと判定された場合(ステップS356/NO)、又は第2のパケットを再送すると第2のパケットの遅延要求が満たされないと判定された場合(ステップS358/NO)、周辺送信端末200Cは、リカバリ処理を実施しない。
(3)補足
送信報告情報は、Mode3リソース割り当ての場合と同様に、黙示的に通知されてもよい。
<<5.応用例>>
本開示に係る技術は、様々な製品へ応用可能である。
例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。
また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
<5.1.基地局に関する応用例>
(第1の応用例)
図34は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図34に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図34にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
無線通信インタフェース825は、図34に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図34に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図34には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
図34に示したeNB800において、図19を参照して説明した制御部150に含まれる1つ以上の構成要素(通信制御部151)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図34に示したeNB800において、図19を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
(第2の応用例)
図35は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図35に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図35にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図34を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
無線通信インタフェース855は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図34を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図35に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図35には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図35に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図35には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
図35に示したeNB830において、図19を参照して説明した制御部150に含まれる1つ以上の構成要素(通信制御部151)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図35に示したeNB830において、例えば、図Yを参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
<5.2.端末装置に関する応用例>
(第1の応用例)
図36は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
無線通信インタフェース912は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図36に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図36には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図36に示したように複数のアンテナ916を有してもよい。なお、図36にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図36に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
図36に示したスマートフォン900において、図20を参照して説明した制御部240に含まれる1つ以上の構成要素(送信処理部241及び/又は受信処理部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図36に示したスマートフォン900において、例えば、図20を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
(第2の応用例)
図37は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
無線通信インタフェース933は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図37に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図37には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図37に示したように複数のアンテナ937を有してもよい。なお、図37にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図37に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
図37に示したカーナビゲーション装置920において、図20を参照して説明した制御部240に含まれる1つ以上の構成要素(送信処理部241及び/又は受信処理部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図37に示したカーナビゲーション装置920において、例えば、図20を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
<<6.まとめ>>
以上、図1〜図37を参照しながら、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る送信端末200Aは、サイドリンクで第1のパケットを送信した後、第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する。例えば、送信端末200Aは、サイドリンクで第1のパケットをグラントフリー送信又はセンシングレス送信した場合、送信報告情報を基地局100又は周辺の他の端末装置200に送信する。これにより、送信報告情報の受信側は、第1のパケット以外にサイドリンクで送信された第2のパケットの中に第1のパケットと衝突したパケットが有るか否かを確認し、衝突した第2のパケットのリカバリ処理をトリガすることができる。
Mode3リソース割り当て環境においては、基地局100は、送信端末200Aによるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した周辺送信端末200Cによる第2のパケットの再送を制御する。例えば、基地局100は、送信報告情報に基づいて第1のパケットと第2のパケットとの衝突の発生有無を判定し、衝突が発生したと判定した場合に第2のパケットの再送を周辺送信端末200Cに指示する。これにより、第1のパケットと衝突した第2のパケットのリカバリが実現される。
Mode4リソース割り当て環境においては、周辺送信端末200Cは、サイドリンクで第2のパケットを送信した後、送信端末200Aによるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、第2のパケットの再送を制御する。例えば、周辺送信端末200Cは、送信報告情報に基づいて第1のパケットと第2のパケットとの衝突の発生有無を判定し、衝突が発生したと判定した場合に第2のパケットの再送を行う。これにより、第1のパケットと衝突した第2のパケットのリカバリを実現される。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、上記実施形態では、LTEと同様にサイドリンクがNRで定義されることを前提に説明したが、本技術はかかる例に限定されない。例えば、NRでサイドリンクが定義されず、単にダウンリンク/アップリンクが定義される場合であっても、本技術は同様に適用可能である。その場合、ダウンリンク/アップリンクのグラントフリー送信において、本技術を適用して送信報告情報が報告され、リカバリ処理が行われる。例えば、端末装置は、アップリンクでグラントフリー送信を行った後、グラントフリー送信に関する送信報告情報をアップリンクで送信する。送信報告情報は、上記実施形態において説明したサイドリンクのケースにおける送信報告情報と同様の情報を含み得る。他方、基地局は、送信報告情報を受信した後、リカバリ指示を送信する等のリカバリ処理を実施する。リカバリ指示は、上記実施形態において説明したサイドリンクのケースにおけるリカバリ指示と同様の情報を含み得る。
また、上記実施形態では、パケットがグラントフリー送信される場合に衝突検出及びリカバリ処理が行われるものとして説明したが、本技術はかかる例に限定されない。パケットがグラントベース送信された場合であっても、衝突検出及びリカバリ処理が行われてもよい。
また、本技術の適用先は、多様に考えられる。例えば、本技術の適用先は、V2X通信に限定されず、<1.2.サイドリンク通信の拡張例>において説明したサイドリンク通信の多様な拡張例に本技術が適用されてもよい。本技術は、FDM型のリソースプールが割り当てられる場合においても、TDM型のリソースプールが割り当てられる場合においても、同様に適用可能である。本技術は、複数のキャリアを用いてサイドリンク通信を行うマルチキャリア通信にも適用可能である。基地局100は、衛星又はドローン等の非地上局として構成されてもよい。また、基地局100は、RSU、又は複数のUEの代表として機能する代表UE(マスタUE)として構成されてもよい。本技術は、IAB(Integrated Access and Backhaul link)のようなリレー通信におけるサイドリンク通信に対して適用されてもよい。本技術の適用先はURLLCパケットに限定されず、eMBB又はmMTC等の任意のユースケースのパケットの送信に対して本技術が適用されてもよい。
また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、
を備える端末装置。
(2)
前記制御部は、パケットの衝突防止のための所定の手続きが実施されずに前記第1のパケットが送信された場合に、前記送信報告情報を送信する、前記(1)に記載の端末装置。
(3)
前記所定の手続きは、前記第1のパケットの送信のためのリソースの割り当てを受けることを含む、前記(2)に記載の端末装置。
(4)
前記所定の手続きは、パケットの衝突防止のための所定のセンシングを実施することを含む、前記(2)又は(3)に記載の端末装置。
(5)
前記制御部は、前記第1のパケットの送信に使用されるリソースと時間方向に所定の関係にあるリソースを使用して、前記送信報告情報を送信する、前記(1)〜(4)のいずれか一項に記載の端末装置。
(6)
前記制御部は、前記送信報告情報をUuリンク及び/又はサイドリンクで送信する、前記(1)〜(5)のいずれか一項に記載の端末装置。
(7)
前記送信報告情報は、前記第1のパケットの送信に使用したリソースプールを示す情報、前記第1のパケットの送信に使用した周波数帯域を示す情報、前記第1のパケットの送信繰り返し回数を示す情報、前記第1のパケットの送信に使用した送信電力を示す情報、前記第1のパケットの優先度を示す情報、前記第1のパケットを送信したときの前記端末装置の位置情報、前記第1のパケットの送信時のMCS(Modulation and Coding Scheme)情報、前記第1のパケットの送信時のトランスミッションモード情報、及び前記第1のパケットの送信時のQCL(Quasi−Colocation)情報の、少なくともいずれかをさらに含む、前記(1)〜(6)のいずれか一項に記載の端末装置。
(8)
前記第1のパケットは、URLLC(Ultra reliable and low latency communications)のユースケースにおいて送信されるパケットである、前記(1)〜(7)のいずれか一項に記載の端末装置。
(9)
サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、
を備える端末装置。
(10)
前記制御部は、前記送信報告情報に基づいて前記第1のパケットと前記第2のパケットとが衝突したと判定された場合に、前記第2のパケットを再送する、前記(9)に記載の端末装置。
(11)
前記制御部は、前記第2のパケットを再送した場合に前記第2のパケットの遅延要求が満たされるか否かに基づいて、前記第2のパケットの再送を制御する、前記(10)に記載の端末装置。
(12)
第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、
を備える基地局。
(13)
前記通信制御部は、前記送信報告情報に基づいて前記第1のパケットと前記第2のパケットとが衝突したと判定された場合に、前記第2のパケットの再送を指示する情報を前記第2の端末装置に送信する、前記(12)に記載の基地局。
(14)
前記第2のパケットの再送を指示する情報は、前記第2のパケットの再送のために割り当てられたリソースを示す情報を含む、前記(13)に記載の基地局。
(15)
サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信すること、
を含む、プロセッサにより実行される方法。
(16)
サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御すること、
を含む、プロセッサにより実行される方法。
(17)
第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御すること、
を含む、プロセッサにより実行される方法。
(18)
コンピュータを、
サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、
として機能させるためのプログラムが記録された記録媒体。
(19)
コンピュータを、
サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、
として機能させるためのプログラムが記録された記録媒体。
(20)
コンピュータを、
第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、
として機能させるためのプログラムが記録された記録媒体。
1 システム
11 セル
20 コアネットワーク
30 PDN
100 基地局
110 アンテナ部
120 無線通信部
130 ネットワーク通信部
140 記憶部
150 制御部
151 通信制御部
200 端末装置
200A 送信端末
200B 受信端末
200C 周辺送信端末
200D 周辺受信端末
210 アンテナ部
220 無線通信部
230 記憶部
240 制御部
241 送信処理部
243 受信処理部

Claims (20)

  1. サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、
    を備える端末装置。
  2. 前記制御部は、パケットの衝突防止のための所定の手続きが実施されずに前記第1のパケットが送信された場合に、前記送信報告情報を送信する、請求項1に記載の端末装置。
  3. 前記所定の手続きは、前記第1のパケットの送信のためのリソースの割り当てを受けることを含む、請求項2に記載の端末装置。
  4. 前記所定の手続きは、パケットの衝突防止のための所定のセンシングを実施することを含む、請求項2に記載の端末装置。
  5. 前記制御部は、前記第1のパケットの送信に使用されるリソースと時間方向に所定の関係にあるリソースを使用して、前記送信報告情報を送信する、請求項1に記載の端末装置。
  6. 前記制御部は、前記送信報告情報をUuリンク及び/又はサイドリンクで送信する、請求項1に記載の端末装置。
  7. 前記送信報告情報は、前記第1のパケットの送信に使用したリソースプールを示す情報、前記第1のパケットの送信に使用した周波数帯域を示す情報、前記第1のパケットの送信繰り返し回数を示す情報、前記第1のパケットの送信に使用した送信電力を示す情報、前記第1のパケットの優先度を示す情報、前記第1のパケットを送信したときの前記端末装置の位置情報、前記第1のパケットの送信時のMCS(Modulation and Coding Scheme)情報、前記第1のパケットの送信時のトランスミッションモード情報、及び前記第1のパケットの送信時のQCL(Quasi−Colocation)情報の、少なくともいずれかをさらに含む、請求項1に記載の端末装置。
  8. 前記第1のパケットは、URLLC(Ultra reliable and low latency communications)のユースケースにおいて送信されるパケットである、請求項1に記載の端末装置。
  9. サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、
    を備える端末装置。
  10. 前記制御部は、前記送信報告情報に基づいて前記第1のパケットと前記第2のパケットとが衝突したと判定された場合に、前記第2のパケットを再送する、請求項9に記載の端末装置。
  11. 前記制御部は、前記第2のパケットを再送した場合に前記第2のパケットの遅延要求が満たされるか否かに基づいて、前記第2のパケットの再送を制御する、請求項10に記載の端末装置。
  12. 第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、
    を備える基地局。
  13. 前記通信制御部は、前記送信報告情報に基づいて前記第1のパケットと前記第2のパケットとが衝突したと判定された場合に、前記第2のパケットの再送を指示する情報を前記第2の端末装置に送信する、請求項12に記載の基地局。
  14. 前記第2のパケットの再送を指示する情報は、前記第2のパケットの再送のために割り当てられたリソースを示す情報を含む、請求項13に記載の基地局。
  15. サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信すること、
    を含む、プロセッサにより実行される方法。
  16. サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御すること、
    を含む、プロセッサにより実行される方法。
  17. 第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御すること、
    を含む、プロセッサにより実行される方法。
  18. コンピュータを、
    サイドリンクで第1のパケットを送信した後、前記第1のパケットの送信に使用したリソースの時間及び周波数を示す情報を含む送信報告情報を送信する制御部、
    として機能させるためのプログラムが記録された記録媒体。
  19. コンピュータを、
    サイドリンクで第2のパケットを送信した後、他の端末装置によるサイドリンクでの第1のパケットの送信に用いられたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、前記第2のパケットの再送を制御する制御部、
    として機能させるためのプログラムが記録された記録媒体。
  20. コンピュータを、
    第1の端末装置によるサイドリンクでの第1のパケットの送信に使用されたリソースの時間及び周波数を示す情報を含む送信報告情報に基づいて、サイドリンクで第2のパケットを送信した第2の端末装置による前記第2のパケットの再送を制御する通信制御部、
    として機能させるためのプログラムが記録された記録媒体。
JP2020562858A 2018-12-26 2019-10-28 端末装置、基地局、方法及び記録媒体 Active JP7439768B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018243472 2018-12-26
JP2018243472 2018-12-26
PCT/JP2019/042093 WO2020137130A1 (ja) 2018-12-26 2019-10-28 端末装置、基地局、方法及び記録媒体

Publications (2)

Publication Number Publication Date
JPWO2020137130A1 true JPWO2020137130A1 (ja) 2021-11-04
JP7439768B2 JP7439768B2 (ja) 2024-02-28

Family

ID=71129292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562858A Active JP7439768B2 (ja) 2018-12-26 2019-10-28 端末装置、基地局、方法及び記録媒体

Country Status (5)

Country Link
US (1) US20220061026A1 (ja)
EP (1) EP3905770A4 (ja)
JP (1) JP7439768B2 (ja)
CN (1) CN113196822A (ja)
WO (1) WO2020137130A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490998B (zh) * 2019-01-25 2022-02-25 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及计算机可读存储介质
FI20206138A1 (fi) * 2020-11-11 2022-05-12 Nokia Technologies Oy Sivulinkin resurssin uudelleenvalinta

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160037572A1 (en) * 2014-07-29 2016-02-04 Electronics And Telecommunications Research Institute Method for device to device communication between terminals and terminal for supporting same
JP2017506037A (ja) * 2014-01-29 2017-02-23 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス発見またはデバイスツーデバイス通信のためのリソース選択
WO2017083388A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Methods and apparatuses directed to cooperative communications
WO2017199447A1 (ja) * 2016-05-20 2017-11-23 富士通株式会社 無線通信システム、無線通信方法、および無線端末
WO2018061521A1 (ja) * 2016-09-29 2018-04-05 ソニー株式会社 通信装置及び通信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532790B (en) 2014-11-28 2017-10-04 Porvair Filtration Group Ltd Modified pipette tips for chromatin immunoprecipitation assay
KR20180043386A (ko) * 2015-09-17 2018-04-27 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말의 메시지 송수신 방법 및 장치
WO2017128275A1 (zh) * 2016-01-29 2017-08-03 广东欧珀移动通信有限公司 用于副链路数据传输的方法以及终端
CN109076530B (zh) * 2016-03-11 2023-05-23 Lg 电子株式会社 用于v2x通信的资源分配方法和设备
US10440520B2 (en) * 2016-05-12 2019-10-08 Sharp Kabushiki Kaisha Method and apparatus for selecting radio resources for vehicle (V2X) communications from an overlapping resource pool
KR102553664B1 (ko) * 2016-09-30 2023-07-10 엘지전자 주식회사 무선 통신 시스템에서 우선 순위를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
WO2020031346A1 (ja) * 2018-08-09 2020-02-13 富士通株式会社 通信装置、基地局装置、および通信方法
JP2020102842A (ja) * 2018-12-24 2020-07-02 華碩電腦股▲ふん▼有限公司 無線通信システムにおいて1対1のサイドリンク通信を支援するための方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506037A (ja) * 2014-01-29 2017-02-23 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス発見またはデバイスツーデバイス通信のためのリソース選択
US20160037572A1 (en) * 2014-07-29 2016-02-04 Electronics And Telecommunications Research Institute Method for device to device communication between terminals and terminal for supporting same
WO2017083388A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Methods and apparatuses directed to cooperative communications
WO2017199447A1 (ja) * 2016-05-20 2017-11-23 富士通株式会社 無線通信システム、無線通信方法、および無線端末
WO2018061521A1 (ja) * 2016-09-29 2018-04-05 ソニー株式会社 通信装置及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink resource allocation mode 2", 3GPP TSG RAN WG1#95 R1-1812209, JPN6023028283, 3 November 2018 (2018-11-03), FR, ISSN: 0005169943 *

Also Published As

Publication number Publication date
JP7439768B2 (ja) 2024-02-28
US20220061026A1 (en) 2022-02-24
EP3905770A1 (en) 2021-11-03
CN113196822A (zh) 2021-07-30
WO2020137130A1 (ja) 2020-07-02
EP3905770A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US11363429B2 (en) Communication device, communication method, transmission device and reception device
JP7413995B2 (ja) 端末装置、方法及びプログラム
US11012840B2 (en) Wireless communication device and wireless communication method
CN110139323B (zh) 在支持v2x的通信系统中进行负载分配的方法和装置
JP7439763B2 (ja) 通信装置及び制御装置
US10798738B2 (en) Device and method
JP2021168498A (ja) 無線通信装置、基地局装置及び通信方法
US11470584B2 (en) Communication device
JP7355018B2 (ja) 通信装置
WO2020066583A1 (ja) 通信装置、制御装置及び通信システム
US20220408413A1 (en) Wireless communication device and wireless communication method
JP7439768B2 (ja) 端末装置、基地局、方法及び記録媒体
EP3860206A1 (en) Communication device
JP2021106302A (ja) 通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R151 Written notification of patent or utility model registration

Ref document number: 7439768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151