JPWO2020136777A1 - Welded structure - Google Patents

Welded structure Download PDF

Info

Publication number
JPWO2020136777A1
JPWO2020136777A1 JP2019519786A JP2019519786A JPWO2020136777A1 JP WO2020136777 A1 JPWO2020136777 A1 JP WO2020136777A1 JP 2019519786 A JP2019519786 A JP 2019519786A JP 2019519786 A JP2019519786 A JP 2019519786A JP WO2020136777 A1 JPWO2020136777 A1 JP WO2020136777A1
Authority
JP
Japan
Prior art keywords
joint
welded
plate thickness
distance
joining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519786A
Other languages
Japanese (ja)
Other versions
JP6562189B1 (en
Inventor
鉄平 大川
鉄平 大川
祐介 島田
祐介 島田
直樹 小田
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67690501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2020136777(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6562189B1 publication Critical patent/JP6562189B1/en
Publication of JPWO2020136777A1 publication Critical patent/JPWO2020136777A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0256Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • B23K9/0035Arc welding or cutting specially adapted for particular articles or work of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

接合部材11の端面11cが被接合部材12の被接合面12aに当接した状態で接合部材11が被接合部材12に両側部分溶込み溶接されたT継手部を有し、接合部材11は第1表面11aおよび第2表面11bを有し、接合部材11の板厚t(mm)が[t≧50.0]を満足し、接合部材11の、第1表面11aおよび第2表面11bの1mm深さ位置からそれぞれ採取されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度が、-60℃以下であり、かつ第1溶接部13aの第1熱影響部15aの最頂点と第1表面11aとの距離h1(mm)、および第2溶接部13bの第2熱影響部15bの最頂点と第2表面11bとの距離h2(mm)との関係で[NDTT1≦-30.5×ln(h1)-14.0]および[NDTT2≦-30.5×ln(h2)-14.0]を満足する、溶接構造体10。The joint member 11 has a T-joint portion in which both side portions are welded to the joint member 12 in a state where the end surface 11c of the joint member 11 is in contact with the joint surface 12a of the joint member 12, and the joint member 11 is the first. It has one surface 11a and a second surface 11b, the plate thickness t (mm) of the joining member 11 satisfies [t ≧ 50.0], and the joining member 11 has 1 mm of the first surface 11a and the second surface 11b. The non-deferring transition temperature by the NRL weight drop test using the type P3 test pieces collected from the depth position is -60 ° C or less, and the highest point of the first heat-affected zone 15a of the first welded zone 13a. The relationship between the distance h1 (mm) from the first surface 11a and the distance h2 (mm) between the highest peak of the second heat-affected zone 15b of the second welded portion 13b and the second surface 11b [NDTT1 ≦ -30.5 × A welded structure 10 that satisfies ln (h1) -14.0] and [NDTT2 ≦ -30.5 × ln (h2) -14.0].

Description

本発明は、コンテナ船等において利用される溶接構造体に関する。 The present invention relates to a welded structure used in a container ship or the like.

大量の貨物を搭載する大型のコンテナ船においては、アッパーデッキ(上甲板)に、貨物の積み下ろしを行うための大きな開口部(ハッチ)が形成されている。また、アッパーデッキ上には、海水の流入防止等のために、ハッチを囲むようにハッチサイドコーミングが設けられている。アッパーデッキおよびハッチサイドコーミングはそれぞれ、複数の鋼板を溶接して構成されている。また、ハッチサイドコーミングは、アッパーデッキ上に溶接されている。 In a large container ship carrying a large amount of cargo, a large opening (hatch) for loading and unloading cargo is formed on the upper deck (upper deck). In addition, hatch side combing is provided on the upper deck so as to surround the hatch in order to prevent the inflow of seawater. The upper deck and hatch side combing are each made by welding a plurality of steel plates. Also, the hatch side combing is welded onto the upper deck.

上記のような大型のコンテナ船が海上を航行する際には、波浪によって、船体全体を曲げるような荷重(縦曲げ荷重)が船体に付加される。このような荷重に対して、船体の強度(縦曲げ強度)を十分に確保するために、アッパーデッキおよびハッチサイドコーミングには、高強度の厚肉鋼板が利用されている。 When a large container ship as described above sails over the sea, a load that bends the entire hull (vertical bending load) is applied to the hull due to waves. In order to secure sufficient strength (longitudinal bending strength) of the hull against such a load, a high-strength thick steel plate is used for the upper deck and the hatch side combing.

また、上述のように、ハッチサイドコーミングおよびアッパーデッキはそれぞれ、複数の鋼板を溶接した構成を有している。言い換えると、ハッチサイドコーミングおよびアッパーデッキには、鋼板同士を溶接するための複数の溶接部が形成されている。溶接部で発生したき裂は、溶接部に沿って伝播しやすい。このため、例えば、ハッチサイドコーミングの溶接部においてき裂が発生した場合、そのき裂が溶接部に沿ってアッパーデッキ側に向かって伝播し、伝播したき裂がアッパーデッキの溶接部に進展する場合がある。したがって、船体の強度を十分に向上させるためには、ハッチサイドコーミングおよびアッパーデッキが、上記のようなき裂の進展を停止させることができる特性(脆性き裂伝播停止特性)を有する必要がある。 Further, as described above, the hatch side combing and the upper deck each have a structure in which a plurality of steel plates are welded together. In other words, the hatch side combing and the upper deck are formed with a plurality of welds for welding the steel plates to each other. Cracks generated at the weld tend to propagate along the weld. Therefore, for example, when a crack occurs in the welded portion of the hatch side combing, the crack propagates toward the upper deck side along the welded portion, and the propagated crack propagates to the welded portion of the upper deck. In some cases. Therefore, in order to sufficiently improve the strength of the hull, the hatch side combing and the upper deck need to have the above-mentioned property of stopping the growth of cracks (brittle crack propagation stopping property).

例えば、特許文献1および2には、脆性き裂伝播停止特性に関する溶接構造体が開示されている。 For example, Patent Documents 1 and 2 disclose a welded structure relating to brittle crack propagation stopping characteristics.

特開2007−326147号公報JP-A-2007-326147 特許第5365761号Patent No. 5365761

ところで、ハッチサイドコーミングで発生し、アッパーデッキ側に向かって伝播したき裂の進展を停止させるためには、これらの部材として、例えば、脆性き裂伝播停止特性の指標である−10℃におけるKca値が6000N/mm1.5以上の厚肉鋼板を用いる必要があることが知られている。By the way, in order to stop the growth of cracks generated by hatchside combing and propagated toward the upper deck side, as these members, for example, Kca at -10 ° C, which is an index of brittle crack propagation stopping characteristics. It is known that it is necessary to use a thick steel plate having a value of 6000 N / mm 1.5 or more.

また、上述の例だけでなく、き裂がアッパーデッキから発生しハッチサイドコーミング側に向かって伝播する可能性もある。そして、日本海事協会と日本溶接協会との共同研究にて実施された実証試験結果によれば、アッパーデッキで発生し、ハッチサイドコーミング側に向かって伝播するき裂の進展を停止させるためには、8000N/mm1.5以上という極めて高いKca値を有する厚肉鋼板を用いる必要があることが分かってきた。In addition to the above example, cracks may occur from the upper deck and propagate toward the hatchside combing side. According to the results of a demonstration test conducted in a joint research between the Nippon Kaiji Kyokai and the Japan Welding Engineering Society, in order to stop the growth of cracks that occur on the upper deck and propagate toward the hatchside combing side, , 8000 N / mm It has become clear that it is necessary to use a thick steel plate having an extremely high Kca value of 1.5 or more.

しかしながら、このような高い脆性き裂伝播停止特性を有する厚肉鋼板を安定的に製造することは、技術的な面からもコスト的な面からも困難であるという問題がある。そのため、より合理的な手法により低コストで優れた脆性き裂伝播停止特性を有する溶接構造体を得る必要がある。 However, there is a problem that it is difficult to stably produce a thick-walled steel sheet having such a high brittle crack propagation stopping property from both a technical aspect and a cost aspect. Therefore, it is necessary to obtain a welded structure having excellent brittle crack propagation stopping characteristics at low cost by a more rational method.

本発明は、このような問題を解決するためになされたものであり、脆性き裂伝播停止特性に優れた溶接構造体を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a welded structure having excellent brittle crack propagation stopping characteristics.

本発明は、下記の溶接構造体を要旨とする。 The gist of the present invention is the following welded structure.

(1)板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記接合部材の板厚t(mm)が、下記(i)式を満足し、
前記第1表面側に形成された第1溶接部の第1熱影響部の最頂点と前記第1表面との前記接合部材の板厚方向の距離を距離h(mm)とし、前記第2表面側に形成された第2溶接部の第2熱影響部の最頂点と前記第2表面との前記接合部材の板厚方向の距離を距離h(mm)とした時に、
前記接合部材の、前記第1表面および前記第2表面の1mm深さ位置からそれぞれ採取され、厚さ方向が前記板厚方向と一致するASTM E208に規定されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度が、−60℃以下であり、かつ下記(ii)式および(iii)式を満足する、
溶接構造体。
t≧50.0 ・・・(i)
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
NDTT≦−30.5×ln(h)−14.0 ・・・(iii)
但し、NDTTおよびNDTTは、第1表面および第2表面の1mm深さ位置からそれぞれ採取されるASTM E208に規定されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度(℃)である。
(1) Welding having a T-joint portion in which the joint member is partially welded to the joint member in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. It's a structure
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
The plate thickness t (mm) of the joining member satisfies the following equation (i).
The distance in the plate thickness direction of the joining member between the highest apex of the first heat-affected zone of the first welded portion formed on the first surface side and the first surface is defined as the distance h 1 (mm), and the second When the distance in the plate thickness direction of the joining member between the highest apex of the second heat-affected zone of the second welded portion formed on the surface side and the second surface is a distance h 2 (mm),
NRL drop using a type P3 test piece specified in ASTM E208, which is sampled from the 1 mm depth position of the first surface and the second surface of the joint member and whose thickness direction coincides with the plate thickness direction. The non-ductile transition temperature by the heavy test is -60 ° C or lower and satisfies the following equations (ii) and (iii).
Welded structure.
t ≧ 50.0 ・ ・ ・ (i)
NDTT 1 ≤ -30.5 x ln (h 1 ) -14.0 ... (ii)
NDTT 2 ≤-30.5 x ln (h 2 ) -14.0 ... (iii)
However, NDTT 1 and NDTT 2 have non-ductile transition temperatures (° C.) by NRL drop test using type P3 test pieces specified in ASTM E208, which are collected from 1 mm depth positions on the first surface and the second surface, respectively. ).

(2)前記接合部材の板厚t(mm)、前記距離h(mm)および前記距離h(mm)が、下記(iv)式および(v)式を満足する、
上記(1)に記載の溶接構造体。
≦t/4 ・・・(iv)
≦t/4 ・・・(v)
(2) The plate thickness t (mm) of the joining member, the distance h 1 (mm) and the distance h 2 (mm) satisfy the following equations (iv) and (v).
The welded structure according to (1) above.
h 1 ≤ t / 4 ... (iv)
h 2 ≤ t / 4 ... (v)

(3)前記第1表面および前記被接合面に垂直な断面において、
前記第1溶接部における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角α(°)、前記板厚方向における継手の部分溶込みd(mm)および前記被接合部材側の止端と前記第1表面との距離s(mm)、ならびに、前記第2溶接部における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角α(°)、前記板厚方向における継手の部分溶込みd(mm)および前記被接合部材側の止端と前記第2表面との距離s(mm)が、下記(vi)〜(xi)式を満足する、
上記(1)または(2)に記載の溶接構造体。
45.0≦α≦70.0 ・・・(vi)
45.0≦α≦70.0 ・・・(vii)
・sec(α)・cos(α/2)≧0.35t ・・・(viii)
・sec(α)・cos(α/2)≧0.35t ・・・(ix)
≧d(sec(α)−1) ・・・(x)
≧d(sec(α)−1) ・・・(xi)
(3) In the cross section perpendicular to the first surface and the surface to be joined,
The sharp angle α 1 (°) formed by the line passing through the toe and the root on the joint member side and the surface to be joined in the first welded portion, and the partial penetration d 1 (mm) of the joint in the plate thickness direction. The distance s 1 (mm) between the toe on the joint member side and the first surface, and the line passing through the toe and root on the joint member side in the second weld and the joint surface. The sharp angle α 2 (°) formed by the joint, the partial penetration d 2 (mm) of the joint in the plate thickness direction, and the distance s 2 (mm) between the toe on the member to be welded and the second surface are as follows. Satisfy equations (vi) to (xi),
The welded structure according to (1) or (2) above.
45.0 ≤ α 1 ≤ 70.0 ・ ・ ・ (vi)
45.0 ≤ α 2 ≤ 70.0 ・ ・ ・ (vii)
d 1 · sec (α 1 ) · cos (α 1/2 ) ≧ 0.35t ・ ・ ・ (viii)
d 2 · sec (α 2) · cos (α 2 /2)≧0.35t ··· (ix)
s 1 ≧ d 1 (sec (α 1 ) -1) ・ ・ ・ (x)
s 2 ≧ d 2 (sec (α 2 ) -1) ・ ・ ・ (xi)

(4)前記接合部材の板厚t(mm)が下記(xii)式を満足する、
上記(1)から(3)までのいずれかに記載の溶接構造体。
t>80.0 ・・・(xii)
(4) The plate thickness t (mm) of the joining member satisfies the following equation (xii).
The welded structure according to any one of (1) to (3) above.
t> 80.0 ・ ・ ・ (xii)

(5)前記接合部材の降伏応力が400〜580MPaであり、引張強さが510〜750MPaである、
上記(1)から(4)までのいずれかに記載の溶接構造体。
(5) The yield stress of the joining member is 400 to 580 MPa, and the tensile strength is 510 to 750 MPa.
The welded structure according to any one of (1) to (4) above.

本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得ることができる。 According to the present invention, it is possible to obtain a welded structure having excellent brittle crack propagation stopping characteristics.

本発明の一実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る溶接構造体を示す斜視図である。It is a perspective view which shows the welded structure which concerns on other embodiment of this invention. 溶接構造体の断面図である。It is sectional drawing of the welded structure. 構造モデルアレスト試験体の形状を説明するための図である。It is a figure for demonstrating the shape of the structural model arrest specimen.

本発明者らが上記の課題を解決するために検討を行った結果、以下の知見を得るに至った。 As a result of studies conducted by the present inventors to solve the above problems, the following findings have been obtained.

上述のように、溶接構造体に用いられる部材の全厚にわたって脆性き裂伝播停止特性を向上させるためには、例えば、Kca値が8000N/mm1.5以上の厚肉鋼板を用いる必要がある。As described above, in order to improve the brittle crack propagation stopping characteristic over the entire thickness of the member used in the welded structure, for example, it is necessary to use a thick steel sheet having a Kca value of 8000 N / mm 1.5 or more. ..

しかしながら、例えば、アッパーデッキからハッチサイドコーミング側に向かってき裂が伝播する場合において、き裂の突入領域がハッチサイドコーミングに用いられる厚肉鋼板の表層領域のみに制限されるような構造にするとともに、厚肉鋼板の表層領域の脆性き裂伝播停止特性を向上させることができれば、き裂の進展を停止させることが可能になる。その結果、溶接構造体全体での脆性き裂伝播停止特性を低コストで向上させることが可能になる。 However, for example, when a crack propagates from the upper deck toward the hatch side combing side, the crack entry region is limited to the surface layer region of the thick steel plate used for the hatch side combing. If the brittle crack propagation stopping property of the surface layer region of the thick steel sheet can be improved, the crack growth can be stopped. As a result, the brittle crack propagation stopping property of the entire welded structure can be improved at low cost.

本発明は上記の知見に基づいてなされたものである。以下、本発明の一実施形態に係る溶接構造体について説明する。 The present invention has been made based on the above findings. Hereinafter, the welded structure according to the embodiment of the present invention will be described.

1.溶接構造体の構成
図1は、本発明の一実施形態に係る溶接構造体を示す斜視図である。本実施形態に係る溶接構造体10は、接合部材11および被接合部材12を備えている。接合部材11は板状であり、板厚方向に垂直な第1表面11aおよび第2表面11bを有する。また、被接合部材12は板状であり、接合部材11の端面11cが当接される被接合面12aを有する。
1. 1. Structure of Welded Structure FIG. 1 is a perspective view showing a welded structure according to an embodiment of the present invention. The welded structure 10 according to the present embodiment includes a joining member 11 and a member to be joined 12. The joining member 11 is plate-shaped and has a first surface 11a and a second surface 11b perpendicular to the plate thickness direction. Further, the member 12 to be joined has a plate shape and has a surface 12a to be joined to which the end surface 11c of the member 11 is in contact.

そして、図1に示すように、溶接構造体10は、端面11cが被接合面12aに当接した状態で、接合部材11が被接合部材12に両側部分溶込み溶接されたT継手部を有する。なお、上記のT継手部を有する溶接構造体には、図1に示すようなT字状の構造体に加えて、例えば、図2および3に示す形状の構造体も含まれる。 Then, as shown in FIG. 1, the welded structure 10 has a T-joint portion in which the joint member 11 is partially welded to the joined member 12 in a state where the end surface 11c is in contact with the joined surface 12a. .. The welded structure having the T-joint portion includes, for example, a structure having a shape shown in FIGS. 2 and 3 in addition to the T-shaped structure as shown in FIG.

また、接合部材11と被接合部材12とは、隅肉溶接によって接合されていてもよいが、接合強度の観点からは、接合部材11に開先を設け、開先溶接によって接合されていることが好ましい。 Further, the joining member 11 and the member 12 to be joined may be joined by fillet welding, but from the viewpoint of joining strength, the joining member 11 is provided with a groove and is joined by groove welding. Is preferable.

本発明においては、厚肉の接合部材を対象としており、具体的には、接合部材11の板厚をt(mm)とした場合に、下記(i)式を満足する。接合部材11の板厚t(mm)は、下記(xii)式を満足するのが好ましい。tの上限は特に規定する必要はないが、例えば200mm、150mm、または120mmとすることができる。
t≧50.0 ・・・(i)
t>80.0 ・・・(xii)
In the present invention, a thick-walled joining member is targeted, and specifically, when the plate thickness of the joining member 11 is t (mm), the following equation (i) is satisfied. The plate thickness t (mm) of the joining member 11 preferably satisfies the following equation (xii). The upper limit of t is not particularly specified, but can be, for example, 200 mm, 150 mm, or 120 mm.
t ≧ 50.0 ・ ・ ・ (i)
t> 80.0 ・ ・ ・ (xii)

なお、被接合部材の板厚については特に制限はないが、接合部材と同様に、50.0mm以上であることが好ましく、80.0mm超であることがより好ましい。 The plate thickness of the member to be joined is not particularly limited, but like the joint member, it is preferably 50.0 mm or more, and more preferably more than 80.0 mm.

また、図1に示すように、溶接構造体10は、第1表面11a側に形成された第1溶接部13aおよび第2表面11b側に形成された第2溶接部13bを有する。 Further, as shown in FIG. 1, the welded structure 10 has a first welded portion 13a formed on the first surface 11a side and a second welded portion 13b formed on the second surface 11b side.

接合部材11および被接合部材12の接合箇所付近について、図4を用いてさらに詳しく説明する。図4は、溶接構造体10の、第1表面11aおよび被接合面12aに垂直な断面図である。図4においては、図面が煩雑になることを避けるため、ハッチングは付していない。 The vicinity of the joint portion of the joint member 11 and the member to be joined 12 will be described in more detail with reference to FIG. FIG. 4 is a cross-sectional view of the welded structure 10 perpendicular to the first surface 11a and the surface to be joined 12a. In FIG. 4, hatching is not provided in order to avoid complicating the drawings.

図1および図4に示すように、接合部材11および被接合部材12の接合箇所の第1表面11a側には、第1溶接金属14aが形成されている。そして、第1溶接金属14aと接合部材11および被接合部材12との境界部には、第1熱影響部15aが形成されている。同様に、第2表面11b側には、第2溶接金属14bが形成されており、第2溶接金属14bと接合部材11および被接合部材12との境界部には、第2熱影響部15bが形成されている。 As shown in FIGS. 1 and 4, a first weld metal 14a is formed on the first surface 11a side of the joining portion of the joining member 11 and the member to be joined 12. A first heat-affected zone 15a is formed at the boundary between the first weld metal 14a and the joining member 11 and the member to be joined 12. Similarly, the second weld metal 14b is formed on the second surface 11b side, and the second heat-affected zone 15b is formed at the boundary between the second weld metal 14b and the joining member 11 and the joined member 12. It is formed.

本願明細書において、溶接部とは、溶接金属と熱影響部とを合わせた部分を意味する。すなわち、第1溶接金属14aと第1熱影響部15aとを合わせた領域が第1溶接部13aであり、第2溶接金属14bと第2熱影響部15bとを合わせた領域が第2溶接部13bである。 In the specification of the present application, the welded portion means a portion where the weld metal and the heat-affected zone are combined. That is, the region where the first weld metal 14a and the first heat-affected zone 15a are combined is the first welded zone 13a, and the region where the second weld metal 14b and the second heat-affected zone 15b are combined is the second welded zone. 13b.

ここで、被接合部材12から発生し、接合部材11に伝播するき裂の突入領域を接合部材11の表層側のみに制限するためには、第1表面11aから第1溶接部13aの最頂点までの深さ、および第2表面11bから第2溶接部13bの最頂点までの深さを制御する必要がある。 Here, in order to limit the intrusion region of the crack generated from the joint member 12 and propagating to the joint member 11 only to the surface layer side of the joint member 11, the apex of the first surface 11a to the first welded portion 13a. It is necessary to control the depth up to and the depth from the second surface 11b to the highest apex of the second welded portion 13b.

具体的には、第1溶接部13aの第1熱影響部15aの最頂点と第1表面11aとの接合部材11の板厚方向の距離h(mm)および第2溶接部13bの第2熱影響部15bの最頂点と第2表面11bとの板厚方向の距離h(mm)が、下記(iv)式および(v)式を満足することが好ましい。
≦t/4 ・・・(iv)
≦t/4 ・・・(v)
Specifically, the distance h 1 (mm) in the plate thickness direction of the joining member 11 between the apex of the first heat-affected zone 15a of the first welded portion 13a and the first surface 11a and the second of the second welded zone 13b. It is preferable that the distance h 2 (mm) in the plate thickness direction between the maximum apex of the heat-affected zone 15b and the second surface 11b satisfies the following equations (iv) and (v).
h 1 ≤ t / 4 ... (iv)
h 2 ≤ t / 4 ... (v)

距離hおよび距離hの下限については特に制限する必要はないが、接合部材11と被接合部材12とが隅肉溶接によって接合されている場合であっても、1mm程度の深さまで熱影響部が形成される。そのため、1mmが距離hおよび距離hの実質的な下限となる。The lower limit of the distance h 1 and the distance h 2 is not particularly limited, but even when the joining member 11 and the member to be joined 12 are joined by fillet welding, the heat effect is up to a depth of about 1 mm. The part is formed. Therefore, 1 mm is a substantial lower limit of the distance h 1 and the distance h 2 .

なお、第1熱影響部15aの最頂点とは、第1熱影響部15aの板厚方向における先端を意味し、同様に第2熱影響部15bの最頂点とは、第2熱影響部15bの板厚方向における先端を意味する。また、図4に示すように、距離hは、第1表面11aと、第1表面11aと平行でかつ第1熱影響部15aの板厚方向における先端を通る仮想的な面11dとの距離であり、距離hは、第2表面11bと、第2表面11bと平行でかつ第2熱影響部15bの板厚方向における先端を通る仮想的な面11eとの距離である。The highest apex of the first heat-affected zone 15a means the tip of the first heat-affected zone 15a in the plate thickness direction, and similarly, the highest apex of the second heat-affected zone 15b is the second heat-affected zone 15b. Means the tip in the plate thickness direction of. Further, as shown in FIG. 4, the distance h 1 is the distance between the first surface 11a and the virtual surface 11d parallel to the first surface 11a and passing through the tip of the first heat-affected zone 15a in the plate thickness direction. The distance h 2 is the distance between the second surface 11b and the virtual surface 11e that is parallel to the second surface 11b and passes through the tip of the second heat-affected zone 15b in the plate thickness direction.

また、第1溶接部13aにおける、接合部材11側の止端とルートとを通る線Lと被接合面12aとがなす鋭角α(°)および第2溶接部13bにおける、接合部材11側の止端とルートとを通る線Lと被接合面12aとがなす鋭角α(°)は、それぞれ下記(vi)式および(vii)式を満足することが好ましい。
45.0≦α≦70.0 ・・・(vi)
45.0≦α≦70.0 ・・・(vii)
Further, in the first weld portion 13a, in a line L 1 passing through the toe and the root of the joint member 11 side acute angle alpha 1 formed by the joining surface 12a (°) and the second welding portion 13b, the bonding member 11 side The acute angle α 2 (°) formed by the line L 2 passing through the toe and the root of the above and the surface to be welded 12a preferably satisfies the following equations (vi) and (vii), respectively.
45.0 ≤ α 1 ≤ 70.0 ・ ・ ・ (vi)
45.0 ≤ α 2 ≤ 70.0 ・ ・ ・ (vii)

第1溶接部13aにおける接合部材11側の止端とは、第1溶接金属14aの外縁と第1表面11aとの交点Aを意味する。また、第1溶接部13aにおける接合部材11側のルートとは、第1溶接金属14aの外縁と端面11cとの交点Bを意味する。同様に、第2溶接部13bにおける接合部材11側の止端とは、第2溶接金属14bの外縁と第2表面11bとの交点Aを意味し、第2溶接部13bにおける接合部材11側のルートとは、第2溶接金属14bの外縁と端面11cとの交点Bを意味する。The joining member 11 side of the toe in the first weld portion 13a, means an intersection A 1 between the outer edge and the first surface 11a of the first weld metal 14a. Also, the joining member 11 side of the root of the first welding part 13a, meaning intersection B 1 between the outer edge and the end face 11c of the first weld metal 14a. Similarly, the bonding member 11 side of the toe at the second weld portion 13b, means an intersection A 2 between the outer edge and the second surface 11b of the second weld metal 14b, the bonding member 11 side in the second welding portion 13b the root mean an intersection B 2 between the outer edge and the end face 11c of the second weld metal 14b.

さらに、第1溶接部13aの板厚方向における継手の部分溶込みd(mm)および第2溶接部13bの板厚方向における継手の部分溶込みd(mm)は、それぞれ下記(viii)式および(ix)式を満足することが好ましい。ここで、下記(viii)式および(ix)式の左辺で計算される値は、それぞれ有効のど厚Td(mm)およびTd(mm)を表している。
・sec(α)・cos(α/2)≧0.35t ・・・(viii)
・sec(α)・cos(α/2)≧0.35t ・・・(ix)
Further, the partial penetration d 1 (mm) of the joint in the plate thickness direction of the first weld 13a and the partial penetration d 2 (mm) of the joint in the plate thickness direction of the second weld 13b are as follows (viii). It is preferable to satisfy the equation and the equation (ix). Here, the values calculated on the left side of the following equations (viii) and (ix) represent effective throat thicknesses Td 1 (mm) and Td 2 (mm), respectively.
d 1 · sec (α 1 ) · cos (α 1/2 ) ≧ 0.35t ・ ・ ・ (viii)
d 2 · sec (α 2) · cos (α 2 /2)≧0.35t ··· (ix)

継手の部分溶込みdは、第1表面11aと、第1表面11aと平行でかつ接合部材11の板厚方向における第1溶接金属14aの板厚中心側の端部を通る仮想的な面11fとの距離である。また、継手の部分溶込みdは、第2表面11bと、第2表面11bと平行でかつ接合部材11の板厚方向における第2溶接金属14bの板厚中心側の端部を通る仮想的な面11gとの距離である。The partial penetration d 1 of the joint is a virtual surface parallel to the first surface 11a and passing through the end portion of the first weld metal 14a on the plate thickness center side in the plate thickness direction of the joining member 11. It is a distance from 11f. Further, the partial penetration d 2 of the joint is virtually parallel to the second surface 11b and passes through the end portion of the second weld metal 14b on the plate thickness center side in the plate thickness direction of the joining member 11. It is the distance from the surface 11g.

また、第1溶接部13aの板厚方向における、被接合部材12側の止端と第1表面11aとの距離s(mm)および第2溶接部13bにおける、被接合部材12側の止端と第2表面11bとの距離s(mm)は、それぞれ下記(x)式および(xi)式を満足することが好ましい。
≧d(sec(α)−1) ・・・(x)
≧d(sec(α)−1) ・・・(xi)
Further, the distance s 1 (mm) between the toe on the side of the member to be joined 12 and the first surface 11a in the plate thickness direction of the first welded portion 13a and the toe on the side to be joined 12 in the second welded portion 13b. It is preferable that the distance s 2 (mm) between the second surface 11b and the second surface 11b satisfies the following equations (x) and (xi), respectively.
s 1 ≧ d 1 (sec (α 1 ) -1) ・ ・ ・ (x)
s 2 ≧ d 2 (sec (α 2 ) -1) ・ ・ ・ (xi)

距離sおよび距離sは、それぞれ第1溶接部13aおよび第2溶接部13bの板厚方向における溶接脚長である。具体的には、距離sは、第1表面11aと、第1表面11aと平行でかつ接合部材11の板厚方向における第1溶接金属14aの板厚中心と逆側の端部を通る仮想的な面11hとの距離である。また、距離sは、第2表面11bと、第2表面11bと平行でかつ接合部材11の板厚方向における第2溶接金属14bの板厚中心と逆側の端部を通る仮想的な面11iとの距離である。The distance s 1 and the distance s 2 are the weld leg lengths of the first welded portion 13a and the second welded portion 13b in the plate thickness direction, respectively. Specifically, the distance s 1 is virtual passing through the first surface 11a and the end portion parallel to the first surface 11a and opposite to the plate thickness center of the first weld metal 14a in the plate thickness direction of the joining member 11. It is a distance from the target surface 11h. Further, the distance s 2 is a virtual surface parallel to the second surface 11b and passing through an end portion of the second weld metal 14b in the plate thickness direction of the joining member 11 opposite to the plate thickness center. This is the distance from 11i.

なお、第1溶接金属14aおよび第2溶接金属14bと接合部材11との境界は、目視により容易に判別することが可能である。また、第1熱影響部15aおよび第2熱影響部15bの先端位置についても、ナイタール腐食により現出させることで容易に判別することが可能である。 The boundary between the first weld metal 14a and the second weld metal 14b and the joining member 11 can be easily visually identified. Further, the tip positions of the first heat-affected zone 15a and the second heat-affected zone 15b can also be easily determined by making them appear by nital corrosion.

上記(vi)〜(xi)式を満足しない場合であっても、脆性き裂伝播停止特性を向上させることは可能であるが、より高い継手強度を確保する観点から、上記(vi)〜(xi)式を満足することが好ましい。 Even if the above equations (vi) to (xi) are not satisfied, it is possible to improve the brittle crack propagation stopping characteristic, but from the viewpoint of ensuring higher joint strength, the above (vi) to (xi) xi) It is preferable to satisfy the equation.

2.接合部材の無延性遷移温度
上述のように、接合部材の全厚にわたって脆性き裂伝播停止特性を向上させるためには、例えば、Kca値が8000N/mm1.5以上の鋼板を接合部材として用いる必要があり、そのような特性を有する鋼板の確保が困難であるという問題がある。しかしながら、少なくとも接合部材の表層部における脆性き裂伝播停止特性を、き裂が突入する領域の深さに応じて向上させることによって、き裂の進展を停止することが可能になる。
2. 2. Non-ductile transition temperature of the joining member As described above, in order to improve the brittle crack propagation stopping characteristic over the entire thickness of the joining member, for example, a steel plate having a Kca value of 8000 N / mm 1.5 or more is used as the joining member. There is a problem that it is necessary to secure a steel sheet having such characteristics. However, it is possible to stop the growth of cracks by improving the brittle crack propagation stopping property at least in the surface layer portion of the joining member according to the depth of the region where the cracks enter.

すなわち、接合部材の表層部における無延性遷移温度を、表面から溶接部の最頂点までの深さに応じて制御することによって、き裂の進展を停止することが可能になる。具体的には、表面から溶接部の最頂点までの深さが大きいほど、き裂が進展しやすくなるため、表層部における無延性遷移温度を低くする必要がある。 That is, by controlling the non-ductile transition temperature in the surface layer portion of the joining member according to the depth from the surface to the apex of the welded portion, it is possible to stop the growth of cracks. Specifically, the greater the depth from the surface to the top of the weld, the easier it is for cracks to grow, so it is necessary to lower the non-ductile transition temperature in the surface layer.

そのため、第1表面11aおよび第2表面11bの1mm深さ位置からそれぞれ採取されるASTM E208に規定されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度を、−60℃以下とし、かつ下記(ii)式および(iii)式を満足させる必要がある。
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
NDTT≦−30.5×ln(h)−14.0 ・・・(iii)
但し、NDTTおよびNDTTは、第1表面11aおよび第2表面11bの1mm深さ位置からそれぞれ採取されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度(℃)である。
Therefore, the non-ductile transition temperature by the NRL drop test using the type P3 test piece specified in ASTM E208, which is collected from the 1 mm depth position of the first surface 11a and the second surface 11b, is set to -60 ° C or lower. , And it is necessary to satisfy the following equations (ii) and (iii).
NDTT 1 ≤ -30.5 x ln (h 1 ) -14.0 ... (ii)
NDTT 2 ≤-30.5 x ln (h 2 ) -14.0 ... (iii)
However, NDTT 1 and NDTT 2 are non-ductile transition temperatures (° C.) by NRL weight drop test using type P3 test pieces collected from 1 mm depth positions of the first surface 11a and the second surface 11b, respectively.

NDTTおよびNDTTの測定方法について、詳しく説明する。まず、第1表面11a側および第2表面11b側のそれぞれから、ASTM E208に規定されるタイプP3試験片を採取する。タイプP3試験片とは、長さ130mm、幅50mm、厚さ16mmの試験片である。この際、第1表面11aおよび第2表面11bのそれぞれを1mmずつ削り取った後、試験片の厚さ方向が、接合部材11の板厚方向と一致するように採取する。すなわち、第1表面11aおよび第2表面11bの1mm深さ位置から17mm深さ位置までの領域から試験片が採取されることとなる。The measuring method of NDTT 1 and NDTT 2 will be described in detail. First, a type P3 test piece defined in ASTM E208 is collected from each of the first surface 11a side and the second surface 11b side. The type P3 test piece is a test piece having a length of 130 mm, a width of 50 mm, and a thickness of 16 mm. At this time, after scraping each of the first surface 11a and the second surface 11b by 1 mm, the test piece is collected so that the thickness direction of the test piece coincides with the plate thickness direction of the joining member 11. That is, the test piece is collected from the region from the 1 mm depth position to the 17 mm depth position of the first surface 11a and the second surface 11b.

また、後述するように、試験片の長手方向と垂直な面においてき裂が発生するように試験を行う。溶接構造体において、き裂は第1溶接部13aおよび第2溶接部13bの延伸方向と垂直な面において発生する。そのため、試験片は、その長手方向が溶接構造体の溶接部の延伸方向と一致するように採取する。 Further, as will be described later, the test is performed so that cracks occur on the surface perpendicular to the longitudinal direction of the test piece. In the welded structure, cracks occur in the plane perpendicular to the stretching direction of the first welded portion 13a and the second welded portion 13b. Therefore, the test piece is collected so that its longitudinal direction coincides with the stretching direction of the welded portion of the welded structure.

その後、上記試験片を用いて、ASTM E208に準拠したNRL落重試験を実施する。具体的には、まず上記試験片の厚さ方向に垂直な接合部材の表面側の面上に、試験片の長手方向に平行な方向に延びる溶接ビードを形成する。その際、溶接材料はASTM E208に規定される靱性の低い溶接材料を使用する。溶接ビードの長さは60〜70mm、幅は12〜16mmの範囲となるよう調整する。そして、溶接ビード上に試験片の幅方向に平行な切欠きを形成する。この時、切欠きの幅は1.5mm以下とし、切欠きの溝底と試験片との距離が1.8〜2.0mmの範囲となるよう調整する。 Then, using the above test piece, an NRL weight drop test conforming to ASTM E208 is carried out. Specifically, first, a weld bead extending in a direction parallel to the longitudinal direction of the test piece is formed on the surface side surface of the joining member perpendicular to the thickness direction of the test piece. At that time, the welding material having low toughness specified in ASTM E208 is used. The length of the weld bead is adjusted to be in the range of 60 to 70 mm and the width is adjusted to be in the range of 12 to 16 mm. Then, a notch parallel to the width direction of the test piece is formed on the weld bead. At this time, the width of the notch is 1.5 mm or less, and the distance between the groove bottom of the notch and the test piece is adjusted to be in the range of 1.8 to 2.0 mm.

そして、上記試験片の溶接ビードを形成した面を下側に向け、長さ方向の両端部を支持した後、溶接ビードを形成したのと反対側の面に対して、落重による衝撃曲げ荷重を加える。その後、切欠きから発生した脆性き裂が試験片に伝播する状態を調べることで、Break(き裂伝播あり)またはNo Break(き裂伝播なし)を判定する。切欠から発生した脆性き裂が試験片の表面を試験片幅方向に伝播してその端部まで進行した場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合、試験結果はNo Break(き裂伝播なし)と判定される。 Then, after the surface on which the weld bead is formed of the test piece is directed downward and both ends in the length direction are supported, the impact bending load due to the drop weight is applied to the surface on the opposite side of the weld bead. Add. Then, by examining the state in which the brittle crack generated from the notch propagates to the test piece, Break (with crack propagation) or No Break (without crack propagation) is determined. If the brittle crack generated from the notch propagates on the surface of the test piece in the width direction of the test piece and progresses to the end thereof, the test result is determined to be Break (with crack propagation). If the crack does not reach the end in the width direction, the test result is determined to be No Break (no crack propagation).

上記の落重試験は、2個ずつの試験片を用いて例えば、−100℃の条件から開始して、5℃間隔で試験温度を変化させながら(No Breakの場合は5℃低下、Breakの場合は5℃上昇)、2個の試験片ともにNo Breakが得られた最も低い試験温度から5℃低い温度を無延性遷移温度とする。 The above drop test is carried out using two test pieces each, for example, starting from the condition of -100 ° C and changing the test temperature at 5 ° C intervals (in the case of No Break, the temperature is lowered by 5 ° C. In the case of an increase of 5 ° C.), the temperature 5 ° C. lower than the lowest test temperature at which No Break was obtained for both of the two test pieces is defined as the non-ductile transition temperature.

3.接合部材の機械的特性
本発明の溶接構造体に用いられる接合部材の機械的特性について、特に制限は設けない。しかし、溶接構造体をコンテナ船等において利用する場合においては、接合部材の降伏応力は400〜580MPaであるのが好ましく、引張強さは510〜750MPaであるのが好ましい。なお、接合部材の降伏応力は410〜570MPaであるのがより好ましく、引張強さは520〜740MPaであるのがより好ましい。
3. 3. Mechanical Properties of Joining Members There are no particular restrictions on the mechanical properties of the joining members used in the welded structure of the present invention. However, when the welded structure is used in a container ship or the like, the yield stress of the joint member is preferably 400 to 580 MPa, and the tensile strength is preferably 510 to 750 MPa. The yield stress of the joining member is more preferably 410 to 570 MPa, and the tensile strength is more preferably 520 to 740 MPa.

4.溶接構造体の製造方法
溶接構造体の製造方法について、特に制限は設けないが、例えば、表層部の無延性遷移温度が上述した条件を満足する接合部材を選別する工程と、当該接合部材を被接合部材に溶接する工程を行うことにより、製造することが可能である。
4. Method of manufacturing a welded structure The method of manufacturing a welded structure is not particularly limited, but for example, a step of selecting a joint member whose surface layer portion has a non-distracting transition temperature satisfying the above-mentioned conditions and a step of selecting the joint member to be covered. It can be manufactured by performing a process of welding to a joint member.

溶接工程においては、上述の被接合部材の被接合面に接合部材の端面を突き合わせた状態で、端面に沿って溶接することで製造することができる。この際、接合部材の被接合部材側を開先加工しておくことが望ましい。開先加工は、接合部材の端面全体にわたって施してもよいが、被接合部材との接合箇所にのみ施してもよい。 In the welding step, it can be manufactured by welding along the end face of the above-mentioned joint member with the end face of the joint member abutting against the surface to be joined. At this time, it is desirable to groove the side of the joint member to be joined. The groove processing may be performed over the entire end face of the joint member, or may be performed only at the joint portion with the member to be joined.

また、溶接方法についても特に制限はなく、CO溶接または被覆アーク溶接(SMAW)等の公知の方法を採用すればよい。この際、熱影響部の幅(図4において、(h−d)および(h−d)で表わされる長さ)を小さくするためには、入熱量を0.5〜3.0kJ/mmとすることが好ましい。Further, the welding method is not particularly limited, and a known method such as CO 2 welding or shielded metal arc welding (SMAW) may be adopted. At this time, in order to reduce the width of the heat-affected zone (the length represented by (h 1 − d 1 ) and (h 2 − d 2 ) in FIG. 4), the amount of heat input should be 0.5 to 3. It is preferably 0 kJ / mm.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

表1に示す板厚を有する各種鋼板を用意した後、それぞれの鋼板について、一方側の面(第1表面)および他方側の面(第2表面)の表層部における無延性遷移温度を調査した。具体的には、第1表面および第2表面をそれぞれ1mm削り取った後、それぞれの面から、試験片の厚さ方向が、上記鋼板の板厚方向と一致し、かつ試験片の長手方向が溶接部の延伸方向に一致するように、ASTM E208に規定されるタイプP3試験片を採取した。そして、当該試験片を用いて、ASTM E208に準拠したNRL落重試験を実施し、無延性遷移温度NDTT(℃)およびNDTT(℃)を求めた。After preparing various steel sheets having the plate thickness shown in Table 1, the non-ductile transition temperature in the surface layer portion of one side surface (first surface) and the other side surface (second surface) was investigated for each steel sheet. .. Specifically, after the first surface and the second surface are each scraped by 1 mm, the thickness direction of the test piece coincides with the plate thickness direction of the steel plate from each surface, and the longitudinal direction of the test piece is welded. A type P3 test piece specified in ASTM E208 was collected so as to coincide with the stretching direction of the portion. Then, using the test piece, an NRL weight drop test based on ASTM E208 was carried out to determine non-ductile transition temperatures NDTT 1 (° C.) and NDTT 2 (° C.).

続いて、各鋼板の板厚の1/4位置から圧延方向に直角な方向にJIS Z 2241に記載の4号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)および全伸び(EL)を測定した。それらの結果を表1に併せて示す。 Subsequently, the No. 4 tensile test piece described in JIS Z 2241 was collected from a position 1/4 of the thickness of each steel plate in a direction perpendicular to the rolling direction, and a tensile test was performed in accordance with JIS Z 2241 to perform a tensile stress. (YS), tensile strength (TS) and total elongation (EL) were measured. The results are also shown in Table 1.

Figure 2020136777
Figure 2020136777

その後、上記の各種鋼板を試験板(接合部材11)とし、図5に示す構造モデルアレスト試験体を作製して試験を実施した。板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(被接合部材12)とし、表2に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体10を作製した。Then, the above-mentioned various steel plates were used as a test plate (joining member 11), and the structural model arrest test piece shown in FIG. 5 was prepared and tested. A welded joint in which a steel plate having a plate thickness of 100 mm was joined by CO 2 welding was used as a run-up welded joint (joined member 12), and a welded structure 10 was produced by CO 2 welding or shielded metal arc welding (SMAW) under the conditions shown in Table 2. ..

Figure 2020136777
Figure 2020136777

その後、溶接構造体10のフュージョンライン部16aにノッチ16bを導入した。そして、溶接構造体10を船舶設計温度である−10℃に冷却し、EH40の設計応力に相当する257MPaの試験応力を負荷し、ノッチ部近傍だけを−50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性き裂を発生、伝播させた。 After that, the notch 16b was introduced into the fusion line portion 16a of the welded structure 10. Then, the welded structure 10 is cooled to the ship design temperature of −10 ° C., a test stress of 257 MPa corresponding to the design stress of EH40 is applied, and only the vicinity of the notch portion is rapidly cooled to about −50 ° C. to the notch portion. A blow was applied through the wedge to generate and propagate brittle cracks.

試験後の構造モデルアレスト試験体を使用し、試験体長手方向の中心位置から左右に250mm離れた位置において、接合部材と被接合部材との一方側(第1表面側)および他方側(第2表面側)の溶接部(第1溶接部および第2溶接部)の断面を切り出した。その後、研磨して、ナイタール腐食を施すことで溶接金属部と溶接熱影響部(溶接時にAc変態点以上に加熱された領域)を現出させた。これらの2カ所の溶接継手断面の写真をデジタルカメラによりそれぞれ撮影し、写真画像から溶接部形状を測定し、2カ所の測定結果の平均値を使用した。Structural model after the test Using the arrest test piece, one side (first surface side) and the other side (second surface side) of the joining member and the member to be joined are located 250 mm to the left and right from the center position in the longitudinal direction of the test piece. A cross section of the welded portion (first welded portion and second welded portion) on the surface side) was cut out. After that, it was polished and subjected to nital corrosion to reveal the weld metal part and the weld heat-affected zone (the region heated above the Ac 1 transformation point during welding). Photographs of the cross sections of the welded joints at these two locations were taken with a digital camera, the shape of the welded portion was measured from the photographic images, and the average value of the measurement results at the two locations was used.

測定された溶接部の形状を表2に併せて示し、上記の構造モデルアレスト試験体を用いた試験の結果を表3に示す。脆性き裂が試験板で停止した場合は停止、試験板を破断した場合は破断と判定した。 The shape of the measured welded portion is also shown in Table 2, and the results of the test using the above-mentioned structural model arrest test piece are shown in Table 3. When the brittle crack stopped at the test plate, it was judged to be stopped, and when the test plate was broken, it was judged to be broken.

Figure 2020136777
Figure 2020136777

表3から明らかなように、本発明の規定を満足する接合部材を用いた場合には、優れた脆性き裂伝播停止特性を得られたのに対して、本発明の規定を満足しない比較例の接合部材を用いた場合には、脆性き裂が接合部材まで伝播する結果となった。 As is clear from Table 3, when a joining member satisfying the provisions of the present invention was used, excellent brittle crack propagation stopping characteristics were obtained, whereas a comparative example not satisfying the provisions of the present invention. When the joining member of No. 1 was used, the brittle crack propagated to the joining member.

また、試験No.1、2、4および5では、(vi)〜(xi)式をさらに満足するため、継手強度が高くさらに良好な結果となった。 In addition, the test No. In 1, 2, 4 and 5, since the equations (vi) to (xi) were further satisfied, the joint strength was high and the results were even better.

以上のように、本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得ることができる。 As described above, according to the present invention, it is possible to obtain a welded structure having excellent brittle crack propagation stopping characteristics.

10 溶接構造体
11 接合部材
11a 第1表面
11b 第2表面
11c 端面
11d〜i 仮想的な面
12 被接合部材
12a 被接合面
13a 第1溶接部
13b 第2溶接部
14a 第1溶接金属
14b 第2溶接金属
15a 第1熱影響部
15b 第2熱影響部
16a フュージョンライン部
16b ノッチ
10 Welded structure 11 Joint member 11a First surface 11b Second surface 11c End surface 11d to i Virtual surface 12 Joint member 12a Joint surface 13a First weld 13b Second weld 14a First weld metal 14b Second Welded metal 15a 1st heat affected zone 15b 2nd heat affected zone 16a Fusion line part 16b Notch

Claims (5)

板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体であって、
前記接合部材は、前記接合部材の板厚方向に垂直な第1表面および第2表面を有し、
前記接合部材の板厚t(mm)が、下記(i)式を満足し、
前記第1表面側に形成された第1溶接部の第1熱影響部の最頂点と前記第1表面との前記接合部材の板厚方向の距離を距離h(mm)とし、前記第2表面側に形成された第2溶接部の第2熱影響部の最頂点と前記第2表面との前記接合部材の板厚方向の距離を距離h(mm)とした時に、
前記接合部材の、前記第1表面および前記第2表面の1mm深さ位置からそれぞれ採取され、厚さ方向が前記板厚方向と一致するASTM E208に規定されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度が、−60℃以下であり、かつ下記(ii)式および(iii)式を満足する、
溶接構造体。
t≧50.0 ・・・(i)
NDTT≦−30.5×ln(h)−14.0 ・・・(ii)
NDTT≦−30.5×ln(h)−14.0 ・・・(iii)
但し、NDTTおよびNDTTは、第1表面および第2表面の1mm深さ位置からそれぞれ採取されるASTM E208に規定されるタイプP3試験片を用いたNRL落重試験による無延性遷移温度(℃)である。
A welded structure having a T-joint portion in which the joint member is partially welded to the joint member on both sides in a state where the end surface of the plate-shaped joint member is in contact with the joint surface of the plate-shaped joint member. There,
The joining member has a first surface and a second surface perpendicular to the plate thickness direction of the joining member.
The plate thickness t (mm) of the joining member satisfies the following equation (i).
The distance in the plate thickness direction of the joining member between the highest apex of the first heat-affected zone of the first welded portion formed on the first surface side and the first surface is defined as the distance h 1 (mm), and the second When the distance in the plate thickness direction of the joining member between the highest apex of the second heat-affected zone of the second welded portion formed on the surface side and the second surface is a distance h 2 (mm),
NRL drop using a type P3 test piece specified in ASTM E208, which is sampled from the 1 mm depth position of the first surface and the second surface of the joint member and whose thickness direction coincides with the plate thickness direction. The non-ductile transition temperature by the heavy test is -60 ° C or lower and satisfies the following equations (ii) and (iii).
Welded structure.
t ≧ 50.0 ・ ・ ・ (i)
NDTT 1 ≤ -30.5 x ln (h 1 ) -14.0 ... (ii)
NDTT 2 ≤-30.5 x ln (h 2 ) -14.0 ... (iii)
However, NDTT 1 and NDTT 2 have non-ductile transition temperatures (° C.) by NRL drop test using type P3 test pieces specified in ASTM E208, which are collected from 1 mm depth positions on the first surface and the second surface, respectively. ).
前記接合部材の板厚t(mm)、前記距離h(mm)および前記距離h(mm)が、下記(iv)式および(v)式を満足する、
請求項1に記載の溶接構造体。
≦t/4 ・・・(iv)
≦t/4 ・・・(v)
The plate thickness t (mm), the distance h 1 (mm), and the distance h 2 (mm) of the joining member satisfy the following equations (iv) and (v).
The welded structure according to claim 1.
h 1 ≤ t / 4 ... (iv)
h 2 ≤ t / 4 ... (v)
前記第1表面および前記被接合面に垂直な断面において、
前記第1溶接部における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角α(°)、前記板厚方向における継手の部分溶込みd(mm)および前記被接合部材側の止端と前記第1表面との距離s(mm)、ならびに、前記第2溶接部における、前記接合部材側の止端とルートとを通る線と前記被接合面とがなす鋭角α(°)、前記板厚方向における継手の部分溶込みd(mm)および前記被接合部材側の止端と前記第2表面との距離s(mm)が、下記(vi)〜(xi)式を満足する、
請求項1または請求項2に記載の溶接構造体。
45.0≦α≦70.0 ・・・(vi)
45.0≦α≦70.0 ・・・(vii)
・sec(α)・cos(α/2)≧0.35t ・・・(viii)
・sec(α)・cos(α/2)≧0.35t ・・・(ix)
≧d(sec(α)−1) ・・・(x)
≧d(sec(α)−1) ・・・(xi)
In the cross section perpendicular to the first surface and the surface to be joined,
The sharp angle α 1 (°) formed by the line passing through the toe and the root on the joint member side and the surface to be joined in the first welded portion, and the partial penetration d 1 (mm) of the joint in the plate thickness direction. The distance s 1 (mm) between the toe on the joint member side and the first surface, and the line passing through the toe and root on the joint member side in the second weld and the joint surface. The sharp angle α 2 (°) formed by the joint, the partial penetration d 2 (mm) of the joint in the plate thickness direction, and the distance s 2 (mm) between the toe on the member to be welded and the second surface are as follows. Satisfy equations (vi) to (xi),
The welded structure according to claim 1 or 2.
45.0 ≤ α 1 ≤ 70.0 ・ ・ ・ (vi)
45.0 ≤ α 2 ≤ 70.0 ・ ・ ・ (vii)
d 1 · sec (α 1 ) · cos (α 1/2 ) ≧ 0.35t ・ ・ ・ (viii)
d 2 · sec (α 2) · cos (α 2 /2)≧0.35t ··· (ix)
s 1 ≧ d 1 (sec (α 1 ) -1) ・ ・ ・ (x)
s 2 ≧ d 2 (sec (α 2 ) -1) ・ ・ ・ (xi)
前記接合部材の板厚t(mm)が下記(xii)式を満足する、
請求項1から請求項3までのいずれかに記載の溶接構造体。
t>80.0 ・・・(xii)
The plate thickness t (mm) of the joining member satisfies the following equation (xii).
The welded structure according to any one of claims 1 to 3.
t> 80.0 ・ ・ ・ (xii)
前記接合部材の降伏応力が400〜580MPaであり、引張強さが510〜750MPaである、
請求項1から請求項4までのいずれかに記載の溶接構造体。
The yield stress of the joining member is 400 to 580 MPa, and the tensile strength is 510 to 750 MPa.
The welded structure according to any one of claims 1 to 4.
JP2019519786A 2018-12-26 2018-12-26 Welded structure Active JP6562189B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047975 WO2020136777A1 (en) 2018-12-26 2018-12-26 Welded structure

Publications (2)

Publication Number Publication Date
JP6562189B1 JP6562189B1 (en) 2019-08-21
JPWO2020136777A1 true JPWO2020136777A1 (en) 2021-02-15

Family

ID=67690501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519786A Active JP6562189B1 (en) 2018-12-26 2018-12-26 Welded structure

Country Status (4)

Country Link
JP (1) JP6562189B1 (en)
KR (1) KR102105614B1 (en)
CN (1) CN111315650B (en)
WO (1) WO2020136777A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288196B2 (en) * 2019-12-16 2023-06-07 日本製鉄株式会社 Welded structure
KR20230162021A (en) 2021-07-26 2023-11-28 닛폰세이테츠 가부시키가이샤 Welded structures, and their design and construction methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402258C3 (en) * 1973-04-14 1980-01-03 Chemische Fabrik Pfersee Gmbh, 8900 Augsburg Use of condensation products to handle textile materials
JPH11192555A (en) * 1998-01-07 1999-07-21 Kobe Steel Ltd Method for submerged arc welding
CN100537104C (en) * 2003-10-08 2009-09-09 新日本制铁株式会社 Weld structure having excellent brittle crack propagation resistance and method of welding the weld structure
JP5144053B2 (en) * 2006-05-12 2013-02-13 Jfeスチール株式会社 Welded structure with excellent brittle crack propagation stop properties
KR101427706B1 (en) 2011-09-13 2014-08-07 제이에프이 스틸 가부시키가이샤 Welded structure
JP5408396B1 (en) * 2012-05-10 2014-02-05 Jfeスチール株式会社 Welded structure

Also Published As

Publication number Publication date
CN111315650A (en) 2020-06-19
CN111315650B (en) 2021-04-23
KR102105614B1 (en) 2020-04-28
JP6562189B1 (en) 2019-08-21
WO2020136777A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US7748596B2 (en) Welded structure having excellent resistance to brittle crack propagation and welding method therefor
KR101163350B1 (en) Weld structure having brittle fracture arresting characterstics
JP6562189B1 (en) Welded structure
JP6733683B2 (en) Rotating welded joint with excellent fatigue strength and rotating welding method
JP4818466B1 (en) Welded structure with brittle crack propagation resistance
JP6693205B2 (en) Welding method and ship manufacturing method
JP7119805B2 (en) Thick steel plate quality evaluation method
JP6562190B1 (en) Welded structure
KR102119175B1 (en) Welding structure
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
KR101197884B1 (en) Weld Structure
JP2008183619A (en) Multipass butt-welded joint having excellent brittle crack propagation resistance, and welded structure
JP7288197B2 (en) Welded structure
JP7288196B2 (en) Welded structure
JP7299554B1 (en) Welded structures and their design and construction methods
JP6380672B2 (en) Welded joint and its manufacturing method
JP6740805B2 (en) Welding method, manufacturing method of welded joint, and welded joint
JP4818467B1 (en) Welded joint and welded structure excellent in brittle crack propagation resistance
Håkansson Weld metal properties for extra high Strength Steels
KR102506231B1 (en) welded structure
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP2022083554A (en) Method of evaluating brittle crack arrestability of weld structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190411

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6562189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151