JPWO2020066653A1 - Method for manufacturing flame-resistant fiber bundle and method for manufacturing carbon fiber bundle - Google Patents

Method for manufacturing flame-resistant fiber bundle and method for manufacturing carbon fiber bundle Download PDF

Info

Publication number
JPWO2020066653A1
JPWO2020066653A1 JP2019550872A JP2019550872A JPWO2020066653A1 JP WO2020066653 A1 JPWO2020066653 A1 JP WO2020066653A1 JP 2019550872 A JP2019550872 A JP 2019550872A JP 2019550872 A JP2019550872 A JP 2019550872A JP WO2020066653 A1 JPWO2020066653 A1 JP WO2020066653A1
Authority
JP
Japan
Prior art keywords
fiber bundle
flame
resistant
fiber
fiber bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019550872A
Other languages
Japanese (ja)
Other versions
JP7354840B2 (en
JPWO2020066653A5 (en
Inventor
祐介 久慈
祐介 久慈
幸平 高松
幸平 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2020066653A1 publication Critical patent/JPWO2020066653A1/en
Publication of JPWO2020066653A5 publication Critical patent/JPWO2020066653A5/ja
Application granted granted Critical
Publication of JP7354840B2 publication Critical patent/JP7354840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

複数の束を隣接させて引き揃えたアクリル系繊維束2を、耐炎化炉1外の両側に設置されるガイドローラー4によって搬送させながら、熱風加熱式の耐炎化炉1内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉1内における熱風の方向が繊維束の走行方向に対して平行であって、次式(1)で定義される隣接繊維束間の接触率Pを2〜18%とする耐炎化繊維束の製造方法。
P=[1−p(x){−t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数を表す。
高品質な耐炎化繊維束ならびに炭素繊維束を操業トラブルなく、生産効率よく生産することができる。
Acrylic fiber bundles 2 in which a plurality of bundles are arranged adjacent to each other are conveyed by guide rollers 4 installed on both sides outside the flameproofing furnace 1 and run in a hot air heating type flameproofing furnace 1 for oxidation. A method for producing a flame-resistant fiber bundle that is heat-treated in a sexual atmosphere, in which the direction of hot air in the flame-resistant furnace 1 is parallel to the traveling direction of the fiber bundle and is adjacent as defined by the following equation (1). A method for producing a flame-resistant fiber bundle in which the contact ratio P between the fiber bundles is 2 to 18%.
P = [1-p (x) {-t <x <t}] x 100 (1)
Here, P is the contact rate (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, p (x) is the probability density function of the normal distribution N (0, σ 2 ), and σ is The standard deviation of the amplitude, x represents a random variable with the center of the amplitude as zero.
High-quality flame-resistant fiber bundles and carbon fiber bundles can be produced efficiently without operational troubles.

Description

本発明は、炭素繊維束の製造方法に関するものである。更に詳しくは、高品質な耐炎化繊維束を操業トラブルなく、生産効率よく生産することのできる耐炎化繊維束の製造方法に関する。 The present invention relates to a method for producing a carbon fiber bundle. More specifically, the present invention relates to a method for producing a flame-resistant fiber bundle capable of efficiently producing a high-quality flame-resistant fiber bundle without operational trouble.

炭素繊維は比強度、比弾性率、耐熱性、および耐薬品性に優れていることから、各種素材の強化材として有用であり、航空宇宙用途、レジャー用途、一般産業用途等の幅広い分野で使用されている。 Since carbon fiber has excellent specific strength, specific elastic modulus, heat resistance, and chemical resistance, it is useful as a reinforcing material for various materials, and is used in a wide range of fields such as aerospace applications, leisure applications, and general industrial applications. Has been done.

一般に、アクリル系繊維束から炭素繊維束を製造する方法としては、アクリル系重合体の単繊維を数千から数万本束ねた繊維束を耐炎化炉に送入し、200〜300℃に熱せられた空気等の酸化性雰囲気の熱風に晒すことにより加熱処理(耐炎化処理)した後、得られた耐炎化繊維束を炭素化炉に送入し、300〜1000℃の不活性ガス雰囲気中で加熱処理(前炭素化処理)した後に、さらに1000℃以上の不活性ガス雰囲気で満たされた炭素化炉で加熱処理(炭素化処理)する方法が知られている。また、中間材料である耐炎化繊維束は、その燃え難い性能を活かして、難燃性織布向けの素材としても広く用いられている。 Generally, as a method for producing a carbon fiber bundle from an acrylic fiber bundle, a fiber bundle in which thousands to tens of thousands of single fibers of an acrylic polymer are bundled is sent into a flameproof furnace and heated to 200 to 300 ° C. After heat treatment (flame resistance treatment) by exposing to hot air in an oxidizing atmosphere such as air, the obtained flame resistant fiber bundles are sent into a carbonization furnace in an inert gas atmosphere at 300 to 1000 ° C. There is known a method of heat-treating (pre-carbonizing) in the above, and then heat-treating (carbonizing) in a carbonization furnace filled with an inert gas atmosphere of 1000 ° C. or higher. Further, the flame-resistant fiber bundle, which is an intermediate material, is widely used as a material for flame-retardant woven fabrics by taking advantage of its non-flammable performance.

炭素繊維束製造工程中における処理時間が最も長く、消費されるエネルギー量が最も多くなるのは耐炎化工程である。このため耐炎化工程での生産性向上が炭素繊維束製造において最も重要となる。 The flameproofing process has the longest processing time and the largest amount of energy consumed in the carbon fiber bundle manufacturing process. Therefore, improving productivity in the flame resistance process is of utmost importance in the production of carbon fiber bundles.

耐炎化工程での長時間の熱処理を可能とするため、耐炎化を行うための装置(以下、耐炎化炉という)は、耐炎化炉外部に配設した折り返しローラーによって、アクリル系繊維を水平方向に多数回往復させて耐炎化させながら処理するのが一般的である。耐炎化工程での生産性向上のためには、同時に多数の繊維束を搬送することで耐炎化炉内の繊維束の密度を上げることと、繊維束の走行速度を上げることが有効である。 In order to enable long-term heat treatment in the flame-resistant process, the device for flame-resistant (hereinafter referred to as the flame-resistant furnace) uses a folding roller arranged outside the flame-resistant furnace to spread the acrylic fibers in the horizontal direction. It is common to reciprocate the fiber many times to make it flame resistant. In order to improve the productivity in the flameproofing process, it is effective to increase the density of the fiber bundles in the flameproofing furnace by transporting a large number of fiber bundles at the same time and to increase the traveling speed of the fiber bundles.

しかしながら、炉内の繊維束の密度を上げる場合、繊維束の振動による隣接する繊維束間の接触頻度が増す。そのため、繊維束の混繊や、単繊維切れ等が頻繁に発生することによる耐炎化繊維の品質の低下等を招く。 However, when the density of the fiber bundles in the furnace is increased, the frequency of contact between adjacent fiber bundles due to the vibration of the fiber bundles increases. Therefore, the quality of the flame-resistant fiber is deteriorated due to the frequent occurrence of mixed fibers of fiber bundles and breakage of single fibers.

また繊維束の走行速度を上げる場合については、同じ熱処理量を得るために、耐炎化炉のサイズを大きくする必要がある。とくに高さ方向のサイズを大きくすることは、建屋階層を複数に分けたり、床面の単位面積あたりの耐過重を上げる必要があるため、設備費増大につながる。そこで設備費増大を抑えて耐炎化炉のサイズを大きくするには、水平方向1パスあたりの距離(以下、耐炎化炉長という)を大きくすることで高さ方向のサイズを小さくすることが有効である。ただし、耐炎化炉長を大きくすることで、走行する繊維束の懸垂量が大きくなり、上記繊維束の密度を上げる場合と同じように、振動による隣接する繊維束間の接触、繊維束の混繊や、単繊維切れ等が頻繁に発生することよる耐炎化繊維の品質の低下等を招く。 Further, when increasing the traveling speed of the fiber bundle, it is necessary to increase the size of the flameproofing furnace in order to obtain the same amount of heat treatment. In particular, increasing the size in the height direction leads to an increase in equipment costs because it is necessary to divide the building floor into multiple parts and increase the load resistance per unit area of the floor surface. Therefore, in order to suppress the increase in equipment cost and increase the size of the flameproof furnace, it is effective to reduce the size in the height direction by increasing the distance per horizontal path (hereinafter referred to as the flameproof furnace length). Is. However, by increasing the flame-resistant furnace length, the amount of suspension of the traveling fiber bundles increases, and as in the case of increasing the density of the fiber bundles, contact between adjacent fiber bundles due to vibration and mixing of the fiber bundles Frequent breakage of fibers and single fibers causes deterioration of the quality of flame-resistant fibers.

上記の問題を解決するために、特許文献1では、耐炎化工程における繊維束シート状物の面占有率の規定し、さらに耐炎化炉内の風速、および耐炎化工程での工程張力の適正化を図ることが説明されている。 In order to solve the above problems, Patent Document 1 defines the surface occupancy of the fiber bundle sheet-like material in the flameproofing process, and further optimizes the wind speed in the flameproofing furnace and the process tension in the flameproofing process. It is explained that the plan is to be taken.

また、特許文献2では、耐炎化工程における繊維束シート状物の面占有率、耐炎化炉内の風速、耐炎化炉内の繊維束の密度、具体的には走行繊維束の巾1mmあたりの繊度を規定することが説明されている。 Further, in Patent Document 2, the surface occupancy of the fiber bundle sheet-like material in the flame resistance step, the wind speed in the flame resistance furnace, the density of the fiber bundle in the flame resistance furnace, specifically, per 1 mm of the width of the traveling fiber bundle. It is explained that it defines the fineness.

さらに、特許文献3では、耐炎化炉長が長くなった場合での耐炎化工程のラインスピード、繊維束の最大懸垂量の適正化を図ることが説明されている。
特開2000−160435号公報 特開2011−127264号公報 特開平11−61574号公報
Further, Patent Document 3 describes that the line speed of the flameproofing process and the maximum suspension amount of the fiber bundle are optimized when the flameproofing furnace length is lengthened.
Japanese Unexamined Patent Publication No. 2000-160435 Japanese Unexamined Patent Publication No. 2011-127264 Japanese Unexamined Patent Publication No. 11-61574

しかしながら、特許文献1および特許文献2では生産性向上のために耐炎化炉長も大きくする場合に、規定の面占有率のパラメータでは隣接する繊維束間の接触を回避することができない。そのため、高品質な耐炎化繊維を製造することができない懸念がある。また、特許文献3では、繊維束の最大懸垂量の規定により、耐炎化炉長の大きい場合の隣接繊維束間の接触抑制が考慮されているが、耐炎化炉内における繊維束の密度については言及されておらず、生産性を向上することができない。 However, in Patent Document 1 and Patent Document 2, when the flame-resistant furnace length is also increased in order to improve productivity, it is not possible to avoid contact between adjacent fiber bundles with the specified surface occupancy parameter. Therefore, there is a concern that high-quality flame-resistant fibers cannot be produced. Further, in Patent Document 3, the maximum suspension amount of fiber bundles is specified to suppress contact between adjacent fiber bundles when the flame-resistant furnace length is large. However, regarding the density of fiber bundles in the flame-resistant furnace, Not mentioned and cannot improve productivity.

従って、本発明が解決しようとする課題は、高品質な耐炎化繊維束ならびに炭素繊維束を操業トラブルなく、生産効率よく生産することである。 Therefore, the problem to be solved by the present invention is to produce high-quality flame-resistant fiber bundles and carbon fiber bundles with high production efficiency without operational troubles.

上記課題を解決するため、本発明の耐炎化繊維束の製造方法は、次の構成を有する。すなわち、
複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、次式(1)で定義される隣接繊維束間の接触率Pを2〜18%とする耐炎化繊維束の製造方法、である。
In order to solve the above problems, the method for producing a flame-resistant fiber bundle of the present invention has the following constitution. That is,
Acrylic fiber bundles in which a plurality of bundles are arranged adjacent to each other are conveyed by guide rollers installed on both sides outside the flame-resistant furnace, and the fibers are run in a hot-air heating type flame-resistant furnace to be heat-treated in an oxidizing atmosphere. This is a method for manufacturing a flame-resistant fiber bundle, in which the direction of hot air in the flame-resistant furnace is parallel to the traveling direction of the fiber bundle, and the contact rate between adjacent fiber bundles defined by the following equation (1). This is a method for producing a flame-resistant fiber bundle having P of 2 to 18%.

P=[1−p(x){−t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数を表す。
P = [1-p (x) {-t <x <t}] x 100 (1)
Here, P is the contact rate (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, p (x) is the probability density function of the normal distribution N (0, σ 2 ), and σ is The standard deviation of the amplitude, x represents a random variable with the center of the amplitude as zero.

本発明における「隣接繊維束間の接触率P」とは、複数の繊維束を隣接するよう並列して走行させた時に、繊維束の幅方向の振動(糸揺れ)により、隣接する繊維束間の隙間がゼロになる確率を指す。上記繊維束の幅方向の振動の振幅は、繊維束の振幅平均を0、振幅の標準偏差をσとした時、正規分布Nに従うと仮定し、隣接繊維束間の接触率Pは上記式(1)で求めることができる。 The "contact rate P between adjacent fiber bundles" in the present invention means that when a plurality of fiber bundles are run in parallel so as to be adjacent to each other, the adjacent fiber bundles are caused by vibration (thread sway) in the width direction of the fiber bundles. Refers to the probability that the gap between the two will be zero. The amplitude of vibration in the width direction of the fiber bundle is assumed to follow a normal distribution N when the average amplitude of the fiber bundle is 0 and the standard deviation of the amplitude is σ. It can be obtained in 1).

また、本発明の炭素繊維束の製造方法は、次の構成を有する。すなわち、
上記の耐炎化繊維束の製造方法で製造された耐炎化繊維束を、不活性雰囲気中最高温度300〜1,000℃で前炭素化処理して前炭素化繊維束を製造し、該前炭素化繊維束を不活性雰囲気中最高温度1,000〜2,000℃で炭素化処理する炭素繊維束の製造方法、である。
Further, the method for producing a carbon fiber bundle of the present invention has the following constitution. That is,
The flame-resistant fiber bundle produced by the above method for producing a flame-resistant fiber bundle is precarbonized at a maximum temperature of 300 to 1,000 ° C. in an inert atmosphere to produce a precarbonized fiber bundle, and the precarbonized fiber bundle is produced. This is a method for producing a carbon fiber bundle, in which the chemical fiber bundle is carbonized at a maximum temperature of 1,000 to 2,000 ° C. in an inert atmosphere.

本発明の耐炎化繊維の製造方法によれば、高品質の耐炎化繊維を操業トラブルなく、生産効率よく生産することができる。 According to the method for producing flame-resistant fibers of the present invention, high-quality flame-resistant fibers can be produced efficiently without operational troubles.

耐炎化炉を示す概略側面図である。It is a schematic side view which shows the flame-resistant furnace. 図1の耐炎化炉のX−Y断面図である。FIG. 5 is a cross-sectional view taken along the line XY of the flameproofing furnace of FIG. 隣接繊維束間の接触率Pを説明するためのイメージ図である。It is an image figure for demonstrating the contact rate P between adjacent fiber bundles.

本発明の耐炎化繊維束の製造方法において被熱処理繊維束として使用するアクリル系繊維束は、アクリロニトリル100%のアクリル繊維、又はアクリロニトリルを90モル%以上含有するアクリル共重合繊維からなるのが好適である。アクリル共重合繊維における共重合成分としては、アクリル酸、メタクリル酸、イタコン酸、およびこれらのアルカリ金属塩、アンモニウム金属塩、アクリルアミド、アクリル酸メチル等が好ましいが、アクリル系繊維束の化学的性状、物理的性状、寸法等はとくに制限されるものではない。 The acrylic fiber bundle used as the fiber bundle to be heat-treated in the method for producing a flame-resistant fiber bundle of the present invention is preferably composed of acrylic fiber containing 100% acrylonitrile or acrylic copolymer fiber containing 90 mol% or more of acrylonitrile. be. As the copolymerization component in the acrylic copolymer fiber, acrylic acid, methacrylic acid, itaconic acid, and alkali metal salts, ammonium metal salts, acrylamide, methyl acrylate and the like are preferable, but the chemical properties of the acrylic fiber bundle, The physical properties, dimensions, etc. are not particularly limited.

本発明は、前記アクリル系繊維束を酸化性雰囲気中で耐炎化処理する方法であって、酸化性気体が内部を流れる耐炎化炉において実施される。図1に示すように、耐炎化炉1は、多段の走行域を折り返しながら走行するアクリル系繊維束2に熱風を吹きつけて耐炎化処理する熱処理室3を有する。アクリル系繊維束2は、耐炎化炉1の熱処理室3側壁に設けた開口部(図示せず)から熱処理室3内に送入され、熱処理室3内を直線的に走行した後、対面の側壁の開口部から熱処理室3外に一旦送出される。その後、熱処理室3外の側壁に設けられたガイドローラー4によって折り返され、再び熱処理室3内に送入される。このように、アクリル系繊維束2は複数のガイドローラー4によって走行方向を複数回折り返すことで、熱処理室3内への送入送出を複数回繰り返して、熱処理室3内を多段で、全体として図1の上から下に向けて移動する。なお、移動方向は下から上でもよく、熱処理室3内でのアクリル系繊維束2の折り返し回数はとくに限定されず、耐炎化炉1の規模等によって適宜設計される。なおガイドローラー4は、熱処理室3の内部に設けてもよい。 The present invention is a method for making the acrylic fiber bundle flame-resistant in an oxidizing atmosphere, and is carried out in a flame-resistant furnace in which an oxidizing gas flows inside. As shown in FIG. 1, the flame-resistant furnace 1 has a heat treatment chamber 3 for performing a flame-resistant treatment by blowing hot air on an acrylic fiber bundle 2 traveling while folding back a multi-stage traveling area. The acrylic fiber bundle 2 is fed into the heat treatment chamber 3 through an opening (not shown) provided on the side wall of the heat treatment chamber 3 of the flame resistant furnace 1, travels linearly in the heat treatment chamber 3, and then faces each other. It is once sent out of the heat treatment chamber 3 from the opening of the side wall. After that, it is folded back by the guide roller 4 provided on the side wall outside the heat treatment chamber 3 and is fed into the heat treatment chamber 3 again. In this way, the acrylic fiber bundle 2 is repeatedly sent in and out of the heat treatment chamber 3 a plurality of times by repeating the traveling direction a plurality of times by the plurality of guide rollers 4, and the heat treatment chamber 3 is divided into multiple stages as a whole. It moves from the top to the bottom of FIG. The moving direction may be from bottom to top, and the number of times the acrylic fiber bundle 2 is folded back in the heat treatment chamber 3 is not particularly limited, and is appropriately designed depending on the scale of the flameproofing furnace 1 and the like. The guide roller 4 may be provided inside the heat treatment chamber 3.

アクリル系繊維束2は、折り返しながら熱処理室3内を走行している間に、熱風吹出口5から熱風排出口に向かって流れる熱風によって耐炎化処理されて、耐炎化繊維束となる。なお、アクリル系繊維束2は、図2に示すように紙面に対して垂直な方向に複数本並行するように引き揃えられた幅広のシート状の形態を有している。 The acrylic fiber bundle 2 is subjected to flameproof treatment by hot air flowing from the hot air outlet 5 toward the hot air outlet 5 while traveling in the heat treatment chamber 3 while being folded back to become a flameproof fiber bundle. As shown in FIG. 2, the acrylic fiber bundle 2 has a wide sheet-like shape in which a plurality of acrylic fiber bundles 2 are aligned in parallel in a direction perpendicular to the paper surface.

熱風吹出口5には、その吹出し面に多孔板等の抵抗体およびハニカム等の整流部材(ともに図示せず)を配して圧力損失を持たせるのが好ましい。整流部材により、熱処理室3内に吹き込む熱風を整流し、熱処理室3内により均一な風速の熱風を吹き込むことができる。 It is preferable that the hot air outlet 5 is provided with a resistor such as a perforated plate and a rectifying member such as a honeycomb (both not shown) on the outlet surface to provide a pressure loss. The rectifying member can rectify the hot air blown into the heat treatment chamber 3 and blow hot air at a uniform wind speed into the heat treatment chamber 3.

熱風排出口6には、熱風吹出口5と同様に、その吸込み面に多孔板等の抵抗体を配して圧力損失を持たせてもよく、必要に応じて適宜決定される。 Similar to the hot air outlet 5, a resistor such as a perforated plate may be arranged on the suction surface of the hot air outlet 6 to provide a pressure loss, which is appropriately determined as necessary.

熱処理室3内を流れる酸化性気体は空気等でよく、熱処理室3内に入る前に加熱器7によって所望の温度に加熱され、送風機8によって風速が制御された上で、熱風吹出口5から熱処理室3内に吹き込まれる。熱風排出口6から熱処理室3外に排出された酸化性気体は排ガス処理炉(図示せず)で有毒物質を処理された後に大気放出されるが、循環経路(図示せず)を通って再び熱風吹出口5から熱処理室3内に吹き込まれてもよい。 The oxidizing gas flowing in the heat treatment chamber 3 may be air or the like, and is heated to a desired temperature by the heater 7 before entering the heat treatment chamber 3, the wind speed is controlled by the blower 8, and then from the hot air outlet 5. It is blown into the heat treatment chamber 3. The oxidizing gas discharged from the hot air outlet 6 to the outside of the heat treatment chamber 3 is released into the atmosphere after being treated with a toxic substance in an exhaust gas treatment furnace (not shown), but is released again through a circulation path (not shown). It may be blown into the heat treatment chamber 3 from the hot air outlet 5.

なお、耐炎化炉1に用いられる加熱器7としては、所望の機能を有していればとくに限定されず、例えば電気ヒーター等の公知の加熱器を用いればよい。送風器8に関しても、所望の機能を有していればとくに限定されず、例えば軸流ファン等の公知の送風器を用いればよい。 The heater 7 used in the flame-resistant furnace 1 is not particularly limited as long as it has a desired function, and for example, a known heater such as an electric heater may be used. The blower 8 is not particularly limited as long as it has a desired function, and a known blower such as an axial fan may be used.

また、ガイドローラー4のそれぞれの回転速度を変更することで、アクリル系繊維束2の走行速度、張力を制御することができ、これは必要とする耐炎化繊維束の物性や単位時間あたりの処理量に応じて固定される。 Further, by changing the rotation speed of each of the guide rollers 4, the traveling speed and tension of the acrylic fiber bundle 2 can be controlled, which is required for the physical properties of the flame-resistant fiber bundle and the treatment per unit time. It is fixed according to the amount.

さらに、ガイドローラー4の表層に所定の間隔、数の溝を彫り込む、あるいは所定の間隔、数のコームガイド(図示せず)をガイドローラー4直近に配置することで、複数本並行して走行するアクリル系繊維束3の間隔や束数を制御することができる。 Further, by engraving a predetermined interval and a number of grooves on the surface layer of the guide roller 4, or by arranging a predetermined interval and a number of comb guides (not shown) in the immediate vicinity of the guide roller 4, a plurality of comb guides can be traveled in parallel. It is possible to control the interval and the number of bundles of the acrylic fiber bundles 3 to be formed.

生産量を大きくするためには、耐炎化炉1の幅方向の単位距離あたりの繊維束数すなわち糸条密度を多くするか、アクリル系繊維束2の走行速度を大きくすればよい。 In order to increase the production amount, the number of fiber bundles per unit distance in the width direction of the flameproof furnace 1, that is, the thread density may be increased, or the traveling speed of the acrylic fiber bundle 2 may be increased.

ただし、糸条密度を大きくするということは、隣接する繊維束の間隔を小さくすることであり、上述のとおり、振動による繊維束間の混繊による品質の悪化等が起きやすくなる。 However, increasing the thread density means reducing the distance between adjacent fiber bundles, and as described above, quality deterioration due to mixing of fiber bundles due to vibration is likely to occur.

また、アクリル系繊維束2の走行速度を大きくした場合、耐炎化熱処理室での滞留時間が小さくなり、熱処理量が不足するため、トータル熱処理長を大きくする必要がある。そのためには、耐炎化炉1の高さを大きくしてアクリル系繊維束の折返し回数を増やすか、耐炎化炉の1パスあたりの距離(以下、耐炎化炉長という)Lを長くすればよいが、設備費を抑えるためには耐炎化炉長Lを大きくするほうが好ましい。ただし、それによってガイドローラー4間の水平距離L’も長くなり繊維束が懸垂しやすくなり、振動による繊維束間の接触、繊維束の混繊による品質の悪化等が起きやすくなる。 Further, when the traveling speed of the acrylic fiber bundle 2 is increased, the residence time in the flame-resistant heat treatment chamber is reduced and the amount of heat treatment is insufficient, so that the total heat treatment length needs to be increased. For that purpose, the height of the flame-resistant furnace 1 may be increased to increase the number of times the acrylic fiber bundle is folded back, or the distance L per pass of the flame-resistant furnace (hereinafter referred to as the flame-resistant furnace length) L may be increased. However, in order to reduce the equipment cost, it is preferable to increase the flameproof furnace length L. However, as a result, the horizontal distance L'between the guide rollers 4 becomes long, and the fiber bundles are likely to be suspended, so that contact between the fiber bundles due to vibration and deterioration of quality due to the mixing of the fiber bundles are likely to occur.

さらに繊維束間の接触を引き起こす繊維束の振動の振幅は、前記の糸条密度とガイドローラー4間の水平距離L’だけでなく、熱処理室を流れる酸化性気体の風速、走行するアクリル系繊維束の張力の影響を受ける。また、同じ振幅であっても混繊する頻度や程度はアクリル系繊維束の物性すなわち化学的性状、物理的性状、寸法等によって影響を受ける。 Further, the amplitude of the vibration of the fiber bundle that causes the contact between the fiber bundles is not only the above-mentioned thread density and the horizontal distance L'between the guide rollers 4, but also the wind speed of the oxidizing gas flowing through the heat treatment chamber and the traveling acrylic fiber. Affected by bundle tension. Further, even if the amplitude is the same, the frequency and degree of mixing are affected by the physical properties of the acrylic fiber bundle, that is, the chemical properties, physical properties, dimensions, and the like.

本発明の耐炎化繊維束の製造方法は、耐炎化炉の設備仕様、運転条件、アクリル系繊維束の物性によらず、高品質の耐炎化繊維を操業トラブルなく効率的に生産するものである。 The method for producing a flame-resistant fiber bundle of the present invention efficiently produces high-quality flame-resistant fiber without operational trouble regardless of the equipment specifications, operating conditions, and physical characteristics of the acrylic fiber bundle. ..

具体的には、複数の束を隣接して引き揃えたアクリル系繊維束2を熱風加熱式の耐炎化炉1内に走行させながら熱処理することによって耐炎化繊維束にする連続熱処理方法において、前記アクリル系繊維束2は熱処理室3両側に設置するガイドローラー4によって搬送され、耐炎化炉1内における熱風の方向が糸に対して平行であって、隣接繊維束間の接触率Pを2〜18%以下とすることを特徴とする耐炎化繊維の製造方法である。前記のとおり、ここでいう隣接繊維束間の接触率Pとは複数の繊維束を隣接するよう並列して走行させた時に、繊維束の幅方向の振動により、隣接する繊維束間の隙間がゼロになる確率を指す。上記繊維束の幅方向の振動は、繊維束の振幅平均を0、標準偏差をσとした時、隣接繊維束間の接触率Pは下記式(1)で求めることができる。 Specifically, in the continuous heat treatment method of making a flame-resistant fiber bundle by heat-treating an acrylic fiber bundle 2 in which a plurality of bundles are arranged adjacent to each other while running in a hot-air heating type flame-resistant furnace 1. The acrylic fiber bundle 2 is conveyed by guide rollers 4 installed on both sides of the heat treatment chamber 3, the direction of hot air in the flameproof furnace 1 is parallel to the thread, and the contact ratio P between adjacent fiber bundles is 2 to 2. It is a method for producing a flame-resistant fiber, which comprises 18% or less. As described above, the contact ratio P between adjacent fiber bundles here means that when a plurality of fiber bundles are run in parallel so as to be adjacent to each other, the gap between the adjacent fiber bundles is caused by vibration in the width direction of the fiber bundles. Refers to the probability of becoming zero. The vibration in the width direction of the fiber bundle can be obtained by the following equation (1) when the amplitude average of the fiber bundle is 0 and the standard deviation is σ.

P=[1−p(x){−t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数であり、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数である。
P = [1-p (x) {-t <x <t}] x 100 (1)
Here, P is the contact rate (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, and p (x) is a random density function of the normal distribution N (0, σ 2). σ is the standard deviation of the amplitude, and x is a random variable with the center of the amplitude as zero.

図3は隣接繊維束間の接触率Pのイメージ図であり、上段が走行する複数の繊維束、下段が上段中央の繊維束の右端部を中心とした存在位置の確率分布を示している。アクリル系繊維束2は振動し、それに応じて隣接する繊維束間の隙間t、および振幅の標準偏差σは常に変化する。隣接する繊維束間の隙間tは下記式で表すことができる。 FIG. 3 is an image diagram of the contact rate P between adjacent fiber bundles, and the upper row shows a plurality of running fiber bundles, and the lower row shows the probability distribution of the existence positions centered on the right end of the fiber bundle in the center of the upper row. The acrylic fiber bundle 2 vibrates, and the gap t between adjacent fiber bundles and the standard deviation σ of the amplitude always change accordingly. The gap t between adjacent fiber bundles can be expressed by the following formula.

t=(Wp−Wy)/2
ここで、Wpはガイドローラー等で物理的に規制されるピッチ間隔、Wyは走行する繊維束の幅である。
t = (Wp-Wy) / 2
Here, Wp is a pitch interval physically regulated by a guide roller or the like, and Wy is the width of a traveling fiber bundle.

図3は左からそれぞれ、t<1σ、t=1σ、t>1σの時のイメージ図である。Pは図3下段の斜線部分に相当し、繊維束の振幅を正規分布と仮定し、隣接する繊維束の走行端位置(基準とする繊維束の位置をゼロとした時に、tの範囲)以下/以上となる累積確率がPであり、Wyとσを実測すれば統計的に算出できる。 FIG. 3 is an image diagram when t <1σ, t = 1σ, and t> 1σ, respectively, from the left. P corresponds to the shaded area in the lower part of FIG. 3, assuming that the amplitude of the fiber bundle is a normal distribution, and is equal to or less than the running end position of the adjacent fiber bundle (the range of t when the reference fiber bundle position is zero). The cumulative probability of / or more is P, and it can be calculated statistically by actually measuring Wy and σ.

なお、繊維束の振幅や走行する繊維束の幅は、例えば走行する繊維束の上面あるいは下面から高精度二次元変位センサー等にて測定することが可能である。 The amplitude of the fiber bundle and the width of the traveling fiber bundle can be measured, for example, from the upper surface or the lower surface of the traveling fiber bundle with a high-precision two-dimensional displacement sensor or the like.

隣接繊維束間の接触率Pは2%以上18%以下であることが必須であり、5〜16%であることが好ましい。隣接繊維束間の接触率Pが、2%未満になると、糸条密度が低くなりすぎ、生産効率が低下する。隣接繊維束間の接触率Pが18%を超えると、隣接する繊維束間の混繊が増大して、毛羽立ち等の耐炎化繊維の品質低下や糸切れ等の操業トラブルを抑制できない。 The contact rate P between adjacent fiber bundles is essential to be 2% or more and 18% or less, preferably 5 to 16%. If the contact rate P between adjacent fiber bundles is less than 2%, the yarn density becomes too low and the production efficiency decreases. When the contact rate P between adjacent fiber bundles exceeds 18%, the mixed fibers between adjacent fiber bundles increase, and it is not possible to suppress operational troubles such as deterioration of flame-resistant fibers such as fluffing and thread breakage.

ガイドローラー間の水平距離を14.5m以上にすることが好ましく、この場合、生産コストをより有利に低減させることができる。 The horizontal distance between the guide rollers is preferably 14.5 m or more, and in this case, the production cost can be reduced more advantageously.

また、耐炎化炉内を流れる熱風の風速を1.0〜6.0m/秒にすることが好ましく、より好ましくは2.0〜5.0m/秒である。耐炎化炉内を流れる熱風の風速をこの好ましい範囲とすることで、生産コストを有利に低減することができる。 Further, the wind speed of the hot air flowing in the flameproof furnace is preferably 1.0 to 6.0 m / sec, more preferably 2.0 to 5.0 m / sec. By setting the wind velocity of the hot air flowing in the flameproof furnace within this preferable range, the production cost can be advantageously reduced.

また、耐炎化炉両側のガイドローラーが糸幅規制機構を有することが好ましい。ガイドローラーが糸幅規制機構を有するとは、ガイドローラーがローラー上あるいはローラー直近にて糸幅を規制する機構を持つことを意味し、当該機構を有することで耐炎化繊維束の品位や操業性はより優位になる。例えば、ガイドローラーに一定のピッチ間隔の溝を彫った溝ローラーを用いた場合(ローラー上で糸幅を規制)やガイドローラーから耐炎化炉の方向に数cmの位置に幅方向に一定のピッチ間隔を持つ櫛ガイドを設置した場合(ローラー直近で糸幅を規制)は、糸幅規制を行わないフラットローラーを用いた場合と異なり、容易に繊維束を溝寄せできるため、切れた一つの繊維束を処置する際に隣接する繊維束を巻き込みづらくなる。また、隣接繊維束間の混繊の場合にも、混繊の程度が小さければ、ローラーの溝部分で再び分繊され、後の工程に影響が波及しにくく、品位悪化が少ない。 Further, it is preferable that the guide rollers on both sides of the flameproof furnace have a yarn width regulating mechanism. The fact that the guide roller has a yarn width regulating mechanism means that the guide roller has a mechanism for regulating the yarn width on or in the immediate vicinity of the roller, and by having such a mechanism, the quality and operability of the flameproof fiber bundle Becomes more dominant. For example, when a groove roller in which grooves are carved at regular pitch intervals is used for the guide roller (the thread width is regulated on the roller), or when the guide roller is located several cm in the direction of the flameproof furnace and the pitch is constant in the width direction. When a comb guide with a gap is installed (the thread width is regulated in the immediate vicinity of the roller), unlike the case of using a flat roller that does not regulate the thread width, the fiber bundle can be easily grooved, so one broken fiber. It becomes difficult to involve adjacent fiber bundles when treating the bundles. Further, even in the case of mixing fibers between adjacent fiber bundles, if the degree of mixing is small, the fibers are separated again at the groove portion of the roller, the influence on the subsequent process is less likely to spread, and the deterioration of quality is small.

さらに、アクリル系繊維束の単繊維が単繊維表面の円周方向2.0μm・繊維軸方向2.0μm四方の範囲において、繊維の長手方向に2.0μm以上延びる表面凹凸構造を有し、かつ単繊維断面の長径/短径の比が1.01〜1.10であることが好ましく、この場合、耐炎化繊維束の品位や操業性はより優位になる。一般的に、アクリル系繊維束を構成する一本一本である単繊維間は、耐炎化工程での急激な温度上昇等により、擬似接着を起こすことがある。同様に、繊維束間の接触においても、隣接する繊維束の単繊維間が擬似接着を起こす懸念がある。ただし、単繊維の表面に微細な凹凸があることでこの擬似接着は抑制することができ、隣接繊維束間の接触率Pが同じであっても絡みにくく大きな混繊に波及しにくくなる。また、単繊維断面が楕円に近づくと、繊維束内で短繊維の偏りができ、繊維束間が接触したときに、絡みやすい。反対に単繊維断面が真円に近ければ、繊維束間の混繊を抑制できるため、単繊維断面の長径/短径の比が1.01〜1.10であることが好ましく、より好ましくは1.01〜1.05である。 Further, the single fiber of the acrylic fiber bundle has a surface uneven structure extending 2.0 μm or more in the longitudinal direction of the fiber in the range of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axis direction on the surface of the single fiber. The major axis / minor axis ratio of the single fiber cross section is preferably 1.01 to 1.10, and in this case, the quality and operability of the flame-resistant fiber bundle become more superior. In general, pseudo-adhesion may occur between individual single fibers constituting an acrylic fiber bundle due to a sudden temperature rise in the flame resistance process or the like. Similarly, in the contact between the fiber bundles, there is a concern that the single fibers of the adjacent fiber bundles may cause pseudo-adhesion. However, since the surface of the single fiber has fine irregularities, this pseudo-adhesion can be suppressed, and even if the contact ratio P between adjacent fiber bundles is the same, it is difficult to get entangled and spread to a large mixed fiber. Further, when the cross section of the single fiber approaches an ellipse, the short fibers are biased in the fiber bundle, and when the fiber bundles come into contact with each other, they are easily entangled. On the other hand, if the cross section of the single fiber is close to a perfect circle, it is possible to suppress the mixing of fibers between the fiber bundles. Therefore, the ratio of the major axis to the minor axis of the single fiber cross section is preferably 1.01 to 1.10, more preferably. It is 1.01 to 1.05.

また、アクリル系繊維束のフックドロップ長が300mm以下であることが好ましく、この場合、耐炎化繊維束の品位や操業性はより優位になる。フックドロップ長が小さいほど、繊維束内の単繊維間の交絡は大きくなる。単繊維間の交絡が大きければ、隣接する繊維束が混繊したとしても、同じ繊維束内に単繊維が戻ろうとする力が大きいために、繊維束の混繊が解消しやすい。 Further, the hook drop length of the acrylic fiber bundle is preferably 300 mm or less, and in this case, the quality and operability of the flame-resistant fiber bundle become more superior. The smaller the hook drop length, the greater the entanglement between the single fibers in the fiber bundle. If the entanglement between the single fibers is large, even if the adjacent fiber bundles are mixed, the force for the single fibers to return to the same fiber bundle is large, so that the mixed fibers of the fiber bundles can be easily eliminated.

また、アクリル系繊維束に付着するシリコン系油剤の付着量が0.1〜3.0質量%であることが好ましく、より好ましくは0.1〜1.5質量%である。アクリル系繊維束に付着するシリコン系油剤の付着量をこの好ましい範囲とすることで、耐炎化繊維束の品位や操業性はより優位になる。アクリル系繊維束の単繊維に一定の耐熱性を持つシリコン系油剤を付与することで、単繊維間の接着を抑制するのは一般的である。 The amount of the silicon-based oil adhering to the acrylic fiber bundle is preferably 0.1 to 3.0% by mass, more preferably 0.1 to 1.5% by mass. By setting the amount of the silicone-based oil adhering to the acrylic fiber bundle within this preferable range, the quality and operability of the flame-resistant fiber bundle become more superior. It is common to suppress adhesion between single fibers by applying a silicone-based oil agent having a certain heat resistance to the single fibers of the acrylic fiber bundle.

また、アクリル系繊維束の単繊維繊度が0.05〜0.22texであることが好ましく、より好ましくは0.05〜0.17texである。アクリル系繊維束の単繊維繊度を上記好ましい範囲とすることで、耐炎化繊維束の品位や操業性はより優位になる。単繊維繊度が適切な範囲であると、単繊維同一体積・質量に占める単繊維表面積が大きくなり過ぎず、隣接する繊維束が接触した際にも単繊維が絡み難くなる。 The single fiber fineness of the acrylic fiber bundle is preferably 0.05 to 0.22 tex, more preferably 0.05 to 0.17 tex. By setting the single fiber fineness of the acrylic fiber bundle to the above-mentioned preferable range, the quality and operability of the flame-resistant fiber bundle become more superior. When the single fiber fineness is in an appropriate range, the surface area of the single fiber occupying the same volume and mass of the single fiber does not become too large, and the single fiber is less likely to be entangled even when adjacent fiber bundles come into contact with each other.

上述の方法で製造した耐炎化繊維束は、不活性雰囲気中最高温度300〜1000℃で前炭素化処理して前炭素化繊維束を製造し、不活性雰囲気中最高温度1,000〜2,000℃で炭素化処理して炭素繊維束が製造される。 The flame-resistant fiber bundle produced by the above method is precarbonized at a maximum temperature of 300 to 1000 ° C. in an inert atmosphere to produce a precarbonized fiber bundle, and the maximum temperature in the inert atmosphere is 1,000 to 2, A carbon fiber bundle is produced by carbonization treatment at 000 ° C.

前炭素化処理における不活性雰囲気の最高温度は550〜800℃が好ましい。前炭素化炉内を満たす不活性雰囲気としては、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。 The maximum temperature of the inert atmosphere in the precarbonization treatment is preferably 550 to 800 ° C. As the inert atmosphere that fills the precarbonization furnace, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.

前炭素化処理によって得られた前炭素化繊維は、次いで炭素化炉に送入されて炭素化処理される。炭素繊維の機械的特性を向上させるためには、不活性雰囲気中最高温度1,200〜2,000℃で、炭素化処理するのが好ましい。 The pre-carbonized fiber obtained by the pre-carbonization treatment is then sent to a carbonization furnace for carbonization treatment. In order to improve the mechanical properties of the carbon fiber, it is preferable to carry out carbonization treatment at a maximum temperature of 1,200 to 2,000 ° C. in an inert atmosphere.

炭素化炉内を満たす不活性雰囲気については、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。 As the inert atmosphere that fills the inside of the carbonization furnace, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.

このようにして得られた炭素繊維束は、取り扱い性や、マトリックス樹脂との親和性を向上させるため、サイジング剤を付与してもよい。サイジング剤の種類としては、所望の特性を得ることができればとくに限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。サイジング剤の付与は公知の方法を用いることができる。 The carbon fiber bundle thus obtained may be provided with a sizing agent in order to improve the handleability and the affinity with the matrix resin. The type of sizing agent is not particularly limited as long as desired properties can be obtained, and examples thereof include sizing agents containing epoxy resin, polyether resin, epoxy-modified polyurethane resin, and polyester resin as main components. A known method can be used for applying the sizing agent.

さらに炭素繊維束には、必要に応じて、繊維強化複合材料マトリックス樹脂との親和性および接着性の向上を目的とした電解酸化処理や酸化処理を行ってもよい。 Further, the carbon fiber bundle may be subjected to an electrolytic oxidation treatment or an oxidation treatment for the purpose of improving the affinity and adhesiveness with the fiber-reinforced composite material matrix resin, if necessary.

以上のように、本発明は、複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、隣接繊維束間の接触率Pを2〜18%とすることで、高品質の耐炎化繊維を操業トラブルなく、生産効率よく生産することが可能となる。 As described above, in the present invention, the inside of the hot air heating type flameproofing furnace is conveyed while the acrylic fiber bundles in which a plurality of bundles are arranged adjacent to each other are conveyed by the guide rollers installed on both sides outside the flameproofing furnace. A method for producing a flame-resistant fiber bundle that is run and heat-treated in an oxidizing atmosphere. The direction of hot air in the flame-resistant furnace is parallel to the running direction of the fiber bundle, and the contact rate between adjacent fiber bundles. By setting P to 2 to 18%, it becomes possible to efficiently produce high-quality flame-resistant fibers without operational troubles.

以下に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによって限定されない。なお、各特性の評価方法・測定方法は下記に記載の方法によった。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. The evaluation method and measurement method for each characteristic were as described below.

<アクリル系繊維束の単繊維繊度の測定方法>
JIS L 1013に準拠して行った。
<Measurement method of single fiber fineness of acrylic fiber bundle>
This was done in accordance with JIS L 1013.

<アクリル系繊維束の単繊維の表面凹凸構造の測定>
アクリル系繊維束の単繊維の両端を、走査型プローブ顕微鏡付属のSPA400用金属製試料台(20mm径)「エポリードサービス社製、品番:K−Y10200167」)上にカーボンペーストで固定し、以下の条件で測定を行った。
<Measurement of surface uneven structure of single fiber of acrylic fiber bundle>
Both ends of the single fiber of the acrylic fiber bundle are fixed with carbon paste on a metal sample table for SPA400 (20 mm diameter) "Epolide Service Co., Ltd., product number: KY10200167" attached to the scanning probe microscope, and the following The measurement was performed under the conditions of.

(走査型プローブ顕微鏡測定条件)
装置:「SPI4000プローブステーション、SPA400(ユニット)」エスアイアイ・ナノテクノロジー社製
走査モード:ダイナミックフォースモード(DFM)(形状像測定)
探針:エスアイアイ・ナノテクノロジー社製、「SI−DF−20」
走査範囲:2.0μm×2.0μmおよび600nm×600nm
Rotation:90°(繊維軸方向に対して垂直方向にスキャン)
走査速度:1.0Hz
ピクセル数:512×512
測定環境:室温、大気中
単繊維1本に対して、上記条件にて1画像を得、得られた画像を走査型プローブ顕微鏡付属の画像解析ソフト(SPIWin)を用い、以下の条件にて画像解析を行った。
(Scanning probe microscope measurement conditions)
Equipment: "SPI4000 probe station, SPA400 (unit)" SII Nanotechnology, Inc. Scanning mode: Dynamic force mode (DFM) (shape image measurement)
Needle: "SI-DF-20" manufactured by SII Nanotechnology Co., Ltd.
Scanning range: 2.0 μm × 2.0 μm and 600 nm × 600 nm
Rotation: 90 ° (scans perpendicular to the fiber axis direction)
Scanning speed: 1.0Hz
Number of pixels: 512 x 512
Measurement environment: One image is obtained for one single fiber in the air at room temperature under the above conditions, and the obtained image is imaged under the following conditions using the image analysis software (SPIWin) attached to the scanning probe microscope. The analysis was performed.

(画像解析条件)
得られた形状像を「フラット処理」、「メディアン8処理」、「三次傾き補正」を行い、曲面を平面にフィッティング補正した画像を得た。平面補正した画像の表面粗さ解析より平均面粗さ(R)と面内の最大高低差(Rmax)を求めた。ここで、表面粗さ解析より平均面粗さ(R)と面内の最大高低差(Rmax)は、円周長さ600nm×繊維軸方向長さ600nmの走査範囲のデータを用いた。Raは下記式で算出されるものである。
(Image analysis conditions)
The obtained shape image was subjected to "flat processing", "median 8 processing", and "third-order tilt correction" to obtain an image in which a curved surface was fitted and corrected to a flat surface. The average surface roughness (Ra ) and the maximum in-plane height difference (R max ) were obtained from the surface roughness analysis of the plane-corrected image. Here, as the average surface roughness ( Ra ) and the maximum in-plane height difference (R max ) from the surface roughness analysis, the data of the scanning range of the circumference length of 600 nm × the fiber axial length of 600 nm was used. Ra is calculated by the following formula.

Figure 2020066653
Figure 2020066653

中央面:実表面との高さの偏差が最小となる平面に平行で、かつ実表面を等しい体積で2分割する平面
f(x,y):実表面と中央面との高低差
、L:XY平面の大きさ
測定は1サンプルについて単繊維10本を走査型プローブ顕微鏡で形状測定し、各測定画像について、平均面粗さ(R)、最大高低差(Rmax)を求め、その平均値をサンプルの平均面粗さ(R)、最大高低差(Rmax)とした。単繊維の表面に繊維の長手方向に2μm以上延びる表面凹凸構造の有無については、AFM(原子間力顕微鏡)モードにて単繊維の円周方向に2.0μmの範囲を繊維軸方向長さ2.0μmに渡り、少しずつ、ずらしながら繰り返し走査し、得られた測定画像から有無を判断した。
Central plane: A plane parallel to the plane that minimizes the height deviation from the real surface and dividing the real surface into two with the same volume f (x, y): Height difference between the real surface and the central plane L x , Ly : In the size measurement of the XY plane, 10 single fibers are measured in shape with a scanning probe microscope for one sample, and the average surface roughness ( Ra ) and maximum height difference (R max ) are obtained for each measured image. , The average value was taken as the average surface roughness ( Ra ) and the maximum height difference (R max ) of the sample. Regarding the presence or absence of a surface uneven structure extending by 2 μm or more in the longitudinal direction of the single fiber on the surface of the single fiber, the length in the fiber axial direction is set in the range of 2.0 μm in the circumferential direction of the single fiber in AFM (atomic force microscope) mode. The presence or absence was determined from the obtained measured images by repeatedly scanning over a distance of 0.0 μm while shifting the particles little by little.

(フラット処理)
リフト、振動、スキャナのクリープ等によってイメージデータに現れたZ軸方向の歪み・うねりを除去する処理のことで、SPM(走査型プローブ顕微鏡)測定上の装置因によるデータのひずみを除去する処理。
(Flat processing)
A process that removes distortion / waviness in the Z-axis direction that appears in image data due to lift, vibration, creep of a scanner, etc., and is a process that removes data distortion due to equipment factors in SPM (scanning probe microscope) measurement.

(メディアン8処理)
処理するデータ点Sを中心とする3×3の窓(マトリクス)においてSおよびD1〜D8(Sを中心に取り囲む8箇所のマトリックス)の間で演算を行い、SのZ(高さ方向)データを置き換えることで、スムージングやノイズ除去といったフィルタの効果を得るもの。
(Median 8 processing)
In a 3 × 3 window (matrix) centered on the data point S to be processed, an operation is performed between S and D1 to D8 (eight matrices surrounding S), and Z (height direction) data of S is performed. By replacing, you can get the effect of the filter such as smoothing and noise removal.

メディアン8処理は、SおよびD1〜D8の9点のZデータの中央値を求めて、Sを置き換える。 The median 8 process finds the median of the 9 points of Z data of S and D1 to D8 and replaces S.

(三次傾き補正)
傾き補正は、処理対象イメージの全データから最小二乗近似によって曲面を求めてフィッティングし、傾きを補正する。(1次)(2次)(3次)はフィッティングする曲面の次数を示し、3次では3次曲面をフィッティングする。三次傾き補正処理によって、データの繊維の曲率をなくしフラットな像とする。
(Third-order tilt correction)
In the tilt correction, a curved surface is obtained and fitted by the least squares approximation from all the data of the image to be processed, and the tilt is corrected. (Primary), (secondary), and (tertiary) indicate the order of the curved surface to be fitted, and the tertiary surface fits the cubic curved surface. The third-order tilt correction process eliminates the curvature of the fibers in the data to create a flat image.

<アクリル系繊維束の単繊維の断面形状の評価>
繊維束を構成する単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定した。
<Evaluation of cross-sectional shape of single fiber of acrylic fiber bundle>
The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber constituting the fiber bundle was determined as follows.

内径1mmの塩化ビニル樹脂製のチューブ内に測定用の繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、前記試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、フィリップス社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径/短径での比率を評価した。 A fiber bundle for measurement is passed through a tube made of vinyl chloride resin having an inner diameter of 1 mm, and then sliced into round slices with a knife to prepare a sample. Then, the sample was adhered to the SEM sample table with the fiber cross section facing upward, and Au was further sputtered to a thickness of about 10 nm, and then the acceleration voltage was 7.00 kV by an XL20 scanning electron microscope manufactured by Philips. The fiber cross section was observed under the condition of a working distance of 31 mm, the major axis and the minor axis of the fiber cross section of the single fiber were measured, and the ratio between the major axis and the minor axis was evaluated.

<アクリル系繊維束のフックドロップ長測定方法>
アクリル系繊維束を120mm引き出して、垂下装置の上部に取り付け、撚りを抜いた後に、繊維束下部に200gの錘を吊り下げる。繊維束の上部から1cm下部の地点に繊維束を3分割するようにフック(φ1mmのステンレス線材製、フックのR=5mm)を挿入し、フックを下降させる。該フックは総質量が10gとなるように錘を付けて調整している。フックが繊維束の交絡によって停止した点までフックの下降距離を求める。試験回数は、N=50とし、その平均値をフックドロップ長とした。
<Measuring method of hook drop length of acrylic fiber bundle>
The acrylic fiber bundle is pulled out by 120 mm, attached to the upper part of the hanging device, untwisted, and then a 200 g weight is hung from the lower part of the fiber bundle. A hook (made of φ1 mm stainless steel wire, hook R = 5 mm) is inserted so as to divide the fiber bundle into three at a point 1 cm below the upper part of the fiber bundle, and the hook is lowered. The hook is adjusted with a weight so that the total mass is 10 g. Find the descent distance of the hook to the point where the hook stopped due to the entanglement of the fiber bundles. The number of tests was N = 50, and the average value was taken as the hook drop length.

<耐炎化炉内の風速の測定方法>
カノマックス製アネモマスター高温用風速計Model6162を用いて、1秒毎の測定値30点の平均値を用いた。耐炎化炉1の両側のガイドローラー4の中央に当たる位置にある、熱処理室3側面の測定孔(図示せず)から測定プローブを挿入し、水平方向に流れる酸化性気体の風速を測定した。幅方向に5箇所測定し、その平均値を用いた。
<Measurement method of wind speed in flameproof furnace>
An anemometer for high temperature, Model 6162 manufactured by Kanomax, was used, and the average value of 30 measured values per second was used. A measuring probe was inserted from a measuring hole (not shown) on the side surface of the heat treatment chamber 3 located at the center of the guide rollers 4 on both sides of the flameproofing furnace 1, and the wind speed of the oxidizing gas flowing in the horizontal direction was measured. Five points were measured in the width direction, and the average value was used.

<走行する繊維束の糸幅および振幅の測定方法>
走行する繊維束の振幅が最大になる耐炎化炉1の両側のガイドローラー4の中央に当たる位置で測定を行った。具体的には、(株)キーエンス製レーザー変位計LJ−G200を、走行する繊維束の上方あるいは下方に設置して特定の繊維束にレーザーを照射した。その繊維束の幅方向の両端の距離を繊維束の幅とし、幅方向の一端の幅方向変動量を振幅とした。それぞれ、1回/60秒以上の頻度、0.01mm以下の精度で5分間測定し、繊維束の幅Wy(平均値)および振幅の標準偏差σを取得して、上述の隣接繊維束間の接触率Pを算出した。
<Measurement method of yarn width and amplitude of running fiber bundle>
The measurement was performed at a position corresponding to the center of the guide rollers 4 on both sides of the flameproofing furnace 1 in which the amplitude of the traveling fiber bundle was maximized. Specifically, a laser displacement meter LJ-G200 manufactured by KEYENCE CORPORATION was installed above or below a traveling fiber bundle to irradiate a specific fiber bundle with a laser. The distance between both ends in the width direction of the fiber bundle was defined as the width of the fiber bundle, and the amount of fluctuation in the width direction of one end in the width direction was defined as the amplitude. Measure once / 60 seconds or more with an accuracy of 0.01 mm or less for 5 minutes, obtain the standard deviation σ of the width Wy (average value) and amplitude of the fiber bundles, and obtain the standard deviation σ between the adjacent fiber bundles described above. The contact rate P was calculated.

表1に、それぞれの実施例、比較例における操業性、品質、生産性の結果を定性的に示す。優、良、不可は下記基準のとおり評価した。 Table 1 qualitatively shows the results of operability, quality, and productivity in each of the examples and comparative examples. Excellent, good, and unacceptable were evaluated according to the following criteria.

(操業性)
優:混繊や繊維束切れ等のトラブルが1日あたり平均ゼロ回であり、極めて良好なレベル。
良:混繊や繊維束切れ等のトラブルが1日あたり平均数回程度で、十分に連続運転を継続できるレベル。
不可:混繊や繊維束切れ等のトラブルが、1日あたり平均数十回起こり、連続運転を継続できないレベル。
(Operability)
Excellent: The average number of troubles such as mixed fibers and broken fiber bundles is zero per day, which is an extremely good level.
Good: Problems such as mixed fibers and broken fiber bundles occur several times a day on average, and continuous operation can be continued sufficiently.
Impossible: Problems such as mixed fibers and broken fiber bundles occur dozens of times a day on average, and continuous operation cannot be continued.

(品質)
優:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均数個/m以下であり、毛羽品位が工程での通過性や製品としての高次加工性に全く影響しないレベル。
良:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均10個/m以下であり、毛羽品位が工程での通過性や製品としての高次加工性にほとんど影響しないレベル。
不可:耐炎化工程を出た後に目視で確認できる繊維束上の10mm以上の毛羽の数が平均数十個/m以上であり、毛羽品位が工程での通過性や製品としての高次加工性に悪影響を与えるレベル。
(quality)
Excellent: The average number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flame resistance process is several / m or less, and the fluff quality is excellent for passability in the process and high-order workability as a product. A level that does not affect at all.
Good: The average number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flame resistance process is 10 pieces / m or less, and the fluff quality is excellent for passability in the process and high-order workability as a product. A level that has almost no effect.
Impossible: The average number of fluffs of 10 mm or more on the fiber bundle that can be visually confirmed after the flame resistance process is several tens / m or more, and the fluff quality is passability in the process and high-order workability as a product. Level that adversely affects.

(生産性)
優:製造コストが十分低く(「良」に対比して80%以下)、単位時間当たりの生産量が十分大きい(「良」に対比して120%以上)レベル。
良:製造コストが比較的低く、単位時間当たりの生産量が比較的大きいレベル
不可:製造コストが高い(「良」に対比して150%以上)、あるいは単位時間当たりの生産量が小さい(「良」に対比して60%以下)レベル。
(Productivity)
Excellent: The manufacturing cost is sufficiently low (80% or less compared to "good"), and the production volume per unit time is sufficiently large (120% or more compared to "good").
Good: The manufacturing cost is relatively low and the production volume per unit time is relatively large. Impossible: The manufacturing cost is high (150% or more compared to "good"), or the production volume per unit time is small ("" 60% or less compared to "good") level.

(実施例1)
単繊維繊度0.11tex、単繊維の表面の円周方向2.0μm・繊維軸方向2.0μm四方の範囲における繊維の長手方向に延びる表面凹凸構造が2.5μm、単繊維断面の長径/短径が1.04である単繊維20,000本からなるアクリル系繊維束2を100〜200本引き揃え、耐炎化炉1で熱処理することにより耐炎化繊維束を得た。このアクリル系繊維束に付着するシリコン系油剤の付着量は0.5%であり、アクリル系繊維束のフックドロップ長を250mmとした。また、耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’は20mとし、ガイドローラー4は3〜15mmの範囲の所定間隔(物理的に規制すべきピッチ間隔)Wpで溝を掘った溝ローラーとした。この時の耐炎化炉1の熱処理室3内の酸化性気体の温度は240〜280℃とし、酸化性気体の水平方向の風速を3m/秒とした。糸の走行速度は、耐炎化処理時間が十分に取れるよう、耐炎化炉長Lに合わせて1〜15m/分の範囲で調整し、工程張力は0.5〜2.5g/texの範囲で調整した。
(Example 1)
Single fiber fineness 0.11tex, surface uneven structure extending in the longitudinal direction of the fiber in the range of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axial direction of the surface of the single fiber is 2.5 μm, major axis / short of the single fiber cross section 100 to 200 acrylic fiber bundles 2 made of 20,000 single fibers having a diameter of 1.04 were aligned and heat-treated in the flame-resistant furnace 1 to obtain flame-resistant fiber bundles. The amount of the silicone-based oil adhering to the acrylic fiber bundle was 0.5%, and the hook drop length of the acrylic fiber bundle was set to 250 mm. Further, the horizontal distance L'between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flameproof furnace 1 is 20 m, and the guide rollers 4 are grooved at a predetermined interval (pitch interval to be physically regulated) Wp in the range of 3 to 15 mm. It was a groove roller that was dug. At this time, the temperature of the oxidizing gas in the heat treatment chamber 3 of the flame-resistant furnace 1 was set to 240 to 280 ° C., and the horizontal wind speed of the oxidizing gas was set to 3 m / sec. The traveling speed of the yarn is adjusted in the range of 1 to 15 m / min according to the flameproof furnace length L so that the flameproofing treatment time can be sufficiently taken, and the process tension is in the range of 0.5 to 2.5 g / tex. It was adjusted.

得られた耐炎化繊維束を、その後、前炭素化炉において最高温度700℃で焼成した後、炭素化炉において最高温度1,400℃で焼成し、電解表面処理後サイジングを塗布して、炭素繊維束を得た。 The obtained flame-resistant fiber bundle is then fired in a pre-carbonization furnace at a maximum temperature of 700 ° C., then fired in a carbonization furnace at a maximum temperature of 1,400 ° C., and after electrolytic surface treatment, sizing is applied to carbon. A fiber bundle was obtained.

この時に耐炎化炉1の熱処理室3内の最上段を走行する繊維束の熱処理室中央での繊維束の幅Wyと振幅の標準偏差σを実測し、統計的に算出した隣接繊維束間の接触率Pは6%であった。 At this time, the standard deviation σ of the width Wy and the amplitude of the fiber bundle in the center of the heat treatment chamber of the fiber bundle running in the uppermost stage in the heat treatment chamber 3 of the flameproof furnace 1 was actually measured, and statistically calculated between the adjacent fiber bundles. The contact rate P was 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurs, and the operability is extremely good, and the flame-resistant fiber bundle is more production-efficient. Was acquired. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

Figure 2020066653
Figure 2020066653

(実施例2)
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を15mとし、隣接繊維束間の接触率Pを10%とした以外は、実施例1と同様にした。
(Example 2)
The same as in Example 1 except that the horizontal distance L'between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1 was 15 m and the contact ratio P between adjacent fiber bundles was 10%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurred, and the flame-resistant fiber bundle was obtained with extremely good operability. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(実施例3)
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を30mとし、隣接繊維束間の接触率Pを15%とした以外は、実施例1と同様にした。
(Example 3)
The same as in Example 1 except that the horizontal distance L'between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1 was 30 m and the contact rate P between adjacent fiber bundles was 15%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurs, and the operability is extremely good, and the flame-resistant fiber bundle is more production-efficient. Was acquired. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(実施例4)
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を5m/秒とし、隣接繊維束間の接触率Pを7%とした以外は、実施例1と同様にした。
(Example 4)
The same procedure as in Example 1 was carried out except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flame-resistant furnace 1 was set to 5 m / sec and the contact rate P between adjacent fiber bundles was set to 7%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurs, and the operability is extremely good, and the flame-resistant fiber bundle is more production-efficient. Was acquired. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(実施例5)
耐炎化炉1の熱処理室3両側のガイドローラー4間の水平距離L’を10mとし、隣接繊維束間の接触率Pを5%とした以外は、実施例1と同様にした。
(Example 5)
The same as in Example 1 except that the horizontal distance L'between the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1 was 10 m and the contact rate P between adjacent fiber bundles was 5%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurred, and the flame-resistant fiber bundle was obtained with extremely good operability. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(実施例6)
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を8m/秒とし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 6)
The same procedure as in Example 1 was carried out except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flame-resistant furnace 1 was 8 m / sec and the contact rate P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurred, and the flame-resistant fiber bundle was obtained with extremely good operability. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(実施例7)
耐炎化炉1の熱処理室3両側のガイドローラー4をフラットローラーにし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 7)
The same as in Example 1 except that the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1 were flat rollers and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例8)
用いたアクリル系繊維束の単繊維断面の長径/短径を1.50とし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 8)
The same procedure as in Example 1 was carried out except that the major axis / minor axis of the single fiber cross section of the acrylic fiber bundle used was 1.50 and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例9)
用いたアクリル系繊維束のシリコン系油剤付着量を4.0%とし、隣接繊維束間の接触率Pを6%とした以外は、実施例1と同様にした。
(Example 9)
The same procedure as in Example 1 was carried out except that the amount of the silicone-based oil adhering to the acrylic fiber bundle used was 4.0% and the contact rate P between the adjacent fiber bundles was 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例10)
用いたアクリル系繊維束にシリコン系油剤を付与せず、隣接繊維束間の接触率Pを6%とした以外は、実施例1と同様にした。
(Example 10)
The same as in Example 1 was carried out except that the silicone-based oil agent was not applied to the used acrylic fiber bundle and the contact ratio P between adjacent fiber bundles was set to 6%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例11)
用いたアクリル系繊維束のフックドロップ長を350mmとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 11)
The same procedure as in Example 1 was carried out except that the hook drop length of the acrylic fiber bundle used was 350 mm and the contact ratio P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例12)
用いたアクリル系繊維束の単繊維繊度を0.18texとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 12)
The same as in Example 1 except that the single fiber fineness of the acrylic fiber bundle used was 0.18 tex and the contact rate P between adjacent fiber bundles was 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and the flame-resistant fiber bundle was obtained with good operability and more production efficiency. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like.

(実施例13)
耐炎化炉1の熱処理室3両側のガイドローラー4をフラットローラーにし、さらにそのフラットローラーから耐炎化炉の方向に30mmの位置に櫛ガイドを設置し、その櫛ガイドは幅方向に3〜15mmの範囲の一定の間隔の隙間を持ち、その隙間を繊維束が通ることにより物理的に規制される繊維束のピッチ間隔を3〜15mmの範囲で所定の間隔Wpとし、隣接繊維束間の接触率Pを14%とした以外は、実施例1と同様にした。
(Example 13)
The guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1 are made into flat rollers, and a comb guide is installed at a position 30 mm in the direction of the flame-resistant furnace from the flat roller, and the comb guide is 3 to 15 mm in the width direction. The pitch interval of the fiber bundles, which has a gap of a certain interval in the range and is physically regulated by the fiber bundle passing through the gap, is set to a predetermined interval Wp in the range of 3 to 15 mm, and the contact rate between adjacent fiber bundles is set. This was the same as in Example 1 except that P was set to 14%.

上記の条件において、アクリル繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で、より生産効率よく耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, no fiber mixing or fiber bundle breakage due to contact between the fiber bundles occurs, and the operability is extremely good, and the flame-resistant fiber bundle is more production-efficient. Was acquired. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was extremely good with no fluff or the like.

(比較例1)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を小さくする等により、隣接繊維束間の接触率Pを24%とした以外は、実施例1と同様にした。
(Comparative Example 1)
The same as in Example 1 except that the contact ratio P between adjacent fiber bundles was set to 24% by reducing the distance between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1.

上記の条件において、糸条密度を向上させることで、生産量自体は増やすことができたが、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が多く劣悪な品質であった。 Under the above conditions, the production amount itself could be increased by improving the yarn density, but during the flameproofing treatment of the acrylic fiber bundles, mixed fibers and broken fiber bundles frequently occur due to contact between the fiber bundles. However, it became difficult to continue operations. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, there were many fluffs and the quality was poor.

(比較例2)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を大きくする等により、隣接繊維束間の接触率Pを1%とした以外は、実施例1と同様にした。
(Comparative Example 2)
The same as in Example 1 except that the contact ratio P between adjacent fiber bundles was set to 1% by increasing the distance between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1.

上記の条件において、アクリル系繊維束の耐炎化処理中には、繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。ただし、結果的に耐炎化炉1に投入することのできる繊維束の本数が少なくなり、生産性は大きく低下した。 Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle, there was little mixing of fibers or breakage of the fiber bundle due to contact between the fiber bundles, and a flame-resistant fiber bundle was obtained with good operability. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, the quality was good with less fluff and the like. However, as a result, the number of fiber bundles that can be put into the flameproofing furnace 1 has decreased, and the productivity has greatly decreased.

(比較例3)
耐炎化炉1の熱処理室3両側のガイドローラー4の溝の間隔を小さくする等により、隣接繊維束間の接触率Pを28%とした以外は、実施例3と同様にした。
(Comparative Example 3)
The same as in Example 3 except that the contact ratio P between adjacent fiber bundles was set to 28% by reducing the distance between the grooves of the guide rollers 4 on both sides of the heat treatment chamber 3 of the flame-resistant furnace 1.

上記の条件において、糸条密度を向上させることで、生産量自体は増やすことができたが、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維束ならびに炭素繊維束を目視確認した結果、毛羽等が多く劣悪な品質であった。 Under the above conditions, the production amount itself could be increased by improving the yarn density, but during the flameproofing treatment of the acrylic fiber bundles, mixed fibers and broken fiber bundles frequently occur due to contact between the fiber bundles. However, it became difficult to continue operations. Further, as a result of visually confirming the obtained flame-resistant fiber bundles and carbon fiber bundles, there were many fluffs and the quality was poor.

(比較例4)
耐炎化炉1の熱処理室3内の酸化性気体の水平方向の風速を8m/秒とし、隣接繊維束間の接触率Pを19%とした以外は、実施例3と同様にした。
(Comparative Example 4)
The same as in Example 3 except that the horizontal wind speed of the oxidizing gas in the heat treatment chamber 3 of the flame-resistant furnace 1 was set to 8 m / sec and the contact rate P between adjacent fiber bundles was set to 19%.

上記の条件において、アクリル繊維束の耐炎化処理中に、繊維束間の接触による混繊や繊維束切れ等が多発し、操業継続が困難となった。また、得られた耐炎化繊維ならびに炭素繊維を目視確認した結果、毛羽等が多く劣悪な品質であった。さらに、風速を8m/秒とすることで、それを可能とする送風器8の設備費が増大し、生産コストが大幅に悪化した。 Under the above conditions, during the flameproofing treatment of the acrylic fiber bundles, mixed fibers due to contact between the fiber bundles and broken fiber bundles frequently occurred, making it difficult to continue the operation. Further, as a result of visually confirming the obtained flame-resistant fibers and carbon fibers, the quality was inferior due to a large amount of fluff and the like. Further, by setting the wind speed to 8 m / sec, the equipment cost of the blower 8 that enables it has increased, and the production cost has deteriorated significantly.

本発明は、耐炎化繊維束の製造方法ならびに炭素繊維束の製造方法に関するもので、航空機用途、圧力容器・風車等の産業用途、ゴルフシャフト等のスポーツ用途等に応用できるが、その応用範囲がこれらに限られるものではない。 The present invention relates to a method for producing a flame-resistant fiber bundle and a method for producing a carbon fiber bundle, and can be applied to aircraft applications, industrial applications such as pressure vessels and wind turbines, sports applications such as golf shafts, etc. It is not limited to these.

1 耐炎化炉
2 アクリル系繊維束
3 熱処理室
4 ガイドローラー
5 熱風吹出口
6 熱風排出口
7 加熱器
8 送風器
L 耐炎化炉長(1パスの耐炎化有効長)
L’ ガイドローラー間の水平距離
Wp 物理的に規制されるピッチ間隔
Wy 走行する繊維束の幅
t 隣接する繊維束間の隙間
1 Flame-resistant furnace 2 Acrylic fiber bundle 3 Heat treatment chamber 4 Guide roller 5 Hot air outlet 6 Hot air outlet 7 Heater 8 Blower L Flame-resistant furnace length (1 pass flame-resistant effective length)
L'Horizontal distance between guide rollers Wp Physically regulated pitch interval Wy Width of traveling fiber bundle t Gap between adjacent fiber bundles

Claims (9)

複数の束を隣接させて引き揃えたアクリル系繊維束を、耐炎化炉外両側に設置されるガイドローラーによって搬送させながら、熱風加熱式の耐炎化炉内を走行させて酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、耐炎化炉内における熱風の方向が繊維束の走行方向に対して平行であって、次式(1)で定義される隣接繊維束間の接触率Pを2〜18%とする耐炎化繊維束の製造方法。
P=[1−p(x){−t<x<t}]×100 (1)
ここで、Pは隣接繊維束間の接触率(%)、tは隣接する繊維束間の隙間(mm)、p(x)は正規分布N(0、σ)の確率密度関数、σは振幅の標準偏差、xは振幅の中央をゼロとする確率変数を表す。
Acrylic fiber bundles in which a plurality of bundles are arranged adjacent to each other are conveyed by guide rollers installed on both sides outside the flame-resistant furnace, and the fibers are run in a hot-air heating type flame-resistant furnace to be heat-treated in an oxidizing atmosphere. This is a method for manufacturing a flame-resistant fiber bundle, in which the direction of hot air in the flame-resistant furnace is parallel to the traveling direction of the fiber bundle, and the contact rate between adjacent fiber bundles defined by the following equation (1). A method for producing a flame-resistant fiber bundle having P of 2 to 18%.
P = [1-p (x) {-t <x <t}] x 100 (1)
Here, P is the contact rate (%) between adjacent fiber bundles, t is the gap (mm) between adjacent fiber bundles, p (x) is the probability density function of the normal distribution N (0, σ 2 ), and σ is The standard deviation of the amplitude, x represents a random variable with the center of the amplitude as zero.
前記ガイドローラー間の水平距離が14.5m以上である請求項1に記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to claim 1, wherein the horizontal distance between the guide rollers is 14.5 m or more. 耐炎化炉内を流れる熱風の風速が1.0〜6.0m/秒である、請求項1または2のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to claim 1 or 2, wherein the wind speed of the hot air flowing in the flame-resistant furnace is 1.0 to 6.0 m / sec. 前記ガイドローラーが糸幅規制機構を有する請求項1〜3のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 3, wherein the guide roller has a yarn width regulating mechanism. 前記アクリル系繊維束の単繊維の表面が、円周方向2.0μm・繊維軸方向2.0μm四方の範囲において、繊維の長手方向に2.0μm以上延びる表面凹凸構造を有し、かつ前記単繊維断面の長径/短径の比が1.01〜1.10である請求項1〜4のいずれかに記載の耐炎化繊維束の製造方法。 The surface of the single fiber of the acrylic fiber bundle has a surface uneven structure extending 2.0 μm or more in the longitudinal direction of the fiber in a range of 2.0 μm in the circumferential direction and 2.0 μm in the fiber axis direction, and the single fiber. The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 4, wherein the ratio of the major axis to the minor axis of the fiber cross section is 1.01 to 1.10. 前記アクリル系繊維束のフックドロップ長が300mm以下である請求項1〜5のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 5, wherein the hook drop length of the acrylic fiber bundle is 300 mm or less. 前記アクリル系繊維束に付着するシリコン系油剤の付着量が0.1〜3.0質量%である請求項1〜6のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 6, wherein the amount of the silicon-based oil adhering to the acrylic fiber bundle is 0.1 to 3.0% by mass. 前記アクリル系繊維束の単繊維繊度が0.05〜0.22texである請求項1〜7のいずれかに記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to any one of claims 1 to 7, wherein the single fiber fineness of the acrylic fiber bundle is 0.05 to 0.22 tex. 請求項1〜8のいずれかに記載の耐炎化繊維束の製造方法で製造された耐炎化繊維束を、不活性雰囲気中最高温度300〜1,000℃で前炭素化処理して前炭素化繊維束を製造し、該前炭素化繊維束を不活性雰囲気中最高温度1000〜2000℃で炭素化処理する炭素繊維束の製造方法。 The flame-resistant fiber bundle produced by the method for producing a flame-resistant fiber bundle according to any one of claims 1 to 8 is precarbonized by precarbonizing at a maximum temperature of 300 to 1,000 ° C. in an inert atmosphere. A method for producing a carbon fiber bundle, which comprises producing a fiber bundle and carbonizing the pre-carbonized fiber bundle at a maximum temperature of 1000 to 2000 ° C. in an inert atmosphere.
JP2019550872A 2018-09-28 2019-09-12 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles Active JP7354840B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018183750 2018-09-28
JP2018183750 2018-09-28
PCT/JP2019/035858 WO2020066653A1 (en) 2018-09-28 2019-09-12 Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle

Publications (3)

Publication Number Publication Date
JPWO2020066653A1 true JPWO2020066653A1 (en) 2021-08-30
JPWO2020066653A5 JPWO2020066653A5 (en) 2022-08-02
JP7354840B2 JP7354840B2 (en) 2023-10-03

Family

ID=69952623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550872A Active JP7354840B2 (en) 2018-09-28 2019-09-12 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles

Country Status (6)

Country Link
US (1) US20210348305A1 (en)
EP (1) EP3859060A4 (en)
JP (1) JP7354840B2 (en)
KR (1) KR20210063328A (en)
TW (1) TW202012712A (en)
WO (1) WO2020066653A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540986B (en) * 2022-02-28 2022-08-16 新创碳谷控股有限公司 Carbon fiber pre-oxidation furnace with airflow rectification function
CN114457464B (en) * 2022-02-28 2022-07-22 新创碳谷控股有限公司 Carbon fiber oxidation furnace capable of reducing vibration of tows

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266023A (en) * 1997-03-24 1998-10-06 Toho Rayon Co Ltd Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
JP4021972B2 (en) * 1997-08-05 2007-12-12 三菱レイヨン株式会社 Carbon fiber manufacturing method
JP4017772B2 (en) 1998-11-26 2007-12-05 三菱レイヨン株式会社 Continuous heat treatment method for acrylic fiber bundles
JP2000160436A (en) 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP4408323B2 (en) * 2000-03-30 2010-02-03 三菱レイヨン株式会社 Entangling device for carbon fiber precursor fiber bundle
JP2002194627A (en) * 2000-12-22 2002-07-10 Toray Ind Inc Heat-treating oven and method for producing carbon fiber by use of the same
JP2007162144A (en) * 2005-12-09 2007-06-28 Toray Ind Inc Method for producing carbon fiber bundle
JP5081409B2 (en) * 2006-07-12 2012-11-28 三菱レイヨン株式会社 Carbon fiber manufacturing method
US8932711B2 (en) * 2007-11-07 2015-01-13 Mitsubishi Rayon Co., Ltd. Oil agent composition for acrylic precursor fibers for carbon fibers, acrylic precursor fiber bundle for carbon fibers, and method for producing the same
JP5708965B2 (en) 2009-06-10 2015-04-30 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
JP5556994B2 (en) 2009-12-21 2014-07-23 三菱レイヨン株式会社 Method for producing flame resistant fiber
JP6064409B2 (en) * 2012-07-27 2017-01-25 東レ株式会社 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5963063B2 (en) * 2014-12-15 2016-08-03 三菱レイヨン株式会社 Carbon fiber bundle
JP2016160560A (en) * 2015-03-04 2016-09-05 三菱レイヨン株式会社 Method for manufacturing carbon fiber bundle
JP6229209B2 (en) * 2016-06-23 2017-11-15 三菱ケミカル株式会社 Carbon fiber bundle

Also Published As

Publication number Publication date
JP7354840B2 (en) 2023-10-03
TW202012712A (en) 2020-04-01
US20210348305A1 (en) 2021-11-11
EP3859060A1 (en) 2021-08-04
EP3859060A4 (en) 2022-07-06
KR20210063328A (en) 2021-06-01
WO2020066653A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP5834917B2 (en) Method for producing carbon fiber prepreg, method for producing carbon fiber reinforced composite material
EP2208813B1 (en) Carbon fiber strand and process for producing the same
JPWO2020066653A1 (en) Method for manufacturing flame-resistant fiber bundle and method for manufacturing carbon fiber bundle
JP5161604B2 (en) Carbon fiber manufacturing method
JP6729819B1 (en) Method for producing flame resistant fiber bundle and carbon fiber bundle, and flame resistant furnace
JP6680417B1 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5556994B2 (en) Method for producing flame resistant fiber
TW201908553A (en) Carbon fiber bundle and method for manufacturing same
WO2021187518A1 (en) Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace
JP7272347B2 (en) Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle
WO2020110632A1 (en) Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
JP6852405B2 (en) Manufacturing method of carbon fiber bundle
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP4271019B2 (en) Carbon fiber manufacturing method
JP4261075B2 (en) Carbon fiber bundle
JP4612207B2 (en) Carbon fiber fabric and prepreg using the same
JP4821330B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
CN117120676A (en) Carbon fiber bundle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7354840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151