JP4821330B2 - Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle - Google Patents

Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle Download PDF

Info

Publication number
JP4821330B2
JP4821330B2 JP2006007008A JP2006007008A JP4821330B2 JP 4821330 B2 JP4821330 B2 JP 4821330B2 JP 2006007008 A JP2006007008 A JP 2006007008A JP 2006007008 A JP2006007008 A JP 2006007008A JP 4821330 B2 JP4821330 B2 JP 4821330B2
Authority
JP
Japan
Prior art keywords
flameproofing
fiber bundle
carbon fiber
yarn
treatment chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006007008A
Other languages
Japanese (ja)
Other versions
JP2006291438A (en
Inventor
隆弘 伊藤
克典 小西
利明 平田
尚 岡本
幾雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006007008A priority Critical patent/JP4821330B2/en
Publication of JP2006291438A publication Critical patent/JP2006291438A/en
Application granted granted Critical
Publication of JP4821330B2 publication Critical patent/JP4821330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、繊度変動率が小さいポリアクリロニトリル系炭素繊維束が得られる耐炎化繊維束の製造方法、およびその炭素繊維束の製造方法に関する。 The present invention relates to a method for producing a flame-resistant fiber bundle from which a polyacrylonitrile-based carbon fiber bundle having a small fineness variation rate is obtained, and a method for producing the carbon fiber bundle .

炭素繊維は他の補強用繊維に比べて高い比強度および比弾性率をもつことから航空宇宙、スポーツおよび自動車・船舶・土木建築などの一般産業用途において、複合材料の補強繊維として工業的に幅広く利用されている。複合材料の補強繊維としての炭素繊維高性能化の要求が年々高まっている。とりわけ航空機用途の炭素繊維複合材料については、厳しい品質管理が要求され品質安定化が必須であり、炭素繊維を用いる複合材料の品質は炭素繊維そのものの品質でもあることから、炭素繊維の品質レベルそのものだけでなく、炭素繊維品質のばらつきの減少、言い換えれば品質の安定性についても求められている。   Carbon fiber has a high specific strength and specific modulus compared to other reinforcing fibers, so it is industrially widely used as a reinforcing fiber for composite materials in general industrial applications such as aerospace, sports and automobiles, ships, and civil engineering. It's being used. The demand for high-performance carbon fiber as a reinforcing fiber for composite materials is increasing year by year. In particular, for carbon fiber composite materials for aircraft use, strict quality control is required and quality stabilization is essential, and the quality of the composite material using carbon fiber is also the quality of the carbon fiber itself, so the quality level of the carbon fiber itself In addition, there is a demand for a reduction in carbon fiber quality variation, in other words, quality stability.

これらのユーザーからの需要に応えるべく、炭素繊維メーカーは高品質を維持しつつ、生産設備の大型化や炭素繊維の太物化などで生産能力を増大させている。また、炭素繊維用前駆体繊維としては、品質および生産安定性に優れたポリアクリロニトリル系繊維が一般的に利用されており、かかるポリアクリロニトリル系繊維としては炭素繊維の主要特性の1つである引張強度を高くするために、乾湿式紡糸法を適用して得られることが多い。   In order to meet the demands from these users, carbon fiber manufacturers are increasing production capacity by increasing the size of production facilities and increasing the thickness of carbon fibers while maintaining high quality. In addition, as a precursor fiber for carbon fiber, a polyacrylonitrile fiber having excellent quality and production stability is generally used. As such a polyacrylonitrile fiber, tensile property which is one of the main characteristics of the carbon fiber is used. In order to increase the strength, it is often obtained by applying a dry and wet spinning method.

一般に炭素繊維束の繊度は、走行前駆体繊維が耐炎化工程で受ける熱処理量に比例することが知られている。しかしながら、前記の各ユーザーからの根強いコストダウン要求等により生産設備の大型化を行うと、耐炎化工程での処理温度変動による熱処理量のバラツキが発生し、その結果、炭素繊維束繊度のバラツキも大きくなる。このために、高次加工の品質にも悪影響を及ぼし、一方向性プリプレグ法やフィラメントワインディング法等で製造される炭素繊維シート(以降プリプレグと言う)の炭素繊維束含有量が安定せず、高次加工品の品質不安定性を招いてきた。   In general, it is known that the fineness of the carbon fiber bundle is proportional to the amount of heat treatment that the traveling precursor fiber undergoes in the flameproofing process. However, when the production equipment is enlarged due to the above-mentioned persistent demands for cost reduction from each user, the heat treatment amount varies due to the treatment temperature fluctuation in the flameproofing process, and as a result, the carbon fiber bundle fineness also varies. growing. For this reason, the quality of the high-order processing is also adversely affected, and the carbon fiber bundle content of the carbon fiber sheet (hereinafter referred to as prepreg) manufactured by the unidirectional prepreg method or the filament winding method is not stable and high. Instability of the quality of the next processed product has been invited.

この炭素繊維束繊度バラツキ問題を解決すべく、過去いくつかの提案がなされている。まず、前駆体繊維束自体の繊度バラツキすなわち変動率を低減する方法がある(特許文献1参照)。ここでは、炭素繊維束の原料であるアクリロニトリル系前駆体繊維束を湿式紡糸方法で製造する際、加圧水蒸気延伸工程において、該延伸装置直前に設置される加熱ローラーによる延伸倍率と加圧水蒸気による延伸倍率は時間とともに変動するが、双方の延伸を全く同一時間に行うことができないために、実際は、これら2つの延伸の配分が断続的に変動することが前駆体繊維の長手方向の繊度変動を招くと指摘している。この前駆体繊維の繊度変動を抑制するために、加熱ローラーによる延伸倍率を抑え、加圧水蒸気延伸時の糸条張力の変動を少なくすることが重要と記載している。かかる延伸方法で得られた前駆体繊維束は、焼成して得られる炭素繊維束の長手方向繊度ムラが少なくなると記載されている。しかし、具体的な炭素繊維束の繊度変動率については一切記載されておらず、その効果は不明である。また、本公知例では湿式紡糸によるポリアクリロニトリル系前駆体繊維を想定しており、炭素繊維束の強度レベルも4750MPaから5000MPaと十分に高いとは言えない。さらに本発明者らが検討したところでは、湿式紡糸で製造された前駆体繊維は耐擦過性が低く、焼成工程での毛羽立ちが発生し、高次加工性の品位低下の原因となる。毛羽立ち抑制のために撚りを意図的に入れた場合、繊維束の拡がり性が低下し、プリプレグシートでの高次加工時に糸割れが発生するという問題も生じる。   Several proposals have been made in the past to solve this carbon fiber bundle fineness variation problem. First, there is a method of reducing the fineness variation, that is, the fluctuation rate of the precursor fiber bundle itself (see Patent Document 1). Here, when the acrylonitrile-based precursor fiber bundle that is the raw material of the carbon fiber bundle is produced by a wet spinning method, in the pressurized steam stretching process, the stretching ratio by the heating roller installed immediately before the stretching apparatus and the stretching ratio by the pressurized steam Varies with time, but since it is not possible to perform both stretchings at exactly the same time, the fact that the distribution of these two stretchings intermittently causes the fineness variation in the longitudinal direction of the precursor fiber. Pointed out. In order to suppress the fineness fluctuation of the precursor fiber, it is described that it is important to suppress the draw ratio by the heating roller and reduce the fluctuation of the yarn tension at the time of pressurized steam drawing. It is described that the precursor fiber bundle obtained by such a drawing method has less unevenness in the longitudinal direction of the carbon fiber bundle obtained by firing. However, there is no description about the specific fineness variation rate of the carbon fiber bundle, and the effect is unknown. Further, in this known example, a polyacrylonitrile-based precursor fiber by wet spinning is assumed, and the strength level of the carbon fiber bundle cannot be said to be sufficiently high from 4750 MPa to 5000 MPa. Further, the present inventors have examined that precursor fibers produced by wet spinning have low scratch resistance, cause fluffing in the firing process, and cause deterioration in quality of high-order workability. When twisting is intentionally added to suppress fuzzing, the spreadability of the fiber bundle is lowered, and there is a problem that yarn breakage occurs during high-order processing with a prepreg sheet.

炭素繊維束繊度バラツキ問題を解決するための別の方法として、耐炎化熱処理バラツキ低減すなわち温度ムラ抑制技術に関してのものがいくつかある。例えば、耐炎化処理室内に設置された複数の温度センサーにより検知される温度の平均値に基づいて供給される熱風温度を制御する耐炎化炉が提案されている(特許文献2参照)。この装置を用いれば、耐炎化処理室内の温度を均一にすることで、炭素繊維の繊度バラツキを小さくする効果があると記載している。しかしながら、この方法では設備大型化による機幅方向の炭素繊度バラツキを抑制する効果は期待できない。また昼夜間の外気温度が急激に変動した場合、外気温の影響により炉端部での温度変動が生じ、その部分を走行している炭素繊維束繊度変動が大きくなり、その結果繊度バラツキが大きくなる。   As another method for solving the problem of variation in the carbon fiber bundle fineness, there are several methods relating to a technique for reducing variation in heat resistance for heat resistance, that is, suppressing temperature unevenness. For example, there has been proposed a flameproofing furnace that controls the temperature of hot air supplied based on an average value of temperatures detected by a plurality of temperature sensors installed in a flameproofing treatment chamber (see Patent Document 2). It is described that the use of this apparatus has the effect of reducing the variation in the fineness of the carbon fiber by making the temperature in the flameproofing treatment chamber uniform. However, this method cannot be expected to suppress the carbon fineness variation in the machine width direction due to the increase in equipment size. Also, when the outside air temperature during daytime and nighttime changes suddenly, the temperature fluctuation at the furnace end occurs due to the influence of the outside air temperature, and the fluctuation of the fineness of the carbon fiber bundle running through that part increases, resulting in an increase in fineness variation. .

また、耐炎化の加熱手段の出力を場所によって変えることで炉内を走行する耐炎化途中糸に均一に熱処理を付与する方法も提案されている(特許文献3参照)。ただし、本公報では加熱手段を耐炎化途中糸が実際に走行している耐炎化処理室とは異なる循環部分に繊維走行方向に沿って、かつ、走行糸より下側に設置しているため、熱効率低下を招き十分に均一な熱処理を耐炎化処理室を走行する耐炎化途中糸に付与できない。   There has also been proposed a method in which heat treatment is uniformly applied to a flameproof yarn that travels in a furnace by changing the output of a flameproof heating means depending on the location (see Patent Document 3). However, in this publication, the heating means is installed in the circulation part different from the flameproofing treatment chamber where the flameproofing yarn is actually traveling, along the fiber traveling direction and below the traveling yarn, A sufficiently uniform heat treatment resulting in a decrease in thermal efficiency cannot be imparted to the flameproof intermediate yarn running through the flameproofing chamber.

耐炎化炉での唯一の開口部であるスリットでのシール性向上に注目した技術もある(特許文献4参照)。これは、走行する繊維束にエアーカーテンとしてスリット外側で炉外の空気を吹き付けるものであるが、繊維束に直接エアーを吹き付けるノズルと繊維束の距離が4cm以下と短く、エアー風速が15〜20m/秒と高速であるために内在している毛羽が走行糸の外側に露出すること、すなわち毛羽立ちが発生し、工程通過性が著しく低下する。   There is also a technology that focuses on improving the sealing performance at the slit, which is the only opening in the flameproofing furnace (see Patent Document 4). This is an air curtain that blows air outside the furnace as an air curtain to the traveling fiber bundle, but the distance between the nozzle that blows air directly on the fiber bundle and the fiber bundle is as short as 4 cm or less, and the air wind speed is 15 to 20 m. Because of the high speed of / sec, the inherent fluff is exposed to the outside of the running yarn, that is, fluffing occurs, and the process passability is significantly reduced.

このように従来の技術では、強度が発現しやすい乾湿式紡糸法においては、繊度バラツキが小さく品質に優れた炭素繊維束が得られなかった。
国際公開第00−005440号パンフレット 特開2004−124310号公報 特開2004−115983号公報 特開2004−143647号公報
As described above, in the conventional technique, in the dry and wet spinning method in which strength is easily developed, a carbon fiber bundle with small fineness variation and excellent quality cannot be obtained.
International Publication No. 00-005440 Pamphlet JP 2004-124310 A JP 2004-115983 A JP 2004-143647 A

本発明の目的は、高い強度を発現する乾湿式紡糸法による、ポリアクリロニトリル系前駆体繊維を原料とした耐炎化繊維束の製造方法、ならびに繊度バラツキすなわち変動率が小さい品質安定性に優れた特に航空機用途に好適な炭素繊維束製造方法を提供することにある。 The object of the present invention is to produce a flame-resistant fiber bundle using polyacrylonitrile-based precursor fiber as a raw material by a dry and wet spinning method that expresses high strength, and particularly excellent in quality stability with a small variation in fineness, that is, a small variation rate. and to provide a manufacturing method of a preferred carbon fiber bundle in aircraft applications.

また、上記課題を解決するため、本発明の耐炎化繊維束の製造方法は次のいずれの構成を有する。すなわち、
(i)炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、前記耐炎化炉は、耐炎化途中糸の走行方向と平行な耐炎化室壁に加熱手段を設置してなり、該加熱手段を設置する位置が、走行する耐炎化途中糸よりも上方でかつ機幅方向の端部であり、加熱手段を設置する方向が、耐炎化途中糸の走行方向と並行であるとともに、耐炎化処理室内の日間の温度変動幅を3℃以下とすることを特徴とする耐炎化繊維束の製造方法、
(ii)炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、耐炎化処理室の全機幅の30%〜70%の幅を有する機幅方向中央部を通過する繊維束は、前記中央部以外を通過する繊維束に比して耐炎化処理室を通過する回数を減少させることを特徴とする耐炎化繊維束の製造方法、または、
(iii)炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、耐炎化処理室の最上部から、機幅方向中央部を走行する耐炎化途中糸に、0℃以上50℃以下の気体を、循環部とは独立して吹き付けることを特徴とする耐炎化繊維束の製造方法、
である
Moreover, in order to solve the said subject, the manufacturing method of the flame-resistant fiber bundle of this invention has either of the following structures. That is,
(I) A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fibers are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulating portion for circulating the hot air, and the running of the fiber bundles Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn at both ends in the direction and a folding roller are installed, the flameproofing chamber is passed multiple times to obtain a flameproofed fiber bundle. A method for producing a flameproof fiber bundle, wherein the flameproofing furnace comprises a heating means installed on a flameproofing chamber wall parallel to the running direction of the flameproofing yarn, and the position where the heating means is installed The end of the machine width direction that is above the flameproofing intermediate thread and the direction in which the heating means is installed is parallel to the traveling direction of the flameproofing intermediate thread, and the temperature fluctuation range for the day in the flameproofing treatment chamber The temperature is 3 ° C. or less. A method of manufacturing a Honooka fiber bundle,
(Ii) A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fiber are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulating portion for circulating the hot air, and the fiber bundle runs. Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn at both ends in the direction and a folding roller are installed, the flameproofing chamber is passed multiple times to obtain a flameproofed fiber bundle. A method of manufacturing a flame-resistant fiber bundle, wherein a fiber bundle passing through a central part in the machine width direction having a width of 30% to 70% of the entire machine width of the flameproofing treatment chamber is a fiber bundle passing through other than the central part The method for producing a flame-resistant fiber bundle characterized by reducing the number of times of passing through the flame-resistant treatment chamber as compared to
(Iii) A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fibers are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulating portion for circulating the hot air, and the running of the fiber bundles Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn at both ends in the direction and a folding roller are installed, the flameproofing chamber is passed multiple times to obtain a flameproofed fiber bundle. A method for producing a flame-resistant fiber bundle, in which a gas of 0 ° C. or more and 50 ° C. or less is applied independently from the circulation portion to the flame-resistant intermediate yarn running in the center in the machine width direction from the uppermost portion of the flame-resistant treatment chamber A method of manufacturing a flame-resistant fiber bundle characterized by spraying
It is .

本発明によれば、以下に説明するとおり長手方向および機幅方向の炭素繊維束の繊度変動率を小さくし、強度が発現しやすく品質安定性を向上せしめ、その結果プリプレグを始めとする高次加工品の品質安定化を達成することができる。   According to the present invention, as described below, the fineness variation rate of the carbon fiber bundle in the longitudinal direction and the machine width direction is reduced, the strength is easily developed, and the quality stability is improved. As a result, higher order including prepreg Stabilization of the quality of processed products can be achieved.

本発明における炭素繊維束の繊維糸条の形態としては、前駆体繊維に撚りをかけて焼成して得られる有撚糸、その有撚糸の撚りを解いて得られる解撚糸、前駆体繊維に実質的に撚りをかけずに熱処理を行う無撚糸などが使用できるが、高次加工性を考慮すると無撚糸又は解撚糸が好ましく、さらに高次加工時の拡がり性の観点からは無撚糸が好ましい。   As the form of the fiber yarn of the carbon fiber bundle in the present invention, the twisted yarn obtained by twisting and firing the precursor fiber, the untwisted yarn obtained by untwisting the twisted yarn, and substantially the precursor fiber Although untwisted yarns that are heat-treated without twisting can be used, non-twisted yarns or untwisted yarns are preferable in view of higher-order processability, and from the viewpoint of spreadability during higher-order processing, untwisted yarns are preferable.

さらに本発明の炭素繊維束は、原子間力顕微鏡により測定される表面積比が1.00〜1.10の炭素繊維からなることが好ましく、1.00〜1.05であればより好ましく、1.00〜1.03であればさらに好ましい。表面積比がかかる範囲内であれば、炭素繊維束の表面がより平滑なため、糸条の拡がり性の点で好ましいと同時に強度が発現しやすく品質の面でも好ましい。なお、炭素繊維束の好ましい強度範囲は5200MPa以上であり、より好ましくは5500MPa以上である。   Furthermore, the carbon fiber bundle of the present invention is preferably made of carbon fibers having a surface area ratio measured by an atomic force microscope of 1.00 to 1.10, more preferably 1.00 to 1.05. 0.000 to 1.03 is more preferable. If the surface area ratio is within this range, the surface of the carbon fiber bundle is smoother, which is preferable from the viewpoint of the spreadability of the yarn, and at the same time, is easy to express the strength and is preferable from the aspect of quality. In addition, the preferable strength range of the carbon fiber bundle is 5200 MPa or more, more preferably 5500 MPa or more.

ここでいう炭素繊維束の表面積比は炭素繊維束表面の粗さ度合いを表しており、表面積比が1に近づくほど平滑であることを示している。本願の実施例においては、炭素繊維束の表面積比は以下に示す方法で原子間力顕微鏡を用いて測定できる(ただし、測定方法はここに記載するものに限られるものではない)。すなわち、測定する炭素繊維束を長さ数mm程度にカットし、銀ペーストを用いて基板(シリコンウエハ)上に固定し、Digital Instruments社製 NanoScope IIIa原子間力顕微鏡(AFM)においてDimension3000ステージシステムを使用し、下記条件にて単糸の断面方向の中央部について3次元表面形状の像を得る。   The surface area ratio of the carbon fiber bundle referred to here represents the degree of roughness of the surface of the carbon fiber bundle, and indicates that the surface area ratio becomes smoother as the surface area ratio approaches 1. In the examples of the present application, the surface area ratio of the carbon fiber bundle can be measured using an atomic force microscope by the following method (however, the measuring method is not limited to the one described here). That is, a carbon fiber bundle to be measured is cut to a length of about several mm, fixed on a substrate (silicon wafer) using a silver paste, and a Dimension 3000 stage system is used in a NanoScope IIIa atomic force microscope (AFM) manufactured by Digital Instruments. The three-dimensional surface shape image is obtained for the central portion of the single yarn in the cross-sectional direction under the following conditions.

・ 走査モード:タッピングモード
・ 探針:オリンパス光学工業製Siカンチレバー一体型探針OMCL−AC120TS
・ 走査範囲:2.5μm×2.5μm
・ 走査速度:0.4Hz
・ ピクセル数:512×512
・ 測定環境:室温、大気中
各試料について、単糸1本から1箇所ずつ観察して得られた像について、前記装置に付属のソフトウエア(Nano Scope IIIバージョン4.22r2)によりデータ処理し、1次Flattenフィルタ、Lowpassフィルタ、3次Plane Fitフィルタを用いてフィルタリングし、得られた像全体を対象として実表面積と投影面積を算出する。実表面積は、評価対象となる単糸1本の断面方向において、円周方向に沿ってその断面形状のイメージを得た後、そのイメージをもとにして得られる平均半径から求めた面積である。一方、そのイメージの内接円から求められる円面積が投影面積であり、実表面積の投影面積に対する比がここで言う表面積比に当たる。具体的に、本発明で用いる表面積比は次式から求める。各試料について任意に選んだ5本の単糸で各々1回ずつ上記測定を行い、最大値と最小値を除いた3箇所の相加平均値を最終的な表面積比とする。
-Scanning mode: Tapping mode-Probe: Olympus Optical Co., Ltd. Si cantilever integrated probe OMCL-AC120TS
・ Scanning range: 2.5μm × 2.5μm
・ Scanning speed: 0.4Hz
・ Number of pixels: 512 × 512
Measurement environment: For each sample at room temperature and in the air, the image obtained by observing one single thread at a time is processed by the software (Nano Scope III version 4.22r2) attached to the device, Filtering is performed using a first-order Flatten filter, a Lowpass filter, and a third-order Plane Fit filter, and an actual surface area and a projected area are calculated for the entire obtained image. The actual surface area is an area obtained from an average radius obtained based on an image of the cross-sectional shape along the circumferential direction in the cross-sectional direction of one single yarn to be evaluated. . On the other hand, the circle area obtained from the inscribed circle of the image is the projected area, and the ratio of the actual surface area to the projected area corresponds to the surface area ratio mentioned here. Specifically, the surface area ratio used in the present invention is obtained from the following equation. The above measurement is carried out once for each of five single yarns arbitrarily selected for each sample, and the arithmetic average value of three places excluding the maximum value and the minimum value is taken as the final surface area ratio.

表面積比=実表面積/投影面積
また、炭素繊維束の長手方向繊度変動率および機幅方向繊度変動率はともに、1.5%以下であることが好ましく、1.3%以下であればより好ましく、1.0%以下であればさらに好ましい。
Surface area ratio = actual surface area / projected area Further, both the longitudinal direction fineness variation rate and the machine width direction fineness variation rate of the carbon fiber bundle are preferably 1.5% or less, more preferably 1.3% or less. 1.0% or less is more preferable.

炭素繊維束の長手方向繊度変動率が1.5%を超えるとプリプレグ作製などにおいて炭素繊維束の含有量が安定しないため、プリプレグから成形される高次加工品の品質そのもののバラツキを発生させる。特に多数の炭素繊維束を原材料として高次加工する一方向性プリプレグにおいて、炭素繊維束の長手方向繊度変動が大きくなると、所望のプリプレグシート内炭素繊維束含有量になるように炭素繊維束ボビンを仕掛けても、単位面積あたりのプリプレグ内に含有される炭素繊維束の重量目付が安定しないために規格外れやコンポジット品質のバラツキなどを発生させ、プリプレグの品質および生産収率を低下させる。   If the longitudinal fineness variation rate of the carbon fiber bundle exceeds 1.5%, the content of the carbon fiber bundle is not stable in prepreg production or the like, so that the quality of the high-order processed product formed from the prepreg itself varies. In particular, in a unidirectional prepreg that performs high-order processing using a large number of carbon fiber bundles as raw materials, if the variation in the longitudinal fineness of the carbon fiber bundle increases, the carbon fiber bundle bobbin is adjusted so that the desired carbon fiber bundle content in the prepreg sheet is obtained. Even if set, the weight per unit area of the carbon fiber bundles contained in the prepreg is not stable, so that non-standard or variation in composite quality occurs, and the prepreg quality and production yield are lowered.

ここでいう炭素繊維束の長手方向繊度変動率は次のようにして求める。   The longitudinal fineness variation rate of the carbon fiber bundle here is determined as follows.

温度23±5℃、相対湿度60±20%の雰囲気中で、長手方向繊度変動率評価用のサンプルである炭素繊維束を炭素繊維ボビンから長手方向に1m撚りが入らないように長方形状に正確に切断する。次に、ボビンの炭素繊維束切断面から長手方向に20mの炭素繊維束をボビンからはく離する。その後、再度炭素繊維束をボビンから長手方向に1m撚りが入らないように正確に切断して2本目のサンプルを得た後で、前期同様に長手方向に20mの炭素繊維束をボビンからはく離する。長方形状の炭素繊維束のサンプルを50本得るまで、上記の方法に従いサンプリングを行う。採取した炭素繊維束サンプルを電子秤量で測定して次式に基づいて繊度変動率を求める。   In an atmosphere with a temperature of 23 ± 5 ° C and a relative humidity of 60 ± 20%, the carbon fiber bundle, which is a sample for evaluating the longitudinal fineness variation rate, is accurately rectangular in shape so that no 1m twist is inserted in the longitudinal direction from the carbon fiber bobbin Disconnect. Next, a 20 m carbon fiber bundle is peeled from the bobbin in the longitudinal direction from the cut surface of the bobbin carbon fiber bundle. Thereafter, the carbon fiber bundle is again accurately cut from the bobbin so that 1 m twist does not enter in the longitudinal direction to obtain a second sample, and then the carbon fiber bundle of 20 m in the longitudinal direction is peeled off from the bobbin as in the previous period. . Sampling is performed according to the above method until 50 samples of rectangular carbon fiber bundles are obtained. The collected carbon fiber bundle sample is measured by electronic weighing, and the fineness variation rate is obtained based on the following formula.

長手方向繊度変動率(%)=(σ1/A)×100
ここで、σ1は測定繊度全データの標準偏差、Aは測定繊度全データの平均値である。ここで全データとは各ボビン毎から採取したサンプル50本の炭素繊維束繊度データを指す。
Longitudinal fineness fluctuation rate (%) = (σ1 / A) × 100
Here, σ1 is a standard deviation of all measured fineness data, and A is an average value of all measured fineness data. Here, the total data refers to the carbon fiber bundle fineness data of 50 samples collected from each bobbin.

本発明の炭素繊維束は複数の単繊維が集合した束状であるが、複数の単繊維が集合した炭素繊維束は実質的に無撚りであることが好ましい。ここで言う実質的に無撚りとはたとえ撚りが存在していても、炭素繊維束1mあたり0.5ターン以下であることを意味する。   The carbon fiber bundle of the present invention is in the form of a bundle in which a plurality of single fibers are gathered, but the carbon fiber bundle in which the plurality of single fibers are gathered is preferably substantially untwisted. Here, “substantially untwisted” means that the number of turns is 0.5 turn or less per 1 m of the carbon fiber bundle, even if twist is present.

また、炭素繊維束の繊度バラツキの要因として機幅方向のバラツキも考えられるため、これを低減することが重要である。通常効率的に生産するために、炭素繊維束の前駆体繊維束であるポリアクリロニトリル系などからなる繊維束を複数仕掛けて、平行に走行させて同時に耐炎化工程にて耐炎化し、複数の耐炎糸繊維束を同時に得ている。その耐炎糸繊維束を予備炭化した後、炭化して、複数の炭素繊維束を同時に焼成している。このとき、機幅方向の炭素繊維束間の繊度変動率は以下のとおり求める。   Moreover, since the variation in the machine width direction is also considered as a factor of the fineness variation of the carbon fiber bundle, it is important to reduce this. Usually, in order to produce efficiently, a plurality of fiber bundles made of polyacrylonitrile or the like, which are precursor fiber bundles of carbon fiber bundles, are placed in parallel and made flame resistant in the flameproofing process at the same time. A fiber bundle is obtained at the same time. The flame resistant yarn fiber bundle is pre-carbonized and then carbonized to simultaneously fire a plurality of carbon fiber bundles. At this time, the fineness variation rate between the carbon fiber bundles in the machine width direction is obtained as follows.

同一機内で同時焼成した炭素繊維束を以下の方法に従い、機幅方向の繊度変動率評価用サンプルを得るための炭素繊維束ボビンを選択する。すなわち、同時に焼成した炭素繊維束を巻き取った炭素繊維束ボビンを機内における一方の最端の糸条を巻き取ったものから10ライン毎に他方の最端の糸条を巻き取ったものに至るまで選ぶ。さらに両端を走行する糸条を巻き取った炭素繊維束ボビン2個を追加する。
温度23±5℃、相対湿度60±20%の雰囲気中で、前述の方法にて選択した各炭素繊維束ボビンの各ボビン表層部から長手方向に正確に1m、撚りが入らないように炭素繊維束を長方形状に正確に切断する。その切断した炭素繊維束を電子秤量で測定し、次式から炭素繊維束間の繊度変動率を求める。
A carbon fiber bundle bobbin for obtaining a sample for evaluating the fineness variation rate in the machine width direction is selected according to the following method for the carbon fiber bundle co-fired in the same machine. That is, the carbon fiber bundle bobbin obtained by winding the carbon fiber bundle fired at the same time is wound from one endmost yarn in the machine to the other endmost yarn wound every 10 lines. Choose until. Further, two carbon fiber bundle bobbins around which the yarn running on both ends is wound are added.
Carbon fiber in an atmosphere of 23 ± 5 ° C and relative humidity of 60 ± 20% so that no twist is entered from the bobbin surface layer of each carbon fiber bundle bobbin selected by the above method exactly 1 m in the longitudinal direction. Cut the bundle precisely into a rectangular shape. The cut carbon fiber bundle is measured by electronic weighing, and the fineness variation rate between the carbon fiber bundles is obtained from the following equation.

束間繊度変動率(%)=(σ2/B)×100
式で使用するσ2は測定繊度全データの標準偏差、Bは測定繊度全データの平均値である。
Flux variation rate between bundles (%) = (σ2 / B) × 100
Σ2 used in the equation is a standard deviation of all measured fineness data, and B is an average value of all measured fineness data.

炭素繊維束において、単繊維数の好ましい範囲は3000本以上であり、より好ましい範囲は6000本以上であり、さらに好ましい範囲は12000本以上である。単繊維数が3000本未満の場合取り扱い性が悪い上に、焼成工程においてローラーとの擦過で毛羽が立ちやすく品位が低下する。   In the carbon fiber bundle, the preferable range of the number of single fibers is 3000 or more, the more preferable range is 6000 or more, and the more preferable range is 12000 or more. When the number of single fibers is less than 3,000, the handleability is poor, and in addition, the fluff is liable to occur due to rubbing with a roller in the firing step, and the quality is lowered.

単繊維数の上限には特に制限はないが、あまり太くなるとプリプレグに加工する時に樹脂含浸のプリプレグ中における均一性がなくなり、それに起因して炭素繊維強化プラスチック成型時にボイドを作ってしまい、物性が低下することから単繊維数は48000本以下であることが好ましい。   The upper limit of the number of single fibers is not particularly limited, but if they are too thick, there will be no uniformity in the resin-impregnated prepreg when processed into a prepreg, and as a result, voids will be created when molding carbon fiber reinforced plastic, resulting in physical properties. Since it falls, it is preferable that the number of single fibers is 48000 or less.

上記した本発明の炭素繊維束は次のようにして製造することができる。まず、炭素繊維の前駆体としてアクリロニトリルが90重量%以上でアクリロニトリルと共重合可能なモノマーが10重量%未満の構成であるポリアクリロニトリル系繊維束を使用する。上述の共重合可能なモノマーとしては、アクリル酸、メタアクリル酸、イタコン酸またはこれらのメチルエステル、プロピルエステル、ブチルエステル、アルカリ金属塩、アンモニウム塩、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸およびこれらのアルカリ金属塩からなるグループから少なくとも1種を用いることが可能である。このポリアクリロニトリル系前駆体繊維束を空気などの酸化性雰囲気中にて200℃から300℃の温度範囲で後述する特定の条件を用いて加熱耐炎化することで耐炎化繊維束を製造するのである。得られた耐炎化繊維束は、その後に、炭化処理前に窒素などの不活性雰囲気中にて300℃から1000℃の範囲温度内で予備炭化処理を行う。このように予備炭化処理を施した後で窒素などの不活性雰囲気中で最高温度が1000℃から2500℃の温度範囲で炭化することで炭素繊維束を製造することができる。炭化処理後に施す表面処理として、炭素繊維束表面に官能基を生成して樹脂との接着性を高めることを目的としての電解酸化表面処理がある。その方法には、薬液を用いる液相酸化、電解液溶液中で炭素繊維束を陽極として処理する電解酸化、および相状態でのプラズマ処理などによる気相酸化等がある。表面処理方法としては、比較的取り扱い性が良く、コスト的に有利な電解酸化処理方法が好適に採用される。電解液としては、酸性水溶液またはアルカリ水溶液のいずれも使用可能であるが、酸性水溶液としては強酸性を示す硫酸または硝酸が好ましく、またアルカリ水溶液としては炭酸アンモニウム、炭酸水素アンモニウムや重炭酸アンモニウム等の無機アルカリの水溶液が好ましく用いられる。 上記電解酸化処理を施した後、炭素繊維束にサイジング剤を付与して成型品用に供することができる。ここでいうサイジング剤の種類は特に限定するものではないが、エポキシ樹脂を主成分とするビスフェノールA型エポキシ樹脂や直鎖状構造を有する両端に2個以上のエポキシ基を有する脂肪族化合物が好ましく用いられる。エポキシ基としては、反応性の高いグリシジル基が好ましい。本発明におけるエポキシ基を有する脂肪族化合物の具体例としては、グリシジルエーテル化合物ではグリセリンポリグリシジルエーテル類、またジグリシジルエーテル化合物ではポリエチレングリコールジグリシジルエーテル類が挙げられる。   The above-described carbon fiber bundle of the present invention can be produced as follows. First, a polyacrylonitrile fiber bundle having a constitution in which acrylonitrile is 90% by weight or more and a monomer copolymerizable with acrylonitrile is less than 10% by weight is used as a carbon fiber precursor. Examples of the copolymerizable monomer include acrylic acid, methacrylic acid, itaconic acid or their methyl ester, propyl ester, butyl ester, alkali metal salt, ammonium salt, allyl sulfonic acid, methallyl sulfonic acid, and styrene sulfonic acid. And at least one selected from the group consisting of these alkali metal salts. The polyacrylonitrile-based precursor fiber bundle is heated and flame-resistant using a specific condition described later in a temperature range of 200 ° C. to 300 ° C. in an oxidizing atmosphere such as air to produce a flame-resistant fiber bundle. . The obtained flame-resistant fiber bundle is then subjected to a preliminary carbonization treatment within a temperature range of 300 ° C. to 1000 ° C. in an inert atmosphere such as nitrogen before the carbonization treatment. A carbon fiber bundle can be produced by carbonizing at a maximum temperature of 1000 ° C. to 2500 ° C. in an inert atmosphere such as nitrogen after the preliminary carbonization treatment. As the surface treatment to be applied after the carbonization treatment, there is an electrolytic oxidation surface treatment for the purpose of enhancing the adhesion with a resin by generating a functional group on the surface of the carbon fiber bundle. The methods include liquid phase oxidation using a chemical solution, electrolytic oxidation in which a carbon fiber bundle is treated as an anode in an electrolyte solution, and gas phase oxidation by plasma treatment in a phase state. As the surface treatment method, an electrolytic oxidation treatment method that is relatively easy to handle and is advantageous in terms of cost is preferably employed. As the electrolytic solution, either an acidic aqueous solution or an alkaline aqueous solution can be used. As the acidic aqueous solution, sulfuric acid or nitric acid exhibiting strong acidity is preferable, and as the alkaline aqueous solution, ammonium carbonate, ammonium bicarbonate, ammonium bicarbonate, or the like is preferable. An aqueous solution of an inorganic alkali is preferably used. After performing the electrolytic oxidation treatment, a sizing agent can be applied to the carbon fiber bundle and used for a molded product. The kind of the sizing agent here is not particularly limited, but a bisphenol A type epoxy resin mainly composed of an epoxy resin or an aliphatic compound having two or more epoxy groups at both ends having a linear structure is preferable. Used. The epoxy group is preferably a highly reactive glycidyl group. Specific examples of the aliphatic compound having an epoxy group in the present invention include glycerin polyglycidyl ethers for glycidyl ether compounds and polyethylene glycol diglycidyl ethers for diglycidyl ether compounds.

ここで、本発明の炭素繊維束を得るに好適な耐炎化繊維束を製造するために以下の条件を採用する。まず1つは、次のようなものである。通常、炭素繊維束の繊度は耐炎化工程で受ける熱処理量に大きく依存することが知られている。炭素繊維束繊度の変動率は、途中糸に該当する耐炎化繊維束の繊度変動率により直接影響するので、耐炎化熱処理量の均一化は炭素繊維束の繊度変動率を抑制する上で、極めて重要である。耐炎化炉構造には耐炎化処理室におけるストランド走行方向の両端に耐炎化途中糸を入出炉させるローラーの設置位置により、大きく分けて2種類ある。1つはローラーが耐炎化処理室内に入っている炉内ローラー設置型であり、温度を均一にできる長所があるものの、生産中の耐炎化途中繊維束を含む耐炎繊維束のローラー巻付きの発生時の処置が不可能なため、巻付きがいったん発生すると防災上の理由から緊急停機を余儀なくされ、生産性が大きく低下する欠点がある。もう1つはローラーが耐炎化処理室外に設置されている炉外ローラー設置型であり、温度変動が大きい反面、ローラーでの巻付き処置が可能で、巻付きによる生産ロスを最小限にすることが可能な、コストパフォーマンスに優れた構造である。いずれの耐炎化炉構造を有しても良いが、コストパフォーマンスや防災時の生産ロス低減の面から炉外ローラー設置型の方が好ましい。図1は、炉外ローラー設置型の耐炎化炉の一例を示す概略側面図である。炭素繊維用ポリアクリロニトリル系前駆体繊維束を複数本並行に走行せしめ耐炎化処理室1に導く。耐炎化炉の構造は、複数本が並行に走行している、炭素繊維用ポリアクリロニトリル系前駆体繊維束が耐炎化繊維束となる前の繊維束である、いわゆる耐炎化途中糸2に、一定温度の熱風が供される耐炎化処理室1と、その熱風を循環する循環部3があるもので、さらに耐炎化処理室1の繊維束走行方向の両端に耐炎化途中糸を出入りさせる複数のスリット5および折り返しローラー4が設置されてなるものである。繊維束はかかるスリット5から出入りし、折り返しローラー4で折り返されて、耐炎化処理室1内をジグザグに通過する。なお、前駆体繊維束や耐炎化途中糸2は、その複数本が耐炎化処理室の機幅方向(図1における手前から奥に向かって)に整列している。   Here, the following conditions are adopted in order to produce a flameproof fiber bundle suitable for obtaining the carbon fiber bundle of the present invention. The first is as follows. Usually, it is known that the fineness of the carbon fiber bundle largely depends on the amount of heat treatment applied in the flameproofing process. The variation rate of the fineness of the carbon fiber bundle directly affects the fineness variation rate of the flameproof fiber bundle corresponding to the intermediate yarn, so uniformizing the amount of flameproofing heat treatment is extremely effective in suppressing the fineness variation rate of the carbon fiber bundle. is important. There are roughly two types of flameproofing furnace structures depending on the installation positions of the rollers that allow the flameproofing intermediate yarn to enter and exit at both ends in the strand running direction in the flameproofing treatment chamber. One is an in-furnace roller installation type in which the roller is in the flameproofing treatment chamber, and although there is an advantage that the temperature can be made uniform, the occurrence of rolling of the flameproof fiber bundle including the fiber bundle in the process of flameproofing during production is rolled Since it is impossible to deal with time, there is a disadvantage that once winding occurs, an emergency stop is forced for disaster prevention reasons, and productivity is greatly reduced. The other is an out-of-furnace roller installation type in which the roller is installed outside the flameproofing treatment chamber. While the temperature fluctuation is large, the roller can be wound and the production loss due to winding is minimized. This is a structure with excellent cost performance. Although any flameproof furnace structure may be used, an outside-roller installation type is preferable from the viewpoint of cost performance and reduction of production loss during disaster prevention. FIG. 1 is a schematic side view showing an example of an outside-roller installation type flameproof furnace. A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fibers are run in parallel and guided to the flameproofing treatment chamber 1. The structure of the flameproofing furnace is fixed to a so-called flameproofing intermediate yarn 2 which is a fiber bundle before a polyacrylonitrile-based precursor fiber bundle for carbon fiber is made into a flameproof fiber bundle, in which a plurality of flameproof furnaces are running in parallel. There are a flameproofing treatment chamber 1 to which hot air of temperature is provided, and a circulation part 3 that circulates the hot air, and a plurality of flameproofing yarns that enter and exit the flameproofing treatment chamber 1 at both ends in the fiber bundle traveling direction. The slit 5 and the folding roller 4 are installed. The fiber bundle enters and exits from the slit 5, is folded back by the folding roller 4, and passes through the flameproofing treatment chamber 1 in a zigzag manner. A plurality of precursor fiber bundles and flameproofing intermediate yarns 2 are aligned in the machine width direction of the flameproofing treatment chamber (from the front to the back in FIG. 1).

耐炎化工程では耐炎化処理室内を走行する耐炎化途中糸が発熱反応を起こすため、防災面から走行糸条の過剰発熱を抑制および制御する必要があり、発熱抑制手段として、耐炎化処理室外から循環部を通じて温度制御した熱風を走行糸条に吹き付けて除熱することが一般的である。かかる熱風の供給方向としては、具体的には、複数の耐炎化途中糸が並行して耐炎化処理室内を走行する方向と鉛直方向より熱風を供する直行流と、耐炎化途中糸の側面より熱風を供する並行流の2つがある。本発明においては、熱風の供給方向はいずれの方向でも良いが、並行流の場合熱風温度を分割制御する必要があり、ヒーターなどの設備を追加するために、コストパフォーマンスに劣るといった装置面での問題があるのに対し、直行流では熱風循環部分で一括に温度制御することが可能で、並行流よりコストパフォーマンスに優れ、装置としてより好ましい形態である。なお、図1で示す耐炎化炉は直行流である。   In the flameproofing process, the flameproofing yarn running inside the flameproofing chamber causes an exothermic reaction, so it is necessary to suppress and control the excessive heat generation of the running yarn from the disaster prevention side. It is common to remove heat by blowing hot air whose temperature is controlled through the circulation section to the running yarn. Specifically, the hot air supply direction includes a direction in which a plurality of flameproof yarns travel in parallel in the flameproofing chamber, a direct flow that supplies hot air from the vertical direction, and a hot air from the side of the flameproof yarn. There are two types of parallel flow. In the present invention, the hot air supply direction may be any direction, but in the case of parallel flow, the hot air temperature must be divided and controlled, and in order to add equipment such as a heater, the cost performance is inferior. Although there is a problem, in the direct flow, it is possible to collectively control the temperature in the hot air circulation portion, which is superior in cost performance than the parallel flow, and is a more preferable form as a device. In addition, the flameproofing furnace shown in FIG. 1 is an orthogonal flow.

折り返しローラーの形状としては、耐炎化処理室内での走行糸の熱風による糸条振動を抑制でき、耐炎化処理室においてある程度の形態保持性を有することができるように溝のある形状が好ましい。ローラーに溝がない場合、耐炎化処理室内で隣接糸条どうしが交絡して蓄熱しやすいため防災上も好ましくないばかりか、シリコーンなどから成る油剤が前駆体繊維束からローラーに転写(いわゆるガムアップ)して粘着による糸の巻き付きが発生することがある。   As the shape of the folding roller, a grooved shape is preferable so that the yarn vibration caused by hot air of the running yarn in the flameproofing chamber can be suppressed and a certain degree of form retention can be maintained in the flameproofing chamber. When there is no groove on the roller, adjacent yarns are entangled in the flameproofing chamber and heat is easily stored, which is not preferable for disaster prevention, and an oil agent such as silicone is transferred from the precursor fiber bundle to the roller (so-called gum-up) ) And thread winding due to adhesion may occur.

炭素繊維束繊度に影響する耐炎化処理室内の温度は、通常、循環部3にある気体加熱機6などの加熱手段と循環用ファン7により制御されているが、外気温の影響で季節変動また昼夜変動が発生することがある。季節変動は供給熱風温度を適時変更することで抑制できるが、昼夜間温度変動に対する抑制は外気温の変動が予測できないために極めて困難である。特に内陸性気候を有する場所に製造工程がある場合、昼夜温度変動幅が大きい春や秋において、炭素繊維束繊度変動への影響は深刻なものとなる。外気温の影響を考慮し、炭素繊維束の長手方向繊度変動率を最小化するためには、耐炎化処理室内の平均温度の昼夜温度変動を3℃以下、より好ましくは2℃以下、さらに好ましくは1℃以下となるよう制御することが必要である。昼夜温度変動幅が3℃を超えると、経時的に耐炎化温度、すなわち耐炎化工程での熱処理量が変動し、長手方向の耐炎糸繊維束、引いては炭素繊維束の長手方向の繊度変動を招く。   The temperature in the flameproofing treatment chamber that affects the fineness of the carbon fiber bundle is usually controlled by heating means such as a gas heater 6 in the circulation section 3 and a circulation fan 7. Day and night fluctuations may occur. Seasonal fluctuations can be suppressed by changing the supply hot air temperature in a timely manner, but it is extremely difficult to suppress daytime and nighttime temperature fluctuations because fluctuations in outside air temperature cannot be predicted. In particular, when there is a manufacturing process in a place with an inland climate, the influence on the change in the fineness of the carbon fiber bundle becomes serious in spring and autumn when the temperature fluctuation range is large. In order to minimize the longitudinal fineness variation rate of the carbon fiber bundle in consideration of the influence of the outside air temperature, the average temperature fluctuation in the flameproofing treatment chamber is 3 ° C. or less, more preferably 2 ° C. or less, more preferably Must be controlled to be 1 ° C. or lower. If the temperature fluctuation range exceeds 3 ° C, the flameproofing temperature, that is, the amount of heat treatment in the flameproofing process, changes over time, and the longitudinal flameproof yarn fiber bundle, and hence the carbon fiber bundle longitudinal fineness fluctuation. Invite.

ここでいう耐炎化処理室内の平均温度の昼夜変動幅は以下のようにして求めることができる。耐炎化処理室内では発熱反応している複数の耐炎化途中糸が走行しているため、通常、煙突効果により室内の上部が下部に比べて高温になる。また、当然のことながら、耐炎化処理室の外壁部分は、中央部分に比べて外部への放熱があるために低温となる。耐炎化処理室内の平均温度を正確に測定するには、かかる温度差を勘案し、耐炎化処理室内の高温部分と低温部分双方を包含したものでなければならない。すなわち、耐炎化処理室の平均温度は以下のようにして求める。水平方向に対しては、耐炎化処理室の四隅および中央部を含めた5箇所を測定場所として熱電対を設置する。高さ方向に対しては、複数の高さ方向の段階に分けて処理を行っている場合は、各段階ごとに均等数測定する。ただし、最上段、中段および最下段の3段階分のみを測定場所として代替してもよい(ただし、各階ごとの平均値と3段階分のみの平均値の両者を測定して、値が異なったときは、各階ごとの平均値を取る。)。各階における測定地点は、炉内を平行に走行する耐炎化途中糸を含む地表面と平行な平面から上方あるいは下方に5〜15cm離れた場所とする。かかる複数箇所の測定場所の温度を1時間毎に同時測定してその平均値を求め、その時間における耐炎化処理室内の平均温度とする。24時間連続で測定を行い、最高の平均温度と最低の平均温度との差を算出し、昼夜の(日間の)耐炎化処理室内の温度変動幅とする。   The fluctuation range of the average temperature in the flameproofing treatment chamber here can be obtained as follows. Since a plurality of flameproofing yarns that are exothermic are running in the flameproofing treatment chamber, the upper part of the room is usually hotter than the lower part due to the chimney effect. As a matter of course, the outer wall portion of the flameproofing treatment chamber has a lower temperature due to heat radiation to the outside than the central portion. In order to accurately measure the average temperature in the flameproofing chamber, the temperature difference must be taken into consideration and both the high temperature portion and the low temperature portion in the flameproofing chamber must be included. That is, the average temperature of the flameproofing chamber is obtained as follows. For the horizontal direction, five thermocouples including the four corners and the center of the flameproofing treatment chamber are installed as measurement locations. For the height direction, when processing is performed in a plurality of stages in the height direction, an equal number is measured for each stage. However, it is possible to replace only the three steps of the top, middle and bottom as measurement locations (however, the average value for each floor and the average value for only three steps were measured, and the values were different) When you take the average value for each floor.) The measurement point on each floor is a place 5 to 15 cm away from the plane parallel to the ground surface including the flameproof yarn running in parallel in the furnace. The temperature at the plurality of measurement locations is simultaneously measured every hour to obtain an average value, which is defined as the average temperature in the flameproofing treatment chamber at that time. The measurement is performed continuously for 24 hours, and the difference between the highest average temperature and the lowest average temperature is calculated and set as the temperature fluctuation range in the flameproofing treatment room (day and night).

耐炎化処理室内の昼夜温度変動を抑制するに好適な手段としては、先ずは外気温の影響を一番受けやすい耐炎化処理室の壁に加熱手段を設けることが通常手段として挙げられる。より具体的には、耐炎化処理室内に耐炎化途中糸走行方向と平行に加熱手段を設ける。設置場所は限定しないが、外部への放熱を考えると、耐炎化処理室の側壁が好ましい。また、加熱手段やその数については限定しないが、加熱手段としては、制御精度を勘案するとヒーターが好ましい。加熱手段であるヒーター9を耐炎化処理室1の側壁に設置した場合の例を図3に図示する。   As a means suitable for suppressing the temperature fluctuation in the flameproofing chamber day and night, first, as a normal means, a heating means is provided on the wall of the flameproofing chamber that is most easily affected by the outside air temperature. More specifically, a heating means is provided in the flameproofing treatment chamber in parallel to the flameproofing yarn traveling direction. Although the installation location is not limited, the side wall of the flameproofing treatment chamber is preferable in consideration of heat radiation to the outside. Moreover, although it does not limit about a heating means and its number, A heater is preferable as a heating means when a control precision is considered. FIG. 3 shows an example in which the heater 9 as a heating means is installed on the side wall of the flameproofing treatment chamber 1.

また、加熱手段を設置する位置としては、走行する耐炎化途中糸よりも上方でかつ機幅方向の端部であり、加熱手段を設置する方向としては、耐炎化途中糸の走行方向と並行であることがより好ましい。これは、耐炎化処理室から外部への放熱により温度が低下する機幅方向の端部に加熱手段を設ければ、耐炎化途中糸に供給される前の温度が均一になるためである。加熱手段であるヒーター9をかかる条件を満たすように耐炎化処理室1の壁に設置した場合を図4に図示する(循環部などの図示は省略している)。   Also, the position where the heating means is installed is above the traveling flameproof intermediate yarn and the end in the machine width direction, and the direction of installing the heating means is parallel to the traveling direction of the flameproof intermediate yarn. More preferably. This is because if the heating means is provided at the end in the machine width direction where the temperature decreases due to heat radiation from the flameproofing treatment chamber to the outside, the temperature before being supplied to the flameproofing yarn becomes uniform. FIG. 4 shows a case where the heater 9 as the heating means is installed on the wall of the flameproofing treatment chamber 1 so as to satisfy such a condition (illustration of the circulation portion and the like is omitted).

一方、機幅方向に対する繊度変動率については原材料であるアクリロニトリル系前駆体繊維束の繊度にも依るが、同時に耐炎化工程での熱処理量にも起因するため、コストパフォーマンスを向上する、すなわち生産能力を高めようと耐炎化炉を大型化すると、機幅方向の繊維束毎に熱処理量のムラが発生し、その結果機幅方向の繊度変動率が高くなる。焼成工程でこの繊度バラツキを抑制するには、機幅方向に亘って糸条が受ける耐炎化工程での熱処理量を極力均一化することが重要である。この目的を果たし、本発明の炭素繊維束を得るに好適な耐炎化繊維束を製造するもう1つの手段として、パス糸道という方法がある。これは、機幅方向における一部分の耐炎化処理段数を意図的に変更することで、全体の熱処理量ムラを最小化する方法である。より詳しく説明すると、耐炎化工程での熱処理量が多い中央部分の処理段数を削減するか、熱処理量の少ない端部分の処理段数を増やすかいずれかの方法を用いることができる。処理段数を増やす場合、ローラーを新規に設置しなければならないためコスト面で不利となることから、処理段数を削減する手段の方が好ましい。このパス糸道を適用する範囲は機幅中央部を中心に全機幅の30〜70%、好ましくは40〜60%の範囲である。30%未満であるとパス糸道を適用する糸条数が少なく、耐炎化熱処理均一化が達成できないために充分に繊度バラツキを小さくすることができない。反対に70%を超えると、パス糸道を適用する糸条数が多くなり、大部分の炭素繊維束繊度そのものが低下してしまい、繊度バラツキは小さくならない。耐炎化工程での熱処理量が多い中央部分の処理段数を削減した例を図2に図示した。端部分の糸は、中央部分の糸においてパスさせた糸道8を通過しているが、中央部分の糸は、その糸道を通過させずに、すなわちパスしてしまうのである。なお、このようなパス糸道の技術に、前記したような耐炎化処理室の壁に加熱手段を設置する技術を併用しても良い。さらに、本発明の炭素繊維束を得るに好適な耐炎化繊維束を製造する、もう一つの手段として、耐炎化処理室内を走行する複数の耐炎化途中糸に炉内温度より低い温度の気体を循環部とは独立して供給するのである。一般に、耐炎化処理室内で走行する耐炎化途中糸の発熱により、炉上部が煙突効果で下部より耐炎化高温となり、かつ中央部では隣接する糸条からも発熱があることから充分に熱風により除熱されにくく炉端部より高温になる。言い換えれば、耐炎化処理室の上部かつ中央部は最高温度領域を形成することになり、これが機幅方向で耐炎化繊維束つまり炭素繊維束の機幅方向繊度バラツキの原因となる。循環部から供給される熱風だけでは、耐炎化処理室内全体に熱風が拡散してしまうため、最高温度領域である炉上部の中央部の除熱を効率的に行うことが困難であることがある。そのような場合には、図5に示すごとく、循環部3から供給される熱風とは別に、耐炎化処理室の最上部から、気体供給パイプ11の先端に配したノズル10を用いて、耐炎化処理室内温度より低い温度の気体を、耐炎化熱処理室の中央部を走行する耐炎化途中糸に局所的に吹き付けることで、その部分の温度が低下して耐炎化処理室内の温度平準化をもたらすことができる。また、気体供給パイプ11に耐炎化処理室内温度より低い気体が供給されるので、タール付着および耐炎化途中糸へのタール落下を防止するために、断熱材をパイプのまわりにつけることが好ましい。また、ノズル10からの気体の吹き付け程度は、バルブ13および流量計12を取り付けることで制御することができる。ここでいう気体については特に限定はないが、コスト面を勘案すると空気を用いるのが好ましい。また、この場合、吹き付ける気体の温度は0℃以上50℃以下、好ましくは5℃以上45℃以下より好ましくは10℃以上40℃以下であることが重要である。温度が低すぎる気体を吹き付けると、耐炎化処理室内温度と吹き付ける気体の温度差が大きすぎて、機幅方向中央部を走行する耐炎化途中糸の除熱効果が大きすぎてその部分の耐炎化繊維束繊度が低下するため、耐炎化繊維束の機幅方向の繊度バラツキ、ひいては得られる炭素繊維束の機幅方向の繊度バラツキが増大する。一方、温度が高すぎる気体を吹き付けると、耐炎化処理室内温度と吹き付ける気体の温度差が少なく、充分な除熱効果が得られず、機幅方向中央部の走行してきた耐炎化繊維束の繊度が下がらずに機幅方向の繊度バラツキが大きいままとなる。気体の吹き付け手段としては、設備費および流速制御精度の面から図5で示すようなノズルによる吹き付けとするのが好ましいが、耐炎化処理室の最上部から、機幅方向中央部を走行する耐炎化途中糸に、循環部とは独立して気体を吹き付けることができる手段であれば他の手段であっても構わない。さらに、ノズルなどの気体吹き付け手段と耐炎化途中糸との間隔は0.5m以上5m以下、好ましくは1m以上4m以下、より好ましくは1m以上3m以下とするのがよい。かかる間隔が小さすぎると、あまりに局所の耐炎化途中糸しか除熱できないばかりか、気体の流速が大きすぎて毛羽立ちを誘発し、工程通過性の低下を招くことがある。一方、かかる間隔が大きすぎると、吹き付ける気体が走行する耐炎化途中糸に届く前に拡散され、局所的な冷却効果が得られないばかりか、耐炎化炉が大型化して経済的に不利となる。吹き付ける気体の流量は0℃・1気圧の標準状態で熱処理室を循環する流量に対して0.05%以上5%以下、好ましくは0.05%以上3%以下、さらに好ましくは0.05%以上1%以下にするのがよい。かかる流量が多すぎると、走行する耐炎化途中糸が気体吹きつけにより毛羽立ちを発生したり、激しく振動し隣接走行糸条と交絡を起こし、蓄熱が発生する事態となる場合がある。また、かかる流量が少なすぎると充分な除熱効果が得られず、機幅方向中央部の走行してきた耐炎化繊維束の繊度が下がらずに機幅方向の繊度バラツキが大きいままとなる。充分な除熱気体の吹き付け手段は、1箇所に限らず、必要に応じて2箇所以上にわたって設けても良い。なお、このような気体の吹き付け技術に、前記したような耐炎化処理室の壁に加熱手段を設置する技術やパス糸道の技術を適宜組み合わせることもできる。 このように、本発明によれば、長手方向および機幅方向の炭素繊維束の繊度変動率を小さくすることでその品質安定性を向上せしめ、その結果一方向性プリプレグ法やフィラメントワインディング法等で製造されるプリプレグなどの高次加工品の品質安定化を達成することができる。   On the other hand, the fineness variation rate with respect to the machine width direction depends on the fineness of the acrylonitrile precursor fiber bundle, which is the raw material, but at the same time, due to the amount of heat treatment in the flameproofing process, thus improving cost performance, that is, production capacity If the flameproofing furnace is increased in size to increase the heat treatment amount, unevenness of the heat treatment amount occurs for each fiber bundle in the machine width direction, and as a result, the fineness variation rate in the machine width direction increases. In order to suppress this variation in fineness in the firing process, it is important to make the heat treatment amount in the flameproofing process that the yarn receives in the machine width direction as uniform as possible. As another means for producing a flame-resistant fiber bundle suitable for achieving this object and obtaining the carbon fiber bundle of the present invention, there is a method called a pass yarn path. This is a method of minimizing the overall unevenness of the heat treatment amount by intentionally changing the number of stages of flameproofing treatment in the machine width direction. More specifically, it is possible to use either a method of reducing the number of processing stages at the central portion where the heat treatment amount in the flameproofing step is large or increasing the number of processing steps at the end portion where the heat treatment amount is small. When increasing the number of processing steps, a roller must be newly installed, which is disadvantageous in terms of cost. Therefore, means for reducing the number of processing steps is preferable. The range in which this pass yarn path is applied is in the range of 30 to 70%, preferably 40 to 60% of the entire machine width centering on the machine width center. If it is less than 30%, the number of yarns to which the pass yarn path is applied is small, and it is impossible to sufficiently reduce the fineness variation because the uniform heat-resistant heat treatment cannot be achieved. On the other hand, if it exceeds 70%, the number of yarns to which the pass yarn path is applied increases, and the fineness of most of the carbon fiber bundle itself decreases, and the fineness variation does not become small. FIG. 2 shows an example in which the number of processing stages in the central portion where the amount of heat treatment in the flameproofing process is large is reduced. The yarn at the end portion passes through the yarn path 8 passed through the yarn at the central portion, but the yarn at the central portion passes through the yarn path without passing through the yarn path. In addition, you may use together the technique which installs a heating means in the wall of the flameproofing processing chamber as mentioned above to the technique of such a pass yarn path. Furthermore, as another means for producing a flame-resistant fiber bundle suitable for obtaining the carbon fiber bundle of the present invention, a gas having a temperature lower than the furnace temperature is applied to a plurality of flame-resistant intermediate yarns running in the flame-resistant treatment chamber. It is supplied independently from the circulation part. Generally, due to the heat generated in the flame-proofing yarn running in the flame-proofing chamber, the upper part of the furnace becomes a flame-resistant high temperature from the lower part due to the chimney effect, and the central part also generates heat from the adjacent yarns. It is hard to be heated and becomes hotter than the furnace end. In other words, the upper part and the central part of the flameproofing treatment chamber form a maximum temperature region, which causes variations in the machine width direction fineness of the flameproofed fiber bundle, that is, the carbon fiber bundle in the machine width direction. Only with the hot air supplied from the circulation part, the hot air diffuses throughout the flameproofing chamber, so it may be difficult to efficiently remove the heat at the center of the furnace upper part, which is the highest temperature region. . In such a case, as shown in FIG. 5, apart from the hot air supplied from the circulation unit 3, flame resistance is achieved by using a nozzle 10 disposed at the tip of the gas supply pipe 11 from the top of the flameproofing treatment chamber. By blowing a gas at a temperature lower than the temperature of the heat treatment chamber locally onto the flame-proofing yarn running in the center of the heat treatment chamber, the temperature of that portion is lowered and the temperature inside the flame treatment chamber is leveled. Can bring. In addition, since a gas lower than the temperature of the flameproofing treatment chamber is supplied to the gas supply pipe 11, it is preferable to attach a heat insulating material around the pipe in order to prevent tar adhesion and tar falling to the flameproofing middle yarn. Further, the degree of gas blowing from the nozzle 10 can be controlled by attaching the valve 13 and the flow meter 12. The gas here is not particularly limited, but it is preferable to use air in consideration of cost. In this case, it is important that the temperature of the gas to be blown is 0 ° C. or higher and 50 ° C. or lower, preferably 5 ° C. or higher and 45 ° C. or lower, more preferably 10 ° C. or higher and 40 ° C. or lower. If a gas whose temperature is too low is blown, the temperature difference between the flameproofing treatment room temperature and the gas to be blown is too large, and the heat removal effect of the flameproofing yarn running in the center in the machine width direction is too great, making the part flameproof. Since the fiber bundle fineness decreases, the fineness variation in the machine width direction of the flameproof fiber bundle, and consequently the fineness variation in the machine width direction of the obtained carbon fiber bundle increases. On the other hand, if a gas whose temperature is too high is blown, the difference in temperature between the flameproofing treatment room temperature and the blown gas is small, and a sufficient heat removal effect cannot be obtained, and the fineness of the flameproof fiber bundle that has traveled in the center in the machine width direction The fineness variation in the machine width direction remains large without decreasing. As the gas blowing means, it is preferable to use a nozzle as shown in FIG. 5 from the viewpoint of equipment cost and flow rate control accuracy, but flame resistance that travels in the machine width direction center from the top of the flameproofing treatment chamber. Other means may be used as long as it is a means capable of spraying a gas on the intermediate yarns independently of the circulating portion. Furthermore, the distance between the gas blowing means such as a nozzle and the flameproof intermediate yarn is 0.5 m or more and 5 m or less, preferably 1 m or more and 4 m or less, more preferably 1 m or more and 3 m or less. If the interval is too small, not only the local flameproofing yarn can be removed, but the gas flow rate is too high to induce fluffing, which may lead to a decrease in process passability. On the other hand, if the interval is too large, the gas to be blown is diffused before reaching the flame-proofing yarn that travels, and a local cooling effect cannot be obtained, and the flame-proofing furnace becomes large and economically disadvantageous. . The flow rate of the blowing gas is 0.05% or more and 5% or less, preferably 0.05% or more and 3% or less, more preferably 0.05% with respect to the flow rate circulating in the heat treatment chamber in a standard state of 0 ° C. and 1 atm. It is good to make it 1% or less. If the flow rate is too high, the running flameproof yarn may fluff due to gas blowing or vibrate vigorously and entangle with adjacent running yarns, which may cause heat storage. Further, if the flow rate is too small, a sufficient heat removal effect cannot be obtained, and the fineness variation in the machine width direction remains large without decreasing the fineness of the flame-resistant fiber bundle that has traveled in the center in the machine width direction. Sufficient heat removal gas blowing means is not limited to one place, and may be provided over two or more places as necessary. It should be noted that such a gas blowing technique can be appropriately combined with a technique for installing a heating means on the wall of the flameproofing treatment chamber as described above and a technique for pass yarn path. Thus, according to the present invention, the quality stability is improved by reducing the fineness variation rate of the carbon fiber bundle in the longitudinal direction and the machine width direction, and as a result, the unidirectional prepreg method, the filament winding method, etc. Stabilization of the quality of high-order processed products such as manufactured prepregs can be achieved.

以下、本発明を実施例により具体的に説明する。
(実施例1)
アクリロニトリル99重量%とイタコン酸1重量%とを重合してなるアクリル系重合体の溶液を調製し、乾湿式紡糸方法により単繊維繊度0.74dtex、フィラメント数24000本からなるアクリロニトリル系前駆体繊維束を得た。得られた前駆体繊維束複数本並行に走行させて耐炎化炉に導入し、耐炎化処理して耐炎化繊維束を得た。耐炎化処理に際しては、複数の耐炎化途中糸が並行して走行し、空気中で前記前駆体繊維を耐炎化する耐炎化炉において、走行糸条に対し、耐炎化処理室内の温度が200℃〜270℃の範囲内になるように設定した一定温度の熱風が鉛直方向から供給される耐炎化処理室と、その熱風を下方から上方へ循環する循環部分とがあり、さらに耐炎化処理室におけるストランド走行方向の両端に耐炎化途中糸を入出炉させる複数のスリットおよび溝形状を有する折り返しローラーが設置されている、図5に示す耐炎化炉において、耐炎化途中糸走行方向と並行な方向の耐炎化処理室側壁に図3のようにヒーターを設置することで、昼夜間の耐炎化処理室内の温度変動幅を1℃にした。さらに、耐炎化処理での熱処理量が高く、炭素繊維束の繊度が大きい部分である、全機幅の50%を占める機幅中央部分の処理段数を減少すべく、耐炎化途中糸が全折り返しローラーを走行する場合に得られる耐炎化処理室走行総距離の95%の距離になるようにパス糸道を適用した。また、耐炎化処理室の最上段を走行する耐炎化途中糸の上方1mかつ機幅方向の中央部に図5に示すようにノズル10を設置し、このノズルから0℃・1気圧の標準状態で熱処理室を循環する流量に対して1%の流量で、25℃の空気を、循環部とは独立した形で耐炎化途中糸に吹き付けた。得られた耐炎化繊維束を、次いで窒素雰囲気中で400℃〜800℃の温度領域で予備炭化した後、さらに窒素雰囲気中で900℃〜1900℃の温度領域で炭化し、続いて硫酸水溶液を電解液として、炭素繊維束1gあたり10クーロンの電気量で表面処理を行い水洗洗浄した後、ビスフェノールA型エポキシ樹脂を主成分とするサイジング剤を1重量%になるように付着させて、炭素繊維束を得た。得られた炭素繊維束は、原子間力顕微鏡で測定される表面積比が1.02で実質的に無撚り(0.1ターン/m以下)であり、炭素繊維束繊度変動率は、長手方向変動率が1.0%、炭素繊維束間の変動率が0.7%であり、繊度バラツキが少ない品質に優れたものであった。
(実施例2)
パス糸道を適用せずに、全ての糸条で同じ処理段数とした以外は実施例1と同じにして炭素繊維束を得た。得られた炭素繊維束は、原子間力顕微鏡で測定される表面積比が1.02で実質的に無撚り(0.1ターン/m以下)であり、炭素繊維束繊度変動率は、長手方向変動率が1.0%、炭素繊維束間の変動率が1.0%である繊度バラツキが少ない品質に優れたものであった。
(実施例3)
耐炎化途中糸と並行な方向の耐炎化処理室側壁に設置したヒーターを取り除いた以外は実施例1と同じにして炭素繊維束を得た。この時の昼夜間耐炎化処理室内の温度変動差は3℃であった。得られた炭素繊維束は、原子間力顕微鏡で測定される表面積比が1.02で実質的に無撚り(0.1ターン/m以下)であり、炭素繊維束繊度変動率は、長手方向変動率が1.3%、炭素繊維束間の変動率が1.0%である繊度バラツキが少ない品質に優れたものであった。
(実施例4)
ノズルから空気を吹き付けなかった以外は実施例1と同じにして炭素繊維束を得た。得られた炭素繊維束は、原子間力顕微鏡で測定される表面積比が1.02で実質的に無撚り(0.1ターン/m以下)であり、炭素繊維束繊度変動率は、長手方向変動率が1.0%、炭素繊維束間の変動率が1.0%である繊度バラツキが少ない品質に優れたものであった。
(比較例1)
パス糸道を適用せずに、全ての糸条で同じ処理段数とし、かつ、耐炎化途中糸と並行な方向の耐炎化処理室側壁に設置したヒーターを取り除き、かつ、ノズルから空気を吹き付けなかった以外は実施例1と同じにして炭素繊維束を得た。この時の昼夜間耐炎化処理室内の温度変動差幅は5℃となった。得られた炭素繊維束は、原子間力顕微鏡で測定される表面積比が1.03で実質的に無撚り(0.3ターン/m以下)であり、炭素繊維束繊度変動率は、長手方向変動率が3.0%、炭素繊維束間の変動率が3.0%と増加し、品質のポテンシャルが低いものであった。
(比較例2)
アクリロニトリル系前駆体繊維束を、アクリロニトリル99重量%とイタコン酸1重量%とを重合してなるアクリル系重合体の溶液を調製し、乾湿式紡糸方法により得られた単繊維繊度1.1dtex、フィラメント数1000本のものに変更した以外は、比較例1と同じにして炭素繊維束を得ようとしたが、焼成工程においてローラーとの擦過により毛羽立ちが発生し、品位が悪化して工程通過性が低下したために、炭素繊維束を得ることが出来なかった。この時の昼夜間耐炎化処理室内の温度変動差は5℃であった。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
An acrylic polymer solution prepared by polymerizing 99% by weight of acrylonitrile and 1% by weight of itaconic acid is prepared, and an acrylonitrile-based precursor fiber bundle having a single fiber fineness of 0.74 dtex and a filament number of 24,000 by a dry and wet spinning method. Got. A plurality of obtained precursor fiber bundles were run in parallel, introduced into a flameproofing furnace, and subjected to a flameproofing treatment to obtain a flameproofed fiber bundle. In the flameproofing treatment, in the flameproofing furnace in which a plurality of flameproofing yarns run in parallel and flameproof the precursor fibers in the air, the temperature in the flameproofing treatment chamber is 200 ° C. with respect to the running yarns. There are a flameproofing chamber in which hot air at a constant temperature set to be within a range of ˜270 ° C. is supplied from the vertical direction, and a circulation part for circulating the hot air from below to above, and in the flameproofing chamber In the flameproofing furnace shown in FIG. 5, a plurality of slits and groove-turning rollers are installed at both ends of the strand running direction to enter and exit the flameproofed yarn, and in a direction parallel to the flameproofing yarn running direction. By installing a heater on the side wall of the flameproofing chamber as shown in FIG. 3, the temperature fluctuation range in the flameproofing chamber during the day and night was set to 1 ° C. Furthermore, in order to reduce the number of processing stages in the machine width central part, which is the part where the heat treatment amount in the flame resistance treatment is high and the fineness of the carbon fiber bundle is large, which accounts for 50% of the total machine width, The pass yarn path was applied so that the distance would be 95% of the total travel distance of the flameproofing treatment chamber obtained when traveling on the roller. In addition, a nozzle 10 is installed as shown in FIG. 5 in the center portion in the machine width direction 1 m above the flameproofing yarn running on the uppermost stage of the flameproofing treatment chamber, and a standard state of 0 ° C. and 1 atm from this nozzle. The air at 25 ° C. was sprayed onto the flame resistant yarn in a form independent of the circulating part at a flow rate of 1% with respect to the flow rate circulating in the heat treatment chamber. The obtained flame-resistant fiber bundle was then pre-carbonized in a temperature range of 400 ° C. to 800 ° C. in a nitrogen atmosphere, and further carbonized in a temperature range of 900 ° C. to 1900 ° C. in a nitrogen atmosphere, followed by the sulfuric acid aqueous solution. As an electrolytic solution, surface treatment was performed with an electric quantity of 10 coulomb per gram of carbon fiber bundle, washing and washing with water, and then a sizing agent mainly composed of bisphenol A type epoxy resin was adhered to 1% by weight to obtain carbon fiber. Got a bunch. The obtained carbon fiber bundle has a surface area ratio measured by an atomic force microscope of 1.02 and is substantially untwisted (0.1 turns / m or less), and the carbon fiber bundle fineness variation rate is in the longitudinal direction. The variation rate was 1.0%, the variation rate between the carbon fiber bundles was 0.7%, and the quality was excellent with little variation in fineness.
(Example 2)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the pass yarn path was not applied and all the yarns had the same number of treatment stages. The obtained carbon fiber bundle has a surface area ratio measured by an atomic force microscope of 1.02 and is substantially untwisted (0.1 turns / m or less), and the carbon fiber bundle fineness variation rate is in the longitudinal direction. The variation rate was 1.0% and the variation rate between the carbon fiber bundles was 1.0%, which was excellent in quality with little variation in fineness.
(Example 3)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the heater installed on the side wall of the flameproofing treatment chamber in the direction parallel to the flameproofing middle yarn was removed. At this time, the temperature fluctuation difference in the flameproofing chamber was 3 ° C. The obtained carbon fiber bundle has a surface area ratio measured by an atomic force microscope of 1.02 and is substantially untwisted (0.1 turns / m or less), and the carbon fiber bundle fineness variation rate is in the longitudinal direction. The variation rate was 1.3%, and the variation rate between carbon fiber bundles was 1.0%, which was excellent in quality with little variation in fineness.
Example 4
A carbon fiber bundle was obtained in the same manner as in Example 1 except that air was not blown from the nozzle. The obtained carbon fiber bundle has a surface area ratio measured by an atomic force microscope of 1.02 and is substantially untwisted (0.1 turns / m or less), and the carbon fiber bundle fineness variation rate is in the longitudinal direction. The variation rate was 1.0% and the variation rate between the carbon fiber bundles was 1.0%, which was excellent in quality with little variation in fineness.
(Comparative Example 1)
Without applying the pass yarn path, remove the heater installed on the side wall of the flameproofing treatment chamber in the direction parallel to the flameproofing yarn, and remove the air from the nozzle. A carbon fiber bundle was obtained in the same manner as in Example 1 except that. At this time, the temperature fluctuation difference in the flameproofing chamber was 5 ° C. The obtained carbon fiber bundle has a surface area ratio measured by an atomic force microscope of 1.03 and is substantially untwisted (0.3 turns / m or less), and the carbon fiber bundle fineness variation rate is in the longitudinal direction. The variation rate increased to 3.0%, the variation rate between the carbon fiber bundles increased to 3.0%, and the quality potential was low.
(Comparative Example 2)
An acrylic polymer solution prepared by polymerizing 99% by weight of acrylonitrile and 1% by weight of itaconic acid from an acrylonitrile-based precursor fiber bundle, and a single fiber fineness of 1.1 dtex obtained by a dry and wet spinning method, filaments A carbon fiber bundle was obtained in the same manner as in Comparative Example 1 except that the number was changed to several thousand. However, fluffing occurred by rubbing with a roller in the firing process, the quality deteriorated, and the process passability was reduced. Due to the decrease, a carbon fiber bundle could not be obtained. At this time, the temperature fluctuation difference in the flameproofing chamber was 5 ° C.

本発明の炭素繊維束は、その繊度変動率が小さく高次加工性での品質安定化が期待できることから航空宇宙、スポーツおよび一般産業用途に幅広く応用できるが、とりわけ品質安定化が厳しく要求される航空機用途に好適である。本発明の炭素繊維束は、複合材料の補強繊維として工業的に幅広く利用されるものであり産業上有用である。   The carbon fiber bundle of the present invention can be widely applied to aerospace, sports and general industrial applications since its fineness variation rate is small and quality stabilization with high-order processability can be expected. Suitable for aircraft use. The carbon fiber bundle of the present invention is widely used industrially as a reinforcing fiber for composite materials and is industrially useful.

本発明で用いる耐炎化炉の透視概略側面図である。It is a see-through | perspective schematic side view of the flameproofing furnace used by this invention. 本発明の一態様を説明する耐炎化炉の透視概略側面図である。It is a see-through | perspective schematic side view of the flameproofing furnace explaining 1 aspect of this invention. 本発明の一態様を説明する耐炎化炉の一部透視概略正面図である。1 is a partially transparent schematic front view of a flameproofing furnace illustrating one embodiment of the present invention. 本発明の一態様を説明する耐炎化炉の透視概略側面図である。It is a see-through | perspective schematic side view of the flameproofing furnace explaining 1 aspect of this invention. 本発明の一態様を説明する耐炎化炉の透視概略側面図である。It is a see-through | perspective schematic side view of the flameproofing furnace explaining 1 aspect of this invention.

符号の説明Explanation of symbols

1 耐炎化処理室
2 耐炎化途中糸
3 循環部
4 折り返しローラー
5 スリット
6 気体加熱機
7 循環用ファン
8 パスさせた糸道
9 ヒーター
10 ノズル
11 気体供給パイプ
12 流量計
13 バルブ
DESCRIPTION OF SYMBOLS 1 Flameproofing process chamber 2 Flameproofing middle thread 3 Circulation part 4 Folding roller 5 Slit 6 Gas heater 7 Circulating fan 8 Passed yarn path 9 Heater 10 Nozzle 11 Gas supply pipe 12 Flow meter 13 Valve

Claims (5)

炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、前記耐炎化炉は、耐炎化途中糸の走行方向と平行な耐炎化室壁に加熱手段を設置してなり、該加熱手段を設置する位置が、走行する耐炎化途中糸よりも上方でかつ機幅方向の端部であり、加熱手段を設置する方向が、耐炎化途中糸の走行方向と並行であるとともに、耐炎化処理室内の日間の温度変動幅を3℃以下とすることを特徴とする耐炎化繊維束の製造方法。 A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fiber are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulation part for circulating the hot air, and both ends in the running direction of the fiber bundle. Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn and a folding roller are installed, the flameproofing fiber is obtained by passing through the flameproofing treatment chamber multiple times to obtain a flameproofed fiber bundle. A method of manufacturing a bundle, wherein the flameproofing furnace is provided with a heating means on a flameproofing chamber wall parallel to the traveling direction of the flameproofing intermediate yarn, and the position where the heating means is installed is flameproofing to travel. The end of the machine width direction is above the intermediate yarn and the direction in which the heating means is installed is parallel to the running direction of the flameproof intermediate yarn, and the temperature fluctuation range for the day in the flameproofing treatment chamber is 3 ° C. Flame resistance characterized by: Method of manufacturing a 維束. 炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、耐炎化処理室の全機幅の30%〜70%の幅を有する機幅方向中央部を通過する繊維束は、前記中央部以外を通過する繊維束に比して耐炎化処理室を通過する回数を減少させることを特徴とする耐炎化繊維束の製造方法。 A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fiber are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulation part for circulating the hot air, and both ends in the running direction of the fiber bundle. Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn and a folding roller are installed, the flameproofing fiber is obtained by passing through the flameproofing treatment chamber multiple times to obtain a flameproofed fiber bundle. A method for manufacturing a bundle, in which a fiber bundle passing through a central portion in the machine width direction having a width of 30% to 70% of the entire machine width of the flameproofing treatment chamber is compared with a fiber bundle passing through other than the central portion. And reducing the number of times of passing through the flameproofing treatment chamber. 炭素繊維用ポリアクリロニトリル系前駆体繊維束を、複数本並行に走行せしめ、一定温度の熱風が供される耐炎化処理室とその熱風を循環する循環部を有し、繊維束の走行方向の両端に耐炎化途中糸を出入りさせる複数のスリットおよび折り返しローラーが設置されてなる耐炎化炉を用いて、耐炎化処理室を複数回通過せしめて、耐炎化処理し耐炎化繊維束を得る耐炎化繊維束の製造方法であって、耐炎化処理室の最上部から、機幅方向中央部を走行する耐炎化途中糸に、0℃以上50℃以下の気体を、循環部とは独立して吹き付けることを特徴とする耐炎化繊維束の製造方法。 A plurality of polyacrylonitrile-based precursor fiber bundles for carbon fiber are run in parallel, and have a flameproofing treatment chamber in which hot air at a constant temperature is provided and a circulation part for circulating the hot air, and both ends in the running direction of the fiber bundle. Using a flameproofing furnace in which a plurality of slits for turning in and out the flameproofing yarn and a folding roller are installed, the flameproofing fiber is obtained by passing through the flameproofing treatment chamber multiple times to obtain a flameproofed fiber bundle. A method for manufacturing a bundle, in which a gas of 0 ° C. or more and 50 ° C. or less is blown independently from the circulating portion to the flame-resistant intermediate yarn traveling in the center in the machine width direction from the uppermost portion of the flameproofing treatment chamber. A method for producing a flameproof fiber bundle characterized by the above. 前記耐炎化炉は、耐炎化途中糸の走行方向と平行な耐炎化室壁に、加熱手段を設置してなる、請求項2または3に記載の耐炎化繊維束の製造方法。 The said flameproofing furnace is a manufacturing method of the flameproofing fiber bundle of Claim 2 or 3 which installs a heating means in the flameproofing chamber wall parallel to the running direction of the flameproofing middle yarn. 請求項1〜4のいずれかに記載の方法で得られた耐炎化繊維束を、300℃から1000℃で予備炭化した後、1000℃から2500℃で炭化することを特徴とする炭素繊維束の製造方法 A flame-resistant fiber bundle obtained by the method according to any one of claims 1 to 4, wherein the carbon fiber bundle is carbonized at 1000 ° C to 2500 ° C after preliminary carbonization at 300 ° C to 1000 ° C. Manufacturing method .
JP2006007008A 2005-03-15 2006-01-16 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle Active JP4821330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007008A JP4821330B2 (en) 2005-03-15 2006-01-16 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005072675 2005-03-15
JP2005072675 2005-03-15
JP2006007008A JP4821330B2 (en) 2005-03-15 2006-01-16 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2006291438A JP2006291438A (en) 2006-10-26
JP4821330B2 true JP4821330B2 (en) 2011-11-24

Family

ID=37412293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007008A Active JP4821330B2 (en) 2005-03-15 2006-01-16 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP4821330B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1208509C (en) * 2001-03-26 2005-06-29 东邦泰纳克丝株式会社 Flame resistant rendering heat treating device and operation method for device
JP2004124310A (en) * 2002-10-03 2004-04-22 Toray Ind Inc Flameproofing furnace
JP2004232133A (en) * 2003-01-30 2004-08-19 Toray Ind Inc Carbon fiber filament yarn and method for producing the same

Also Published As

Publication number Publication date
JP2006291438A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP5772012B2 (en) Carbon fiber for filament winding molding and method for producing the same
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
TWI521108B (en) Method for producing flame-resistant fiber bundle and mfthod for producing carbon fiber bundle
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
JP2015067910A (en) Carbon fiber and manufacturing method thereof
JP5682139B2 (en) Carbon fiber bundle
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP2017066580A (en) Carbon fiber bundle and manufacturing method therefor
JP6460284B1 (en) Carbon fiber bundle and method for producing the same
JP2008138325A (en) Flame resistant furnace and method for producing flame resistant fiber bundle, and method for producing carbon fiber bundle
JP4821330B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2010133059A (en) Flameproofing furnace, and method for producing carbon fiber using the same
US20210348305A1 (en) Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
CN111601919B (en) Fire-resistant fiber bundle and method for producing carbon fiber bundle
JP6520787B2 (en) Method for producing acrylic precursor fiber bundle and method for producing carbon fiber
US11319648B2 (en) Stabilized fiber bundle and method of manufacturing carbon fiber bundle
JP2002220726A (en) Method for producing carbon fiber precursor
JP2001049536A (en) Production of carbon fiber
JP2006176909A (en) Method for producing flame-resistant fiber
JP2019203211A (en) Flame-resistant fiber bundle and method for production of carbon fiber bundle
JP2008127707A (en) Polyacrylonitrile-based carbon fiber bundle and method for producing the same
JP2023133739A (en) carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R151 Written notification of patent or utility model registration

Ref document number: 4821330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3