JPWO2020047486A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2020047486A5 JPWO2020047486A5 JP2021510460A JP2021510460A JPWO2020047486A5 JP WO2020047486 A5 JPWO2020047486 A5 JP WO2020047486A5 JP 2021510460 A JP2021510460 A JP 2021510460A JP 2021510460 A JP2021510460 A JP 2021510460A JP WO2020047486 A5 JPWO2020047486 A5 JP WO2020047486A5
- Authority
- JP
- Japan
- Prior art keywords
- view
- optical system
- light
- virtual image
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical Effects 0.000 claims description 48
- 230000000875 corresponding Effects 0.000 claims description 12
- 230000004308 accommodation Effects 0.000 description 1
- 230000003190 augmentative Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002459 sustained Effects 0.000 description 1
- 230000001052 transient Effects 0.000 description 1
Description
多数の利点が、従来の技法に優る本開示の方法によって達成される。例えば、本明細書に説明される拡張現実(AR)デバイスは、ユーザの眼に到達する周囲光を大域的に調光および/または選択的に調光することによって、暗い屋内から明るい屋外へと変動する光レベルにおいて使用されてもよい。本発明の実施形態は、ピクセル化された調光器を使用して、世界光を99%を上回って減衰させることによって、単一デバイス内でARおよび仮想現実(VR)能力を可能にする。本発明の実施形態はまた、離散または持続可変深度平面切替技術を用いて、可変焦点要素を使用して、輻輳・開散運動遠近調節競合を軽減させる。本発明の実施形態は、検出された周囲光の量に基づいて、プロジェクタ明度を最適化することによって、ARデバイスのバッテリ寿命を改良する。本開示の他の利点も、当業者に容易に明白となるであろう。
本発明は、例えば、以下を提供する。
(項目1)
光学システムを動作させる方法であって、
前記光学システムにおいて、世界オブジェクトと関連付けられる光を受光することと、
仮想画像光を接眼レンズ上に投影することと、
前記光学システムによって検出された情報に基づいて、少なくとも部分的に調光されることになる前記光学システムのシステム視野の一部を決定することと、
調光器を調節し、前記システム視野の一部内の世界オブジェクトと関連付けられる光の強度を低減させることと
を含む、方法。
(項目2)
前記光学システムは、前記世界オブジェクトと関連付けられる光に対応する光情報を検出するように構成される光センサを備え、前記検出された情報は、前記光情報を含む、項目1に記載の方法。
(項目3)
前記光情報は、複数の空間的に分解された光値を含む、項目2に記載の方法。
(項目4)
前記光学システムは、前記光学システムのユーザの眼に対応する視線情報を検出するように構成される眼追跡器を備え、前記検出された情報は、前記視線情報を含む、項目1に記載の方法。
(項目5)
前記仮想画像光に対応する画像情報を検出することであって、前記検出された情報は、前記画像情報を含む、こと
をさらに含む、項目1に記載の方法。
(項目6)
前記画像情報は、複数の空間的に分解された画像明度値を含む、項目5に記載の方法。
(項目7)
前記検出された情報に基づいて、前記システム視野の一部に関する複数の空間的に分解された調光値を決定することであって、前記調光器は、前記複数の調光値に従って調節される、こと
をさらに含む、項目1に記載の方法。
(項目8)
前記調光器は、複数のピクセルを備える、項目1に記載の方法。
(項目9)
非一過性コンピュータ可読媒体であって、前記非一過性コンピュータ可読媒体は、命令を備え、前記命令は、プロセッサによって実行されると、前記プロセッサに、
光学システムにおいて、世界オブジェクトと関連付けられる光を受光することと、
仮想画像光を接眼レンズ上に投影することと、
前記光学システムによって検出された情報に基づいて、少なくとも部分的に調光されることになる前記光学システムのシステム視野の一部を決定することと、
調光器を調節し、前記システム視野の一部内の世界オブジェクトと関連付けられる光の強度を低減させることと
を含む動作を実施させる、非一過性コンピュータ可読媒体。
(項目10)
前記光学システムは、前記世界オブジェクトと関連付けられる光に対応する光情報を検出するように構成される光センサを備え、前記検出された情報は、前記光情報を含む、項目9に記載の非一過性コンピュータ可読媒体。
(項目11)
前記光情報は、複数の空間的に分解された光値を含む、項目10に記載の非一過性コンピュータ可読媒体。
(項目12)
前記光学システムは、前記光学システムのユーザの眼に対応する視線情報を検出するように構成される眼追跡器を備え、前記検出された情報は、前記視線情報を含む、項目9に記載の非一過性コンピュータ可読媒体。
(項目13)
前記動作はさらに、
前記仮想画像光に対応する画像情報を検出することであって、前記検出された情報は、前記画像情報を含む、こと
を含む、項目9に記載の非一過性コンピュータ可読媒体。
(項目14)
前記画像情報は、複数の空間的に分解された画像明度値を含む、項目13に記載の非一過性コンピュータ可読媒体。
(項目15)
前記動作はさらに、
前記検出された情報に基づいて、前記システム視野の一部に関する複数の空間的に分解された調光値を決定することであって、前記調光器は、前記複数の調光値に従って調節される、こと
を含む、項目9に記載の非一過性コンピュータ可読媒体。
(項目16)
前記調光器は、複数のピクセルを備える、項目9に記載の非一過性コンピュータ可読媒体。
(項目17)
光学システムであって、
仮想画像光を接眼レンズ上に投影するように構成されるプロジェクタと、
世界オブジェクトと関連付けられる光を調光するように構成される調光器と、
前記プロジェクタおよび前記調光器に通信可能に結合されるプロセッサであって、前記プロセッサは、
前記光学システムによって検出された情報に基づいて、少なくとも部分的に調光されることになる前記光学システムのシステム視野の一部を決定することと、
前記調光器を調節し、前記システム視野の一部内の世界オブジェクトと関連付けられる光の強度を低減させることと
を含む動作を実施するように構成される、プロセッサと
を備える、光学システム。
(項目18)
前記世界オブジェクトと関連付けられる光に対応する光情報を検出するように構成される光センサをさらに備え、前記検出された情報は、前記光情報を含む、項目17に記載の光学システム。
(項目19)
前記光学システムのユーザの眼に対応する視線情報を検出するように構成される眼追跡器をさらに備え、前記検出された情報は、前記視線情報を含む、項目17に記載の光学システム。
(項目20)
前記動作はさらに、
前記仮想画像光に対応する画像情報を検出することであって、前記検出された情報は、前記画像情報を含む、こと
を含む、項目17に記載の光学システム。
Numerous advantages are achieved by the method of the present disclosure over conventional techniques. For example, the Augmented Reality (AR) devices described herein go from dark indoors to bright outdoors by globally dimming and/or selectively dimming the ambient light reaching the user's eyes. It may be used at varying light levels. Embodiments of the present invention enable AR and virtual reality (VR) capabilities within a single device by attenuating world light by over 99% using pixelated dimmers. Embodiments of the present invention also use variable focus elements to reduce convergence-divergence motion accommodation conflicts using discrete or sustained variable depth plane switching techniques. Embodiments of the present invention improve battery life of AR devices by optimizing projector brightness based on the amount of ambient light detected. Other advantages of the present disclosure will be readily apparent to those skilled in the art.
The present invention provides, for example, the following.
(Item 1)
A method of operating an optical system comprising:
receiving light associated with a world object in the optical system;
projecting the virtual image light onto the eyepiece;
determining a portion of a system field of view of the optical system to be at least partially dimmed based on information detected by the optical system;
adjusting a dimmer to reduce the intensity of light associated with world objects within a portion of the system field of view;
A method, including
(Item 2)
The method of item 1, wherein the optical system comprises a light sensor configured to detect light information corresponding to light associated with the world object, the detected information comprising the light information.
(Item 3)
3. The method of item 2, wherein the light information comprises a plurality of spatially resolved light values.
(Item 4)
The method of item 1, wherein the optical system comprises an eye tracker configured to detect line-of-sight information corresponding to an eye of a user of the optical system, the detected information comprising the line-of-sight information. .
(Item 5)
detecting image information corresponding to the virtual image light, wherein the detected information includes the image information;
The method of item 1, further comprising:
(Item 6)
6. Method according to item 5, wherein the image information comprises a plurality of spatially resolved image intensity values.
(Item 7)
determining a plurality of spatially resolved dimming values for a portion of the system field of view based on the detected information, wherein the dimmer is adjusted according to the plurality of dimming values; to be
The method of item 1, further comprising:
(Item 8)
2. The method of item 1, wherein the dimmer comprises a plurality of pixels.
(Item 9)
A non-transitory computer-readable medium comprising instructions which, when executed by a processor, cause the processor to:
receiving light associated with a world object in an optical system;
projecting the virtual image light onto the eyepiece;
determining a portion of a system field of view of the optical system to be at least partially dimmed based on information detected by the optical system;
adjusting a dimmer to reduce the intensity of light associated with world objects within a portion of the system field of view;
A non-transitory computer-readable medium for performing operations including:
(Item 10)
10. The method of item 9, wherein the optical system comprises a light sensor configured to detect light information corresponding to light associated with the world object, the detected information including the light information. transient computer readable medium.
(Item 11)
11. The non-transitory computer-readable medium of item 10, wherein the light information comprises a plurality of spatially resolved light values.
(Item 12)
10. The non-optical device of item 9, wherein the optical system comprises an eye tracker configured to detect line-of-sight information corresponding to an eye of a user of the optical system, the detected information comprising the line-of-sight information. Transitory computer readable medium.
(Item 13)
Said operation further comprises:
detecting image information corresponding to the virtual image light, wherein the detected information includes the image information;
10. The non-transitory computer-readable medium of item 9, comprising:
(Item 14)
14. The non-transitory computer-readable medium of item 13, wherein the image information comprises a plurality of spatially resolved image brightness values.
(Item 15)
Said operation further comprises:
determining a plurality of spatially resolved dimming values for a portion of the system field of view based on the detected information, wherein the dimmer is adjusted according to the plurality of dimming values; to be
10. The non-transitory computer-readable medium of item 9, comprising:
(Item 16)
10. The non-transitory computer-readable medium of item 9, wherein the dimmer comprises a plurality of pixels.
(Item 17)
an optical system,
a projector configured to project virtual image light onto an eyepiece;
a dimmer configured to dim the light associated with the world object;
A processor communicatively coupled to the projector and the dimmer, the processor comprising:
determining a portion of a system field of view of the optical system to be at least partially dimmed based on information detected by the optical system;
adjusting the dimmer to reduce the intensity of light associated with world objects within a portion of the system field of view;
a processor configured to perform operations including
An optical system comprising:
(Item 18)
18. Optical system according to item 17, further comprising a light sensor configured to detect light information corresponding to light associated with said world object, said detected information comprising said light information.
(Item 19)
18. The optical system of item 17, further comprising an eye tracker configured to detect line-of-sight information corresponding to an eye of a user of said optical system, said detected information comprising said line-of-sight information.
(Item 20)
Said operation further comprises:
detecting image information corresponding to the virtual image light, wherein the detected information includes the image information;
18. The optical system of item 17, comprising:
Claims (13)
前記光学システムにおいて、世界オブジェクトと関連付けられる光を受光することと、
前記世界オブジェクトと関連付けられる前記光に関する世界光情報を検出することであって、前記世界光情報は、複数の空間的に分解された世界光値を含む、ことと、
前記複数の空間的に分解された世界光値に基づいて、少なくとも部分的に調光されることになる前記光学システムのシステム視野の第1の部分を決定することと、
前記光学システムのプロジェクタにおいて、前記光学システムの接眼レンズ上へ投影されることになる仮想画像光を生成することであって、前記仮想画像光は、表示されることになる1つ以上の仮想オブジェクトを表す、ことと、
前記仮想画像光を前記接眼レンズ上へ投影することと、
前記仮想画像光に関する仮想画像情報を検出することであって、前記仮想画像情報は、複数の空間的に分解された仮想画像明度値を含む、ことと、
前記複数の空間的に分解された仮想画像明度値に基づいて、少なくとも部分的に調光されることになる前記光学システムの前記システム視野の第2の部分を決定することであって、前記システム視野の前記第2の部分は、前記システム視野の前記第1の部分と異なる、ことと、
前記システム視野の前記第1の部分と前記システム視野の前記第2の部分とを組み合わせ、前記システム視野の組み合わせられた部分にすることと、
調光器を調節し、前記システム視野の前記組み合わせられた部分内の前記世界オブジェクトと関連付けられる前記光の強度を低減させることと
を含む、方法。 A method of operating an optical system, said method comprising:
receiving light associated with a world object in the optical system;
detecting world light information for the light associated with the world object, the world light information including a plurality of spatially resolved world light values;
determining a first portion of a system field of view of the optical system to be at least partially dimmed based on the plurality of spatially resolved world light values;
generating, in a projector of said optical system, a virtual image light to be projected onto an eyepiece of said optical system, said virtual image light being one or more virtual objects to be displayed; and
projecting the virtual image light onto the eyepiece;
detecting virtual image information about the virtual image light, the virtual image information comprising a plurality of spatially resolved virtual image lightness values;
determining a second portion of the system field of view of the optical system to be at least partially dimmed based on the plurality of spatially resolved virtual image brightness values; the second portion of the field of view is different than the first portion of the system field of view;
combining the first portion of the system field of view and the second portion of the system field of view into a combined portion of the system field of view;
adjusting a dimmer to reduce the intensity of the light associated with the world objects within the combined portion of the system field of view.
をさらに含む、請求項1に記載の方法。 determining a plurality of spatially resolved dimming values for the combined portion of the system field of view based on the detected information, the dimmer comprising: 2. The method of claim 1, further comprising: adjusted according to.
光学システムにおいて、世界オブジェクトと関連付けられる光を受光することと、
前記世界オブジェクトと関連付けられる前記光に関する世界光情報を検出することであって、前記世界光情報は、複数の空間的に分解された世界光値を含む、ことと、
前記複数の空間的に分解された世界光値に基づいて、少なくとも部分的に調光されることになる前記光学システムのシステム視野の第1の部分を決定することと、
前記光学システムのプロジェクタにおいて、前記光学システムの接眼レンズ上へ投影されることになる仮想画像光を生成することであって、前記仮想画像光は、表示されることになる1つ以上の仮想オブジェクトを表す、ことと、
前記仮想画像光を前記接眼レンズ上へ投影することと、
前記仮想画像光に関する仮想画像情報を検出することであって、前記仮想画像情報は、複数の空間的に分解された仮想画像明度値を含む、ことと、
前記複数の空間的に分解された仮想画像明度値に基づいて、少なくとも部分的に調光されることになる前記光学システムの前記システム視野の第2の部分を決定することであって、前記システム視野の前記第2の部分は、前記システム視野の前記第1の部分と異なる、ことと、
前記システム視野の前記第1の部分と前記システム視野の前記第2の部分とを組み合わせ、前記システム視野の組み合わせられた部分にすることと、
調光器を調節し、前記システム視野の前記組み合わせられた部分内の前記世界オブジェクトと関連付けられる前記光の強度を低減させることと
を含む動作を前記プロセッサに実施させる、非一過性コンピュータ可読媒体。 A non-transitory computer-readable medium, the non-transitory computer-readable medium comprising instructions, the instructions, when executed by a processor ,
receiving light associated with a world object in an optical system;
detecting world light information for the light associated with the world object, the world light information including a plurality of spatially resolved world light values;
determining a first portion of a system field of view of the optical system to be at least partially dimmed based on the plurality of spatially resolved world light values;
generating, in a projector of said optical system, a virtual image light to be projected onto an eyepiece of said optical system, said virtual image light being one or more virtual objects to be displayed; and
projecting the virtual image light onto the eyepiece;
detecting virtual image information about the virtual image light, the virtual image information comprising a plurality of spatially resolved virtual image lightness values;
determining a second portion of the system field of view of the optical system to be at least partially dimmed based on the plurality of spatially resolved virtual image brightness values; the second portion of the field of view is different than the first portion of the system field of view;
combining the first portion of the system field of view and the second portion of the system field of view into a combined portion of the system field of view;
adjusting a dimmer to reduce the intensity of the light associated with the world object in the combined portion of the system field of view. .
検出された情報に基づいて、前記システム視野の前記組み合わせられた部分に関する複数の空間的に分解された調光値を決定することであって、前記調光器は、前記複数の調光値に従って調節される、こと
をさらに含む、請求項6に記載の非一過性コンピュータ可読媒体。 The operation is
determining a plurality of spatially resolved dimming values for the combined portion of the system field of view based on the detected information, the dimmer comprising: 7. The non-transitory computer-readable medium of claim 6 , further comprising: adjusted according to.
仮想画像光を接眼レンズ上に投影するように構成されるプロジェクタと、
世界オブジェクトと関連付けられる光を調光するように構成される調光器と、
前記プロジェクタおよび前記調光器に通信可能に結合されるプロセッサであって、前記プロセッサは、
前記接眼レンズ上へ投影されることになる前記仮想画像光を生成することであって、前記仮想画像光は、表示されることになる1つ以上の仮想オブジェクトを表す、ことと、
前記仮想画像光に関する仮想画像情報を検出することであって、前記仮想画像情報は、複数の空間的に分解された仮想画像明度値を含む、ことと、
前記複数の空間的に分解された仮想画像明度値に基づいて、少なくとも部分的に調光されることになる前記光学システムの前記システム視野の第2の部分を決定することであって、前記システム視野の前記第2の部分は、前記システム視野の第1の部分と異なる、ことと、
前記システム視野の前記第1の部分と前記システム視野の前記第2の部分とを組み合わせ、前記システム視野の組み合わせられた部分にすることと、
前記調光器を調節し、前記システム視野の前記組み合わせられた部分内の前記世界オブジェクトと関連付けられる前記光の強度を低減させることと
を含む動作を実施するように構成される、プロセッサと
を備える、光学システム。 an optical system,
a projector configured to project virtual image light onto an eyepiece;
a dimmer configured to dim the light associated with the world object;
A processor communicatively coupled to the projector and the dimmer, the processor comprising:
generating the virtual image light to be projected onto the eyepiece, the virtual image light representing one or more virtual objects to be displayed;
detecting virtual image information about the virtual image light, the virtual image information comprising a plurality of spatially resolved virtual image lightness values;
determining a second portion of the system field of view of the optical system to be at least partially dimmed based on the plurality of spatially resolved virtual image brightness values; the second portion of the field of view is different than the first portion of the system field of view;
combining the first portion of the system field of view and the second portion of the system field of view into a combined portion of the system field of view;
adjusting the dimmer to reduce the intensity of the light associated with the world object within the combined portion of the system field of view; and a processor configured to perform an operation comprising: , optical system.
a third portion of the system field of view of the optical system to be at least partially dimmed , further comprising an eye tracker configured to detect line-of-sight information corresponding to an eye of a user of the optical system; is determined based on the line-of- sight information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024092963A JP2024111004A (en) | 2018-08-31 | 2024-06-07 | Spatially resolved dynamic dimming for augmented reality devices |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862725993P | 2018-08-31 | 2018-08-31 | |
US62/725,993 | 2018-08-31 | ||
US201962858252P | 2019-06-06 | 2019-06-06 | |
US62/858,252 | 2019-06-06 | ||
PCT/US2019/049176 WO2020047486A1 (en) | 2018-08-31 | 2019-08-30 | Spatially-resolved dynamic dimming for augmented reality device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024092963A Division JP2024111004A (en) | 2018-08-31 | 2024-06-07 | Spatially resolved dynamic dimming for augmented reality devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021536592A JP2021536592A (en) | 2021-12-27 |
JPWO2020047486A5 true JPWO2020047486A5 (en) | 2022-08-30 |
Family
ID=69640653
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021510460A Pending JP2021536592A (en) | 2018-08-31 | 2019-08-30 | Spatically decomposed dynamic dimming for augmented reality devices |
JP2024092963A Pending JP2024111004A (en) | 2018-08-31 | 2024-06-07 | Spatially resolved dynamic dimming for augmented reality devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024092963A Pending JP2024111004A (en) | 2018-08-31 | 2024-06-07 | Spatially resolved dynamic dimming for augmented reality devices |
Country Status (5)
Country | Link |
---|---|
US (4) | US11170565B2 (en) |
EP (2) | EP3844559B1 (en) |
JP (2) | JP2021536592A (en) |
CN (2) | CN112639579B (en) |
WO (1) | WO2020047486A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10810773B2 (en) * | 2017-06-14 | 2020-10-20 | Dell Products, L.P. | Headset display control based upon a user's pupil state |
US10922878B2 (en) * | 2017-10-04 | 2021-02-16 | Google Llc | Lighting for inserted content |
EP3732662B1 (en) | 2017-12-29 | 2023-10-11 | InterDigital VC Holdings, Inc. | Method and system for maintaining color calibration using common objects |
JP2021536592A (en) | 2018-08-31 | 2021-12-27 | マジック リープ, インコーポレイテッドMagic Leap, Inc. | Spatically decomposed dynamic dimming for augmented reality devices |
US11428942B2 (en) | 2018-09-14 | 2022-08-30 | Magic Leap, Inc. | Systems and methods for external light management |
CN110346933A (en) * | 2018-09-30 | 2019-10-18 | 京东方科技集团股份有限公司 | Optical lens mould group and virtual reality device |
US10867451B2 (en) * | 2018-10-05 | 2020-12-15 | Facebook Technologies, Llc | Apparatus, systems, and methods for display devices including local dimming |
WO2020112560A1 (en) * | 2018-11-30 | 2020-06-04 | Pcms Holdings, Inc. | Method and apparatus to estimate scene illuminant based on skin reflectance database |
EP3908876A4 (en) | 2019-01-11 | 2022-03-09 | Magic Leap, Inc. | Time-multiplexed display of virtual content at various depths |
EP3994521A4 (en) | 2019-07-05 | 2022-07-13 | Magic Leap, Inc. | Geometries for mitigating artifacts in see-through pixel arrays |
JP7343690B2 (en) | 2019-08-15 | 2023-09-12 | マジック リープ, インコーポレイテッド | Image persistence mitigation in see-through displays with pixel arrays |
US11009737B1 (en) * | 2019-09-17 | 2021-05-18 | Facebook Technologies, Llc | Occluder / dimmer based on polarization-selective scatterer and near-eye display containing same |
US11614797B2 (en) | 2019-11-05 | 2023-03-28 | Micron Technology, Inc. | Rendering enhancement based in part on eye tracking |
US20210132689A1 (en) * | 2019-11-05 | 2021-05-06 | Micron Technology, Inc. | User interface based in part on eye movement |
US11615740B1 (en) | 2019-12-13 | 2023-03-28 | Meta Platforms Technologies, Llc | Content-adaptive duty ratio control |
CN111240414B (en) * | 2020-01-23 | 2021-03-09 | 福州贝园网络科技有限公司 | Glasses waistband type computer device |
CN111399230A (en) * | 2020-05-12 | 2020-07-10 | 潍坊歌尔电子有限公司 | Display system and head-mounted display equipment |
US11423621B1 (en) * | 2020-05-21 | 2022-08-23 | Facebook Technologies, Llc. | Adaptive rendering in artificial reality environments |
US11922892B2 (en) | 2021-01-20 | 2024-03-05 | Meta Platforms Technologies, Llc | High-efficiency backlight driver |
DE102021101432A1 (en) * | 2021-01-22 | 2022-07-28 | Bayerische Motoren Werke Aktiengesellschaft | Waveguide-based projection display device with a dynamic stray light absorber for a vehicle |
US11775060B2 (en) * | 2021-02-16 | 2023-10-03 | Athena Accessible Technology, Inc. | Systems and methods for hands-free scrolling |
US11741918B1 (en) * | 2021-02-22 | 2023-08-29 | Apple Inc. | Display with a vignetting mask |
CN112950791A (en) * | 2021-04-08 | 2021-06-11 | 腾讯科技(深圳)有限公司 | Display method and related device |
CN115685542A (en) * | 2021-07-22 | 2023-02-03 | 中强光电股份有限公司 | Head-mounted display device |
CN117836695A (en) * | 2021-08-26 | 2024-04-05 | 谷歌有限责任公司 | Variable world blur for occlusion and contrast enhancement via tunable lens elements |
US12072506B2 (en) * | 2021-11-04 | 2024-08-27 | L3Harris Technologies, Inc. | Apparatus and method for simplifying a control interface of a night vision system using bi-directional detector/display overlay |
TWI828397B (en) * | 2021-11-18 | 2024-01-01 | 東陽實業廠股份有限公司 | Intelligent transparent shading system |
US20230324686A1 (en) * | 2022-04-11 | 2023-10-12 | Meta Platforms Technologies, Llc | Adaptive control of optical transmission |
US20240027804A1 (en) * | 2022-07-22 | 2024-01-25 | Vaibhav Mathur | Eyewear with non-polarizing ambient light dimming |
US11762205B1 (en) * | 2022-09-20 | 2023-09-19 | Rockwell Collins, Inc. | Method for creating uniform contrast on a headworn display against high dynamic range scene |
US12118680B2 (en) * | 2022-10-26 | 2024-10-15 | Hewlett-Packard Development Company, L.P. | Augmented reality lens selective tint adjustments |
CN118573833A (en) * | 2024-08-01 | 2024-08-30 | 雷鸟创新技术(深圳)有限公司 | Near-eye display device, display compensation method thereof, electronic equipment and storage medium |
Family Cites Families (247)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3632865A (en) | 1969-12-23 | 1972-01-04 | Bell Telephone Labor Inc | Predictive video encoding using measured subject velocity |
DE2737499C3 (en) | 1977-08-19 | 1981-10-22 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen | Fiber optic circuit element |
JPS6010224U (en) | 1983-06-30 | 1985-01-24 | 松下電工株式会社 | Lifting equipment used in hazardous gas atmospheres |
GB8701288D0 (en) | 1987-01-21 | 1987-02-25 | Waldern J D | Perception of computer-generated imagery |
US5271093A (en) | 1989-10-17 | 1993-12-14 | Mitsubishi Denki Kabushiki Kaisha | Video display apparatus for filling the interior shapes of contour |
US5138555A (en) | 1990-06-28 | 1992-08-11 | Albrecht Robert E | Helmet mounted display adaptive predictive tracking |
US8730129B2 (en) | 1990-12-07 | 2014-05-20 | Dennis J Solomon | Advanced immersive visual display system |
EP0571323A1 (en) | 1992-05-20 | 1993-11-24 | Maschinenfabrik Rieter Ag | Apparatus for the continuous crimping of thermoplastic yarns |
JPH0655203B2 (en) | 1992-07-09 | 1994-07-27 | 株式会社エイ・ティ・アール視聴覚機構研究所 | Medical diagnostic device using line-of-sight detection |
US5311897A (en) | 1992-09-18 | 1994-05-17 | Robert L. Cargill, Jr. | Rotary control valve with offset variable area orifice and bypass |
US5422653A (en) | 1993-01-07 | 1995-06-06 | Maguire, Jr.; Francis J. | Passive virtual reality |
JP3306183B2 (en) | 1993-09-14 | 2002-07-24 | リーダー電子株式会社 | Signal waveform display device and display method |
JP3630746B2 (en) * | 1994-12-05 | 2005-03-23 | キヤノン株式会社 | Image observation device |
US5742264A (en) | 1995-01-24 | 1998-04-21 | Matsushita Electric Industrial Co., Ltd. | Head-mounted display |
US6882384B1 (en) | 1995-05-23 | 2005-04-19 | Colorlink, Inc. | Color filters and sequencers using color selective light modulators |
US5933125A (en) | 1995-11-27 | 1999-08-03 | Cae Electronics, Ltd. | Method and apparatus for reducing instability in the display of a virtual environment |
JPH09284676A (en) | 1996-04-15 | 1997-10-31 | Sony Corp | Method for processing video and audio signal synchronously with motion of body and video display device |
US6151179A (en) | 1997-07-11 | 2000-11-21 | International Business Machines Corporation | Signal processing circuit with feedback extracted from a sampled analog error signal |
WO1999022314A1 (en) | 1997-10-29 | 1999-05-06 | Sharp Kabushiki Kaisha | Display control device and reproduction display device for electronic books |
JP2002110511A (en) | 2000-09-27 | 2002-04-12 | Nikon Corp | Exposure method and aligner |
JP2001255862A (en) | 2000-03-10 | 2001-09-21 | Seiko Epson Corp | Overlay picture processor and overlay picture display device |
US7663642B2 (en) | 2000-11-15 | 2010-02-16 | Sony Corporation | Systems and methods for rendering a polygon in an image to be displayed |
DE10131720B4 (en) | 2001-06-30 | 2017-02-23 | Robert Bosch Gmbh | Head-Up Display System and Procedures |
US20030014212A1 (en) | 2001-07-12 | 2003-01-16 | Ralston Stuart E. | Augmented vision system using wireless communications |
US6759979B2 (en) | 2002-01-22 | 2004-07-06 | E-Businesscontrols Corp. | GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site |
JP3762309B2 (en) | 2002-02-18 | 2006-04-05 | キヤノン株式会社 | POSITION / DIRECTION MEASURING DEVICE AND INFORMATION PROCESSING METHOD |
US7497574B2 (en) | 2002-02-20 | 2009-03-03 | Brother Kogyo Kabushiki Kaisha | Retinal image display device |
US6917370B2 (en) | 2002-05-13 | 2005-07-12 | Charles Benton | Interacting augmented reality and virtual reality |
JP4170068B2 (en) | 2002-11-12 | 2008-10-22 | シャープ株式会社 | Data signal line driving method, data signal line driving circuit, and display device using the same |
US7386799B1 (en) | 2002-11-21 | 2008-06-10 | Forterra Systems, Inc. | Cinematic techniques in avatar-centric communication during a multi-user online simulation |
US7385606B2 (en) | 2002-12-18 | 2008-06-10 | Microsoft Corporation | International font measurement system and method |
US7203384B2 (en) | 2003-02-24 | 2007-04-10 | Electronic Scripting Products, Inc. | Implement for optically inferring information from a planar jotting surface |
US7515756B2 (en) | 2003-06-23 | 2009-04-07 | Shoestring Research, Llc. | Region segmentation and characterization systems and methods for augmented reality |
US20050148388A1 (en) | 2003-07-17 | 2005-07-07 | Fabricio Vayra | Method and system for interaction with real-time events from a remote location, through use of a computer, game console or other module |
ITTO20030662A1 (en) | 2003-08-29 | 2005-02-28 | Fiat Ricerche | VIRTUAL VISUALIZATION ARRANGEMENT FOR A FRAMEWORK |
US7110100B2 (en) | 2003-11-04 | 2006-09-19 | Electronic Scripting Products, Inc. | Apparatus and method for determining an inclination of an elongate object contacting a plane surface |
KR101026800B1 (en) | 2003-11-21 | 2011-04-04 | 삼성전자주식회사 | Liquid crystal device, driving device and method of light source for display device |
US7268956B2 (en) | 2003-11-24 | 2007-09-11 | Electronic Scripting Products, Inc. | Solid catadioptric lens with two viewpoints |
US7038846B2 (en) | 2003-11-24 | 2006-05-02 | Electronic Scripting Products, Inc. | Solid catadioptric lens with a single viewpoint |
US7088440B2 (en) | 2003-12-22 | 2006-08-08 | Electronic Scripting Products, Inc. | Method and apparatus for determining absolute position of a tip of an elongate object on a plane surface with invariant features |
US9229540B2 (en) | 2004-01-30 | 2016-01-05 | Electronic Scripting Products, Inc. | Deriving input from six degrees of freedom interfaces |
US7826641B2 (en) | 2004-01-30 | 2010-11-02 | Electronic Scripting Products, Inc. | Apparatus and method for determining an absolute pose of a manipulated object in a real three-dimensional environment with invariant features |
US7961909B2 (en) | 2006-03-08 | 2011-06-14 | Electronic Scripting Products, Inc. | Computer interface employing a manipulated object with absolute pose detection component and a display |
US8542219B2 (en) | 2004-01-30 | 2013-09-24 | Electronic Scripting Products, Inc. | Processing pose data derived from the pose of an elongate object |
US7729515B2 (en) | 2006-03-08 | 2010-06-01 | Electronic Scripting Products, Inc. | Optical navigation apparatus using fixed beacons and a centroid sensing device |
US7023536B2 (en) | 2004-03-08 | 2006-04-04 | Electronic Scripting Products, Inc. | Apparatus and method for determining orientation parameters of an elongate object |
US7161664B2 (en) | 2004-04-13 | 2007-01-09 | Electronic Scripting Products, Inc. | Apparatus and method for optical determination of intermediate distances |
JP4373286B2 (en) | 2004-05-06 | 2009-11-25 | オリンパス株式会社 | Head-mounted display device |
US7403337B2 (en) | 2004-05-11 | 2008-07-22 | Universal Vision Biotechnology Co., Ltd. | Focus adjustable head mounted display system and method and device for realizing the system |
US7442918B2 (en) | 2004-05-14 | 2008-10-28 | Microvision, Inc. | MEMS device having simplified drive |
US6947219B1 (en) | 2004-06-02 | 2005-09-20 | Universal Vision Biotechnology Co., Ltd. | Focus adjustable head mounted display system for displaying digital contents and device for realizing the system |
US7113270B2 (en) | 2004-06-18 | 2006-09-26 | Electronics Scripting Products, Inc. | Determination of an orientation parameter of an elongate object with a scan beam apparatus |
US7903048B2 (en) * | 2004-06-18 | 2011-03-08 | Pioneer Corporation | Information display apparatus and navigation apparatus |
US20060007056A1 (en) | 2004-07-09 | 2006-01-12 | Shu-Fong Ou | Head mounted display system having virtual keyboard and capable of adjusting focus of display screen and device installed the same |
US8547401B2 (en) | 2004-08-19 | 2013-10-01 | Sony Computer Entertainment Inc. | Portable augmented reality device and method |
JP4437731B2 (en) | 2004-10-08 | 2010-03-24 | フジノン株式会社 | Optical pickup optical system and optical pickup device using the same |
US8585476B2 (en) | 2004-11-16 | 2013-11-19 | Jeffrey D Mullen | Location-based games and augmented reality systems |
KR100656342B1 (en) | 2004-12-16 | 2006-12-11 | 한국전자통신연구원 | Apparatus for visual interface for presenting multiple mixed stereo image |
US20060214911A1 (en) | 2005-03-23 | 2006-09-28 | Eastman Kodak Company | Pointing device for large field of view displays |
US20060226231A1 (en) | 2005-03-29 | 2006-10-12 | University Of Washington | Methods and systems for creating sequential color images |
JP4738870B2 (en) | 2005-04-08 | 2011-08-03 | キヤノン株式会社 | Information processing method, information processing apparatus, and remote mixed reality sharing apparatus |
US7773098B2 (en) | 2005-05-11 | 2010-08-10 | Canon Kabushiki Kaisha | Virtual reality presentation apparatus and method |
US8847861B2 (en) | 2005-05-20 | 2014-09-30 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix display device, method for driving the same, and electronic device |
US7737965B2 (en) | 2005-06-09 | 2010-06-15 | Honeywell International Inc. | Handheld synthetic vision device |
US20060284791A1 (en) | 2005-06-21 | 2006-12-21 | National Applied Research Laboratories National Center For High-Performance Computing | Augmented reality system and method with mobile and interactive function for multiple users |
IL173361A (en) | 2005-09-12 | 2012-03-29 | Elbit Systems Ltd | Near eye display system |
US11428937B2 (en) | 2005-10-07 | 2022-08-30 | Percept Technologies | Enhanced optical and perceptual digital eyewear |
US8696113B2 (en) | 2005-10-07 | 2014-04-15 | Percept Technologies Inc. | Enhanced optical and perceptual digital eyewear |
US20070081123A1 (en) | 2005-10-07 | 2007-04-12 | Lewis Scott W | Digital eyewear |
US7480422B2 (en) | 2005-10-14 | 2009-01-20 | Disney Enterprises, Inc. | Systems and methods for information content delivery relating to an object |
IL172797A (en) | 2005-12-25 | 2012-09-24 | Elbit Systems Ltd | Real-time image scanning and processing |
JP2007240709A (en) | 2006-03-07 | 2007-09-20 | Matsushita Electric Ind Co Ltd | Multifocal spectacles |
SE0601216L (en) | 2006-05-31 | 2007-12-01 | Abb Technology Ltd | Virtual workplace |
US20080058629A1 (en) | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
US7725547B2 (en) | 2006-09-06 | 2010-05-25 | International Business Machines Corporation | Informing a user of gestures made by others out of the user's line of sight |
US7889178B2 (en) | 2006-09-08 | 2011-02-15 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Programmable resolution for optical pointing device |
US20080071559A1 (en) | 2006-09-19 | 2008-03-20 | Juha Arrasvuori | Augmented reality assisted shopping |
JP4936522B2 (en) | 2006-09-29 | 2012-05-23 | キヤノン株式会社 | Image processing method and image processing apparatus |
JP5228307B2 (en) | 2006-10-16 | 2013-07-03 | ソニー株式会社 | Display device and display method |
WO2008153599A1 (en) | 2006-12-07 | 2008-12-18 | Adapx, Inc. | Systems and methods for data annotation, recordation, and communication |
US7903166B2 (en) | 2007-02-21 | 2011-03-08 | Sharp Laboratories Of America, Inc. | Methods and systems for display viewer motion compensation based on user image data |
US20080215975A1 (en) | 2007-03-01 | 2008-09-04 | Phil Harrison | Virtual world user opinion & response monitoring |
JP5151207B2 (en) | 2007-03-28 | 2013-02-27 | 株式会社ニコン | Display device |
US8832557B2 (en) | 2007-05-04 | 2014-09-09 | Apple Inc. | Adjusting media display in a personal display system based on perspective |
WO2009002567A1 (en) | 2007-06-27 | 2008-12-31 | The University Of Hawaii | Virtual reality overlay |
US8902227B2 (en) | 2007-09-10 | 2014-12-02 | Sony Computer Entertainment America Llc | Selective interactive mapping of real-world objects to create interactive virtual-world objects |
US20090089685A1 (en) | 2007-09-28 | 2009-04-02 | Mordecai Nicole Y | System and Method of Communicating Between A Virtual World and Real World |
US8063905B2 (en) | 2007-10-11 | 2011-11-22 | International Business Machines Corporation | Animating speech of an avatar representing a participant in a mobile communication |
US20090225001A1 (en) | 2007-11-06 | 2009-09-10 | University Of Central Florida Research Foundation, Inc. | Hybrid Display Systems and Methods |
KR20090067822A (en) | 2007-12-21 | 2009-06-25 | 삼성전자주식회사 | System for making mixed world reflecting real states and method for embodying it |
US20090177042A1 (en) | 2008-01-09 | 2009-07-09 | University Of Washington | Color image acquisition with scanning laser beam devices |
US8615383B2 (en) | 2008-01-18 | 2013-12-24 | Lockheed Martin Corporation | Immersive collaborative environment using motion capture, head mounted display, and cave |
US8624924B2 (en) | 2008-01-18 | 2014-01-07 | Lockheed Martin Corporation | Portable immersive environment using motion capture and head mounted display |
US20090222424A1 (en) | 2008-02-26 | 2009-09-03 | Van Benedict | Method and apparatus for integrated life through virtual cities |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
US8757812B2 (en) | 2008-05-19 | 2014-06-24 | University of Washington UW TechTransfer—Invention Licensing | Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber |
US20090322671A1 (en) | 2008-06-04 | 2009-12-31 | Cybernet Systems Corporation | Touch screen augmented reality system and method |
US8063968B2 (en) | 2008-07-23 | 2011-11-22 | Lockheed Martin Corporation | Device for detecting an image of a nonplanar surface |
JP5651595B2 (en) | 2008-10-09 | 2015-01-14 | ノース・キャロライナ・ステイト・ユニヴァーシティ | Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices |
WO2010062481A1 (en) | 2008-11-02 | 2010-06-03 | David Chaum | Near to eye display system and appliance |
US20100287500A1 (en) | 2008-11-18 | 2010-11-11 | Honeywell International Inc. | Method and system for displaying conformal symbology on a see-through display |
ES2498671T3 (en) | 2008-12-02 | 2014-09-25 | Saab Ab | "High head" display device for night vision goggles |
US20100137684A1 (en) | 2008-12-03 | 2010-06-03 | Hoya Corporation | Endoscope system with scanning function |
US8132916B2 (en) | 2008-12-12 | 2012-03-13 | Carl Zeiss Meditec, Inc. | High precision contrast ratio display for visual stimulus |
US8295546B2 (en) | 2009-01-30 | 2012-10-23 | Microsoft Corporation | Pose tracking pipeline |
US8810758B2 (en) | 2009-03-24 | 2014-08-19 | Jay Ahling | Dual-function alignment layer for liquid crystal devices to improve degradation resistance to radiation |
US8487933B2 (en) | 2009-03-31 | 2013-07-16 | General Electric Company | System and method for multi-segment center point trajectory mapping |
US9195898B2 (en) | 2009-04-14 | 2015-11-24 | Qualcomm Incorporated | Systems and methods for image recognition using mobile devices |
JP5553635B2 (en) | 2009-10-23 | 2014-07-16 | キヤノン株式会社 | Compensating optical device, imaging device, compensating optical method, and imaging method |
WO2011061914A1 (en) | 2009-11-19 | 2011-05-26 | パナソニック株式会社 | Scan-type image display device |
WO2011070139A1 (en) | 2009-12-10 | 2011-06-16 | Essilor International (Compagnie Generale D'optique) | An ophthalmic lens arrangement and an apparatus for demonstrating a plurality of optical functions and a method for demonstrating a plurality of optical functions |
KR101652311B1 (en) | 2010-01-26 | 2016-08-30 | 광주과학기술원 | System and method for storing information of vision image, and the recording media storing the program performing the said method |
JP5499762B2 (en) | 2010-02-24 | 2014-05-21 | ソニー株式会社 | Image processing apparatus, image processing method, program, and image processing system |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US8482859B2 (en) | 2010-02-28 | 2013-07-09 | Osterhout Group, Inc. | See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film |
JP2013521576A (en) | 2010-02-28 | 2013-06-10 | オスターハウト グループ インコーポレイテッド | Local advertising content on interactive head-mounted eyepieces |
US20120120103A1 (en) | 2010-02-28 | 2012-05-17 | Osterhout Group, Inc. | Alignment control in an augmented reality headpiece |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
JP2011203823A (en) | 2010-03-24 | 2011-10-13 | Sony Corp | Image processing device, image processing method and program |
US8893022B2 (en) | 2010-04-01 | 2014-11-18 | Microsoft Corporation | Interactive and shared viewing experience |
CN102472892B (en) | 2010-04-28 | 2014-07-09 | 松下电器产业株式会社 | Scan-type image display device |
US8762041B2 (en) | 2010-06-21 | 2014-06-24 | Blackberry Limited | Method, device and system for presenting navigational information |
US20120200600A1 (en) | 2010-06-23 | 2012-08-09 | Kent Demaine | Head and arm detection for virtual immersion systems and methods |
JP5436678B2 (en) | 2010-08-09 | 2014-03-05 | パナソニック株式会社 | Optical device and charging system including the same |
US8184215B2 (en) | 2010-08-17 | 2012-05-22 | Lc-Tec Displays Ab | High-speed liquid crystal polarization modulator |
US20120127136A1 (en) | 2010-08-18 | 2012-05-24 | Kent Displays Incorporated | Display device including piezoelectric and liquid crystal layers |
US20120050140A1 (en) | 2010-08-25 | 2012-03-01 | Border John N | Head-mounted display control |
US8941559B2 (en) | 2010-09-21 | 2015-01-27 | Microsoft Corporation | Opacity filter for display device |
US8907983B2 (en) | 2010-10-07 | 2014-12-09 | Aria Glassworks, Inc. | System and method for transitioning between interface modes in virtual and augmented reality applications |
US8578299B2 (en) | 2010-10-08 | 2013-11-05 | Industrial Technology Research Institute | Method and computing device in a system for motion detection |
US9122053B2 (en) | 2010-10-15 | 2015-09-01 | Microsoft Technology Licensing, Llc | Realistic occlusion for a head mounted augmented reality display |
US8884984B2 (en) | 2010-10-15 | 2014-11-11 | Microsoft Corporation | Fusing virtual content into real content |
US9292973B2 (en) | 2010-11-08 | 2016-03-22 | Microsoft Technology Licensing, Llc | Automatic variable virtual focus for augmented reality displays |
US9304319B2 (en) | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
US8576276B2 (en) | 2010-11-18 | 2013-11-05 | Microsoft Corporation | Head-mounted display device which provides surround video |
US8831278B2 (en) | 2010-11-30 | 2014-09-09 | Eastman Kodak Company | Method of identifying motion sickness |
US8988463B2 (en) | 2010-12-08 | 2015-03-24 | Microsoft Technology Licensing, Llc | Sympathetic optic adaptation for see-through display |
US9213405B2 (en) | 2010-12-16 | 2015-12-15 | Microsoft Technology Licensing, Llc | Comprehension and intent-based content for augmented reality displays |
US9690099B2 (en) | 2010-12-17 | 2017-06-27 | Microsoft Technology Licensing, Llc | Optimized focal area for augmented reality displays |
US20120182313A1 (en) | 2011-01-13 | 2012-07-19 | Pantech Co., Ltd. | Apparatus and method for providing augmented reality in window form |
US9113050B2 (en) | 2011-01-13 | 2015-08-18 | The Boeing Company | Augmented collaboration system |
US20120188148A1 (en) | 2011-01-24 | 2012-07-26 | Microvision, Inc. | Head Mounted Meta-Display System |
JP2012155655A (en) | 2011-01-28 | 2012-08-16 | Sony Corp | Information processing device, notification method, and program |
JP5844288B2 (en) | 2011-02-01 | 2016-01-13 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Function expansion device, function expansion method, function expansion program, and integrated circuit |
US9217867B2 (en) | 2011-03-24 | 2015-12-22 | Seiko Epson Corporation | Head-mounted display device and control method for the head-mounted display device |
US8401343B2 (en) | 2011-03-27 | 2013-03-19 | Edwin Braun | System and method for defining an augmented reality character in computer generated virtual reality using coded stickers |
US9071709B2 (en) | 2011-03-31 | 2015-06-30 | Nokia Technologies Oy | Method and apparatus for providing collaboration between remote and on-site users of indirect augmented reality |
US8508830B1 (en) | 2011-05-13 | 2013-08-13 | Google Inc. | Quantum dot near-to-eye display |
US20120327116A1 (en) | 2011-06-23 | 2012-12-27 | Microsoft Corporation | Total field of view classification for head-mounted display |
US8893010B1 (en) | 2011-07-20 | 2014-11-18 | Google Inc. | Experience sharing in location-based social networking |
US20130021226A1 (en) | 2011-07-21 | 2013-01-24 | Jonathan Arnold Bell | Wearable display devices |
AU2011204946C1 (en) | 2011-07-22 | 2012-07-26 | Microsoft Technology Licensing, Llc | Automatic text scrolling on a head-mounted display |
AU2011205223C1 (en) | 2011-08-09 | 2013-03-28 | Microsoft Technology Licensing, Llc | Physical interaction with virtual objects for DRM |
US10019962B2 (en) | 2011-08-17 | 2018-07-10 | Microsoft Technology Licensing, Llc | Context adaptive user interface for augmented reality display |
US9342610B2 (en) | 2011-08-25 | 2016-05-17 | Microsoft Technology Licensing, Llc | Portals: registered objects as virtualized, personalized displays |
WO2013032955A1 (en) | 2011-08-26 | 2013-03-07 | Reincloud Corporation | Equipment, systems and methods for navigating through multiple reality models |
US9191661B2 (en) | 2011-08-29 | 2015-11-17 | Microsoft Technology Licensing, Llc | Virtual image display device |
US9213163B2 (en) | 2011-08-30 | 2015-12-15 | Microsoft Technology Licensing, Llc | Aligning inter-pupillary distance in a near-eye display system |
US9323325B2 (en) | 2011-08-30 | 2016-04-26 | Microsoft Technology Licensing, Llc | Enhancing an object of interest in a see-through, mixed reality display device |
US8223024B1 (en) | 2011-09-21 | 2012-07-17 | Google Inc. | Locking mechanism based on unnatural movement of head-mounted display |
US9286711B2 (en) | 2011-09-30 | 2016-03-15 | Microsoft Technology Licensing, Llc | Representing a location at a previous time period using an augmented reality display |
US9268406B2 (en) | 2011-09-30 | 2016-02-23 | Microsoft Technology Licensing, Llc | Virtual spectator experience with a personal audio/visual apparatus |
US9255813B2 (en) | 2011-10-14 | 2016-02-09 | Microsoft Technology Licensing, Llc | User controlled real object disappearance in a mixed reality display |
RU2017115669A (en) | 2011-10-28 | 2019-01-28 | Мэджик Лип, Инк. | SYSTEM AND METHOD FOR ADDITIONAL AND VIRTUAL REALITY |
US8752963B2 (en) * | 2011-11-04 | 2014-06-17 | Microsoft Corporation | See-through display brightness control |
US8879155B1 (en) | 2011-11-09 | 2014-11-04 | Google Inc. | Measurement method and system |
US9311883B2 (en) | 2011-11-11 | 2016-04-12 | Microsoft Technology Licensing, Llc | Recalibration of a flexible mixed reality device |
US8872853B2 (en) * | 2011-12-01 | 2014-10-28 | Microsoft Corporation | Virtual light in augmented reality |
US20130141419A1 (en) | 2011-12-01 | 2013-06-06 | Brian Mount | Augmented reality with realistic occlusion |
US8963805B2 (en) | 2012-01-27 | 2015-02-24 | Microsoft Corporation | Executable virtual objects associated with real objects |
WO2013119221A1 (en) | 2012-02-08 | 2013-08-15 | Intel Corporation | Augmented reality creation using a real scene |
US9147111B2 (en) | 2012-02-10 | 2015-09-29 | Microsoft Technology Licensing, Llc | Display with blocking image generation |
US20130215230A1 (en) | 2012-02-22 | 2013-08-22 | Matt Miesnieks | Augmented Reality System Using a Portable Device |
JP5958689B2 (en) | 2012-03-22 | 2016-08-02 | セイコーエプソン株式会社 | Head-mounted display device |
US8933912B2 (en) | 2012-04-02 | 2015-01-13 | Microsoft Corporation | Touch sensitive user interface with three dimensional input sensor |
US9183676B2 (en) | 2012-04-27 | 2015-11-10 | Microsoft Technology Licensing, Llc | Displaying a collision between real and virtual objects |
US9122321B2 (en) | 2012-05-04 | 2015-09-01 | Microsoft Technology Licensing, Llc | Collaboration environment using see through displays |
US9201625B2 (en) | 2012-06-22 | 2015-12-01 | Nokia Technologies Oy | Method and apparatus for augmenting an index generated by a near eye display |
US9696547B2 (en) | 2012-06-25 | 2017-07-04 | Microsoft Technology Licensing, Llc | Mixed reality system learned input and functions |
US9645394B2 (en) | 2012-06-25 | 2017-05-09 | Microsoft Technology Licensing, Llc | Configured virtual environments |
US9035970B2 (en) | 2012-06-29 | 2015-05-19 | Microsoft Technology Licensing, Llc | Constraint based information inference |
US9557565B2 (en) | 2012-07-02 | 2017-01-31 | Nvidia Corporation | Near-eye optical deconvolution displays |
US9841537B2 (en) | 2012-07-02 | 2017-12-12 | Nvidia Corporation | Near-eye microlens array displays |
CN105056237B (en) | 2012-08-01 | 2020-11-10 | 南京神奇科技开发有限公司 | Physical method of combating microorganisms |
JP6015250B2 (en) | 2012-08-31 | 2016-10-26 | 富士通株式会社 | Image processing apparatus, image processing method, and image processing program |
US20140071163A1 (en) | 2012-09-11 | 2014-03-13 | Peter Tobias Kinnebrew | Augmented reality information detail |
US10269179B2 (en) | 2012-10-05 | 2019-04-23 | Elwha Llc | Displaying second augmentations that are based on registered first augmentations |
US10073201B2 (en) | 2012-10-26 | 2018-09-11 | Qualcomm Incorporated | See through near-eye display |
US9619911B2 (en) | 2012-11-13 | 2017-04-11 | Qualcomm Incorporated | Modifying virtual object display properties |
US9030495B2 (en) | 2012-11-21 | 2015-05-12 | Microsoft Technology Licensing, Llc | Augmented reality help |
US9582123B2 (en) | 2012-11-26 | 2017-02-28 | Qualcomm Incorporated | Dual-mode capacitance sensing in a touch panel sensor |
US20140178029A1 (en) | 2012-12-26 | 2014-06-26 | Ali Fazal Raheman | Novel Augmented Reality Kiosks |
KR102019124B1 (en) | 2013-01-04 | 2019-09-06 | 엘지전자 주식회사 | Head mounted display and method for controlling the same |
US9342929B2 (en) | 2013-01-22 | 2016-05-17 | Microsoft Technology Licensing, Llc | Mixed reality experience sharing |
JP2014149712A (en) | 2013-02-01 | 2014-08-21 | Sony Corp | Information processing device, terminal device, information processing method, and program |
KR102050897B1 (en) | 2013-02-07 | 2019-12-02 | 삼성전자주식회사 | Mobile terminal comprising voice communication function and voice communication method thereof |
US9852512B2 (en) | 2013-03-13 | 2017-12-26 | Electronic Scripting Products, Inc. | Reduced homography based on structural redundancy of conditioned motion |
EP2936220B1 (en) | 2013-03-13 | 2022-11-16 | ImagineOptix Corporation | Polarization conversion systems with geometric phase holograms |
US8970709B2 (en) | 2013-03-13 | 2015-03-03 | Electronic Scripting Products, Inc. | Reduced homography for recovery of pose parameters of an optical apparatus producing image data with structural uncertainty |
US9164281B2 (en) | 2013-03-15 | 2015-10-20 | Honda Motor Co., Ltd. | Volumetric heads-up display with dynamic focal plane |
US9685003B2 (en) | 2013-06-03 | 2017-06-20 | Microsoft Technology Licensing, Llc | Mixed reality data collaboration |
US10139623B2 (en) | 2013-06-18 | 2018-11-27 | Microsoft Technology Licensing, Llc | Virtual object orientation and visualization |
US10194860B2 (en) | 2013-09-11 | 2019-02-05 | Industrial Technology Research Institute | Virtual image display system |
US9911231B2 (en) | 2013-10-08 | 2018-03-06 | Samsung Electronics Co., Ltd. | Method and computing device for providing augmented reality |
CN110542938B (en) | 2013-11-27 | 2023-04-18 | 奇跃公司 | Virtual and augmented reality systems and methods |
EP2887123A1 (en) | 2013-12-18 | 2015-06-24 | Thomson Licensing | Optical see-through glass type display device and corresponding optical element |
WO2015100714A1 (en) | 2014-01-02 | 2015-07-09 | Empire Technology Development Llc | Augmented reality (ar) system |
US9311718B2 (en) * | 2014-01-23 | 2016-04-12 | Microsoft Technology Licensing, Llc | Automated content scrolling |
EP3132307A4 (en) | 2014-04-16 | 2017-04-05 | Beam Engineering For Advanced Measurements Co. | Methods and apparatus for human vision correction using diffractive waveplate lenses |
EP2937665B1 (en) | 2014-04-23 | 2021-06-16 | Hexagon Technology Center GmbH | Distance measuring module with a variable optical attenuation unit from an LC cell |
US10216271B2 (en) | 2014-05-15 | 2019-02-26 | Atheer, Inc. | Method and apparatus for independent control of focal vergence and emphasis of displayed and transmitted optical content |
US10852838B2 (en) | 2014-06-14 | 2020-12-01 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
US9626936B2 (en) * | 2014-08-21 | 2017-04-18 | Microsoft Technology Licensing, Llc | Dimming module for augmented and virtual reality |
US10943111B2 (en) | 2014-09-29 | 2021-03-09 | Sony Interactive Entertainment Inc. | Method and apparatus for recognition and matching of objects depicted in images |
US9778814B2 (en) | 2014-12-19 | 2017-10-03 | Microsoft Technology Licensing, Llc | Assisted object placement in a three-dimensional visualization system |
US10055887B1 (en) * | 2015-02-19 | 2018-08-21 | Google Llc | Virtual/augmented reality transition system and method |
NZ773826A (en) | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
US20160314624A1 (en) | 2015-04-24 | 2016-10-27 | Eon Reality, Inc. | Systems and methods for transition between augmented reality and virtual reality |
US10663728B2 (en) | 2015-05-08 | 2020-05-26 | Bae Systems Plc | Relating to displays |
US9581827B1 (en) | 2015-09-03 | 2017-02-28 | 3M Innovative Properties Company | Optical system |
US10247858B2 (en) | 2015-10-25 | 2019-04-02 | Facebook Technologies, Llc | Liquid crystal half-wave plate lens |
US9927614B2 (en) | 2015-12-29 | 2018-03-27 | Microsoft Technology Licensing, Llc | Augmented reality display system with variable focus |
US10536690B2 (en) | 2016-01-29 | 2020-01-14 | Magic Leap, Inc. | Display for three-dimensional image |
US11255663B2 (en) | 2016-03-04 | 2022-02-22 | May Patents Ltd. | Method and apparatus for cooperative usage of multiple distance meters |
JP6736944B2 (en) * | 2016-03-29 | 2020-08-05 | ソニー株式会社 | Information processing device, information processing method, and program |
CA3019946C (en) | 2016-04-08 | 2023-02-28 | Magic Leap, Inc. | Augmented reality systems and methods with variable focus lens elements |
US10522106B2 (en) * | 2016-05-05 | 2019-12-31 | Ostendo Technologies, Inc. | Methods and apparatus for active transparency modulation |
US9922464B2 (en) * | 2016-05-10 | 2018-03-20 | Disney Enterprises, Inc. | Occluded virtual image display |
CN105974589B (en) * | 2016-06-24 | 2019-08-16 | 上海彼茨信息科技有限公司 | A kind of near-to-eye displays of wear-type goggles |
IL307594A (en) | 2016-08-22 | 2023-12-01 | Magic Leap Inc | Virtual, augmented, and mixed reality systems and methods |
US10274732B2 (en) | 2016-11-04 | 2019-04-30 | Microsoft Technology Licensing, Llc | Hologram focus accommodation |
CA3046662A1 (en) * | 2016-12-22 | 2018-06-28 | Magic Leap, Inc. | Systems and methods for manipulating light from ambient light sources |
US10746999B2 (en) | 2016-12-28 | 2020-08-18 | Magic Leap, Inc. | Dual depth exit pupil expander |
US20180188536A1 (en) * | 2016-12-30 | 2018-07-05 | Microsoft Technology Licensing, Llc | Near eye display multi-component dimming system |
US10917543B2 (en) | 2017-04-24 | 2021-02-09 | Alcon Inc. | Stereoscopic visualization camera and integrated robotics platform |
US20180314066A1 (en) * | 2017-04-28 | 2018-11-01 | Microsoft Technology Licensing, Llc | Generating dimming masks to enhance contrast between computer-generated images and a real-world view |
WO2018231784A1 (en) | 2017-06-12 | 2018-12-20 | Magic Leap, Inc. | Augmented reality display having multi-element adaptive lens for changing depth planes |
CN111566723A (en) | 2017-10-26 | 2020-08-21 | 奇跃公司 | Broadband adaptive lens assembly for augmented reality displays |
IL275822B2 (en) | 2018-01-17 | 2024-02-01 | Magic Leap Inc | Eye center of rotation determination, depth plane selection, and render camera positioning in display systems |
US10670808B1 (en) * | 2018-01-22 | 2020-06-02 | Facebook Technologies, Llc | Systems and methods for altering an alignment of light from a light projector with a waveguide |
US10365554B1 (en) | 2018-04-04 | 2019-07-30 | Intuitive Surgical Operations, Inc. | Dynamic aperture positioning for stereo endoscopic cameras |
US10643548B2 (en) * | 2018-08-20 | 2020-05-05 | Dell Products, L.P. | Selective dimming of ambient lighting in virtual, augmented, and mixed reality (xR) applications |
JP2021536592A (en) | 2018-08-31 | 2021-12-27 | マジック リープ, インコーポレイテッドMagic Leap, Inc. | Spatically decomposed dynamic dimming for augmented reality devices |
CN113168008A (en) | 2018-09-26 | 2021-07-23 | 奇跃公司 | Glasses with pinhole and slit camera |
EP3908876A4 (en) | 2019-01-11 | 2022-03-09 | Magic Leap, Inc. | Time-multiplexed display of virtual content at various depths |
WO2021002641A1 (en) | 2019-07-04 | 2021-01-07 | Samsung Electronics Co., Ltd. | Electronic device and method for displaying augmented reality |
KR20210004776A (en) | 2019-07-04 | 2021-01-13 | 삼성전자주식회사 | Apparatus and method of displaying augmented reality |
-
2019
- 2019-08-30 JP JP2021510460A patent/JP2021536592A/en active Pending
- 2019-08-30 WO PCT/US2019/049176 patent/WO2020047486A1/en unknown
- 2019-08-30 EP EP19854491.8A patent/EP3844559B1/en active Active
- 2019-08-30 US US16/557,706 patent/US11170565B2/en active Active
- 2019-08-30 CN CN201980056636.9A patent/CN112639579B/en active Active
- 2019-08-30 EP EP23199283.5A patent/EP4276520A3/en active Pending
- 2019-08-30 CN CN202311214046.9A patent/CN117238224A/en active Pending
-
2021
- 2021-05-25 US US17/330,146 patent/US11461961B2/en active Active
-
2022
- 2022-08-25 US US17/895,313 patent/US11676333B2/en active Active
-
2023
- 2023-04-28 US US18/140,783 patent/US12073509B2/en active Active
-
2024
- 2024-06-07 JP JP2024092963A patent/JP2024111004A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2020047486A5 (en) | ||
US9269330B2 (en) | Head mounted display apparatus and backlight adjustment method thereof | |
CN104067334B (en) | The adaption brightness of head mounted display controls | |
US10810773B2 (en) | Headset display control based upon a user's pupil state | |
JP6160020B2 (en) | Transmission type display device, display method, and display program | |
JP2017537366A5 (en) | ||
JP5682417B2 (en) | Head mounted display and its brightness adjustment method | |
WO2007073418A1 (en) | Apparatus and method of automatically adjusting a display experiencing varying lighting conditions | |
CN105592254B (en) | Image display method and electronic device | |
JP2015038578A (en) | Head-mounted display device and control method of head-mounted display device | |
CN109725423B (en) | Method for automatically adjusting brightness of monocular AR (augmented reality) glasses and storage medium | |
WO2015131543A1 (en) | Method and terminal for photographing using front camera of terminal | |
CN110384470B (en) | Light adjusting method and device for endoscope light source, light source assembly and endoscope | |
CN111247473A (en) | Display apparatus and display method using device for providing visual cue | |
WO2019046334A1 (en) | System and method of compensating for real world illumination changes in augmented reality | |
JP2017003856A (en) | Display device and control method for the same | |
KR20180000580A (en) | cost volume calculation apparatus stereo matching system having a illuminator and method therefor | |
JP2020506501A5 (en) | ||
TW202037965A (en) | Adaptive display method and head mounted display device using eye tracking | |
KR20190020633A (en) | Apparatus and method for controlling brightness of display based on eye tracking | |
US12106734B1 (en) | Hiding lens distortions using black pixels | |
JP4461792B2 (en) | Information display device | |
US20230308619A1 (en) | Control device, control method, and control program | |
TWI683135B (en) | Head-mounted display device and adjusting method for the same | |
CN112235912A (en) | Illumination adjusting method and system based on user picture |