JPWO2020027728A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020027728A5
JPWO2020027728A5 JP2021505189A JP2021505189A JPWO2020027728A5 JP WO2020027728 A5 JPWO2020027728 A5 JP WO2020027728A5 JP 2021505189 A JP2021505189 A JP 2021505189A JP 2021505189 A JP2021505189 A JP 2021505189A JP WO2020027728 A5 JPWO2020027728 A5 JP WO2020027728A5
Authority
JP
Japan
Prior art keywords
fuel cell
proton exchange
amorphous carbon
exchange membrane
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021505189A
Other languages
Japanese (ja)
Other versions
JP2021533532A (en
JP7217055B2 (en
Publication date
Priority claimed from US16/049,034 external-priority patent/US11114674B2/en
Application filed filed Critical
Priority claimed from PCT/SG2019/050373 external-priority patent/WO2020027728A1/en
Publication of JP2021533532A publication Critical patent/JP2021533532A/en
Publication of JPWO2020027728A5 publication Critical patent/JPWO2020027728A5/ja
Application granted granted Critical
Publication of JP7217055B2 publication Critical patent/JP7217055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

図4には、SiO上の非晶質フィルムおよびナノ結晶性グラフェンのラマンスペクトル(400)が例示される。単離されたフィルムのラマン分光法は2Dピーク(~2700cm-1)を示さなかったが、代わりに、幅広いGピーク(~1600cm-1において)およびDピーク(~1350cm-1において)を示した。DピークおよびGピークの広がりは通常、以前に報告されたように、ナノ結晶性グラフェンから非晶質フィルムへの転移を示している。DピークとGピークとの強度比から、ドメインサイズが1~5nmの程度であることが推定される3。ラマン分光法は、図2でのTEM画像を大面積で表すための特徴づけツールとして役立つ。 Figure 4 illustrates Raman spectra (400) of amorphous films and nanocrystalline graphene on SiO2 . Raman spectroscopy of the isolated film showed no 2D peak (~2700 cm-1), but instead a broad G peak (at ~1600 cm-1) and D peak (at ~1350 cm-1). . The broadening of the D and G peaks usually indicates the transition from nanocrystalline graphene to amorphous films , as previously reported. From the intensity ratio of the D and G peaks, the domain size is estimated to be on the order of 1-5 nm3. Raman spectroscopy serves as a characterization tool for the large area representation of the TEM image in FIG.

懸垂されたフィルムの弾性係数Eが200GPaを超えており、これはバルク状のガラス状炭素(E=60GPa)よりも大きい。機械的破損前の極限ひずみが10%であり、これは、報告される他の非晶質炭素の極限ひずみよりもはるかに大きい。図7には、懸垂された炭素フィルムと、極限応力を原子間力顕微鏡(AFM)(例えば、Brukerモデル番号:MPP-11120)のチップによってかけた後の懸垂された炭素フィルムとの表面におけるナノ圧痕が例示される。開示された2DACフィルムの非晶質性は図7(下)における懸垂フィルムの圧壊を妨げている。その代わり、このフィルムは極限応力のレベルにまでの延性応答を示す。 The elastic modulus E of the suspended film is over 200 GPa, which is greater than bulk vitreous carbon (E=60 GPa) 4 . The ultimate strain before mechanical failure is 10%, which is much higher than the ultimate strains of other reported amorphous carbons. FIG. 7 shows the nanoscale at the suspended carbon film and the surface of the suspended carbon film after the ultimate stress was applied by the tip of an atomic force microscope (AFM) (eg, Bruker model number: MPP-11120). Impressions are exemplified. The amorphous nature of the disclosed 2DAC films prevents the collapse of the suspended films in FIG. 7 (bottom). Instead, the film exhibits a ductile response up to the ultimate stress level.

選択された実施形態において、開示された2DAC懸垂フィルムの弾性係数Eが200GPaを超えており、破壊エネルギーが20J/m を超え、これはグラフェンの破壊エネルギーの2倍を超えている。同じことの証拠が、例えば、図に例示される。図では、開示された懸垂2DACフィルムにおけるナノ圧痕は、弾性係数Eが200GPaを超えていることを示し(右)、極限応力をAFMチップによってかけた後の懸垂2DACフィルムは、破壊エネルギーが20J/mを超えていることを示している。したがって、開示された2DAC層のこれらの機械的特性の特徴により、用途の寿命が増大する。例えば、開示されたバリアはガス通り抜けを防止し、それにより、電解質・触媒層の腐食を防止する。開示された2DAC層の強い機械的特性、具体的にはその大きい破壊靭性は、用いられたバリアの長い寿命を保証し、それにより、燃料電池のより長期の全体的性能をもたらす。 In selected embodiments, the disclosed 2DAC suspension films have an elastic modulus E greater than 200 GPa and a fracture energy greater than 20 J/m 2 , which is more than twice the fracture energy of graphene. Evidence of the same is illustrated, for example, in FIG. In FIG. 7 , nanoindentations in the disclosed suspended 2DAC films show an elastic modulus E exceeding 200 GPa (right), and the suspended 2DAC films after the ultimate stress was applied by the AFM tip have a fracture energy of 20 J / m2 . Thus, these mechanical property features of the disclosed 2DAC layers increase application lifetime. For example, the disclosed barriers prevent gas penetration, thereby preventing corrosion of the electrolyte-catalyst layers. The strong mechanical properties of the disclosed 2DAC layer, in particular its high fracture toughness, ensure a long lifetime of the barriers used, thereby leading to longer overall fuel cell performance.

Claims (19)

電極触媒集合体と、
二次元(2D)非晶質炭素と
プロトン交換膜
を含み、前記2D非晶質炭素が0.8以下の結晶化度(C)を有し、
前記2D非晶質炭素が前記電極触媒集合体と前記プロトン交換膜との間に配置される、燃料電池。
an electrode catalyst assembly;
two-dimensional (2D) amorphous carbon ;
proton exchange membrane
wherein the 2D amorphous carbon has a crystallinity (C) of 0.8 or less ;
A fuel cell, wherein the 2D amorphous carbon is positioned between the electrocatalyst assembly and the proton exchange membrane .
前記2D非晶質炭素が膜である、請求項1に記載の燃料電池。 2. The fuel cell of claim 1, wherein said 2D amorphous carbon is a membrane. 前記2D非晶質炭素がフィルムである、請求項1に記載の燃料電池。 2. The fuel cell of claim 1, wherein said 2D amorphous carbon is a film. 前記2D非晶質炭素が0.01~1000Ω-cm(両端を含む)の抵抗率を有する、請求項1に記載の燃料電池。 2. The fuel cell of claim 1, wherein said 2D amorphous carbon has a resistivity of 0.01 to 1000 Ω-cm, inclusive. 前記電極触媒集合体が複数の電極触媒集合体を含み、
前記プロトン交換膜が前記複数の電極触媒集合体の間に配置され、かつ、前記2D非晶質炭素がそれぞれの電極触媒集合体と前記プロトン交換膜との間に配置される、請求項に記載の燃料電池。
the electrode catalyst assembly comprises a plurality of electrode catalyst assemblies,
2. The method of claim 1 , wherein the proton exchange membrane is positioned between the plurality of electrocatalyst assemblies and the 2D amorphous carbon is positioned between each electrocatalyst assembly and the proton exchange membrane. A fuel cell as described.
前記電極触媒集合体が複数の電極触媒集合体を含み、
前記プロトン交換膜が複数のプロトン交換膜を含み、
前記2D非晶質炭素が前記複数のプロトン交換膜の間に配置され、かつ、前記複数のプロトン交換膜が前記複数の電極触媒集合体の間に配置される、請求項に記載の燃料電池。
the electrode catalyst assembly comprises a plurality of electrode catalyst assemblies,
the proton exchange membrane comprises a plurality of proton exchange membranes;
2. The fuel cell of claim 1 , wherein said 2D amorphous carbon is positioned between said plurality of proton exchange membranes, and said plurality of proton exchange membranes positioned between said plurality of electrocatalyst assemblies. .
前記プロトン交換膜がフルオロポリマーである、請求項に記載の燃料電池。 2. The fuel cell of claim 1 , wherein said proton exchange membrane is a fluoropolymer. 前記フルオロポリマーがNafion(登録商標)である、請求項に記載の燃料電池。 8. The fuel cell of claim 7 , wherein said fluoropolymer is Nafion(R). 電極触媒集合体と、
非六角形炭素環および六角形炭素環からなる原子構造を有する二次元(2D)非晶質炭素と
を含み、前記六角形炭素環の前記非六角形炭素環に対する比率が1.0未満であり、
前記2D非晶質炭素が1未満の結晶化度(C)を有し、かつ、sp/sp結合比が0.2以下である、燃料電池。
an electrode catalyst assembly;
two-dimensional (2D) amorphous carbon having an atomic structure consisting of non-hexagonal carbocycles and hexagonal carbocycles , wherein the ratio of said hexagonal carbocycles to said non-hexagonal carbocycles is less than 1.0 ,
A fuel cell, wherein the 2D amorphous carbon has a crystallinity (C) of less than 1 and an sp 3 /sp 2 bond ratio of 0.2 or less.
前記2D非晶質炭素が膜である、請求項に記載の燃料電池。 10. The fuel cell of claim 9 , wherein said 2D amorphous carbon is a membrane. 前記2D非晶質炭素がフィルムである、請求項に記載の燃料電池。 10. The fuel cell of claim 9 , wherein said 2D amorphous carbon is a film. 前記2D非晶質炭素が0.01~1000Ω-cm(両端を含む)の抵抗率を有する、請求項9に記載の燃料電池。 10. The fuel cell of claim 9, wherein said 2D amorphous carbon has a resistivity between 0.01 and 1000 Ω-cm, inclusive. プロトン交換膜
をさらに含む、請求項に記載の燃料電池。
10. The fuel cell of Claim 9 , further comprising a proton exchange membrane.
前記2D非晶質炭素が前記電極触媒集合体と前記プロトン交換膜との間に配置される、請求項13に記載の燃料電池。 14. The fuel cell of claim 13 , wherein said 2D amorphous carbon is positioned between said electrocatalyst assembly and said proton exchange membrane. 前記電極触媒集合体が複数の電極触媒集合体を含み、
前記プロトン交換膜が前記複数の電極触媒集合体の間に配置され、かつ、前記2D非晶質炭素がそれぞれの電極触媒集合体と前記プロトン交換膜との間に配置される、請求項13に記載の燃料電池。
the electrode catalyst assembly comprises a plurality of electrode catalyst assemblies,
14. The method of claim 13 , wherein the proton exchange membrane is positioned between the plurality of electrocatalyst assemblies and the 2D amorphous carbon is positioned between each electrocatalyst assembly and the proton exchange membrane. A fuel cell as described.
前記電極触媒集合体が複数の電極触媒集合体を含み、
前記プロトン交換膜が複数のプロトン交換膜を含み、
前記2D非晶質炭素が前記複数のプロトン交換膜の間に配置され、かつ、前記複数のプロトン交換膜が前記複数の電極触媒集合体の間に配置される、請求項13に記載の燃料電池。
the electrode catalyst assembly comprises a plurality of electrode catalyst assemblies,
the proton exchange membrane comprises a plurality of proton exchange membranes;
14. The fuel cell of claim 13 , wherein said 2D amorphous carbon is positioned between said plurality of proton exchange membranes, and said plurality of proton exchange membranes positioned between said plurality of electrocatalyst assemblies. .
前記プロトン交換膜がフルオロポリマーである、請求項13に記載の燃料電池。 14. The fuel cell of claim 13 , wherein said proton exchange membrane is a fluoropolymer. 前記フルオロポリマーがNafion(登録商標)である、請求項17に記載の燃料電池。 18. The fuel cell of claim 17 , wherein said fluoropolymer is Nafion(R). 前記2D非晶質炭素のsp sp of the 2D amorphous carbon 3 /sp/sp 2 結合比が0.2以下である、請求項1に記載の燃料電池。2. The fuel cell according to claim 1, wherein the coupling ratio is 0.2 or less.
JP2021505189A 2018-07-30 2019-07-30 Proton-conducting two-dimensional amorphous carbon films for gas membrane and fuel cell applications Active JP7217055B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/049,034 US11114674B2 (en) 2017-02-24 2018-07-30 Proton conductive two-dimensional amorphous carbon film for gas membrane and fuel cell applications
US16/049,034 2018-07-30
PCT/SG2019/050373 WO2020027728A1 (en) 2018-07-30 2019-07-30 Proton conductive two-dimensional amorphous carbon film for gas membrane and fuel cell applications

Publications (3)

Publication Number Publication Date
JP2021533532A JP2021533532A (en) 2021-12-02
JPWO2020027728A5 true JPWO2020027728A5 (en) 2022-07-22
JP7217055B2 JP7217055B2 (en) 2023-02-02

Family

ID=69230671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021505189A Active JP7217055B2 (en) 2018-07-30 2019-07-30 Proton-conducting two-dimensional amorphous carbon films for gas membrane and fuel cell applications

Country Status (5)

Country Link
JP (1) JP7217055B2 (en)
KR (1) KR102561413B1 (en)
CN (1) CN112534611B (en)
DE (1) DE112019003128T5 (en)
WO (1) WO2020027728A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164225A (en) * 1998-11-25 2000-06-16 Toshiba Corp Separator of solid polymer electrolyte fuel cell and its manufacture
JP2005203216A (en) * 2004-01-15 2005-07-28 Nippon Telegr & Teleph Corp <Ntt> Electrolyte membrane for direct methanol fuel cell and its manufacturing method
FR2894077A1 (en) * 2005-11-30 2007-06-01 Centre Nat Rech Scient Thin film fuel cell e.g. direct methanol fuel cell, producing method, involves depositing porous carbon electrode on substrate using plasma sputtering, membrane on electrode and another electrode on membrane using plasma sputtering
JP4553861B2 (en) * 2006-03-29 2010-09-29 三洋電機株式会社 Fuel cell
KR20100107012A (en) * 2008-01-03 2010-10-04 유티씨 파워 코포레이션 Protective and precipitation layers for pem fuel cell
US9269981B2 (en) * 2009-06-23 2016-02-23 University Of The Witwatersrand Proton exchange membrane fuel cell
US9130201B2 (en) * 2009-07-20 2015-09-08 GM Global Technology Operations LLC Conductive and hydrophilic surface modification of fuel cell bipolar plate
TWI423511B (en) * 2009-12-31 2014-01-11 Ind Tech Res Inst Proton exchange membrane including organic-inorganic hybird
JP5378552B2 (en) * 2012-01-30 2013-12-25 株式会社豊田中央研究所 Amorphous carbon film, method for forming amorphous carbon film, conductive member provided with amorphous carbon film, and separator for fuel cell
TWI577078B (en) * 2012-06-29 2017-04-01 財團法人工業技術研究院 Bilayer complex proton exchange membrane and membrane electrode assembly
GB201416527D0 (en) * 2014-09-18 2014-11-05 Univ Manchester Graphene membrane
KR102360025B1 (en) * 2014-10-16 2022-02-08 삼성전자주식회사 Method for forming amorphous carbon monolayer and electronic device having the amorphous carbon monolayer
JP6014807B2 (en) * 2014-11-20 2016-10-26 株式会社プラズマイオンアシスト FUEL CELL SEPARATOR OR FUEL CELL COLLECTING MEMBER AND METHOD FOR PRODUCING THE SAME
US11192788B2 (en) * 2017-02-24 2021-12-07 National University Of Singapore Two-dimensional amorphous carbon coating and methods of growing and differentiating stem cells

Similar Documents

Publication Publication Date Title
Kong et al. Carbon nanotube and graphene‐based bioinspired electrochemical actuators
Golberg et al. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes
US10090078B2 (en) Nanocomposite films and methods of preparation thereof
Ning et al. Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors
Jung et al. Electro-active nano-composite actuator based on fullerene-reinforced Nafion
US20120177934A1 (en) Method for the production of stretchable electrodes
WO2012073998A1 (en) Graphene sheet film linked with carbon nanotubes, method for producing same and graphene sheet capacitor using same
EP2565952B1 (en) Nanogenerator and method of manufacturing the same
JP4999031B1 (en) Dielectric elastomer transducer with improved conversion efficiency
JP2009275225A (en) Carbon nanotube/polymer composite material
Folorunso et al. Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries
US8946971B2 (en) Actuator
Rasouli et al. 3D structured polypyrrole/reduced graphene oxide (PPy/rGO)-based electrode ionic soft actuators with improved actuation performance
TWI581488B (en) Method for manufacturing negative electrode plate of secondary battery
US20130070389A1 (en) Electrode for energy storage and method for manufacturing the same
US20130128412A1 (en) Electrode for energy storage and method for manufacturing the same
Fraga et al. Carbon nanotube-cement composites in the construction industry: 1952–2014. A state of the art review
JPWO2020027728A5 (en)
Ramier et al. Mechanical integrity of dye-sensitized photovoltaic fibers
Lee et al. Development of PVDF nanocomposite with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT) for soft morphing actuator
CN213511794U (en) Torque limiter friction plate, torque limiter and wind turbine generator set
KR102548447B1 (en) Piezoelectric paint composition for energy harvesting and manufacturing method thereof
JP2010275417A (en) Conductive polymer actuator material
Tunvir et al. The effect of two neighboring defects on the mechanical properties of carbon nanotubes
KR101647802B1 (en) Carbon nanotube composite Pretensioned Spun High Strength Concrete Pile and construction Methods thereof