JPWO2020012572A1 - How to manufacture heat exchangers and heat exchangers - Google Patents

How to manufacture heat exchangers and heat exchangers Download PDF

Info

Publication number
JPWO2020012572A1
JPWO2020012572A1 JP2020529891A JP2020529891A JPWO2020012572A1 JP WO2020012572 A1 JPWO2020012572 A1 JP WO2020012572A1 JP 2020529891 A JP2020529891 A JP 2020529891A JP 2020529891 A JP2020529891 A JP 2020529891A JP WO2020012572 A1 JPWO2020012572 A1 JP WO2020012572A1
Authority
JP
Japan
Prior art keywords
heat exchanger
partition member
drying
unit
wetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020529891A
Other languages
Japanese (ja)
Other versions
JP7026794B2 (en
Inventor
林 俊明
俊明 林
隆裕 川崎
隆裕 川崎
一 外川
一 外川
友季夫 小村
友季夫 小村
啓子 柴田
啓子 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020012572A1 publication Critical patent/JPWO2020012572A1/en
Application granted granted Critical
Publication of JP7026794B2 publication Critical patent/JP7026794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Abstract

仕切部材と間隔保持部材とで構成される単位構成部材(1)を複数積層した熱交換器(4)であって、仕切部材には、湿潤させる湿潤処理と、湿潤状態から乾燥させる乾燥処理とが施されている。A heat exchanger (4) in which a plurality of unit constituent members (1) composed of a partition member and an interval holding member are laminated, and the partition member is subjected to a wet treatment for moistening and a drying treatment for drying from a wet state. Is given.

Description

本発明は、給気流と排気流との間で熱交換して換気を行う換気装置の熱交換器及び熱交換器の製造方法に関する。 The present invention relates to a heat exchanger and a method for manufacturing a heat exchanger of a ventilation device that exchanges heat between a supply air flow and an exhaust flow for ventilation.

近年、暖房及び冷房を行う空調機器が発達かつ普及している。空調装置を用いた居住区域が拡大するにつれて、換気において温度及び湿度が回収できる空調用の熱交換器の重要性も高まっている。こうした空調用の熱交換器には、伝熱性と透湿性とを有する仕切板を、間隔板を挟んで間隔をおいて複数層に重ね合わせた物が従来から用いられている。仕切板は方形の平板で、間隔板は投影平面が仕切板に一致する鋸波状又は正弦波状の波形を成形した波板となっている。間隔板の波形の成形方向を交互に90度又は90度に近い角度を持たせて間隔板を仕切板の間に挟着し、一次気流を通す流路と二次気流を通す流路とを交互に設置した構成となっている。 In recent years, air conditioning equipment for heating and cooling has been developed and spread. As the living area using air conditioners expands, the importance of heat exchangers for air conditioners that can recover temperature and humidity in ventilation is also increasing. As such a heat exchanger for air conditioning, a partition plate having heat transfer property and moisture permeability is conventionally used in which a plurality of layers are laminated with a spacing plate sandwiched between them. The partition plate is a square flat plate, and the spacing plate is a corrugated plate in which a serrated or sinusoidal waveform whose projection plane coincides with the partition plate is formed. The forming direction of the waveform of the interval plate is alternately set to 90 degrees or an angle close to 90 degrees, and the interval plate is sandwiched between the partition plates, and the flow path through which the primary airflow passes and the flow path through which the secondary airflow passes alternately. It has an installed configuration.

また、間隔板に樹脂を用いて仕切板と一体成形した熱交換器、及びプラスチックダンボールを打ち抜いて風路を構成し、仕切板と接着することにより構成された熱交換器が提案されている。 Further, there have been proposed a heat exchanger integrally formed with a partition plate using a resin for a spacing plate, and a heat exchanger configured by punching out a plastic cardboard to form an air passage and adhering it to the partition plate.

仕切板と間隔板とを積層した構造の熱交換器においては、仕切板に皺又は弛みが生じると仕切板がたわみ、流路の圧力損失が大きくなってしまう。 In a heat exchanger having a structure in which a partition plate and a spacing plate are laminated, if the partition plate is wrinkled or loosened, the partition plate bends and the pressure loss in the flow path becomes large.

特許文献1には、仕切部材は、伝熱性と透湿性と気体遮蔽性とを有する機能層と、設定温度以上で収縮する熱収縮層とを有して構成され、熱収縮層の熱収縮率は、間隔保持部材に用いる樹脂の熱収縮率よりも大きいことを特徴とする全熱交換素子が提案されている。特許文献1に開示される全熱交換素子は、伝熱性と透湿性と気体遮蔽性を有する機能層と、設定温度以上で収縮する熱収縮層とを仕切部材に設け、仕切部材と間隔保持部材とを一体成形後に加熱することにより、仕切部材のたわみを解消し、流路の圧力損失の増加防止を図っている。 According to Patent Document 1, the partition member is configured to have a functional layer having heat transfer property, moisture permeability and gas shielding property, and a heat shrinkage layer that shrinks at a set temperature or higher, and the heat shrinkage rate of the heat shrinkage layer. Has proposed a total heat exchange element characterized in that it has a larger heat shrinkage rate than the resin used for the interval holding member. The total heat exchange element disclosed in Patent Document 1 is provided with a functional layer having heat transfer property, moisture permeability, and gas shielding property and a heat shrinkage layer that shrinks at a set temperature or higher in a partition member, and the partition member and a space holding member. By heating after integral molding, the deflection of the partition member is eliminated and the increase in pressure loss in the flow path is prevented.

特許第5748863号公報Japanese Patent No. 5748863

特許文献1に記載された熱交換器においては、仕切部材のたわみの解消し、流路の圧力損失の増加防止を図るために機能層と熱収縮層の2層状の特殊な仕切部材を用いる必要があるという課題があった。 In the heat exchanger described in Patent Document 1, it is necessary to use a special partition member having two layers, a functional layer and a heat shrink layer, in order to eliminate the deflection of the partition member and prevent an increase in pressure loss in the flow path. There was a problem that there was.

本発明は、上記に鑑みてなされたものであって、特殊な仕切部材を用いることなく仕切部材のたわみを抑制した熱交換器を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a heat exchanger in which the deflection of the partition member is suppressed without using a special partition member.

上述した課題を解決し、目的を達成するために、本発明は、仕切部材と間隔保持部材とで構成される単位構成部材を複数積層した熱交換器であって、仕切部材には、湿潤させる湿潤処理が施されている。また、仕切部材には、湿潤状態から乾燥させる乾燥処理が施されている。 In order to solve the above-mentioned problems and achieve the object, the present invention is a heat exchanger in which a plurality of unit constituent members composed of a partition member and a spacing member are laminated, and the partition member is wetted. Wet treatment is applied. Further, the partition member is subjected to a drying process of drying from a wet state.

本発明に係る熱交換器は、特殊な仕切部材を用いることなく仕切部材のたわみを抑制できるという効果を奏する。 The heat exchanger according to the present invention has an effect that the deflection of the partition member can be suppressed without using a special partition member.

本発明の実施の形態1に係る熱交換器の単位構成部材を示す斜視図A perspective view showing a unit component of the heat exchanger according to the first embodiment of the present invention. 実施の形態1に係る熱交換器の斜視図Perspective view of the heat exchanger according to the first embodiment 実施の形態1に係る熱交換器の製造工程を示すフローチャートFlow chart showing the manufacturing process of the heat exchanger according to the first embodiment 実施の形態1に係る熱交換器の製造工程において単位構成部材を積層した状態を示す図The figure which shows the state which laminated the unit component in the manufacturing process of the heat exchanger which concerns on Embodiment 1. 実施の形態1に係る熱交換器の全体寸法の変化と、湿潤及び乾燥の繰り返しとの関係を示す図The figure which shows the relationship between the change of the whole size of the heat exchanger which concerns on Embodiment 1 and the repetition of wetting and drying. 実施の形態1に係る熱交換器の別の製造工程のフローチャートFlow chart of another manufacturing process of the heat exchanger according to the first embodiment 本発明の実施の形態2に係る熱交換器の単位構成部材の斜視図Perspective view of the unit constituent member of the heat exchanger according to the second embodiment of the present invention. 実施の形態2に係る熱交換器の斜視図Perspective view of the heat exchanger according to the second embodiment 実施の形態2に係る熱交換器の製造工程を示すフローチャートFlow chart showing the manufacturing process of the heat exchanger according to the second embodiment 本発明の実施の形態3に係る熱交換器の第1の単位構成部材の斜視図Perspective view of the first unit component of the heat exchanger according to the third embodiment of the present invention. 実施の形態3に係る熱交換器の第2の単位構成部材の斜視図Perspective view of the second unit component of the heat exchanger according to the third embodiment. 実施の形態3に係る熱交換器の斜視図Perspective view of the heat exchanger according to the third embodiment

以下に、本発明の実施の形態に係る熱交換器及び熱交換器の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the heat exchanger and the method for manufacturing the heat exchanger according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器の単位構成部材を示す斜視図である。図2は、実施の形態1に係る熱交換器の斜視図である。単位構成部材1は、平板状の仕切部材2と波板状の間隔保持部材3とによって構成されている。仕切部材2と間隔保持部材3とは、間隔保持部材3の波型の頂点部で接着剤又は熱融着により接着されている。仕切部材2は、気体遮蔽性を備えており、給気と排気との間で気体を混合させることなく温度交換及び湿度交換を行う。仕切部材2は、セルロース繊維を主体とする無孔質の素材によって構成される。セルロース繊維を主体とする無孔質の素材には、紙を例示できる。仕切部材2は、湿度交換性能を向上させるため吸湿剤が含浸されていてもよい。間隔保持部材3は、波型に成形された加工紙から構成され、隣り合う仕切部材2との間隔を一定に保つ。間隔保持部材3は、気体遮蔽性を備えていなくてもよい。
Embodiment 1.
FIG. 1 is a perspective view showing a unit component of the heat exchanger according to the first embodiment of the present invention. FIG. 2 is a perspective view of the heat exchanger according to the first embodiment. The unit constituent member 1 is composed of a flat plate-shaped partition member 2 and a corrugated plate-shaped spacing member 3. The partition member 2 and the spacing member 3 are bonded to each other at the corrugated apex of the spacing member 3 by an adhesive or heat fusion. The partition member 2 has a gas shielding property, and exchanges temperature and humidity without mixing gas between the supply air and the exhaust gas. The partition member 2 is made of a non-porous material mainly composed of cellulose fibers. Paper can be exemplified as a non-porous material mainly composed of cellulose fibers. The partition member 2 may be impregnated with a hygroscopic agent in order to improve the humidity exchange performance. The space-holding member 3 is made of corrugated processed paper, and keeps the space between the adjacent partition members 2 constant. The interval holding member 3 does not have to have a gas shielding property.

熱交換器4は、複数個の単位構成部材1が90度ずつ向きを変えながら交互に積層されて四角柱状に構成された直交流式である。このように積層されることにより、熱交換器4を構成する風路は、四角柱の対向する2側面の対の一方を通過する第1の風路となり、他方は四角柱の対向する2側面の対の他方を通過する第2の風路となる。第1の風路には、矢印Aに沿って空気が流入し、矢印A’に沿って空気が流出する。第2の風路には、矢印Bに沿って空気が流入し、矢印B’に沿って空気が流出する。熱交換器4に構成される第1の風路及び第2の風路は独立しており、気体遮蔽性を有する仕切部材2で隔てられているため空気漏れが無い。熱交換器4は、仕切部材2を介して第1の風路を通過する空気と第2の風路を通過する空気とにおける熱及び湿度の交換を行うことができる。 The heat exchanger 4 is a right-angled flow type in which a plurality of unit constituent members 1 are alternately laminated while changing their directions by 90 degrees to form a square columnar shape. By being laminated in this way, the air passages constituting the heat exchanger 4 become the first air passages that pass through one of the pair of the two opposing sides of the square pillar, and the other is the two facing sides of the square pillar. It becomes the second air passage that passes through the other side of the pair. Air flows into the first air passage along the arrow A, and air flows out along the arrow A'. Air flows into the second air passage along the arrow B, and air flows out along the arrow B'. The first air passage and the second air passage configured in the heat exchanger 4 are independent and are separated by a partition member 2 having a gas shielding property, so that there is no air leakage. The heat exchanger 4 can exchange heat and humidity between the air passing through the first air passage and the air passing through the second air passage through the partition member 2.

熱交換器4は、熱交換換気装置において、排気風路と給気風路の交差部に配置され、排気される室内空気と給気される外気との間で熱交換を行う。空調が利用されている室内において換気を行う際に、排気される室内空気から熱回収を行うことができるため、空調への負荷を低減することができる。例えば、冷たく乾燥した外気を室内へ給気する給気流と、温かく湿度の高い室内空気を室外へ排気する排気流との間で仕切部材2を介して、温度及び湿度の交換が行われる。これにより、暖められるとともに加湿された給気が室内に供給され、冷やされるとともに除湿された排気が室外へ排出される。 The heat exchanger 4 is arranged at the intersection of the exhaust air passage and the supply air air passage in the heat exchange ventilation device, and exchanges heat between the exhausted indoor air and the supplied outside air. When ventilating in a room where air conditioning is used, heat can be recovered from the exhausted indoor air, so that the load on the air conditioning can be reduced. For example, the temperature and humidity are exchanged between the air supply that supplies cold and dry outside air into the room and the exhaust flow that exhausts warm and humid indoor air to the outside through the partition member 2. As a result, the warmed and humidified air supply is supplied to the room, and the cooled and dehumidified exhaust gas is discharged to the outside of the room.

図3は、実施の形態1に係る熱交換器の製造工程を示すフローチャートである。ステップS1において、単位構成部材1を作成する。単位構成部材作成工程であるステップS1では、波型に成形された間隔保持部材3の波型の頂点部に接着剤を塗布し、仕切部材2と間隔保持部材3とを接着する。接着した仕切部材2及び間隔保持部材3を熱交換器4のサイズとなるよう裁断することによって、単位構成部材1が作成される。 FIG. 3 is a flowchart showing a manufacturing process of the heat exchanger according to the first embodiment. In step S1, the unit component 1 is created. In step S1, which is a unit component member creating step, an adhesive is applied to the corrugated apex of the corrugated spacing member 3, and the partition member 2 and the spacing member 3 are adhered to each other. The unit constituent member 1 is created by cutting the bonded partition member 2 and the interval holding member 3 so as to have the size of the heat exchanger 4.

ステップS2において、単位構成部材1を積層する。積層工程であるステップS2では、単位構成部材1を構成する間隔保持部材3の仕切部材2と接着されていない側の波型の頂点部に接着剤を塗布し、単位構成部材1が各層ごとに直交するような向きになるよう交互に積層する。必要枚数を積層した後、接着剤を乾燥することにより各層を接着する。 In step S2, the unit constituent members 1 are laminated. In step S2, which is a laminating step, an adhesive is applied to the corrugated apex on the side that is not adhered to the partition member 2 of the interval holding member 3 constituting the unit constituent member 1, and the unit constituent member 1 is applied to each layer. Stack them alternately so that they are oriented at right angles. After laminating the required number of sheets, each layer is adhered by drying the adhesive.

ステップS3において、単位構成部材1の積層体に高湿度空気を通風して湿潤させる湿潤処理を行う。湿潤処理を行う湿潤工程であるステップS3では、恒温恒湿槽若しくは加湿器によって調湿された高湿空気、又は霧状の水滴を噴霧した空気を通風し単位構成部材1を構成する仕切部材を湿らせる。なお、恒温恒湿槽といった高湿な空間に単位構成部材1の積層体を配置してもよい。さらに、高湿な空間内で単位構成部材1の積層体に通風してもよい。高湿な空気は、20℃(DB)、95%RHを例示できる。 In step S3, a wetting treatment is performed in which the laminated body of the unit constituent members 1 is moistened by ventilating high humidity air. In step S3, which is a wetting step of performing the moistening treatment, the partition member constituting the unit component 1 is blown by high-humidity air adjusted by a constant temperature and humidity chamber or a humidifier, or air sprayed with mist-like water droplets. Moisten. The laminated body of the unit constituent member 1 may be arranged in a high humidity space such as a constant temperature and humidity constant bath. Further, the laminated body of the unit constituent members 1 may be ventilated in a highly humid space. High humidity air can be exemplified at 20 ° C. (DB), 95% RH.

ステップS4において、湿潤させた単位構成部材1の積層体を乾燥する乾燥処理を行う。乾燥処理を行う乾燥工程であるステップS4では、恒温恒湿槽又は除湿器によって調湿した乾燥空気をステップS3で湿らせた積層体に通風し、仕切部材2を乾燥させる乾燥処理を行う。なお、乾燥工程では乾燥した恒温恒湿槽に放置するか、又は乾燥した空間で通風することによって積層体を乾燥してもよい。また、高周波誘電加熱乾燥器を使用して積層体を乾燥させてもよい。この時、乾燥した空気は、50℃(DB)、20%RHを例示できる。 In step S4, a drying process is performed to dry the laminated body of the wet unit constituent members 1. In step S4, which is a drying step of performing the drying treatment, the drying air adjusted by the constant temperature and humidity chamber or the dehumidifier is ventilated through the laminate moistened in step S3, and the partition member 2 is dried. In the drying step, the laminate may be dried by leaving it in a dry constant temperature and humidity chamber or by ventilating in a dry space. Further, the laminate may be dried using a high frequency dielectric heating dryer. At this time, the dry air can be exemplified at 50 ° C. (DB) and 20% RH.

ステップS5において、ステップS3での湿潤及びステップS4での乾燥を経ることにより外形寸法が縮小し、外形が安定化した積層体の外周を裁断し寸法を調整して熱交換器4が完成する。 In step S5, the outer dimensions are reduced by the wetting in step S3 and the drying in step S4, and the outer periphery of the laminated body whose outer shape is stabilized is cut and the dimensions are adjusted to complete the heat exchanger 4.

図4は、実施の形態1に係る熱交換器の製造工程において単位構成部材を積層した状態を示す図である。単位構成部材1を積層した時点では、図4に示すように、仕切部材2における隣り合う二つの間隔保持部材3同士の間の部分の仕切部材2には、皺及び弛みが生じており、仕切部材2はたわんでいる。しかし、積層後にステップS3において高湿度空気を通風し、その後、ステップS4において乾燥させることで、仕切部材2が収縮し、仕切部材2に存在していた皺及び弛みを除去できる。そのため、セルロース繊維を主体とする無孔質の素材である紙によって仕切部材2を構成しても、皺及び弛みによる風路圧損の増加を抑制することができる。したがって、風路圧損を抑制した熱交換器4を簡単な方法でコストアップを抑えて実現することができる。また、コストアップの要因となる寸法安定性の高い樹脂膜といった材料を用いることなく、仕切部材2のたわみを抑制することができる。 FIG. 4 is a diagram showing a state in which unit constituent members are laminated in the manufacturing process of the heat exchanger according to the first embodiment. At the time when the unit constituent members 1 are laminated, as shown in FIG. 4, the partition member 2 in the portion between the two adjacent spacing members 3 in the partition member 2 has wrinkles and slacks, and the partition member 2 has wrinkles and slacks. The member 2 is bent. However, by ventilating high-humidity air in step S3 after laminating and then drying in step S4, the partition member 2 contracts, and wrinkles and slack existing in the partition member 2 can be removed. Therefore, even if the partition member 2 is made of paper, which is a non-porous material mainly composed of cellulose fibers, it is possible to suppress an increase in air passage pressure loss due to wrinkles and slack. Therefore, the heat exchanger 4 in which the air passage pressure loss is suppressed can be realized by a simple method while suppressing the cost increase. Further, it is possible to suppress the deflection of the partition member 2 without using a material such as a resin film having high dimensional stability, which causes an increase in cost.

また、紙を主体に構成された熱交換器4は、実際の使用環境における湿潤と乾燥との繰り返しにより、経年的に全体的に縮小してしまう現象が発生する。そのため熱交換器4が配置されている換気装置の風路壁と熱交換器4との間に隙間ができ、熱交換器4を通過しない空気流が発生したり、給気空気と排気空気とが混ざってしまったりするといった換気空気の漏れによる有効換気量率の低下という問題があった。 Further, the heat exchanger 4 mainly composed of paper causes a phenomenon that the heat exchanger 4 shrinks as a whole over time due to repeated wetting and drying in an actual usage environment. Therefore, a gap is formed between the air passage wall of the ventilation device in which the heat exchanger 4 is arranged and the heat exchanger 4, and an air flow that does not pass through the heat exchanger 4 is generated, or the supply air and the exhaust air are separated from each other. There was a problem that the effective ventilation volume rate was lowered due to the leakage of ventilation air such as mixing.

図5は、実施の形態1に係る熱交換器の全体寸法の変化と、湿潤及び乾燥の繰り返しとの関係を示す図である。図5に示すように、湿潤と乾燥との累積回数が少ない場合は縮小量が大きく、湿潤と乾燥との累積回数が増加するにつれて熱交換器4の全体寸法の縮小量が徐々に小さくなり、ある限界縮小寸法に向かって収束傾向を示す。そのため、ステップS3及びステップS4を行うことで、熱交換器4の全体寸法を強制的にある程度収束させることができる。熱交換器4の製造段階での寸法と限界収縮寸法との差を小さくしておくことができるため、実際の使用環境における湿潤と乾燥との繰り返しにより経年的に熱交換器4の寸法が全体的に縮小してしまう場合でも、収縮による寸法変化量を低減することができる。したがって、熱交換器4は、収縮による経時的な寸法変化を低減した分、換気空気の漏れによる有効換気量率の低下を抑制することができる。 FIG. 5 is a diagram showing the relationship between the change in the overall dimensions of the heat exchanger according to the first embodiment and the repetition of wetting and drying. As shown in FIG. 5, when the cumulative number of wet and dry is small, the amount of reduction is large, and as the cumulative number of wet and dry increases, the amount of reduction of the overall size of the heat exchanger 4 gradually decreases. It shows a tendency to converge toward a certain limit reduction dimension. Therefore, by performing steps S3 and S4, the overall dimensions of the heat exchanger 4 can be forcibly converged to some extent. Since the difference between the size at the manufacturing stage of the heat exchanger 4 and the limit shrinkage size can be kept small, the size of the heat exchanger 4 becomes the entire size over time due to repeated wetting and drying in the actual usage environment. Even in the case of shrinking, the amount of dimensional change due to shrinkage can be reduced. Therefore, the heat exchanger 4 can suppress the decrease in the effective ventilation volume rate due to the leakage of the ventilation air by the amount that the dimensional change with time due to the contraction is reduced.

図6は、実施の形態1に係る熱交換器の別の製造工程のフローチャートである。図6に示す製造工程は、ステップS4とステップS5との間に湿潤及び乾燥を設定回数行ったか否かを判断するステップS6を有している点で図3に示した製造工程と相違する。湿潤及び乾燥を設定回数行っていない場合にはステップS6でNoとなり、ステップS3に戻る。湿潤及び乾燥を設定回数行った場合は、ステップS6でYesとなり、ステップS5に進む。 FIG. 6 is a flowchart of another manufacturing process of the heat exchanger according to the first embodiment. The manufacturing process shown in FIG. 6 is different from the manufacturing process shown in FIG. 3 in that it has step S6 for determining whether or not wetting and drying have been performed a set number of times between steps S4 and S5. If wetting and drying have not been performed a set number of times, the result is No in step S6, and the process returns to step S3. When wetting and drying are performed a set number of times, the result is Yes in step S6, and the process proceeds to step S5.

湿潤及び乾燥は、積層体の寸法が限界収縮寸法になるまで繰り返すことが理想ではあるが、繰り返し回数が多いほど生産性が悪くなる。さらに、湿潤及び乾燥1回あたりの収縮量は、累積回数が増加するとともに減少するため、繰り返し回数をいたずらに増やすことは効率的ではない。また、熱交換器4の全体寸法の変化と累積回数との関係は、熱交換器の構造及び材質による。したがって、熱交換器ごとに適性回数を設定する必要があるが、現実的には、累積回数2回から5回程度が生産性と強制収縮による効果とのバランスがとれる回数である。 Ideally, wetting and drying are repeated until the size of the laminate reaches the limit shrinkage size, but the higher the number of repetitions, the lower the productivity. Furthermore, the amount of shrinkage per wet and dry operation decreases as the cumulative number of times increases, so it is not efficient to increase the number of repetitions unnecessarily. The relationship between the change in the overall dimensions of the heat exchanger 4 and the cumulative number of times depends on the structure and material of the heat exchanger. Therefore, it is necessary to set an appropriate number of times for each heat exchanger, but in reality, the cumulative number of times is about 2 to 5 times, which is the number of times that the productivity and the effect of forced shrinkage can be balanced.

このように、湿潤及び乾燥を複数回繰り返すことで、熱交換器4の全体寸法を強制的に大きく収縮させて、初期的に限界収縮寸法との差をより小さくしておくことができるため、湿潤及び乾燥を1回だけ行う場合と比較して、換気空気の漏れによる有効換気量率の低下をさらに抑制することができる。 By repeating wetting and drying a plurality of times in this way, the overall size of the heat exchanger 4 can be forcibly greatly contracted, and the difference from the limit shrinkage size can be made smaller at the initial stage. Compared with the case where wetting and drying are performed only once, the decrease in the effective ventilation rate due to the leakage of ventilation air can be further suppressed.

上記の構造により、熱交換器4は仕切部材2の皺及び弛みを改善することにより圧力損失が低減化される。また、限界収縮寸法との差が小さくなるように製造段階で収縮させることにより経時的な寸法収縮による漏れ風量の増加を低減することができる。 With the above structure, the heat exchanger 4 reduces the pressure loss by improving the wrinkles and slack of the partition member 2. Further, by shrinking at the manufacturing stage so that the difference from the limit shrinkage dimension becomes small, it is possible to reduce the increase in the amount of leaked air due to the dimensional shrinkage over time.

実施の形態1に係る熱交換器4は、住宅用又は建築物用の換気装置に用いることができる。よって、実施の形態1に係る熱交換器4は、住宅又は建築物の省エネルギー機器とすることができる。実施の形態1に係る熱交換器4は、経年劣化による漏れ率の増加を低減することができ、熱交換器の交換サイクルを延長することができることから、搭載する換気装置のメンテナンス性改善及び維持コストの低減を図ることができる。 The heat exchanger 4 according to the first embodiment can be used as a ventilation device for a house or a building. Therefore, the heat exchanger 4 according to the first embodiment can be an energy-saving device for a house or a building. Since the heat exchanger 4 according to the first embodiment can reduce the increase in the leakage rate due to aged deterioration and can extend the heat exchanger replacement cycle, the maintainability of the installed ventilation device can be improved and maintained. The cost can be reduced.

実施の形態2.
図7は、本発明の実施の形態2に係る熱交換器の単位構成部材の斜視図である。単位構成部材1は仕切部材2と間隔保持部材3とで構成されている。間隔保持部材3は、樹脂の成形品であり、外周部の枠と単位構成部材1の間隔を保持するための複数本のリブとが一体で構成されている。仕切部材2と間隔保持部材3とは、間隔保持部材3の樹脂成型時に仕切部材2をインサート成形することで一体に成形されている。ただし、仕切部材2と間隔保持部材3とは、間隔保持部材3に仕切部材2を接着剤によって接着して構成してもよい。接着により単位構成部材1を製造する場合においては、間隔保持部材3は、プラスチック段ボール等のシート材から形成してもよい。間隔保持部材3は、仕切部材2の間隔を一定に保ち、各風路における通気性を確保できれば、厚さ及び形状は限定されない。
Embodiment 2.
FIG. 7 is a perspective view of a unit component of the heat exchanger according to the second embodiment of the present invention. The unit constituent member 1 is composed of a partition member 2 and a spacing member 3. The space-holding member 3 is a molded resin product, and is integrally composed of a frame on the outer peripheral portion and a plurality of ribs for holding the space between the unit constituent members 1. The partition member 2 and the interval holding member 3 are integrally formed by insert molding the partition member 2 at the time of resin molding of the interval holding member 3. However, the partition member 2 and the spacing member 3 may be configured by adhering the partition member 2 to the spacing member 3 with an adhesive. When the unit constituent member 1 is manufactured by adhesion, the interval holding member 3 may be formed from a sheet material such as plastic corrugated cardboard. The thickness and shape of the interval holding member 3 are not limited as long as the interval between the partition members 2 can be kept constant and the air permeability in each air passage can be ensured.

図8は、実施の形態2に係る熱交換器の斜視図である。熱交換器4は、複数個の単位構成部材1が90度ずつ向きを変えながら交互に積層されることにより構成されており、間隔保持部材3の間隔を保持するためのリブ部分に接着剤を塗布するか、不図示の嵌合構造を設けることにより固定されている。単位構成部材1は、一定の間隔で積層されている。図8に示す熱交換器4においては、積層によって構成された直方体の積層方向の各4辺は、シール剤により端面側から埋められており、空気漏れは防がれている。熱交換器4の動作については実施の形態1に示した熱交換器4と同様であるため、説明を省略する。 FIG. 8 is a perspective view of the heat exchanger according to the second embodiment. The heat exchanger 4 is configured by alternately stacking a plurality of unit constituent members 1 while changing their orientations by 90 degrees, and an adhesive is applied to a rib portion for maintaining the spacing of the spacing members 3. It is fixed by coating or by providing a fitting structure (not shown). The unit constituent members 1 are laminated at regular intervals. In the heat exchanger 4 shown in FIG. 8, each of the four sides of the rectangular parallelepiped formed by stacking in the stacking direction is filled from the end face side with a sealing agent to prevent air leakage. Since the operation of the heat exchanger 4 is the same as that of the heat exchanger 4 shown in the first embodiment, the description thereof will be omitted.

図9は、実施の形態2に係る熱交換器の製造工程を示すフローチャートである。ステップS11において、仕切部材2と間隔保持部材3とにより単位構成部材1を作成する。ステップS11は、単位構成部材1を作成する単位構成部材作成工程である。ステップS12において、単位構成部材1に高湿度空気を通風する。ステップS12は、単位構成部材1を構成する仕切部材2を湿潤させる湿潤工程である。ステップS13において、単位構成部材1を乾燥させる。ステップS13は、湿潤させた仕切部材2を乾燥させる乾燥工程である。単位構成部材1を乾燥させることにより、仕切部材2が収縮し、仕切部材2に存在していた皺及び弛みが除去される。ステップS14において、皺及び弛みを除去済の単位構成部材1を複数枚積層する。ステップS14は、乾燥させた単位構成部材1を積層する積層工程である。ステップS15において、積層体の外周を裁断し寸法を調整して熱交換器4が完成する。 FIG. 9 is a flowchart showing a manufacturing process of the heat exchanger according to the second embodiment. In step S11, the unit constituent member 1 is created by the partition member 2 and the interval holding member 3. Step S11 is a unit constituent member creation step for creating the unit constituent member 1. In step S12, high humidity air is ventilated through the unit component 1. Step S12 is a wetting step of wetting the partition member 2 constituting the unit constituent member 1. In step S13, the unit component 1 is dried. Step S13 is a drying step of drying the wet partition member 2. By drying the unit constituent member 1, the partition member 2 contracts, and the wrinkles and slack existing in the partition member 2 are removed. In step S14, a plurality of unit constituent members 1 from which wrinkles and slack have been removed are laminated. Step S14 is a laminating step of laminating the dried unit constituent members 1. In step S15, the outer periphery of the laminated body is cut and the dimensions are adjusted to complete the heat exchanger 4.

実施の形態2に係る熱交換器4は、単位構成部材1の外周が、湿潤と乾燥との繰り返しによる寸法変化がほとんど無く剛性を持つ樹脂枠によって構成されている。したがって、単位構成部材1の状態で湿潤及び乾燥を行っても仕切部材2の収縮によって単位構成部材1の全体形状が反ったり縮小したりすることがなく、仕切部材2の皺及び弛みを除去することができる。 In the heat exchanger 4 according to the second embodiment, the outer periphery of the unit constituent member 1 is formed of a rigid resin frame with almost no dimensional change due to repeated wetting and drying. Therefore, even if the unit component 1 is wetted and dried, the overall shape of the unit component 1 does not warp or shrink due to the shrinkage of the partition member 2, and the wrinkles and slack of the partition member 2 are removed. be able to.

さらに、実施の形態1では積層後に湿潤及び乾燥を行うため、外部に露出していない各単位構成部材1の間の各風路の中まで湿潤したり乾燥したりするためには、湿潤又は乾燥の1回当たりの暴露時間を長くするか、熱交換器の各通路に通風して湿潤又は乾燥する必要があった。しかし、実施の形態2では、単位構成部材1の状態で湿潤及び乾燥するため、外部に露出している仕切部材2を簡単に湿潤及び乾燥することができる。したがって、送風して湿潤及び乾燥させる必要がなく、高湿槽又は恒温槽に単位構成部材1に短時間放置しておくだけで湿潤及び乾燥を行える。さらに、湿潤の工程は霧状の水滴を噴霧してさらに短時間で湿潤させることも可能となる。そのため、実施の形態1と比べ、生産性を向上させることができる。 Further, in the first embodiment, since wetting and drying are performed after laminating, wetting or drying is performed in order to wet or dry into each air passage between the unit constituent members 1 which are not exposed to the outside. It was necessary to increase the exposure time per exposure or to ventilate each passage of the heat exchanger to moisten or dry it. However, in the second embodiment, since the unit component 1 is wetted and dried, the partition member 2 exposed to the outside can be easily wetted and dried. Therefore, it is not necessary to blow air to moisten and dry, and the unit component 1 can be moistened and dried simply by leaving the unit component 1 in a high-humidity tank or a constant temperature bath for a short time. Further, in the wetting step, it is possible to spray water droplets in the form of mist to moisten in a shorter time. Therefore, the productivity can be improved as compared with the first embodiment.

実施の形態3.
図10は、本発明の実施の形態3に係る熱交換器の第1の単位構成部材の斜視図である。実施の形態3に係る熱交換器4の第1の単位構成部材11は、仕切部材2の一方の面に間隔保持部材3が配置されている。仕切部材2は、六角形状であり、より具体的には、矩形の対向する2辺の各々に二等辺三角形を繋げた形状である。間隔保持部材3は、仕切部材2の一方の二等辺三角形の等辺の一方の等辺と他方の二等辺三角形の等辺の一方とを繋いでクランク状に延在する。第1の風路には、矢印Cに沿って空気が流入し、矢印C’に沿って空気が流出する。
Embodiment 3.
FIG. 10 is a perspective view of a first unit component of the heat exchanger according to the third embodiment of the present invention. In the first unit constituent member 11 of the heat exchanger 4 according to the third embodiment, the interval holding member 3 is arranged on one surface of the partition member 2. The partition member 2 has a hexagonal shape, and more specifically, a shape in which an isosceles triangle is connected to each of two opposing sides of a rectangle. The interval holding member 3 extends in a crank shape by connecting one equilateral side of one isosceles triangle of the partition member 2 and one of the equilateral sides of the other isosceles triangle. Air flows into the first air passage along the arrow C, and air flows out along the arrow C'.

図11は、実施の形態3に係る熱交換器の第2の単位構成部材の斜視図である。実施の形態3に係る熱交換器4の第2の単位構成部材12は、仕切部材2の一方の面に間隔保持部材3が配置されている。仕切部材2は、六角形状であり、より具体的には、矩形の対向する2辺の各々に二等辺三角形を繋げた形状である。間隔保持部材3は、仕切部材2の一方の二等辺三角形の等辺の一方の等辺と他方の二等辺三角形の等辺の一方とを繋いでクランク状に延在する。第2の風路には、矢印Dに沿って空気が流入し、矢印D’に沿って空気が流出する。 FIG. 11 is a perspective view of a second unit component of the heat exchanger according to the third embodiment. In the second unit constituent member 12 of the heat exchanger 4 according to the third embodiment, the interval holding member 3 is arranged on one surface of the partition member 2. The partition member 2 has a hexagonal shape, and more specifically, it has a shape in which an isosceles triangle is connected to each of two opposing sides of a rectangle. The interval holding member 3 extends in a crank shape by connecting one equilateral side of one isosceles triangle of the partition member 2 and one of the equilateral sides of the other isosceles triangle. Air flows into the second air passage along the arrow D, and air flows out along the arrow D'.

図12は、実施の形態3に係る熱交換器の斜視図である。熱交換器4は、第1の単位構成部材11と第2の単位構成部材12とを交互に積層することにより構成されている。すなわち、実施の形態3に係る熱交換器4は、第1の単位構成部材11及び第2の単位構成部材の二種類の単位構成部材を有する。第1の単位構成部材11と第2の単位構成部材12とを交互に積層することにより、第1の風路と第2の風路とが仕切部材2を挟んで交互に配置される。実施の形態3に係る熱交換器4は、第1の風路を通る気流の方向と第2の風路を通る気流の方向とが熱交換器4の内部で対向する対向流式である。なお、実施の形態3に係る熱交換器4は、第1の風路又は第2の風路を通る気流を逆方向とすることにより、並流式で使用することもできる。熱交換時の動作及び熱交換器4の製造方法については、実施の形態1に係る熱交換器4と同様である。 FIG. 12 is a perspective view of the heat exchanger according to the third embodiment. The heat exchanger 4 is configured by alternately stacking the first unit constituent member 11 and the second unit constituent member 12. That is, the heat exchanger 4 according to the third embodiment has two types of unit constituent members, a first unit constituent member 11 and a second unit constituent member. By alternately stacking the first unit constituent member 11 and the second unit constituent member 12, the first air passage and the second air passage are alternately arranged with the partition member 2 interposed therebetween. The heat exchanger 4 according to the third embodiment is a countercurrent type in which the direction of the airflow passing through the first air passage and the direction of the airflow passing through the second air passage face each other inside the heat exchanger 4. The heat exchanger 4 according to the third embodiment can also be used in a parallel flow manner by making the airflow passing through the first air passage or the second air passage in the opposite direction. The operation at the time of heat exchange and the manufacturing method of the heat exchanger 4 are the same as those of the heat exchanger 4 according to the first embodiment.

実施の形態3に係る熱交換器4は、対向流式で熱交換を行うことにより、直交流式の実施の形態1又は実施の形態2に係る熱交換器4よりも熱交換効率を高めることができる。また、実施の形態3に係る熱交換器4は、並流式で熱交換を行うことにより、直交流式の実施の形態1又は実施の形態2に係る熱交換器4よりも、内部に生じる温度差を小さくすることができる。 The heat exchanger 4 according to the third embodiment has a higher heat exchange efficiency than the heat exchanger 4 according to the first or second embodiment of the orthogonal flow type by performing heat exchange in a countercurrent type. Can be done. Further, the heat exchanger 4 according to the third embodiment is generated inside more than the heat exchanger 4 according to the first embodiment or the second embodiment of the orthogonal flow type by performing heat exchange in the parallel flow type. The temperature difference can be reduced.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 単位構成部材、2 仕切部材、3 間隔保持部材、4 熱交換器、11 第1の単位構成部材、12 第2の単位構成部材。 1 unit component member, 2 partition member, 3 interval holding member, 4 heat exchanger, 11 first unit component member, 12 second unit component member.

Claims (7)

仕切部材と間隔保持部材とで構成される単位構成部材を複数積層した熱交換器であって、
前記仕切部材には、湿潤させる湿潤処理と、湿潤状態から乾燥させる乾燥処理とが施されていることを特徴とする熱交換器。
A heat exchanger in which a plurality of unit constituent members composed of a partition member and an interval holding member are laminated.
A heat exchanger characterized in that the partition member is subjected to a wetting treatment for moistening and a drying treatment for drying from a wet state.
前記仕切部材に、前記湿潤処理及び前記乾燥処理が複数回施されたことを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the partition member is subjected to the wetting treatment and the drying treatment a plurality of times. 前記湿潤処理及び前記乾燥処理を前記仕切部材に施した前記単位構成部材を複数積層したことを特徴とする請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a plurality of the unit constituent members obtained by subjecting the partition member to the wetting treatment and the drying treatment are laminated. 前記単位構成部材を複数積層してから前記仕切部材に前記湿潤処理及び前記乾燥処理を行ったことを特徴とする請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a plurality of the unit constituent members are laminated, and then the partition member is subjected to the wetting treatment and the drying treatment. 仕切部材と間隔保持部材とで構成される単位構成部材を複数積層する熱交換器の製造方法であって、
複数の前記単位構成部材を作成する単位構成部材作成工程と、
複数の前記単位構成部材を積層させる積層工程と、
積層した複数の前記単位構成部材を湿潤させる湿潤工程と、
湿潤させた複数の前記単位構成部材を乾燥させる乾燥工程とを含むことを特徴とする熱交換器の製造方法。
It is a method of manufacturing a heat exchanger in which a plurality of unit constituent members composed of a partition member and an interval holding member are laminated.
A unit component creating process for creating a plurality of the unit components, and
A laminating process of laminating a plurality of the unit constituent members, and
A wetting step of wetting the plurality of stacked unit components,
A method for manufacturing a heat exchanger, which comprises a drying step of drying a plurality of the wet unit components.
仕切部材と間隔保持部材とで構成される単位構成部材を複数積層する熱交換器の製造方法であって、
複数の前記単位構成部材を作成する単位構成部材作成工程と、
複数の前記単位構成部材を湿潤させる湿潤工程と、
湿潤させた複数の前記単位構成部材を乾燥させる乾燥工程と、
複数の前記単位構成部材を積層させる積層工程とを含むことを特徴とする熱交換器の製造方法。
It is a method of manufacturing a heat exchanger in which a plurality of unit constituent members composed of a partition member and an interval holding member are laminated.
A unit component creating process for creating a plurality of the unit components, and
A wetting step of wetting a plurality of the unit components and
A drying step of drying the plurality of moistened unit components,
A method for manufacturing a heat exchanger, which comprises a laminating step of laminating a plurality of the unit constituent members.
前記湿潤工程及び前記乾燥工程を複数回行うことを特徴とする請求項5又は6に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 5 or 6, wherein the wetting step and the drying step are performed a plurality of times.
JP2020529891A 2018-07-11 2018-07-11 How to make a heat exchanger Active JP7026794B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026150 WO2020012572A1 (en) 2018-07-11 2018-07-11 Heat exchanger and heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2020012572A1 true JPWO2020012572A1 (en) 2021-02-15
JP7026794B2 JP7026794B2 (en) 2022-02-28

Family

ID=69141398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529891A Active JP7026794B2 (en) 2018-07-11 2018-07-11 How to make a heat exchanger

Country Status (2)

Country Link
JP (1) JP7026794B2 (en)
WO (1) WO2020012572A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742923U (en) * 1993-12-29 1995-08-11 東洋ファイバー株式会社 Fibrous structure for total heat exchange
JPH08121986A (en) * 1994-10-24 1996-05-17 Matsushita Seiko Co Ltd Heat exchanging element
JPH08233485A (en) * 1995-02-28 1996-09-13 Daikin Ind Ltd Total heat exchanger
JPH10197185A (en) * 1997-01-13 1998-07-31 Daikin Ind Ltd Total heat exchanger
JPH11248389A (en) * 1998-02-26 1999-09-14 Sharp Corp Total heat exchanging element, and total heat exchanger
WO2008041327A1 (en) * 2006-10-03 2008-04-10 Mitsubishi Electric Corporation Total heat exchange element and total heat exchange apparatus
WO2008129669A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
KR20100000093A (en) * 2008-06-24 2010-01-06 한국에너지기술연구원 Method for manufacturing honeycomb structure of air-to-air heat exchanger and honeycomb structure manufactured using the same
CN102279152A (en) * 2011-06-20 2011-12-14 北京鑫兴海达自控仪表有限公司 Metallic humidity-sensitive material, manufacturing technology thereof and manufacturing technology of metallic humidity-sensitive element
JP2014163623A (en) * 2013-02-27 2014-09-08 Toray Ind Inc Total heat exchange element
JP2015059286A (en) * 2013-09-20 2015-03-30 三菱製紙株式会社 Paper for total heat exchange element
JP2017150802A (en) * 2016-02-23 2017-08-31 三菱製紙株式会社 Total heat exchange element sheet and total heat exchange element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742923U (en) * 1993-12-29 1995-08-11 東洋ファイバー株式会社 Fibrous structure for total heat exchange
JPH08121986A (en) * 1994-10-24 1996-05-17 Matsushita Seiko Co Ltd Heat exchanging element
JPH08233485A (en) * 1995-02-28 1996-09-13 Daikin Ind Ltd Total heat exchanger
JPH10197185A (en) * 1997-01-13 1998-07-31 Daikin Ind Ltd Total heat exchanger
JPH11248389A (en) * 1998-02-26 1999-09-14 Sharp Corp Total heat exchanging element, and total heat exchanger
WO2008041327A1 (en) * 2006-10-03 2008-04-10 Mitsubishi Electric Corporation Total heat exchange element and total heat exchange apparatus
WO2008129669A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
KR20100000093A (en) * 2008-06-24 2010-01-06 한국에너지기술연구원 Method for manufacturing honeycomb structure of air-to-air heat exchanger and honeycomb structure manufactured using the same
CN102279152A (en) * 2011-06-20 2011-12-14 北京鑫兴海达自控仪表有限公司 Metallic humidity-sensitive material, manufacturing technology thereof and manufacturing technology of metallic humidity-sensitive element
JP2014163623A (en) * 2013-02-27 2014-09-08 Toray Ind Inc Total heat exchange element
JP2015059286A (en) * 2013-09-20 2015-03-30 三菱製紙株式会社 Paper for total heat exchange element
JP2017150802A (en) * 2016-02-23 2017-08-31 三菱製紙株式会社 Total heat exchange element sheet and total heat exchange element

Also Published As

Publication number Publication date
JP7026794B2 (en) 2022-02-28
WO2020012572A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5602429B2 (en) High efficiency heat exchanger and dehumidifier
JP5110641B2 (en) Total heat exchanger
US8550151B2 (en) Heat exchanger
US11906199B2 (en) Enthalpy exchanger
US9404689B2 (en) Heat exchange matrix
JP5610777B2 (en) Total heat exchange element
JP4928295B2 (en) Sensible heat exchange element
JP7026794B2 (en) How to make a heat exchanger
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
JP2008070070A (en) Total heat exchanger
KR101443053B1 (en) Sensible heat exchange element
JP2023105326A (en) Heat exchange element and heat exchange type ventilating device using the same
CN112400091B (en) Total heat exchange element and method for manufacturing same
JP6695495B2 (en) Total heat exchange element, method for manufacturing total heat exchange element, and total heat exchange device
JP6955551B2 (en) A heat exchanger that exchanges energy between two airflows
JP2020139650A (en) Heat exchange element and heat exchange-type ventilation device using the same
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
WO2022130470A1 (en) Total heat exchange element and total heat exchange ventilation device
JP2023065737A (en) Heat exchange type ventilation device
JP6815516B2 (en) Total heat exchange element and heat exchange ventilation system
JPWO2019180834A1 (en) Total heat exchange element and total heat exchanger
JP2011102688A (en) Heat exchanger and dehumidifying air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7026794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150