JP2020139650A - Heat exchange element and heat exchange-type ventilation device using the same - Google Patents

Heat exchange element and heat exchange-type ventilation device using the same Download PDF

Info

Publication number
JP2020139650A
JP2020139650A JP2019033630A JP2019033630A JP2020139650A JP 2020139650 A JP2020139650 A JP 2020139650A JP 2019033630 A JP2019033630 A JP 2019033630A JP 2019033630 A JP2019033630 A JP 2019033630A JP 2020139650 A JP2020139650 A JP 2020139650A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange element
fiber
air passage
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019033630A
Other languages
Japanese (ja)
Inventor
栄作 熊澤
Eisaku KUMAZAWA
栄作 熊澤
洋祐 浜田
Yosuke Hamada
洋祐 浜田
元気 畑
Genki Hata
元気 畑
正人 本多
Masato Honda
正人 本多
正太郎 山口
Shotaro Yamaguchi
正太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019033630A priority Critical patent/JP2020139650A/en
Priority to PCT/JP2019/032520 priority patent/WO2020174721A1/en
Priority to US17/426,090 priority patent/US20220178630A1/en
Priority to CN201980091565.6A priority patent/CN113424007A/en
Publication of JP2020139650A publication Critical patent/JP2020139650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a heat exchange element capable of preventing heat exchange efficiency from being degraded due to a shape change of an air passage, and to provide a heat exchange-type ventilation device using the same.SOLUTION: In a heat exchange element 6, heat exchange element pieces 15 each provided with a heat transfer plate 13 having heat transfer properties and a plurality of ribs 14 disposed on one surface of the heat transfer plate 13 are stacked to form alternately a single layer of a discharge air passage 16 and a single layer of a supply air passage 17, so that heat exchange is performed between a discharge air flow 3 flowing through the discharge air passage 16 and a supply air flow 4 flowing through the supply air passage 17, via the heat transfer plate 13. The heat transfer plate 13 and the ribs 14 adhere to each other with an adhesive member. The ribs 14 are each formed from a plurality of fiber members having hygroscopic properties. The plurality of fiber members on a surface of a spacing member form a melt and adhered fiber-melt layer.SELECTED DRAWING: Figure 3

Description

本発明は、寒冷地等で使用され、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換素子とそれを用いた熱交換形換気装置に関するものである。 The present invention is used in a cold region or the like, and is a heat exchange element that exchanges heat between an exhaust flow that exhausts indoor air to the outside and a supply air flow that supplies outdoor air to the room, and heat using the same. It relates to a replaceable ventilation system.

この種の熱交換形換気装置に用いられる熱交換素子は、シール性(空気流路を流れる空気が外に漏れるのを防止するシール機能)の向上による信頼性を確保するため、例えば、次のような構造が知られている(例えば、特許文献1参照)。 The heat exchange element used in this type of heat exchange type ventilator has, for example, the following in order to ensure reliability by improving the sealing property (sealing function for preventing air flowing through the air flow path from leaking to the outside). Such a structure is known (see, for example, Patent Document 1).

図8に示すように、熱交換素子101は伝熱性を備えた機能紙103とリブ104で構成された熱交換素子ピース102を多数枚積層することによって構成されている。機能紙103の一方の面上には、紙紐105と該紙紐105を機能紙103に接着するホットメルト樹脂106で構成されたリブ104が所定間隔で平行に複数備えられている。このリブ104によって、隣接して積層される一対の機能紙間に間隙が生じ、空気流路107を形成している。熱交換素子101は、複数の間隙が積層されるように形成され、隣接する間隙におけるそれぞれの空気流路107の送風方向は、互いに直交するように構成されている。これにより、空気流路107を機能紙103毎に交互に給気流と排気流とが通風し、給気流と排気流との間で熱交換が行われる。 As shown in FIG. 8, the heat exchange element 101 is configured by laminating a large number of heat exchange element pieces 102 composed of a functional paper 103 having heat transfer properties and ribs 104. On one surface of the functional paper 103, a plurality of ribs 104 made of a paper string 105 and a hot melt resin 106 for adhering the paper string 105 to the functional paper 103 are provided in parallel at predetermined intervals. The ribs 104 form a gap between a pair of functional papers laminated adjacent to each other to form an air flow path 107. The heat exchange element 101 is formed so that a plurality of gaps are laminated, and the air flow directions of the respective air flow paths 107 in the adjacent gaps are configured to be orthogonal to each other. As a result, the air flow path 107 is alternately ventilated between the supply air flow and the exhaust flow for each functional paper 103, and heat exchange is performed between the supply air flow and the exhaust flow.

特開平11−248390号公報Japanese Unexamined Patent Publication No. 11-248390

このような従来の熱交換素子101においては、略円形の紙紐105をホットメルト樹脂106で被包したリブ104を形成し、ホットメルト樹脂106により機能紙103と接着させることで、機能紙103同士の間隔を維持する構成となっていた。しかしながら、紙紐105は剛性が低いことから、外力などによって曲がりやすく、さらに空気中の水分を吸湿した際に膨張することから、機能紙103とリブ104との接着面が剥離しやすい。これらの現象は、空気流路107の形状を維持できなくなることによって、熱交換素子101を流れる空気に偏りが生じ、熱交換効率が低下するという課題につながるものである。 In such a conventional heat exchange element 101, a rib 104 in which a substantially circular paper string 105 is wrapped with a hot melt resin 106 is formed, and the rib 104 is adhered to the functional paper 103 with the hot melt resin 106 to form the functional paper 103. It was configured to maintain the distance between each other. However, since the paper string 105 has low rigidity, it is easily bent by an external force or the like, and further expands when it absorbs moisture in the air, so that the adhesive surface between the functional paper 103 and the rib 104 is easily peeled off. These phenomena lead to a problem that the shape of the air flow path 107 cannot be maintained, so that the air flowing through the heat exchange element 101 is biased and the heat exchange efficiency is lowered.

そこで、本発明は、上記従来の課題を解決するものであり、風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子およびそれを用いた熱交換形換気装置を提供することを目的とする。 Therefore, the present invention solves the above-mentioned conventional problems, and provides a heat exchange element capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage and a heat exchange type ventilation device using the same. The purpose is to provide.

そして、この目的を達成するために、本発明に係る熱交換素子は、伝熱性を有する仕切部材と、仕切部材の一方の面に設けた複数の間隔保持部材とを備える単位構成部材を積層して排気風路と給気風路を1層ずつ交互に構成し、排気風路を流通する排気流と給気風路を流通する給気流とが仕切部材を介して熱交換する熱交換素子である。そして、仕切部材と間隔保持部材とは接着部材により互いに固着される。間隔保持部材は、吸湿性を有する複数の繊維部材により構成され、間隔保持部材の表面の複数の繊維部材は、溶融して固着した繊維溶融層を形成している。 Then, in order to achieve this object, in the heat exchange element according to the present invention, a unit constituent member including a partition member having heat transfer property and a plurality of interval holding members provided on one surface of the partition member is laminated. The exhaust air passage and the air supply air passage are alternately configured one layer at a time, and the exhaust flow flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are heat exchange elements that exchange heat through a partition member. Then, the partition member and the interval holding member are fixed to each other by the adhesive member. The space-holding member is composed of a plurality of hygroscopic fiber members, and the plurality of fiber members on the surface of the space-holding member form a fiber fusion layer that is melted and fixed.

本発明によれば、風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子およびそれを用いた熱交換形換気装置を提供することができる。 According to the present invention, it is possible to provide a heat exchange element capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage, and a heat exchange type ventilation device using the same.

図1は、本発明の実施の形態1に係る熱交換形換気装置の住宅における設置状態を示す模式図である。FIG. 1 is a schematic view showing an installation state of the heat exchange type ventilation device according to the first embodiment of the present invention in a house. 図2は、熱交換形換気装置の構造を示す模式図である。FIG. 2 is a schematic view showing the structure of the heat exchange type ventilator. 図3は、熱交換形換気装置を構成する熱交換素子の構造を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the structure of the heat exchange element constituting the heat exchange type ventilator. 図4は、熱交換素子を構成するリブの構造を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the structure of the ribs constituting the heat exchange element. 図5は、繊維溶融層を有するリブの製造方法を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a method of manufacturing a rib having a fiber melt layer. 図6は、熱交換素子の製造方法を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a method of manufacturing a heat exchange element. 図7は、熱交換素子を構成するリブの構造の変形例を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing a modified example of the structure of the ribs constituting the heat exchange element. 図8は、従来の熱交換素子の分解斜視図である。FIG. 8 is an exploded perspective view of a conventional heat exchange element.

本発明に係る熱交換素子は、伝熱性を有する仕切部材と、仕切部材の一方の面に設けた複数の間隔保持部材とを備える単位構成部材を積層して排気風路と給気風路を1層ずつ交互に構成し、排気風路を流通する排気流と給気風路を流通する給気流とが仕切部材を介して熱交換する熱交換素子である。そして、仕切部材と間隔保持部材とは接着部材により互いに固着され、間隔保持部材は、吸湿性を有する複数の繊維部材により構成され、間隔保持部材の表面の複数の繊維部材は、溶融して固着した繊維溶融層を形成している構造となっている。 In the heat exchange element according to the present invention, an exhaust air passage and an air supply air passage are formed by stacking a unit constituent member including a partition member having heat transfer property and a plurality of interval holding members provided on one surface of the partition member. It is a heat exchange element that is composed of layers alternately, and the exhaust flow flowing through the exhaust air passage and the air supply air flowing through the air supply air passage exchange heat through a partition member. Then, the partition member and the interval holding member are fixed to each other by an adhesive member, the interval holding member is composed of a plurality of fiber members having hygroscopicity, and the plurality of fiber members on the surface of the interval holding member are melted and fixed. It has a structure that forms a fused fiber layer.

こうした構成とすることで、繊維溶融層によって間隔保持部材の表面での剛性が向上するため、熱交換素子に外力あるいは温湿度変化が作用しても間隔保持部材が変形しにくくなる。つまり、間隔保持部材の表面に繊維溶融層がない場合に比べて、熱交換素子の風路が変形しにくくなる。これにより、熱交換素子を流れる空気の偏りが解消され、熱交換素子の風路内を均一な風速で送風させることができるので、熱交換素子の熱交換効率を高く維持することができる。言い換えれば、風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子とすることができる。 With such a configuration, the rigidity of the surface of the space-holding member is improved by the fiber fusion layer, so that the space-holding member is less likely to be deformed even if an external force or a change in temperature and humidity acts on the heat exchange element. That is, the air passage of the heat exchange element is less likely to be deformed as compared with the case where the fiber fusion layer is not provided on the surface of the spacing member. As a result, the bias of the air flowing through the heat exchange element is eliminated, and the air in the air passage of the heat exchange element can be blown at a uniform wind speed, so that the heat exchange efficiency of the heat exchange element can be maintained high. In other words, it can be a heat exchange element capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage.

また、間隔保持部材は、仕切部材との接着面に平面形状の繊維溶融層を有することが好ましい。これにより、略円形の間隔保持部材を用いた場合と比べて、間隔保持部材と仕切部材との間の接着面積が増加するため、接着強度を高めることができ、間隔保持部材と仕切部材との間での接着剥がれによる風路の閉塞を抑制することができる。つまり、間隔保持部材と仕切部材との間で剥離が生じにくく、換気量の低下を抑制できる熱交換素子とすることができる。 Further, the space-holding member preferably has a planar fiber melt layer on the adhesive surface with the partition member. As a result, the adhesive area between the interval holding member and the partition member is increased as compared with the case where the substantially circular interval holding member is used, so that the adhesive strength can be increased, and the interval holding member and the partition member can be separated from each other. It is possible to suppress the blockage of the air passage due to the peeling of the adhesive between them. That is, it is possible to obtain a heat exchange element that is less likely to cause peeling between the interval holding member and the partition member and can suppress a decrease in ventilation volume.

また、間隔保持部材の側面には、複数の繊維部材が露出していることが好ましい。これにより、風路内に生じた水分が露出する繊維部材間を通って内部の繊維部材にも達しやすくなるので、風路内の水分に起因した仕切部材の変形をさらに抑制することができる。つまり、熱交換素子の風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子とすることができる。 Further, it is preferable that a plurality of fiber members are exposed on the side surface of the spacing member. As a result, the moisture generated in the air passage can easily reach the internal fiber members through the exposed fiber members, so that the deformation of the partition member due to the moisture in the air passage can be further suppressed. That is, the heat exchange element can be a heat exchange element capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage of the heat exchange element.

また、間隔保持部材は、複数の繊維部材が撚られた構成としてもよい。繊維部材が撚られることで、間隔保持部材の張力が増加し、吸湿による間隔保持部材の寸法変化が抑制され、間隔保持部材と仕切部材の接着剥がれによる風路の閉塞を抑制することができる。つまり、間隔保持部材と仕切部材との間で剥離が生じにくく、換気量の低下を抑制できる熱交換素子とすることができる。 Further, the interval holding member may have a structure in which a plurality of fiber members are twisted. By twisting the fiber member, the tension of the space-holding member is increased, the dimensional change of the space-holding member due to moisture absorption is suppressed, and the air passage is suppressed from being blocked by the adhesive peeling of the space-holding member and the partition member. That is, it is possible to obtain a heat exchange element that is less likely to cause peeling between the interval holding member and the partition member and can suppress a decrease in ventilation volume.

以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
まず、図1、図2を参照して、本発明の実施の形態1に係る熱交換素子6を備えた熱交換形換気装置2の概略について説明する。図1は、熱交換素子6を備える熱交換形換気装置2の設置例を示す概要図である。図2は、熱交換形換気装置2の構造を示す模式図である。
(Embodiment 1)
First, the outline of the heat exchange type ventilation device 2 provided with the heat exchange element 6 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing an installation example of a heat exchange type ventilator 2 including a heat exchange element 6. FIG. 2 is a schematic view showing the structure of the heat exchange type ventilator 2.

図1において、家1の屋内に熱交換形換気装置2が設置されている。熱交換形換気装置2は、屋内の空気と屋外の空気とを熱交換しながら換気する装置である。 In FIG. 1, a heat exchange type ventilation device 2 is installed indoors of the house 1. The heat exchange type ventilator 2 is a device that ventilates while exchanging heat between indoor air and outdoor air.

図1に示す通り、排気流3は、黒色矢印のごとく、熱交換形換気装置2を介して屋外に放出される。排気流3は、屋内から屋外に排出される空気の流れである。また、給気流4は、白色矢印のごとく、熱交換形換気装置2を介して室内にとり入れられる。給気流4は、屋外から屋内に取り込まれる空気の流れである。例えば日本の冬季を挙げると、排気流3は20〜25℃であるのに対して、給気流4は氷点下に達することもある。熱交換形換気装置2は、換気を行うとともに、この換気時に、排気流3の熱を給気流4へと伝達し、不用な熱の放出を抑制している。 As shown in FIG. 1, the exhaust flow 3 is discharged to the outside through the heat exchange type ventilator 2 as shown by the black arrow. The exhaust flow 3 is a flow of air discharged from indoors to outdoors. Further, the air supply airflow 4 is taken into the room via the heat exchange type ventilation device 2 as shown by the white arrow. The air supply 4 is a flow of air taken in from the outside to the inside. For example, in winter in Japan, the exhaust stream 3 has a temperature of 20 to 25 ° C., whereas the air flow 4 may reach below freezing. The heat exchange type ventilation device 2 ventilates and transfers the heat of the exhaust flow 3 to the supply airflow 4 at the time of this ventilation to suppress the release of unnecessary heat.

熱交換形換気装置2は、図2に示す通り、本体ケース5、熱交換素子6、排気ファン7、内気口8、排気口9、給気ファン10、外気口11、給気口12を備えている。本体ケース5は、熱交換形換気装置2の外枠である。本体ケース5の外周には、内気口8、排気口9、外気口11、給気口12が形成されている。内気口8は、排気流3を熱交換形換気装置2に吸い込む吸込口である。排気口9は、排気流3を熱交換形換気装置2から屋外に吐き出す吐出口である。外気口11は、給気流4を熱交換形換気装置2に吸い込む吸込口である。給気口12は、給気流4を熱交換形換気装置2から屋内に吐き出す吐出口である。 As shown in FIG. 2, the heat exchange type ventilation device 2 includes a main body case 5, a heat exchange element 6, an exhaust fan 7, an inside air port 8, an exhaust port 9, an air supply fan 10, an outside air port 11, and an air supply port 12. ing. The main body case 5 is an outer frame of the heat exchange type ventilator 2. An inside air port 8, an exhaust port 9, an outside air port 11, and an air supply port 12 are formed on the outer periphery of the main body case 5. The inside air port 8 is a suction port for sucking the exhaust flow 3 into the heat exchange type ventilation device 2. The exhaust port 9 is a discharge port that discharges the exhaust flow 3 from the heat exchange type ventilation device 2 to the outside. The outside air port 11 is a suction port for sucking the air supply air 4 into the heat exchange type ventilation device 2. The air supply port 12 is a discharge port that discharges the air supply air 4 indoors from the heat exchange type ventilation device 2.

本体ケース5の内部には、熱交換素子6、排気ファン7、給気ファン10が取り付けられている。熱交換素子6は、排気流3と給気流4との間で熱交換を行うための部材である。排気ファン7は、排気流3を内気口8から吸い込み、排気口9から吐出するための送風機である。給気ファン10は、給気流4を外気口11から吸い込み、給気口12から吐出するための送風機である。排気ファン7により吸い込まれた排気流3は、熱交換素子6、排気ファン7を経由し、排気口9から屋外へと排出される。また、給気ファン10により吸い込まれた給気流4は、給気ファン10を経由し、給気口12から屋内へと供給される。 A heat exchange element 6, an exhaust fan 7, and an air supply fan 10 are mounted inside the main body case 5. The heat exchange element 6 is a member for exchanging heat between the exhaust flow 3 and the supply airflow 4. The exhaust fan 7 is a blower for sucking the exhaust flow 3 from the inside air port 8 and discharging it from the exhaust port 9. The air supply fan 10 is a blower for sucking the air flow 4 from the outside air port 11 and discharging it from the air supply port 12. The exhaust flow 3 sucked by the exhaust fan 7 is discharged to the outside from the exhaust port 9 via the heat exchange element 6 and the exhaust fan 7. Further, the air flow 4 sucked by the air supply fan 10 is supplied indoors from the air supply port 12 via the air supply fan 10.

次に、図3、図4を参照して熱交換素子6について説明する。図3は、熱交換形換気装置2を構成する熱交換素子6の構造を示す分解斜視図である。図4は、熱交換素子6を構成するリブ14の構造を示す部分断面図である。 Next, the heat exchange element 6 will be described with reference to FIGS. 3 and 4. FIG. 3 is an exploded perspective view showing the structure of the heat exchange element 6 constituting the heat exchange type ventilator 2. FIG. 4 is a partial cross-sectional view showing the structure of the rib 14 constituting the heat exchange element 6.

図3に示すように、熱交換素子6は、略正方形の伝熱板13の一方の面の上に複数のリブ14が接着された複数の熱交換素子ピース15から構成される。熱交換素子6は、熱交換素子ピース15を、一段ずつ互い違いにリブ14が直交するように、向きを変えて複数枚積層することで、排気流3が通風する排気風路16と給気流4が通風する給気風路17が形成され、排気流3と給気流4とが交互に直交して流れるようになり、これらの間で熱交換を可能にしている。 As shown in FIG. 3, the heat exchange element 6 is composed of a plurality of heat exchange element pieces 15 in which a plurality of ribs 14 are adhered on one surface of a substantially square heat transfer plate 13. The heat exchange element 6 is formed by stacking a plurality of heat exchange element pieces 15 in different directions so that the ribs 14 are orthogonal to each other step by step, so that the exhaust air passage 16 through which the exhaust flow 3 passes and the air flow 4 The air supply air passage 17 through which air is ventilated is formed, and the exhaust flow 3 and the air supply air 4 flow alternately at right angles with each other, enabling heat exchange between them.

熱交換素子ピース15は、熱交換素子6を構成する一つのユニットである。熱交換素子ピース15は、略正方形の伝熱板13の一方の面上に複数のリブ14が接着して形成されている。伝熱板13上のリブ14は、その長手方向が伝熱板13の一方の端辺から、これに対向する他方の端辺に向かうように形成されている。リブ14のぞれぞれは、伝熱板13の面上に所定の間隔で並列配置されている。具体的には、図3に示すように、熱交換素子ピース15を構成する伝熱板13の一方の面の上には、リブ14の長手方向が、伝熱板13の端辺13aから対向する端辺13cに向かうように接着して形成されている。加えて、それぞれのリブ14は、端辺13aに垂直な伝熱板13の端辺13bから、これに対向する端辺13dに向けて所定の間隔を設けて配置されている。 The heat exchange element piece 15 is one unit constituting the heat exchange element 6. The heat exchange element piece 15 is formed by adhering a plurality of ribs 14 on one surface of a substantially square heat transfer plate 13. The rib 14 on the heat transfer plate 13 is formed so that its longitudinal direction is directed from one end side of the heat transfer plate 13 to the other end side facing the rib 14. Each of the ribs 14 is arranged in parallel on the surface of the heat transfer plate 13 at predetermined intervals. Specifically, as shown in FIG. 3, the longitudinal direction of the rib 14 faces the end side 13a of the heat transfer plate 13 on one surface of the heat transfer plate 13 constituting the heat exchange element piece 15. It is formed by adhering so as to face the end side 13c. In addition, each rib 14 is arranged at a predetermined distance from the end side 13b of the heat transfer plate 13 perpendicular to the end side 13a toward the end side 13d facing the end side 13b.

伝熱板13は、伝熱板13を挟んで排気流3と給気流4とが流れたときに熱交換をするための板状の部材である。伝熱板13は、セルロース繊維をベースとした伝熱紙によって形成され、伝熱性と透湿性と吸湿性とを備えている。ただし、紙の材質はこれに限定されるものではない。伝熱板13は、例えば、ポリウレタン、ポリエチレンテレフタレートをベースとした透湿樹脂膜、または、セルロース繊維、セラミック繊維、ガラス繊維をベースとした紙材料等を用いることができる。伝熱板13は伝熱性を備えた薄いシートであって、気体が透過しない性質のものを用いることができる。 The heat transfer plate 13 is a plate-shaped member for exchanging heat when the exhaust flow 3 and the supply air flow 4 flow across the heat transfer plate 13. The heat transfer plate 13 is formed of heat transfer paper based on cellulose fibers, and has heat transfer property, moisture permeability, and hygroscopic property. However, the material of the paper is not limited to this. As the heat transfer plate 13, for example, a moisture-permeable resin film based on polyurethane or polyethylene terephthalate, or a paper material based on cellulose fiber, ceramic fiber, or glass fiber can be used. The heat transfer plate 13 is a thin sheet having heat transfer properties, and one having a property of not allowing gas to permeate can be used.

複数のリブ14は、伝熱板13の対向する一対の辺の間に設けられ、一方の端辺から他方の端辺に向かうように形成されている。リブ14は、伝熱板13を積み重ねるときに伝熱板13間に排気流3または給気流4を通風させるための間隙、すなわち排気風路16または給気風路17を形成する部材である。 The plurality of ribs 14 are provided between a pair of opposite sides of the heat transfer plate 13, and are formed so as to go from one end side to the other end side. The rib 14 is a member that forms a gap for allowing the exhaust flow 3 or the air supply air 4 to pass between the heat transfer plates 13 when the heat transfer plates 13 are stacked, that is, the exhaust air passage 16 or the air supply air passage 17.

複数のリブ14のそれぞれは、図4に示すように、断面が平らな面(平面14a)を有する略扁平形状となっている。リブ14は、複数の繊維部材40と、リブ14の表面において繊維部材40が溶融して互いに溶着した繊維溶融層42とを有して構成される。具体的には、リブ14は、複数の繊維部材40が撚られて構成された本体部と、伝熱板13と対向する本体部の平面14a部分に形成された繊維溶融層42とを有して構成され、リブ14の側面14bには、本体部(複数の繊維部材40)が露出している。そして、リブ14は、リブ14の平面14a部分(繊維溶融層42部分)において接着部材41を介して伝熱板13と固着されている。 As shown in FIG. 4, each of the plurality of ribs 14 has a substantially flat shape having a flat surface (plane surface 14a). The rib 14 is composed of a plurality of fiber members 40 and a fiber melting layer 42 in which the fiber members 40 are melted and welded to each other on the surface of the rib 14. Specifically, the rib 14 has a main body portion formed by twisting a plurality of fiber members 40, and a fiber melting layer 42 formed on a flat surface 14a portion of the main body portion facing the heat transfer plate 13. The main body portion (plurality of fiber members 40) is exposed on the side surface 14b of the rib 14. The rib 14 is fixed to the heat transfer plate 13 via the adhesive member 41 on the flat surface 14a portion (fiber melting layer 42 portion) of the rib 14.

繊維部材40のそれぞれは、断面が略円形状であり、リブ14と同じ方向に延びる部材である。そして、複数の繊維部材40は、互いを所定の方向に撚り合わせることによってリブ14を構成する。繊維部材40の材質としては、吸湿性を有し、一定の強度があれば用いることができ、ビニロン、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリアミド等の樹脂部材を用いることができる。 Each of the fiber members 40 has a substantially circular cross section and extends in the same direction as the rib 14. Then, the plurality of fiber members 40 form the rib 14 by twisting each other in a predetermined direction. As the material of the fiber member 40, it can be used as long as it has hygroscopicity and has a certain strength, and a resin member such as vinylon, polypropylene, polyethylene, polyethylene terephthalate, or polyamide can be used.

繊維溶融層42は、複数の繊維部材40が溶融して互いに溶着(固着)した溶融層であり、リブ14の平面14a部分に選択的に形成される。なお、繊維部材40が互いに溶融しているので、繊維溶融層42の剛性は向上している。結果としてリブ14の剛性も向上する。 The fiber melt layer 42 is a melt layer in which a plurality of fiber members 40 are melted and welded (fixed) to each other, and is selectively formed on the flat surface 14a portion of the rib 14. Since the fiber members 40 are melted together, the rigidity of the fiber melt layer 42 is improved. As a result, the rigidity of the rib 14 is also improved.

次に、図5を参照して、繊維溶融層42を有するリブ14の製造方法について説明する。図5は、繊維溶融層42を有するリブ14の製造方法を示す部分断面図である。ここで、図5の(a)は、加熱プレス機70に対して複数の繊維部材40からなるリブ14を取り付ける第1工程を示す図である。図5の(b)は、複数の繊維部材40からなるリブ14を加熱プレスして繊維溶融層42を有するリブ14とする第2工程を示す図である。図5の(c)は、加熱プレス機70から繊維溶融層42を有するリブ14を取り外す第3工程を示す図である。 Next, a method for manufacturing the rib 14 having the fiber melting layer 42 will be described with reference to FIG. FIG. 5 is a partial cross-sectional view showing a method of manufacturing the rib 14 having the fiber melting layer 42. Here, FIG. 5A is a diagram showing a first step of attaching the rib 14 made of a plurality of fiber members 40 to the heating press 70. FIG. 5B is a diagram showing a second step of heat-pressing a rib 14 composed of a plurality of fiber members 40 to obtain a rib 14 having a fiber melting layer 42. FIG. 5 (c) is a diagram showing a third step of removing the rib 14 having the fiber melting layer 42 from the heating press 70.

まず、第1工程として、図5の(a)に示すように、加熱プレス機70の台座の上面に、略円形状のリブ14(繊維溶融層42が形成されていない複数の繊維部材40からなるリブ14)をそれぞれ所定の位置に配置する。 First, as a first step, as shown in FIG. 5A, from a plurality of fiber members 40 in which a substantially circular rib 14 (fiber melt layer 42 is not formed) is formed on the upper surface of the pedestal of the heating press machine 70. Ribs 14) are arranged at predetermined positions.

次に、第2工程として、図5の(b)に示すように、加熱プレス機70のプレス板を上方から略円形状のリブ14に押し当てるとともに、加熱プレス機70の台座およびプレス板をそれぞれ加熱する。具体的には、加熱プレス機70によってリブ14を加圧することにより、リブ14は加圧した方向につぶれた形状となり、リブ14の断面は扁平形状へと変化する。この際、加圧した面を加熱することにより、加熱プレス機70の台座とプレス板とが接触する部分(リブ14の平面14aとなる部分)の繊維部材40が溶融(溶着)して繊維溶融層42が選択的に形成される。そして、加熱プレス機70の台座およびプレス板の加熱を停止する。 Next, as a second step, as shown in FIG. 5B, the press plate of the heating press 70 is pressed against the substantially circular rib 14 from above, and the pedestal and the press plate of the heating press 70 are pressed. Heat each. Specifically, by pressurizing the rib 14 with the heating press 70, the rib 14 has a crushed shape in the pressed direction, and the cross section of the rib 14 changes to a flat shape. At this time, by heating the pressurized surface, the fiber member 40 at the portion where the pedestal of the heating press 70 and the press plate are in contact (the portion where the flat surface 14a of the rib 14 is formed) is melted (welded) to melt the fibers. The layer 42 is selectively formed. Then, the heating of the pedestal and the press plate of the heating press 70 is stopped.

ここで、加圧手段としては、既知の手法を用いることができ、例えば、平板プレスあるいはロールプレスが挙げられる。この場合、加熱プレス機70のプレス板の加圧方向の位置(プレス板と台座との間隔)を調節することによって、繊維溶融層42を有するリブ14の幅および高さ(熱交換素子6の風路の高さ)を容易に調整することができる。なお、プレス板と台座とを略平行とすることで、繊維溶融層42を略平行な平面形状とすることができ、伝熱板13同士をより平行に保ちやすくなるため好適である。 Here, as the pressurizing means, a known method can be used, and examples thereof include a flat plate press and a roll press. In this case, by adjusting the position of the press plate of the heating press machine 70 in the pressurizing direction (distance between the press plate and the pedestal), the width and height of the rib 14 having the fiber melting layer 42 (heat exchange element 6). The height of the air passage) can be easily adjusted. By making the press plate and the pedestal substantially parallel, the fiber melting layer 42 can be formed into a substantially parallel planar shape, and the heat transfer plates 13 can be easily kept parallel to each other, which is preferable.

また、加熱手段としては、既知の手法を用いることができ、例えば、熱風あるいは火炎、電磁誘導による非接触加熱あるいはヒータによる接触加熱方式が挙げられる。加圧を伴う場合、特に接触式の加熱が好ましい。なお、本実施の形態では、加圧しながら加熱することにより、繊維溶融層42を形成しているが、一度加熱して溶融させたものを再硬化前に加圧することで繊維溶融層42を形成してもよい。このとき、加圧時に冷却も同時に行うことにより、加圧時の形状をより固定化することができる。 Further, as the heating means, a known method can be used, and examples thereof include hot air or flame, non-contact heating by electromagnetic induction, or contact heating method by a heater. When pressurized, contact-type heating is particularly preferable. In the present embodiment, the fiber melt layer 42 is formed by heating while pressurizing, but the fiber melt layer 42 is formed by pressurizing the material once heated and melted before re-curing. You may. At this time, by performing cooling at the same time as pressurization, the shape at the time of pressurization can be more fixed.

最後に、第3工程として、図5の(c)に示すように、加熱プレス機70のプレス板を上方に外して、台座から繊維溶融層42を有するリブ14を一つ一つ取り出す。 Finally, as a third step, as shown in FIG. 5C, the press plate of the heating press 70 is removed upward, and the ribs 14 having the fiber melting layer 42 are taken out one by one from the pedestal.

以上のようにして、表面(平面14a部分)に複数の繊維部材40が溶融して固着した繊維溶融層42が選択的に形成されたリブ14が製造される。 As described above, the rib 14 in which the fiber melting layer 42 in which the plurality of fiber members 40 are melted and fixed to the surface (flat surface 14a portion) is selectively formed is manufactured.

次に、図6を参照して、本実施の形態1に係る熱交換素子6の製造方法について説明する。図6は、熱交換素子6の製造方法を示す部分断面図である。ここで、図6の(a)は、熱交換素子ピース15を形成する第4工程を示す図である。図6の(b)は、熱交換素子ピース15を積層して積層体を形成する第5工程を示す図である。図6の(c)は、積層体を積層方向に圧縮して熱交換素子6を形成する第6工程を示す図である。 Next, a method of manufacturing the heat exchange element 6 according to the first embodiment will be described with reference to FIG. FIG. 6 is a partial cross-sectional view showing a method of manufacturing the heat exchange element 6. Here, FIG. 6A is a diagram showing a fourth step of forming the heat exchange element piece 15. FIG. 6B is a diagram showing a fifth step of laminating the heat exchange element pieces 15 to form a laminated body. FIG. 6C is a diagram showing a sixth step of compressing the laminated body in the stacking direction to form the heat exchange element 6.

まず、第4工程として、図6の(a)に示すように、伝熱板13の一方の面の上に、複数のリブ14(繊維溶融層42を有するリブ14)をそれぞれ所定の位置に配置して、リブ14の下面側の繊維溶融層42(図4に示す下面側の平面14a部分)に塗られた接着部材41(図示せず)によって固着する。これにより、伝熱板13の一方の面上に複数のリブ14(繊維溶融層42を有するリブ14)を有する熱交換素子ピース15が形成される。 First, as a fourth step, as shown in FIG. 6A, a plurality of ribs 14 (ribs 14 having a fiber melting layer 42) are placed at predetermined positions on one surface of the heat transfer plate 13. The ribs 14 are arranged and fixed by an adhesive member 41 (not shown) coated on the fiber melting layer 42 (the flat surface 14a portion on the lower surface side shown in FIG. 4) on the lower surface side of the rib 14. As a result, the heat exchange element piece 15 having a plurality of ribs 14 (ribs 14 having the fiber melting layer 42) is formed on one surface of the heat transfer plate 13.

次に、第5工程として、図6の(b)に示すように、熱交換素子ピース15を、上下方向に一段ずつ互い違いにリブ14が直交するように、向きを変えて複数枚積層することで、熱交換素子6の前駆体である積層体6aを形成する。この際、リブ14の上面側の繊維溶融層42(図4に示す上面側の平面14a部分)には接着部材41(図示せず)が塗られている。 Next, as a fifth step, as shown in FIG. 6B, a plurality of heat exchange element pieces 15 are laminated in different directions so that the ribs 14 are alternately orthogonal to each other in the vertical direction one step at a time. Then, the laminated body 6a which is a precursor of the heat exchange element 6 is formed. At this time, the adhesive member 41 (not shown) is coated on the fiber melting layer 42 on the upper surface side of the rib 14 (the flat surface 14a portion on the upper surface side shown in FIG. 4).

最後に、第6工程として、図6の(c)に示すように、積層体6aを熱交換素子ピース15の積層方向(上下方向)から圧縮することにより、積層方向に所定の間隔(リブ14の高さ相当する間隔)を有する風路(排気風路16、給気風路17)を形成して熱交換素子6を形成する。この際、リブ14は、リブ14に塗られた接着部材41によって別の熱交換素子ピース15の伝熱板13と固着される。 Finally, as a sixth step, as shown in FIG. 6 (c), the laminated body 6a is compressed from the laminating direction (vertical direction) of the heat exchange element piece 15 so as to have a predetermined interval (rib 14) in the laminating direction. The heat exchange element 6 is formed by forming an air passage (exhaust air passage 16, air supply air passage 17) having an interval (interval corresponding to the height of the air). At this time, the rib 14 is fixed to the heat transfer plate 13 of another heat exchange element piece 15 by the adhesive member 41 coated on the rib 14.

以上のようにして、繊維溶融層42が選択的に形成されたリブ14を有する熱交換素子6が製造される。 As described above, the heat exchange element 6 having the rib 14 on which the fiber melting layer 42 is selectively formed is manufactured.

ここで、従来技術の課題について、図3、4を参照して再度説明する。 Here, the problems of the prior art will be described again with reference to FIGS. 3 and 4.

冬季のような室外の湿度が低い季節では、給気流4が排気流3に比べて湿度が低く、排気流3に乗った空気中の水蒸気が排気風路16を通過すると、リブ14に付着し、繊維部材40が水蒸気を吸湿し、繊維部材40は長手方向及び繊維径方向に向かって膨張する。このとき、リブ14と伝熱板13との間で寸法変化が生じるため、接着部材41が破断し、剥離が生じる。伝熱板13とリブ14との間で剥離が生じることで、給気流4の圧がかかり、伝熱板13がたわみ、排気風路16が閉塞する。排気風路16が部分的に閉塞すると、部分的に風量が減少することになり、伝熱板13に対して不均一な風量バランスで排気流3が流れるため、熱交換素子6の熱交換効率が減少する。 In a season when the outdoor humidity is low, such as winter, the humidity of the air supply 4 is lower than that of the exhaust stream 3, and when the water vapor in the air on the exhaust stream 3 passes through the exhaust air passage 16, it adheres to the rib 14. , The fiber member 40 absorbs water vapor, and the fiber member 40 expands in the longitudinal direction and the fiber radial direction. At this time, since the dimensional change occurs between the rib 14 and the heat transfer plate 13, the adhesive member 41 breaks and peels off. When the heat transfer plate 13 and the rib 14 are separated from each other, the pressure of the air supply air 4 is applied, the heat transfer plate 13 is bent, and the exhaust air passage 16 is blocked. When the exhaust air passage 16 is partially blocked, the air volume is partially reduced, and the exhaust flow 3 flows with an uneven air volume balance with respect to the heat transfer plate 13, so that the heat exchange efficiency of the heat exchange element 6 is high. Decreases.

一方、本実施の形態1に係る熱交換素子6は、風路(排気風路16、給気風路17)を構成するリブ14として、表面に繊維溶融層42が形成されたリブ14を用いて構成されている。このため、排気流3の空気中の水分の吸湿による、伝熱板13及びリブ14の寸法変化から生じる、接着剥がれを抑制することが可能であり、排気風路16の閉塞を抑制することができる。よって、熱交換素子6を流れる空気の偏りを解消し、熱交換素子6の排気風路16内を均一な風速で送風させることで熱交換効率を高く維持できる。 On the other hand, the heat exchange element 6 according to the first embodiment uses ribs 14 having a fiber melting layer 42 formed on the surface as ribs 14 constituting the air passages (exhaust air passage 16, air supply air passage 17). It is configured. Therefore, it is possible to suppress the adhesive peeling caused by the dimensional change of the heat transfer plate 13 and the rib 14 due to the absorption of moisture in the air of the exhaust flow 3, and it is possible to suppress the blockage of the exhaust air passage 16. it can. Therefore, the heat exchange efficiency can be maintained high by eliminating the bias of the air flowing through the heat exchange element 6 and blowing air in the exhaust air passage 16 of the heat exchange element 6 at a uniform wind speed.

以上のように、本実施の形態1に係る熱交換素子6によれば、以下の効果を享受することができる。 As described above, according to the heat exchange element 6 according to the first embodiment, the following effects can be enjoyed.

(1)熱交換素子6は、複数の繊維部材40が溶融して固着した繊維溶融層42が表面に形成された複数のリブ14によって構成されている。これにより、リブ14の表面での剛性が向上するため、熱交換素子6に外力あるいは温湿度変化が作用してもリブ14が変形しにくくなる。つまり、リブ14の表面に繊維溶融層42がない場合に比べて、熱交換素子6の風路が変形しにくくなる。これにより、熱交換素子6を流れる空気の偏りが解消され、熱交換素子6の風路内を均一な風速で送風させることができるので、熱交換素子の熱交換効率を高く維持することができる。言い換えれば、風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子6とすることができる。 (1) The heat exchange element 6 is composed of a plurality of ribs 14 having a fiber melting layer 42 formed on the surface of which a plurality of fiber members 40 are melted and fixed. As a result, the rigidity of the surface of the rib 14 is improved, so that the rib 14 is less likely to be deformed even if an external force or a change in temperature and humidity acts on the heat exchange element 6. That is, the air passage of the heat exchange element 6 is less likely to be deformed than when the fiber melting layer 42 is not provided on the surface of the rib 14. As a result, the bias of the air flowing through the heat exchange element 6 is eliminated, and the air in the air passage of the heat exchange element 6 can be blown at a uniform wind speed, so that the heat exchange efficiency of the heat exchange element can be maintained high. .. In other words, the heat exchange element 6 can suppress a decrease in heat exchange efficiency due to a change in the shape of the air passage.

(2)リブ14は、伝熱板13との接着面に平面形状(平面14a)の繊維溶融層42を有して構成されている。これにより、略円形のリブ14を用いた場合と比べて、リブ14と伝熱板13との間の接着面積が増加するため、接着強度を高めることができ、リブ14と伝熱板13との間での接着剥がれによる風路(排気風路16、給気風路17)の閉塞を抑制することができる。つまり、リブ14と伝熱板13との間で剥離が生じにくく、換気量の低下を抑制できる熱交換素子6とすることができる。 (2) The rib 14 is configured to have a fiber melting layer 42 having a flat shape (flat surface 14a) on an adhesive surface with the heat transfer plate 13. As a result, the adhesive area between the rib 14 and the heat transfer plate 13 is increased as compared with the case where the substantially circular rib 14 is used, so that the adhesive strength can be increased, and the rib 14 and the heat transfer plate 13 can be combined with each other. It is possible to suppress the blockage of the air passages (exhaust air passage 16, air supply air passage 17) due to the adhesive peeling between the two. That is, the heat exchange element 6 can be formed in which the rib 14 and the heat transfer plate 13 are less likely to be peeled off and the decrease in the ventilation volume can be suppressed.

(3)リブ14は、リブ14の側面14bにおいて複数の繊維部材40が露出して構成されている。これにより、風路内に生じた水分が露出する繊維部材40間を通って内部の繊維部材40にも達しやすくなるので、風路内の水分に起因した伝熱板13の変形を抑制することができる。つまり、熱交換素子6の風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子6とすることができる。 (3) The rib 14 is formed by exposing a plurality of fiber members 40 on the side surface 14b of the rib 14. As a result, the moisture generated in the air passage easily reaches the internal fiber member 40 through the exposed fiber members 40, so that the deformation of the heat transfer plate 13 due to the moisture in the air passage can be suppressed. Can be done. That is, the heat exchange element 6 can be made capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage of the heat exchange element 6.

(4)リブ14は、複数の繊維部材40が撚られて構成されている。すなわち、繊維部材40が撚られることで、リブ14としての張力が増加し、吸湿によるリブ14の寸法変化が抑制され、リブ14と伝熱板13の接着剥がれによる風路の閉塞を抑制することができる。つまり、リブ14と伝熱板13との間で剥離が生じにくく、換気量の低下を抑制できる熱交換素子6とすることができる。 (4) The rib 14 is formed by twisting a plurality of fiber members 40. That is, by twisting the fiber member 40, the tension as the rib 14 is increased, the dimensional change of the rib 14 due to moisture absorption is suppressed, and the blockage of the air passage due to the adhesive peeling of the rib 14 and the heat transfer plate 13 is suppressed. Can be done. That is, the heat exchange element 6 can be formed in which the rib 14 and the heat transfer plate 13 are less likely to be peeled off and the decrease in the ventilation volume can be suppressed.

(5)本実施の形態1に係る熱交換素子6を用いて熱交換形換気装置を構成することで、熱交換素子6の風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換形換気装置を実現することができる。 (5) By configuring the heat exchange type ventilation device using the heat exchange element 6 according to the first embodiment, it is possible to suppress a decrease in heat exchange efficiency due to a change in the shape of the air passage of the heat exchange element 6. A possible heat exchange type ventilator can be realized.

以上、本発明に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be appreciated by those skilled in the art that these embodiments are exemplary and that various modifications are possible for each of these components and combinations of processing processes, and that such modifications are also within the scope of the present invention. By the way.

本実施の形態では、扁平形状のリブ14の平面14a部分のみに繊維溶融層42を設けたが、これに限られない。例えば、図7に示すように、リブ14は、略円形状のリブ14の全表面に繊維溶融層42aを設けるように構成されてもよい。本構成について、図7を参照して説明する。 In the present embodiment, the fiber melting layer 42 is provided only on the flat surface 14a portion of the flat rib 14, but the present invention is not limited to this. For example, as shown in FIG. 7, the rib 14 may be configured to provide the fiber melting layer 42a on the entire surface of the substantially circular rib 14. This configuration will be described with reference to FIG.

図7は、熱交換素子6を構成するリブ14の構造の変形例を示す部分断面図である。変形例での熱交換素子6では、リブ14は、略円形状の本体部(複数の繊維部材40)と、その全表面を被覆する繊維溶融層42aとを有して構成される。つまり、リブ14は、表面に撚られた繊維部材40が露出していない構成となっている。この場合、繊維部材40の隙間を通るリブ14内部への吸湿は抑制されるものの、リブ14の表面での剛性がさらに向上するため、熱交換素子6に外力あるいは温湿度変化が作用してもリブ14がさらに変形しにくくなる。つまり、風路の形状変化に伴う熱交換効率の低下を抑制することが可能な熱交換素子6とすることができる。 FIG. 7 is a partial cross-sectional view showing a modified example of the structure of the rib 14 constituting the heat exchange element 6. In the heat exchange element 6 in the modified example, the rib 14 is configured to have a substantially circular main body portion (plurality of fiber members 40) and a fiber melt layer 42a covering the entire surface thereof. That is, the rib 14 has a structure in which the fiber member 40 twisted on the surface is not exposed. In this case, although moisture absorption into the rib 14 passing through the gap of the fiber member 40 is suppressed, the rigidity on the surface of the rib 14 is further improved, so that even if an external force or a temperature / humidity change acts on the heat exchange element 6. The rib 14 is less likely to be deformed. That is, the heat exchange element 6 can be made capable of suppressing a decrease in heat exchange efficiency due to a change in the shape of the air passage.

また、リブ14の本体部において、複数の繊維部材40が撚られてできた空隙に、繊維部材40よりも吸湿性が低い接着部材を含浸させるように構成してもよい。これにより、繊維部材40が吸湿し、繊維部材40が膨張により寸法変化しようとしても、吸湿性が低い接着部材が固着することにより、リブ14の寸法変化をさらに抑制することができる。なお、吸湿性が低い接着部材としては、例えば、溶液系接着剤(フェノール樹脂等)または化学反応によって硬化する無溶媒系接着剤(エポキシ樹脂系等)をベースとしてモノマーに親水基(例えば、ヒドロキシ基等)を含まない接着剤を用いることができる。 Further, in the main body of the rib 14, the gap formed by twisting the plurality of fiber members 40 may be impregnated with an adhesive member having a lower hygroscopicity than the fiber member 40. As a result, even if the fiber member 40 absorbs moisture and the fiber member 40 tries to change its size due to expansion, the adhesive member having low hygroscopicity is fixed, so that the change in the size of the rib 14 can be further suppressed. As an adhesive member having low hygroscopicity, for example, a solution-based adhesive (phenolic resin or the like) or a solvent-free adhesive (epoxy resin-based or the like) that is cured by a chemical reaction is used as a base, and a hydrophilic group (for example, hydroxy) is added to the monomer. An adhesive that does not contain a group or the like can be used.

以上で使用した文言に関し、本実施の形態の熱交換素子6は請求項の「熱交換素子」に相当する。また、伝熱板13は請求項の「仕切部材」、リブ14は請求項の「間隔保持部材」、熱交換素子ピース15は請求項の「単位構成部材」に相当する。また、繊維部材40は請求項の「繊維部材」、接着部材41は請求項の「接着部材」、繊維溶融層42は請求項の「繊維溶融層」に相当する。さらに、熱交換形換気装置2は請求項の「熱交換形換気装置」、排気流3は請求項の「排気流」、給気流4は請求項の「給気流」、排気風路16は請求項の「排気風路」、給気風路は請求項の「給気風路」に相当する。 With respect to the wording used above, the heat exchange element 6 of the present embodiment corresponds to the "heat exchange element" of the claim. Further, the heat transfer plate 13 corresponds to the "partition member" of the claim, the rib 14 corresponds to the "interval holding member" of the claim, and the heat exchange element piece 15 corresponds to the "unit component member" of the claim. Further, the fiber member 40 corresponds to the "fiber member" of the claim, the adhesive member 41 corresponds to the "adhesive member" of the claim, and the fiber melt layer 42 corresponds to the "fiber melt layer" of the claim. Further, the heat exchange type ventilator 2 is the "heat exchange type ventilator" of the claim, the exhaust flow 3 is the "exhaust flow" of the claim, the air supply 4 is the "supply air flow" of the claim, and the exhaust air passage 16 is claimed. The "exhaust air passage" and the air supply air passage of the item correspond to the "air supply air passage" of the claim.

以上のように、本実施の形態に係る熱交換素子は、外力などによるリブの寸法変化が要因で生じる風路閉塞を抑制し高い熱交換効率を維持できるものであって、熱交換形換気装置等に用いる熱交換素子として有用である。 As described above, the heat exchange element according to the present embodiment can suppress the air passage blockage caused by the dimensional change of the rib due to an external force or the like and maintain high heat exchange efficiency, and is a heat exchange type ventilation device. It is useful as a heat exchange element used for such purposes.

1 家
2 熱交換形換気装置
3 排気流
4 給気流
5 本体ケース
6 熱交換素子
6a 積層体
7 排気ファン
8 内気口
9 排気口
10 給気ファン
11 外気口
12 給気口
13 伝熱板
14 リブ
14a 平面
14b 側面
15 熱交換素子ピース
16 排気風路
17 給気風路
40 繊維部材
41 接着部材
42 繊維溶融層
42a 繊維溶融層
101 熱交換素子
102 熱交換素子ピース
103 機能紙
104 リブ
105 紙紐
106 ホットメルト樹脂
107 空気流路
1 House 2 Heat exchange type ventilator 3 Exhaust flow 4 Air supply 5 Main body case 6 Heat exchange element 6a Laminated body 7 Exhaust fan 8 Inside air port 9 Exhaust port 10 Air supply fan 11 Outside air port 12 Air supply port 13 Heat transfer plate 14 Ribs 14a Flat surface 14b Side surface 15 Heat exchange element piece 16 Exhaust air passage 17 Air supply air passage 40 Fiber member 41 Adhesive member 42 Fiber fusion layer 42a Fiber fusion layer 101 Heat exchange element 102 Heat exchange element piece 103 Functional paper 104 Rib 105 Paper string 106 Hot Melt resin 107 Air flow path

Claims (5)

伝熱性を有する仕切部材と、前記仕切部材の一方の面に設けた複数の間隔保持部材とを備える単位構成部材を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが前記仕切部材を介して熱交換する熱交換素子であって、
前記仕切部材と前記間隔保持部材とは接着部材により互いに固着され、
前記間隔保持部材は、吸湿性を有する複数の繊維部材により構成され、
前記間隔保持部材の表面の複数の前記繊維部材は、溶融して固着した繊維溶融層を形成していることを特徴とする熱交換素子。
The exhaust air passage and the air supply air passage are alternately configured one layer at a time by laminating a unit constituent member including a partition member having heat transfer property and a plurality of interval holding members provided on one surface of the partition member. A heat exchange element in which the exhaust flow flowing through the exhaust air passage and the air supply air flowing through the air supply air passage exchange heat with each other via the partition member.
The partition member and the space-holding member are fixed to each other by an adhesive member, and are fixed to each other.
The spacing member is composed of a plurality of hygroscopic fiber members.
A heat exchange element characterized in that a plurality of the fiber members on the surface of the interval holding member form a fiber melt layer that is melted and fixed.
前記間隔保持部材は、仕切部材との接着面に平面形状の前記繊維溶融層を有することを特徴とする請求項1に記載の熱交換素子。 The heat exchange element according to claim 1, wherein the interval holding member has the fiber melt layer having a planar shape on an adhesive surface with a partition member. 前記間隔保持部材の側面には、複数の前記繊維部材が露出していることを特徴とする請求項1または2に記載の熱交換素子。 The heat exchange element according to claim 1 or 2, wherein a plurality of the fiber members are exposed on the side surface of the interval holding member. 前記間隔保持部材は、複数の前記繊維部材が撚られて構成されていることを特徴とする請求項1〜3のいずれか一項に記載の熱交換素子。 The heat exchange element according to any one of claims 1 to 3, wherein the interval holding member is formed by twisting a plurality of the fiber members. 請求項1〜4のいずれか一項に記載された前記熱交換素子を搭載したことを特徴とする熱交換形換気装置。 A heat exchange type ventilator equipped with the heat exchange element according to any one of claims 1 to 4.
JP2019033630A 2019-02-27 2019-02-27 Heat exchange element and heat exchange-type ventilation device using the same Pending JP2020139650A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019033630A JP2020139650A (en) 2019-02-27 2019-02-27 Heat exchange element and heat exchange-type ventilation device using the same
PCT/JP2019/032520 WO2020174721A1 (en) 2019-02-27 2019-08-21 Heat exchange element and heat exchange-type ventilation device using same
US17/426,090 US20220178630A1 (en) 2019-02-27 2019-08-21 Heat exchange element and heat exchange-type ventilation device using same
CN201980091565.6A CN113424007A (en) 2019-02-27 2019-08-21 Heat exchange element and heat exchange type ventilator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033630A JP2020139650A (en) 2019-02-27 2019-02-27 Heat exchange element and heat exchange-type ventilation device using the same

Publications (1)

Publication Number Publication Date
JP2020139650A true JP2020139650A (en) 2020-09-03

Family

ID=72264712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033630A Pending JP2020139650A (en) 2019-02-27 2019-02-27 Heat exchange element and heat exchange-type ventilation device using the same

Country Status (1)

Country Link
JP (1) JP2020139650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025786Y1 (en) * 1970-03-31 1975-08-02
JPS63280635A (en) * 1987-05-12 1988-11-17 Mitsubishi Electric Corp Production of heat-exchanging element
EP0449414A2 (en) * 1990-02-22 1991-10-02 Siderise (Holdings) Limited Manufacture of mineral fibre products in layer form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025786Y1 (en) * 1970-03-31 1975-08-02
JPS63280635A (en) * 1987-05-12 1988-11-17 Mitsubishi Electric Corp Production of heat-exchanging element
EP0449414A2 (en) * 1990-02-22 1991-10-02 Siderise (Holdings) Limited Manufacture of mineral fibre products in layer form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Similar Documents

Publication Publication Date Title
US8550151B2 (en) Heat exchanger
US11906199B2 (en) Enthalpy exchanger
KR102060704B1 (en) Heat exchange matrix
JPH1054691A (en) Shim of heat exchanger, and member for heat exchanger, and heat exchanger, and its manufacture
JP2006329499A (en) Heat exchanger
WO2020045003A1 (en) Heat exchange element and heat exchange type ventilator using same
JP2020139650A (en) Heat exchange element and heat exchange-type ventilation device using the same
WO2019124286A1 (en) Heat exchange element, and heat exchange type ventilation device employing same
JP2020180735A (en) Heat exchange element and heat exchange-type ventilation device using the same
JP2020051655A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
US20220178630A1 (en) Heat exchange element and heat exchange-type ventilation device using same
JP2020034242A (en) Heat exchange element and heat exchange type ventilation device using the same
WO2022018991A1 (en) Heat exchanging element and heat exchange-type ventilator using same
JP2022140233A (en) Method for producing heat exchange element
JP2023105326A (en) Heat exchange element and heat exchange type ventilating device using the same
JP2021113650A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2021050833A (en) Heat exchange element and heat exchange ventilation device using the same
JP2021105496A (en) Heat exchange element and heat exchange ventilation device including the same
WO2021131725A1 (en) Heat exchange element and heat exchange ventilation device using same
JP2020051704A (en) Method for manufacturing heat exchange element, and heat exchange element
JP2020034243A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2020180736A (en) Heat exchange element and heat exchange-type ventilation device using the same
KR200462636Y1 (en) Heat exchanger element and heat exchanger having the same
JP2020051656A (en) Heat exchange element and heat exchange type ventilation device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516