JPWO2019222545A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019222545A5
JPWO2019222545A5 JP2021514944A JP2021514944A JPWO2019222545A5 JP WO2019222545 A5 JPWO2019222545 A5 JP WO2019222545A5 JP 2021514944 A JP2021514944 A JP 2021514944A JP 2021514944 A JP2021514944 A JP 2021514944A JP WO2019222545 A5 JPWO2019222545 A5 JP WO2019222545A5
Authority
JP
Japan
Prior art keywords
grna
item
grnas
nuclease
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021514944A
Other languages
Japanese (ja)
Other versions
JP2021523745A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/032735 external-priority patent/WO2019222545A1/en
Publication of JP2021523745A publication Critical patent/JP2021523745A/en
Publication of JPWO2019222545A5 publication Critical patent/JPWO2019222545A5/ja
Priority to JP2024060965A priority Critical patent/JP2024079842A/en
Pending legal-status Critical Current

Links

Description

本発明の新規な特徴は、添付の特許請求の範囲に、詳細に示されている。本発明の特徴および利点のより良い理解は、本発明の原理が利用されている例証的な実施形態を示す以下の詳細な説明、および付随の図面(本明細書では、「図(Figure)」や「図(FIG.)」とも呼ばれる)を参照して、得られる。
特定の実施形態では、例えば、以下が提供される:
(項目1)
ゲノム内の目的のゲノム領域にハイブリダイズ可能な1組のガイドRNA(gRNA)を識別するための方法であって、
1組のgRNAを設計することであって、前記1組のgRNA中の各gRNAが、前記1組のガイドRNAからの少なくとも1つの他のガイドRNAの、目的の前記ゲノム領域内の複数の標的部位中の異なる標的部位から少なくとも30塩基離れている、前記複数の標的部位からの標的部位にハイブリダイズ可能である、設計すること
を含む方法。
(項目2)
前記標的部位が、前記異なる標的部位から多くても170塩基離れている、項目1に記載の方法。
(項目3)
前記1組のgRNA中の少なくとも1つのgRNAの配列が、目的の前記ゲノム領域に相補的である、項目1に記載の方法。
(項目4)
前記1組のgRNA中の少なくとも1つのgRNAの配列が、目的の前記ゲノム領域に部分的に相補的である、項目1に記載の方法。
(項目5)
目的の前記ゲノム領域に部分的に相補的な前記1組のgRNA中の前記少なくとも1つのgRNAの配列が、目的の前記ゲノム領域と比較して1、2、3、4、5個または5個よりも多いミスマッチを含む、項目4に記載の方法。
(項目6)
前記1組のgRNA中の各gRNAが、約17~約42塩基の長さである、項目1に記載の方法。
(項目7)
前記1組のgRNA中の各gRNAが、約20塩基の長さである、項目2に記載の方法。
(項目8)
前記1組のgRNA中の各gRNAが、約20塩基のガイド配列を含み、約22~約80塩基の長さの定常領域をさらに含む、項目1に記載の方法。
(項目9)
前記1組のgRNA中の各gRNAの前記ガイド配列が、目的の前記ゲノム領域に選択的にハイブリダイズする、項目8に記載の方法。
(項目10)
最初の組のgRNA中の各gRNAが、約100塩基の長さである、項目1に記載の方法。
(項目11)
目的の前記ゲノム領域が、遺伝子のコード領域を含む、項目1に記載の方法。
(項目12)
目的の前記ゲノム領域が、前記遺伝子のエクソンを含む、項目11に記載の方法。
(項目13)
目的の前記ゲノム領域が、遺伝子のファミリーを含む、項目1に記載の方法。
(項目14)
目的の前記ゲノム領域が、遺伝子の前記ファミリーからの1つまたは複数のコード領域を含む、項目13に記載の方法。
(項目15)
目的の前記ゲノム領域が、前記ゲノムの非コード領域を含む、項目1に記載の方法。
(項目16)
前記非コード領域が、調節エレメントである、項目15に記載の方法。
(項目17)
前記調節エレメントが、シス調節エレメントまたはトランス調節エレメントである、項目16に記載の方法。
(項目18)
前記シス調節エレメントが、プロモーター、エンハンサーおよびサイレンサーからなる群から選択される、項目17に記載の方法。
(項目19)
目的の前記ゲノム領域が、5kb超、10kb超、15kb超、20kb超、50kb超、または100kb超にわたる、項目13に記載の方法。
(項目20)
前記1組のgRNAが、少なくとも2個、少なくとも3個または少なくとも4個のgRNAを含む、項目1に記載の方法。
(項目21)
前記1組のガイドRNAからの少なくとも1つのgRNAが、改変を含む、項目1に記載の方法。
(項目22)
前記改変が、2’-O-C 1~4 アルキル、例えば、2’-O-メチル(2’-OMe)、2’-デオキシ(2’-H)、2’-O-C 1~3 アルキル-O-C 1~3 アルキル、例えば、2’-メトキシエチル(2’-MOE)、2’-フルオロ(2’-F)、2’-アミノ(2’-NH2)、2’-アラビノシル(2’-アラビノ)ヌクレオチド、2’-F-アラビノシル(2’-F-アラビノ)ヌクレオチド、2’-ロックド核酸(LNA)ヌクレオチド、2’-非ロックド核酸(ULNA)ヌクレオチド、L形態の糖(L-糖)および4’-チオリボシルヌクレオチドからなる群から選択される、項目21に記載の方法。
(項目23)
前記改変が、ホスホロチオエート、ホスホノカルボキシレート、チオホスホノカルボキシレート、アルキルホスホネートおよびホスホロジチオエートからなる群から選択されるヌクレオチド間結合改変である、項目21に記載の方法。
(項目24)
前記改変が、2-チオウラシル(2-チオU)、2-チオシトシン(2-チオC)、4-チオウラシル(4-チオU)、6-チオグアニン(6-チオG)、2-アミノアデニン(2-アミノA)、2-アミノプリン、シュードウラシル、ヒポキサンチン、7-デアザグアニン、7-デアザ-8-アザグアニン、7-デアザアデニン、7-デアザ-8-アザアデニン、5-メチルシトシン(5-メチルC)、5-メチルウラシル(5-メチルU)、5-ヒドロキシメチルシトシン、5-ヒドロキシメチルウラシル、5,6-デヒドロウラシル、5-プロピニルシトシン、5-プロピニルウラシル、5-エチニルシトシン、5-エチニルウラシル、5-アリルウラシル(5-アリルU)、5-アリルシトシン(5-アリルC)、5-アミノアリルウラシル(5-アミノアリルU)、5-アミノアリル-シトシン(5-アミノアリルC)、脱塩基ヌクレオチド、Z塩基、P塩基、非構造核酸(UNA)、イソグアニン(イソG)、イソシトシン(イソC)および5-メチル-2-ピリミジンからなる群から選択される、項目21に記載の方法。
(項目25)
前記複数の標的部位の標的部位が、Cas9、C2c1、C2c3およびCpf1からなる群から選択されるヌクレアーゼのPAM部位に隣接する、項目1に記載の方法。
(項目26)
前記ヌクレアーゼが、Cas9である、項目25に記載の方法。
(項目27)
前記ヌクレアーゼが、不活性化Cas9である、項目25に記載の方法。
(項目28)
前記1組のgRNAが、細胞において目的の前記ゲノム領域内の遺伝子をノックアウトするように設計される、項目25に記載の方法。
(項目29)
前記細胞が、ヒト初代細胞、ヒト不死化細胞、ヒト誘導多能性幹細胞、マウス胚性幹細胞およびチャイニーズハムスター卵巣細胞からなる群から選択される、項目28に記載の方法。
(項目30)
前記設計することが、コンピュータによって行われる、項目1に記載の方法。
(項目31)
1組のガイドRNA(gRNA)を含むキットであって、前記1組のgRNA中の各gRNAが、項目1から29のいずれか一項に記載の方法によって設計されている、キット。
(項目32)
ゲノム内の目的のゲノム領域にハイブリダイズ可能な1組のgRNAを含むキットであって、前記1組のgRNA中の各gRNAが、
前記1組のガイドRNAからの少なくとも1つの他のガイドRNAの、目的の前記ゲノム領域内の複数の標的部位中の異なる標的部位から少なくとも30塩基離れている、前記複数の標的部位からの標的部位にハイブリダイズ可能である、
キット。
(項目33)
前記標的部位が、前記異なる標的部位から多くても170塩基離れている、項目32に記載のキット。
(項目34)
前記1組のgRNAが、少なくとも2個、少なくとも3個または少なくとも4個のgRNAを含む、項目32に記載のキット。
(項目35)
Cas9、C2c1、C2c3およびCpf1からなる群から選択される1つまたは複数のヌクレアーゼをさらに含む、項目32に記載のキット。
(項目36)
複数の組のgRNAをさらに含み、各組のgRNAが、前記ゲノム内の異なる目的のゲノム領域にハイブリダイズ可能である、項目32に記載のキット。
(項目37)
前記1つまたは複数のヌクレアーゼが、少なくとも1つのgRNAにカップリングされている、項目35に記載のキット。
(項目38)
ある種のゲノムの遺伝子にハイブリダイズするための1つまたは複数のガイドRNA(gRNA)を選択するための方法であって、
前記遺伝子にハイブリダイズする最初の組のガイドRNAの複数のガイドRNAの各々について、前記ゲノム内の潜在的ガイドRNAハイブリダイズ部位に対するミスマッチの数を数え上げることによってオフターゲット値を計算すること
を含む方法。
(項目39)
前記複数のgRNA中の各gRNAが、100塩基の長さである、項目38に記載の方法。
(項目40)
前記複数のgRNA中の各gRNAの約20塩基が、目的のゲノム領域内の異なる標的部位にハイブリダイズする、項目39に記載の方法。
(項目41)
ミスマッチの前記数が、0である、項目38に記載の方法。
(項目42)
ミスマッチの前記数が、1である、項目38に記載の方法。
(項目43)
ミスマッチの前記数が、2である、項目39に記載の方法。
(項目44)
ミスマッチの前記数が、3である、項目43に記載の方法。
(項目45)
前記計算することが、前記最初の組のガイドRNAの各gRNAについてのミスマッチの前記数の総和を得る、項目38に記載の方法。
(項目46)
前記計算することが、ミスマッチの前記数をシャードへと組織化する、項目38に記載の方法。
(項目47)
前記オフターゲット値が、参照ゲノムに対して計算される、項目38に記載の方法。
(項目48)
前記参照ゲノムが、ヒト参照ゲノムである、項目47に記載の方法。
(項目49)
前記参照ゲノムが、Homo sapiens、Mus musculus、Cricetulus griseus、Rattus Norvegicus、Danio rerioおよびCaenorhabditis elegansからなる群から選択される、項目47に記載の方法。
(項目50)
前記オフターゲット値が、参照ゲノムの1,000,000bpにわたり、または参照ゲノムにわたり決定される、項目38に記載の方法。
(項目51)
前記オフターゲット値が、ヌクレアーゼの結合部位のデータベースに対して計算される、項目38に記載の方法。
(項目52)
前記ヌクレアーゼが、Cas9、C2c1、C2c3およびCpf1からなる群から選択される、項目51に記載の方法。
(項目53)
前記ヌクレアーゼが、Cas9である、項目52に記載の方法。
(項目54)
前記データベースが、前記ヌクレアーゼの10,000を超えるか、50,000を超えるか、100,000を超えるか、150,000を超えるか、200,000を超えるか、250,000を超えるか、300,000を超えるか、350,000を超えるか、400,000を超えるか、450,000を超えるか、500,000を超えるか、550,000を超えるか、600,000を超えるか、650,000を超えるか、700,000を超えるか、750,000を超えるか、800,000を超えるか、850,000を超えるか、900,000を超えるか、950,000を超えるか、または1,000,000を超える結合部位を含む、項目51に記載の方法。
(項目55)
ヌクレアーゼ結合部位の前記データベースが、前記ヌクレアーゼの2500万を超えるか、5000万を超えるか、7500万を超えるか、1億を超えるか、1億2500万を超えるか、1億5000万を超えるか、1億7500万を超えるか、2億を超えるか、2億2500万を超えるか、2億5000万を超えるか、2億7500万を超えるか、または3億を超える結合部位を含む、項目51に記載の方法。
(項目56)
ミスマッチの前記数を数え上げることによって前記オフターゲット値を前記計算することが、コンピュータによって行われる、項目38に記載の方法。
(項目57)
ある種のゲノムの遺伝子にハイブリダイズするための1つまたは複数のガイドRNA(gRNA)を設計するための方法であって、
前記遺伝子の複数の転写物から転写物を選択することと、
最初の組のgRNAを識別することであって、前記最初の組のgRNA中の各gRNAが、選択された前記転写物の前記遺伝子内の異なる標的部位にハイブリダイズする、識別することと
を含む方法。
(項目58)
前記最初の組のgRNA中の各gRNAが、約17~約42塩基の長さである、項目57に記載の方法。
(項目59)
前記最初の組のgRNA中の各gRNAが、約20塩基の長さである、項目58に記載の方法。
(項目60)
前記最初の組のgRNA中の各gRNAが、約20塩基のガイド配列および約22~約80塩基の長さの定常領域を含む、項目57に記載の方法。
(項目61)
前記最初の組のgRNA中の各gRNAの前記ガイド配列が、標的部位に選択的にハイブリダイズする、項目60に記載の方法。
(項目62)
前記最初の組のgRNA中の各gRNAが、約100塩基の長さである、項目57に記載の方法。
(項目63)
選択された前記転写物が、データベース中の前記遺伝子の最も豊富な転写物である、項目57に記載の方法。
(項目64)
選択された前記転写物が、前記遺伝子の前記複数の転写物の最も長い転写物である、項目57に記載の方法。
(項目65)
選択された前記転写物中に存在する前記遺伝子内のコード領域を選択することをさらに含む、項目57に記載の方法。
(項目66)
選択された前記コード領域が、初期位置エクソンである、項目65に記載の方法。
(項目67)
前記初期位置エクソンが、前記遺伝子の前半に存在する、項目66に記載の方法。
(項目68)
前記初期位置エクソンが、前記遺伝子の第1、第2、第3、第4、第5または第6エクソンである、項目66に記載の方法。
(項目69)
選択された前記コード領域が、前記遺伝子の前記複数の転写物の中で最も豊富な転写物の選択されたエクソンである、項目65に記載の方法。
(項目70)
選択された前記エクソンが、前記複数の転写物において1つまたは複数の他のエクソンよりも長い、項目69に記載の方法。
(項目71)
選択された前記エクソンが、少なくとも50bp、少なくとも55bp、少なくとも60bp、少なくとも65bp、少なくとも70bpまたは少なくとも75bpである、項目69に記載の方法。
(項目72)
選択された前記エクソンが、前記複数の転写物において長さおよび豊富さの両方に基づいて選択される、項目69に記載の方法。
(項目73)
前記最初の組のgRNAの各gRNAについてのオフターゲット値を決定することをさらに含む、項目57に記載の方法。
(項目74)
前記オフターゲット値が、前記種の前記ゲノムにわたり決定される、項目73に記載の方法。
(項目75)
前記ゲノムが、前記種の参照ゲノムである、項目74に記載の方法。
(項目76)
前記種の前記参照ゲノムが、染色体および位置が決定されていないコンティグを含有する完全な参照アセンブリである、項目75に記載の方法。
(項目77)
前記ゲノム内の複数の標的部位と比較して前記最初の組のgRNA中の各gRNAについてのミスマッチの数を数え上げることによって前記オフターゲット値を決定することをさらに含む、項目73に記載の方法。
(項目78)
前記複数の標的部位が、前記ゲノムにわたる全ての可能なCasヌクレアーゼ結合部位を含む、項目77に記載の方法。
(項目79)
前記複数の標的部位が、少なくとも1000個、10,000個、100,000個、200,000個、300,000個、400,000個、500,000個、600,000個、700,000個、800,000個、900,000個、1,000,000個、2,000,000個または3,000,000個の標的部位を含む、項目77に記載の方法。
(項目80)
前記複数の標的部位が、少なくとも100,000,000個、200,000,000個、300,000,000個、400,000,000個、500,000,000個、600,000,000個、700,000,000個、800,000,000個、900,000,000個、1,000,000,000個または1,500,000,000個の標的部位を含む、項目77に記載の方法。
(項目81)
前記数え上げることが、0、1、2、3または4個のミスマッチの数を有する前記最初の組のガイドRNAの各gRNAについてのオフターゲットハイブリダイゼーション領域を決定することを含む、項目77に記載の方法。
(項目82)
前記異なる標的部位の標的部位が、Cas9、C2c1、C2c3およびCpf1からなる群から選択されるヌクレアーゼのPAM部位に隣接する、項目57に記載の方法。
(項目83)
前記ヌクレアーゼが、Cas9である、項目82に記載の方法。
(項目84)
前記PAM部位が、NGGである、項目82に記載の方法。
(項目85)
前記ヌクレアーゼが、不活性化Casである、項目82に記載の方法。
(項目86)
前記種が、Homo sapiens、Mus musculus、Cricetulus griseus、Rattus Norvegicus、Danio rerioおよびCaenorhabditis elegansからなる群から選択される、項目57に記載の方法。
(項目87)
オンターゲット効率閾値およびオフターゲット閾値に基づいて前記最初の組のgRNAからガイドRNAのサブセットを選択することをさらに含む、項目57に記載の方法。
(項目88)
前記最初の組のgRNAの各ガイドRNAについての前記オンターゲット効率閾値が、アジマススコアを計算することによって決定される、項目87に記載の方法。
(項目89)
前記アジマススコアが、0.4を超える、項目88に記載の方法。
(項目90)
前記識別することが、前記アジマススコアの閾値およびオフターゲットハイブリダイズ値に基づく、項目88に記載の方法。
(項目91)
前記最初の組のgRNAが、細胞において前記遺伝子をノックアウトする、項目57に記載の方法。
(項目92)
前記最初の組のgRNAが、細胞において前記遺伝子に突然変異をノックインする、項目57に記載の方法。
(項目93)
前記細胞が、ヒト初代細胞、ヒト不死化細胞、ヒト誘導多能性幹細胞、マウス胚性幹細胞およびチャイニーズハムスター卵巣細胞からなる群から選択される、項目91または92に記載の方法。
(項目94)
前記最初の組のガイドRNA中の少なくとも1つのガイドRNAからの少なくとも1つのヌクレオチドが、改変を含む、項目57に記載の方法。
(項目95)
前記改変が、2’-O-C 1~4 アルキル、例えば、2’-O-メチル(2’-OMe)、2’-デオキシ(2’-H)、2’-O-C 1~3 アルキル-O-C 1~3 アルキル、例えば、2’-メトキシエチル(2’-MOE)、2’-フルオロ(2’-F)、2’-アミノ(2’-NH2)、2’-アラビノシル(2’-アラビノ)ヌクレオチド、2’-F-アラビノシル(2’-F-アラビノ)ヌクレオチド、2’-ロックド核酸(LNA)ヌクレオチド、2’-非ロックド核酸(ULNA)ヌクレオチド、L形態の糖(L-糖)および4’-チオリボシルヌクレオチドからなる群から選択される、項目94に記載の方法。
(項目96)
前記改変が、ホスホロチオエート、ホスホノカルボキシレート、チオホスホノカルボキシレート、アルキルホスホネートおよびホスホロジチオエートからなる群から選択されるヌクレオチド間結合改変である、項目94に記載の方法。
(項目97)
前記改変が、2-チオウラシル(2-チオU)、2-チオシトシン(2-チオC)、4-チオウラシル(4-チオU)、6-チオグアニン(6-チオG)、2-アミノアデニン(2-アミノA)、2-アミノプリン、シュードウラシル、ヒポキサンチン、7-デアザグアニン、7-デアザ-8-アザグアニン、7-デアザアデニン、7-デアザ-8-アザアデニン、5-メチルシトシン(5-メチルC)、5-メチルウラシル(5-メチルU)、5-ヒドロキシメチルシトシン、5-ヒドロキシメチルウラシル、5,6-デヒドロウラシル、5-プロピニルシトシン、5-プロピニルウラシル、5-エチニルシトシン、5-エチニルウラシル、5-アリルウラシル(5-アリルU)、5-アリルシトシン(5-アリルC)、5-アミノアリルウラシル(5-アミノアリルU)、5-アミノアリル-シトシン(5-アミノアリルC)、脱塩基ヌクレオチド、Z塩基、P塩基、非構造核酸(UNA)、イソグアニン(イソG)、イソシトシン(イソC)および5-メチル-2-ピリミジンからなる群から選択される、項目94に記載の方法。
(項目98)
前記選択することおよび前記識別することが、コンピュータによって行われる、項目57に記載の方法。
(項目99)
前記最初の組のgRNA中の各gRNAが、前記最初の組のガイドRNAからの少なくとも1つの他のガイドRNAの標的部位から少なくとも30塩基離れている標的部位にハイブリダイズ可能である、項目57に記載の方法。
(項目100)
1組のガイドRNA(gRNA)を含むキットであって、前記1組のgRNA中の各gRNAが、項目57から98のいずれか一項に記載の方法によって設計されている、キット。
(項目101)
目的のゲノム領域を編集するための方法であって、目的の前記ゲノム領域を含む細胞の集団を、(i)目的の前記ゲノム領域をターゲティングする少なくとも2つのgRNAを含む1組のgRNA、および(ii)ヌクレアーゼと接触させることであって、少なくとも2つのgRNAを含む前記1組のgRNAの編集効率が、前記少なくとも2つのgRNAの各々の個々の編集効率よりも高い、接触させることを含む方法。
(項目102)
目的の前記ゲノム領域が、遺伝子のコード領域である、項目101に記載の方法。
(項目103)
前記コード領域が、前記遺伝子のエクソンである、項目102に記載の方法。
(項目104)
目的の前記ゲノム領域が、ゲノム内の非コード領域である、項目101に記載の方法。
(項目105)
前記非コード領域が、調節エレメントである、項目104に記載の方法。
(項目106)
前記調節エレメントが、シス調節エレメントまたはトランス調節エレメントである、項目105に記載の方法。
(項目107)
前記シス調節エレメントが、プロモーター、エンハンサーおよびサイレンサーからなる群から選択される、項目106に記載の方法。
(項目108)
前記細胞をドナーポリヌクレオチドと接触させることをさらに含む、項目101に記載の方法。
(項目109)
前記ドナーポリヌクレオチドが、前記細胞の野生型遺伝子型と比較して点突然変異、対立遺伝子、タグまたは外因性エクソンを含む、項目108に記載の方法。
(項目110)
前記編集効率が、前記接触させることの後の非野生型遺伝子型を含む、細胞の前記集団中の細胞の割合である、項目101に記載の方法。
(項目111)
前記非野生型遺伝子型が、遺伝子のノックアウトである、項目110に記載の方法。
(項目112)
前記非野生型遺伝子型が、野生型遺伝子型と比較した挿入または欠失である、項目110に記載の方法。
(項目113)
細胞の前記集団中の前記細胞の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%または少なくとも95%が、前記非野生型遺伝子型を含む、項目110に記載の方法。
(項目114)
前記少なくとも2つのgRNAの各gRNAが、目的の前記ゲノム領域内の異なる標的部位にハイブリダイズする、項目101に記載の方法。
(項目115)
前記少なくとも2つのgRNAの各gRNAが、前記1組のガイドRNAからの少なくとも1つの他のガイドRNAの標的部位から少なくとも30塩基離れている標的部位にハイブリダイズ可能である、項目114に記載の方法。
(項目116)
複数の目的のゲノム領域をターゲティングする複数の組のgRNAを導入することをさらに含む、項目101に記載の方法。
(項目117)
前記複数の組のgRNAの各々が、細胞の前記集団の複数のサブセットの各々と接触される、項目116に記載の方法。
(項目118)
前記複数の組のgRNAの各々が、前記複数の目的のゲノム領域内の異なる目的のゲノム領域をターゲティングする、項目117に記載の方法。
(項目119)
細胞の前記集団の前記複数のサブセットの少なくとも50%における細胞の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%または少なくとも95%が、非野生型遺伝子型を含む、項目117に記載の方法。
(項目120)
細胞の前記集団の前記複数のサブセットの少なくとも70%における細胞の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%または少なくとも95%が、非野生型遺伝子型を含む、項目117に記載の方法。
(項目121)
細胞の前記集団の前記複数のサブセットの少なくとも90%における細胞の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%または少なくとも95%が、非野生型遺伝子型を含む、項目117に記載の方法。
(項目122)
表現型について細胞の前記集団をスクリーニングすることをさらに含む、項目101に記載の方法。
The novel features of the invention are shown in detail in the appended claims. A better understanding of the features and advantages of the invention is the following detailed description showing exemplary embodiments in which the principles of the invention are utilized, and accompanying drawings (in the present specification, "Figure"). Or "fig.").
In certain embodiments, for example, the following are provided:
(Item 1)
A method for identifying a set of guide RNAs (gRNAs) that can hybridize to a region of interest in the genome.
By designing a set of gRNAs, each gRNA in the set of gRNAs is a plurality of targets within the genomic region of interest for at least one other guide RNA from the set of guide RNAs. Design to be capable of hybridizing to target sites from the plurality of target sites that are at least 30 bases away from different target sites within the site.
How to include.
(Item 2)
The method of item 1, wherein the target site is at most 170 bases away from the different target sites.
(Item 3)
The method of item 1, wherein the sequence of at least one gRNA in the set of gRNAs is complementary to the genomic region of interest.
(Item 4)
The method of item 1, wherein the sequence of at least one gRNA in the set of gRNAs is partially complementary to the genomic region of interest.
(Item 5)
The sequence of at least one gRNA in the set of gRNAs that is partially complementary to the genomic region of interest is 1, 2, 3, 4, 5 or 5 as compared to the genomic region of interest. The method of item 4, which comprises more mismatches.
(Item 6)
The method of item 1, wherein each gRNA in the set of gRNAs is about 17 to about 42 bases in length.
(Item 7)
The method of item 2, wherein each gRNA in the set of gRNAs is about 20 bases long.
(Item 8)
The method of item 1, wherein each gRNA in the set of gRNAs comprises a guide sequence of about 20 bases and further comprises a constant region having a length of about 22-80 bases.
(Item 9)
8. The method of item 8, wherein the guide sequence of each gRNA in the set of gRNA selectively hybridizes to the genomic region of interest.
(Item 10)
The method of item 1, wherein each gRNA in the first set of gRNAs is about 100 bases long.
(Item 11)
The method according to item 1, wherein the genomic region of interest comprises a coding region of a gene.
(Item 12)
11. The method of item 11, wherein the genomic region of interest comprises an exon of the gene.
(Item 13)
The method of item 1, wherein the genomic region of interest comprises a family of genes.
(Item 14)
13. The method of item 13, wherein the genomic region of interest comprises one or more coding regions from said family of genes.
(Item 15)
The method of item 1, wherein the genomic region of interest comprises a non-coding region of the genome.
(Item 16)
15. The method of item 15, wherein the non-coding region is a regulatory element.
(Item 17)
16. The method of item 16, wherein the regulatory element is a cis-regulatory element or a trans-regulatory element.
(Item 18)
17. The method of item 17, wherein the cis-regulatory element is selected from the group consisting of promoters, enhancers and silencers.
(Item 19)
13. The method of item 13, wherein the genomic region of interest spans more than 5 kb, more than 10 kb, more than 15 kb, more than 20 kb, more than 50 kb, or more than 100 kb.
(Item 20)
The method of item 1, wherein the set of gRNAs comprises at least 2, at least 3 or at least 4 gRNAs.
(Item 21)
The method of item 1, wherein at least one gRNA from the set of guide RNAs comprises a modification.
(Item 22)
The modification is 2'-OC 1 to 4 alkyl, for example, 2'-O-methyl (2'-OMe), 2'-deoxy (2'-H), 2'-OC 1-3. Alkyl- OC 1-3 alkyls such as 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), 2'-amino (2'-NH2), 2'-arabinosyl. (2'-arabino) nucleotides, 2'-F-arabinosyl (2'-F-arabino) nucleotides, 2'-locked nucleic acid (LNA) nucleotides, 2'-unlocked nucleic acid (ULNA) nucleotides, L-form sugars ( 21. The method of item 21, selected from the group consisting of L-sugar) and 4'-thioribosyl nucleotides.
(Item 23)
21. The method of item 21, wherein the modification is an internucleotide binding modification selected from the group consisting of phosphorothioate, phosphonocarboxylate, thiophosphonocarboxylate, alkylphosphonate and phosphorodithioate.
(Item 24)
The modifications include 2-thiouracil (2-thioU), 2-thiocytosine (2-thioC), 4-thiouracil (4-thioU), 6-thioguanine (6-thioG), 2-aminoadenin (2). -Amino A), 2-aminopurine, pseudouracil, hypoxanthin, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deazaadenine, 7-deaza-8-azaadenine, 5-methylcytosine (5-methylC) , 5-Methyl uracil (5-Methyl U), 5-Hydroxymethylcytosine, 5-Hydroxymethyl uracil, 5,6-dehydro uracil, 5-Propinyl uracil, 5-Propinyl uracil, 5-Ethynyl cytosine, 5-Ethynyl uracil , 5-allyl uracil (5-allyl U), 5-allyl cytosine (5-allyl C), 5-aminoallyl uracil (5-aminoallyl U), 5-aminoallyl-cytosine (5-aminoallyl C), debase nucleotides , Z base, P base, unstructured nucleic acid (UNA), isoguanine (iso G), isocytosine (iso C) and 5-methyl-2-pyrimidin selected from the group according to item 21.
(Item 25)
The method of item 1, wherein the target site of the plurality of target sites is adjacent to the PAM site of a nuclease selected from the group consisting of Cas9, C2c1, C2c3 and Cpf1.
(Item 26)
25. The method of item 25, wherein the nuclease is Cas9.
(Item 27)
25. The method of item 25, wherein the nuclease is Inactivated Cas9.
(Item 28)
25. The method of item 25, wherein the set of gRNAs is designed to knock out genes within said genomic region of interest in a cell.
(Item 29)
28. The method of item 28, wherein the cells are selected from the group consisting of human primary cells, human immortalized cells, human-induced pluripotent stem cells, mouse embryonic stem cells and Chinese hamster ovary cells.
(Item 30)
The method of item 1, wherein the design is performed by a computer.
(Item 31)
A kit comprising a set of guide RNAs (gRNAs), wherein each gRNA in the set of gRNAs is designed by the method according to any one of items 1 to 29.
(Item 32)
A kit containing a set of gRNAs capable of hybridizing to a target genomic region in the genome, wherein each gRNA in the set of gRNAs is:
Target sites from the plurality of target sites of at least one other guide RNA from the set of guide RNAs, at least 30 bases away from different target sites in the plurality of target sites within the genomic region of interest. Can be hybridized to
kit.
(Item 33)
32. The kit of item 32, wherein the target site is at most 170 bases away from the different target sites.
(Item 34)
32. The kit of item 32, wherein the set of gRNAs comprises at least 2, at least 3 or at least 4 gRNAs.
(Item 35)
32. The kit of item 32, further comprising one or more nucleases selected from the group consisting of Cas9, C2c1, C2c3 and Cpf1.
(Item 36)
32. The kit of item 32, further comprising a plurality of sets of gRNAs, wherein each set of gRNAs is capable of hybridizing to different genomic regions of interest within said genome.
(Item 37)
35. The kit of item 35, wherein the one or more nucleases are coupled to at least one gRNA.
(Item 38)
A method for selecting one or more guide RNAs (gRNAs) to hybridize to a gene in a particular genome.
Calculating off-target values by counting the number of mismatches to potential guide RNA hybridization sites in the genome for each of the plurality of guide RNAs of the first set of guide RNAs that hybridize to the gene.
How to include.
(Item 39)
38. The method of item 38, wherein each gRNA in the plurality of gRNAs is 100 bases long.
(Item 40)
39. The method of item 39, wherein about 20 bases of each gRNA in the plurality of gRNAs hybridize to different target sites within the genomic region of interest.
(Item 41)
38. The method of item 38, wherein the number of mismatches is 0.
(Item 42)
38. The method of item 38, wherein the number of mismatches is 1.
(Item 43)
39. The method of item 39, wherein the number of mismatches is 2.
(Item 44)
43. The method of item 43, wherein the number of mismatches is 3.
(Item 45)
38. The method of item 38, wherein the calculation yields the sum of the numbers of mismatches for each gRNA of the first set of guide RNAs.
(Item 46)
38. The method of item 38, wherein the calculation organizes the number of mismatches into shards.
(Item 47)
38. The method of item 38, wherein the off-target value is calculated for the reference genome.
(Item 48)
47. The method of item 47, wherein the reference genome is a human reference genome.
(Item 49)
47. The method of item 47, wherein the reference genome is selected from the group consisting of Homo sapiens, Mus musculus, Cricetulus zebrafish, Rattus Novegicus, Slender danios and Caenorhabditis elegans.
(Item 50)
38. The method of item 38, wherein the off-target value is determined over 1,000,000 bp of the reference genome or across the reference genome.
(Item 51)
38. The method of item 38, wherein the off-target value is calculated against a database of nuclease binding sites.
(Item 52)
51. The method of item 51, wherein the nuclease is selected from the group consisting of Cas9, C2c1, C2c3 and Cpf1.
(Item 53)
52. The method of item 52, wherein the nuclease is Cas9.
(Item 54)
The database has more than 10,000, more than 50,000, more than 100,000, more than 150,000, more than 200,000, more than 250,000, 300 of the nuclease. Over 000, over 350,000, over 400,000, over 450,000, over 500,000, over 550,000, over 600,000, 650, More than 000, more than 700,000, more than 750,000, more than 800,000, more than 850,000, more than 900,000, more than 950,000, or 1, 51. The method of item 51, comprising a binding site greater than 1,000,000.
(Item 55)
Whether the database of nuclease binding sites exceeds 25 million, 50 million, 75 million, 100 million, 125 million, or 150 million of the nuclease. Items containing more than 175 million, more than 200 million, more than 225 million, more than 250 million, more than 275 million, or more than 300 million binding sites 51.
(Item 56)
38. The method of item 38, wherein the calculation of the off-target value by counting the number of mismatches is performed by a computer.
(Item 57)
A method for designing one or more guide RNAs (gRNAs) to hybridize to genes in certain genomes.
Selecting a transcript from multiple transcripts of the gene,
Identifying the first set of gRNAs, wherein each gRNA in the first set of gRNAs hybridizes to a different target site within the gene of the selected transcript.
How to include.
(Item 58)
58. The method of item 57, wherein each gRNA in the first set of gRNAs is about 17 to about 42 bases in length.
(Item 59)
58. The method of item 58, wherein each gRNA in the first set of gRNAs is about 20 bases long.
(Item 60)
58. The method of item 57, wherein each gRNA in the first set of gRNAs comprises a guide sequence of about 20 bases and a constant region having a length of about 22-80 bases.
(Item 61)
60. The method of item 60, wherein the guide sequence of each gRNA in the first set of gRNAs selectively hybridizes to a target site.
(Item 62)
58. The method of item 57, wherein each gRNA in the first set of gRNAs is about 100 bases long.
(Item 63)
58. The method of item 57, wherein the selected transcript is the most abundant transcript of the gene in the database.
(Item 64)
58. The method of item 57, wherein the selected transcript is the longest transcript of said plurality of transcripts of the gene.
(Item 65)
58. The method of item 57, further comprising selecting the coding region within the gene present in the selected transcript.
(Item 66)
65. The method of item 65, wherein the selected code region is an initial position exon.
(Item 67)
66. The method of item 66, wherein the initial position exon is present in the first half of the gene.
(Item 68)
66. The method of item 66, wherein the initial position exon is a first, second, third, fourth, fifth or sixth exon of the gene.
(Item 69)
65. The method of item 65, wherein the selected coding region is the selected exon of the most abundant transcript of the plurality of transcripts of the gene.
(Item 70)
69. The method of item 69, wherein the selected exon is longer than one or more other exons in the transcript.
(Item 71)
6. The method of item 69, wherein the selected exon is at least 50 bp, at least 55 bp, at least 60 bp, at least 65 bp, at least 70 bp or at least 75 bp.
(Item 72)
69. The method of item 69, wherein the selected exons are selected based on both length and abundance in the plurality of transcripts.
(Item 73)
58. The method of item 57, further comprising determining off-target values for each gRNA of the first set of gRNAs.
(Item 74)
73. The method of item 73, wherein the off-target value is determined across the genome of the species.
(Item 75)
74. The method of item 74, wherein the genome is the reference genome of the species.
(Item 76)
75. The method of item 75, wherein the reference genome of the species is a complete reference assembly containing a chromosome and unpositioned contig.
(Item 77)
73. The method of item 73, further comprising determining the off-target value by counting the number of mismatches for each gRNA in the first set of gRNAs as compared to a plurality of target sites in the genome.
(Item 78)
77. The method of item 77, wherein the plurality of target sites comprises all possible Casnuclease binding sites across the genome.
(Item 79)
The plurality of target sites are at least 1000, 10,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000. 77, the method of item 77, comprising 800,000, 900,000, 1,000,000, 2,000,000 or 3,000,000 target sites.
(Item 80)
The plurality of target sites are at least 100,000,000, 200,000,000, 300,000,000, 400,000, 500,000,000, 600,000,000, 77. The method of item 77, comprising 700,000,000, 800,000,000, 900,000,000, 1,000,000,000,000 or 1,500,000,000 target sites. ..
(Item 81)
77. Item 77, wherein the counting comprises determining an off-target hybridization region for each gRNA of the first set of guide RNAs having a number of 0, 1, 2, 3 or 4 mismatches. Method.
(Item 82)
58. The method of item 57, wherein the target site of the different target site is flanking the PAM site of a nuclease selected from the group consisting of Cas9, C2c1, C2c3 and Cpf1.
(Item 83)
82. The method of item 82, wherein the nuclease is Cas9.
(Item 84)
82. The method of item 82, wherein the PAM site is NGG.
(Item 85)
82. The method of item 82, wherein the nuclease is an inactivated Cas.
(Item 86)
58. The method of item 57, wherein the species is selected from the group consisting of Homo sapiens, Mus musculus, Cricetulus zebrafish, Rattus Novegicus, Slender danios and Caenorhabditis elegans.
(Item 87)
58. The method of item 57, further comprising selecting a subset of guide RNAs from the first set of gRNAs based on on-target efficiency thresholds and off-target thresholds.
(Item 88)
87. The method of item 87, wherein the on-target efficiency threshold for each guide RNA of the first set of gRNAs is determined by calculating an azimuth score.
(Item 89)
88. The method of item 88, wherein the azimuth score is greater than 0.4.
(Item 90)
88. The method of item 88, wherein the identification is based on the threshold of the azimus score and the off-target hybridization value.
(Item 91)
57. The method of item 57, wherein the first set of gRNAs knocks out the gene in a cell.
(Item 92)
58. The method of item 57, wherein the first set of gRNAs knocks a mutation into the gene in a cell.
(Item 93)
Item 91 or 92. The method of item 91 or 92, wherein the cells are selected from the group consisting of human primary cells, human immortalized cells, human-induced pluripotent stem cells, mouse embryonic stem cells and Chinese hamster ovary cells.
(Item 94)
58. The method of item 57, wherein at least one nucleotide from at least one guide RNA in the first set of guide RNAs comprises a modification.
(Item 95)
The modification is 2'-OC 1 to 4 alkyl, for example, 2'-O-methyl (2'-OMe), 2'-deoxy (2'-H), 2'-OC 1-3. Alkyl- OC 1-3 alkyls such as 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), 2'-amino (2'-NH2), 2'-arabinosyl. (2'-arabino) nucleotides, 2'-F-arabinosyl (2'-F-arabino) nucleotides, 2'-locked nucleic acid (LNA) nucleotides, 2'-unlocked nucleic acid (ULNA) nucleotides, L-form sugars ( The method of item 94, which is selected from the group consisting of L-sugar) and 4'-thioribosyl nucleotides.
(Item 96)
94. The method of item 94, wherein the modification is an internucleotide binding modification selected from the group consisting of phosphorothioate, phosphonocarboxylate, thiophosphonocarboxylate, alkylphosphonate and phosphorodithioate.
(Item 97)
The modifications include 2-thiouracil (2-thioU), 2-thiocytosine (2-thioC), 4-thiouracil (4-thioU), 6-thioguanine (6-thioG), 2-aminoadenin (2). -Amino A), 2-aminopurine, pseudouracil, hypoxanthin, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deazaadenine, 7-deaza-8-azaadenine, 5-methylcytosine (5-methylC) , 5-Methyl uracil (5-Methyl U), 5-Hydroxymethylcytosine, 5-Hydroxymethyl uracil, 5,6-dehydro uracil, 5-Propinyl uracil, 5-Propinyl uracil, 5-Ethynyl cytosine, 5-Ethynyl uracil , 5-allyl uracil (5-allyl U), 5-allyl cytosine (5-allyl C), 5-aminoallyl uracil (5-aminoallyl U), 5-aminoallyl-cytosine (5-aminoallyl C), debase nucleotides , Z base, P base, unstructured nucleic acid (UNA), isoguanine (iso G), isocytosine (iso C) and 5-methyl-2-pyrimidin selected from the group of item 94.
(Item 98)
58. The method of item 57, wherein the selection and identification is performed by a computer.
(Item 99)
Item 57, wherein each gRNA in the first set of gRNAs is capable of hybridizing to a target site that is at least 30 bases away from the target site of at least one other guide RNA from the first set of guide RNAs. The method described.
(Item 100)
A kit comprising a set of guide RNAs (gRNAs), wherein each gRNA in the set of gRNAs is designed by the method according to any one of items 57-98.
(Item 101)
A method for editing a genomic region of interest, a set of gRNAs comprising a population of cells containing said genomic region of interest, (i) at least two gRNAs targeting said genomic region of interest, and (. ii) A method comprising contacting with a nuclease, wherein the editing efficiency of the set of gRNAs containing at least two gRNAs is higher than the individual editing efficiency of each of the at least two gRNAs.
(Item 102)
The method according to item 101, wherein the genomic region of interest is a coding region of a gene.
(Item 103)
102. The method of item 102, wherein the coding region is an exon of the gene.
(Item 104)
The method of item 101, wherein the genomic region of interest is a non-coding region within the genome.
(Item 105)
104. The method of item 104, wherein the non-coding region is a regulatory element.
(Item 106)
105. The method of item 105, wherein the regulatory element is a cis-regulatory element or a trans-regulatory element.
(Item 107)
106. The method of item 106, wherein the cis-regulatory element is selected from the group consisting of promoters, enhancers and silencers.
(Item 108)
101. The method of item 101, further comprising contacting the cells with a donor polynucleotide.
(Item 109)
108. The method of item 108, wherein the donor polynucleotide comprises a point mutation, allele, tag or exogenous exon as compared to the wild-type genotype of the cell.
(Item 110)
10. The method of item 101, wherein the editing efficiency is the proportion of cells in the population of cells, including the non-wild type genotype after contacting.
(Item 111)
110. The method of item 110, wherein the non-wild-type genotype is a gene knockout.
(Item 112)
110. The method of item 110, wherein the non-wild-type genotype is an insertion or deletion compared to a wild-type genotype.
(Item 113)
110. The method of item 110, wherein at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the cells in the population of cells comprises the non-wild type genotype.
(Item 114)
10. The method of item 101, wherein each gRNA of at least two gRNAs hybridizes to a different target site within said genomic region of interest.
(Item 115)
The method of item 114, wherein each gRNA of the at least two gRNAs is capable of hybridizing to a target site at least 30 bases away from the target site of at least one other guide RNA from the set of guide RNAs. ..
(Item 116)
101. The method of item 101, further comprising introducing a plurality of sets of gRNAs targeting a plurality of genomic regions of interest.
(Item 117)
The method of item 116, wherein each of the plurality of sets of gRNAs is contacted with each of the plurality of subsets of the population of cells.
(Item 118)
17. The method of item 117, wherein each of the plurality of sets of gRNAs targets different genomic regions of interest within the plurality of genomic regions of interest.
(Item 119)
An item in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the cells in at least 50% of the plurality of subsets of the population of cells comprises a non-wild type genotype. The method according to 117.
(Item 120)
An item in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the cells in at least 70% of the plurality of subsets of the population of cells comprises a non-wild type genotype. The method according to 117.
(Item 121)
An item in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% of the cells in at least 90% of the plurality of subsets of the population of cells comprises a non-wild type genotype. The method according to 117.
(Item 122)
101. The method of item 101, further comprising screening the population of cells for a phenotype.

Claims (42)

目的のゲノム領域内の遺伝子を編集するための方法であって、前記方法は、 A method for editing a gene in a genomic region of interest, wherein the method is:
(a)目的の前記ゲノム領域内の遺伝子を含む細胞を、1組のガイドRNA(gRNA)と接触させることであって、前記1組のgRNAは、 (A) A cell containing a gene in the genomic region of interest is brought into contact with a set of guide RNAs (gRNAs), wherein the set of gRNAs is:
(i)目的の前記ゲノム領域の第1の部位とハイブリダイズするように構成されており、ヌクレアーゼと相互作用して第1の二本鎖切断部位を生成することができる、第1のgRNA; (I) A first gRNA that is configured to hybridize to a first site of said genomic region of interest and is capable of interacting with a nuclease to generate a first double-strand break site;
(ii)目的の前記ゲノム領域の第2の部位とハイブリダイズするように構成されており、前記ヌクレアーゼと相互作用して第2の二本鎖切断部位を生成することができる、第2のgRNA、および (Ii) A second gRNA that is configured to hybridize to a second site of the genomic region of interest and is capable of interacting with the nuclease to generate a second double-strand break site. ,and
(iii)目的の前記ゲノム領域の第3の部位とハイブリダイズするように構成されており、前記ヌクレアーゼと相互作用して第3の二本鎖切断部位を生成することができる、第3のgRNAを含み、前記第1のgRNA、第2のgRNAおよび第3のgRNAは異なっており、各々、互いに少なくとも10塩基対離れている部位にハイブリダイズする、こと、ならびに (Iii) A third gRNA that is configured to hybridize to a third site of the genomic region of interest and is capable of interacting with the nuclease to generate a third double-stranded cleavage site. The first gRNA, the second gRNA and the third gRNA are different and each hybridize to a site at least 10 base pairs apart from each other, and
(b)前記1組のgRNAおよび前記ヌクレアーゼを前記細胞に導入して、前記遺伝子を改変する編集を生成することであって、前記1組のgRNAの編集効率が、前記gRNAの各々の個々の編集効率よりも高い、こと (B) Introducing the set of gRNAs and the nuclease into the cells to generate edits that modify the genes, wherein the editing efficiency of the set of gRNAs is individual for each of the gRNAs. Higher than editing efficiency
を含む方法。How to include.
前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、前記遺伝子にハイブリダイズするように構成されている、請求項1に記載の方法。 The method of claim 1, wherein the first gRNA, the second gRNA and the third gRNA are configured to hybridize to the gene. 前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、前記遺伝子のエクソンにハイブリダイズするように構成されている、請求項2に記載の方法。 The method of claim 2, wherein the first gRNA, the second gRNA and the third gRNA are configured to hybridize to an exon of the gene. 前記第1のgRNA、前記第2のgRNAまたは前記第3のgRNAが、調節エレメントにハイブリダイズするように構成されている、請求項1に記載の方法。 The method of claim 1, wherein the first gRNA, the second gRNA or the third gRNA is configured to hybridize to a regulatory element. 前記調節エレメントが、シス調節エレメントまたはトランス調節エレメントである、請求項4に記載の方法。 The method of claim 4, wherein the regulatory element is a cis-regulatory element or a trans-regulatory element. 前記シス調節エレメントが、プロモーター、エンハンサーおよびサイレンサーからなる群から選択される、請求項5に記載の方法。 The method of claim 5, wherein the cis-regulatory element is selected from the group consisting of promoters, enhancers and silencers. 前記細胞にドナーポリヌクレオチドを導入することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising introducing a donor polynucleotide into the cell. 前記ドナーポリヌクレオチドが、前記細胞の野生型遺伝子型と比較して点突然変異、対立遺伝子、タグまたは外因性エクソンを含む、請求項7に記載の方法。 7. The method of claim 7, wherein the donor polynucleotide comprises a point mutation, allele, tag or exogenous exon as compared to the wild-type genotype of the cell. 前記編集が、前記遺伝子のノックアウトである、請求項1に記載の方法。 The method of claim 1, wherein the edit is a knockout of the gene. 前記ノックアウトが、前記遺伝子の機能を除去する、請求項9に記載の方法。 The method of claim 9, wherein the knockout removes the function of the gene. 前記編集が、野生型遺伝子型と比較した挿入または欠失である、請求項1に記載の方法。 The method of claim 1, wherein the edit is an insertion or deletion compared to a wild-type genotype. 前記編集が、挿入であり、前記遺伝子の機能を改善する、請求項11に記載の方法。 11. The method of claim 11, wherein the edit is an insertion and improves the function of the gene. 前記第1、第2および第3のgRNAの各々が、前記1組のgRNAからの他のガイドRNAの標的部位から少なくとも30塩基離れている標的部位にハイブリダイズ可能である、請求項1に記載の方法。 1 according to claim 1, wherein each of the first, second and third gRNAs is capable of hybridizing to a target site that is at least 30 bases away from the target site of the other guide RNA from the set of gRNAs. the method of. 複数の目的のゲノム領域をターゲティングする複数の組のgRNAを導入することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising introducing a plurality of sets of gRNAs targeting a plurality of genomic regions of interest. 前記複数の組のgRNAの各々が、細胞の前記集団の複数のサブセットの各々と接触される、請求項14に記載の方法。 14. The method of claim 14, wherein each of the plurality of sets of gRNAs is contacted with each of the plurality of subsets of the population of cells. 前記複数の組のgRNAの各々が、前記複数の目的のゲノム領域内の異なる目的のゲノム領域をターゲティングする、請求項15に記載の方法。 15. The method of claim 15, wherein each of the plurality of sets of gRNAs targets different genomic regions of interest within the plurality of genomic regions of interest. 表現型について細胞の前記集団をスクリーニングすることをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising screening the population of cells for a phenotype. 前記最初の組のgRNAの各ガイドRNAについてのオンターゲット効率閾値が、0.4を超えるアジマススコアである、請求項1に記載の方法。 The method of claim 1, wherein the on-target efficiency threshold for each guide RNA of the first set of gRNAs is an azimuth score greater than 0.4. 前記接触させることが、前記細胞をリボ核タンパク質複合体としての前記1組のgRNAでトランスフェクションすることを含む、請求項1に記載の方法。 The method of claim 1, wherein contacting comprises transfecting the cells with the set of gRNAs as a ribonucleoprotein complex. 前記ヌクレアーゼが、Cas9、C2c1、C2c3またはCpf1である、請求項1に記載の方法。 The method of claim 1, wherein the nuclease is Cas9, C2c1, C2c3 or Cpf1. 前記ヌクレアーゼが、Cas9ヌクレアーゼである、請求項1に記載の方法。 The method of claim 1, wherein the nuclease is a Cas9 nuclease. 前記第1のgRNA、前記第2のgRNAおよび前記第3のガイドRNAが、5’末端改変および3’末端改変を含む、請求項1に記載の方法。 The method of claim 1, wherein the first gRNA, the second gRNA and the third guide RNA comprise a 5'end modification and a 3'end modification. 前記5’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含み、前記3’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含む、請求項22に記載の方法。 22. The method described. 前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、単一のガイドRNA(sgRNA)であり、前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、5’末端改変および3’末端改変を含み、前記5’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含み、前記3’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含み、前記第1の結合部位と前記第2の結合部位とは、30~80塩基対離れており、前記第2の結合部位と前記第3の結合部位とは、30~80塩基対離れており、前記第1の結合部位、前記第2の結合部位および前記第3の結合部位は、遺伝子のエクソンにあり、前記エクソンは、前記遺伝子の前半内にあり、前記ヌクレアーゼは、Cas9を含み、前記編集は欠失であり、前記欠失は、少なくとも10塩基対である、請求項1に記載の方法。 The first gRNA, the second gRNA and the third gRNA are a single guide RNA (sgRNA), and the first gRNA, the second gRNA and the third gRNA are 5 The'terminal modification and the 3'end modification include a phosphorothioate internucleotide bond and a 2'-O-methyl sugar modification, and the 3'end modification comprises a phosphorothioate internucleotide bond and a 2'-O. -Containing a methyl sugar modification, the first binding site and the second binding site are separated by 30 to 80 base pairs, and the second binding site and the third binding site are 30 to 30 to. They are 80 base pairs apart, the first binding site, the second binding site and the third binding site are in the exson of the gene, the exson is in the first half of the gene, and the nuclease is. , Cas9, wherein the edit is a deletion, the deletion being at least 10 base pairs, according to claim 1. 前記第1のgRNAが、前記第2のgRNAにハイブリダイズ可能な結合部位から30~80塩基対離れている結合部位にハイブリダイズするように構成されており、前記第2のgRNAが、前記第3のgRNAにハイブリダイズ可能な結合部位から30~80塩基対離れている結合部位にハイブリダイズするように構成されている、請求項1に記載の方法。 The first gRNA is configured to hybridize to a binding site that is 30 to 80 base pairs away from the binding site capable of hybridizing to the second gRNA, and the second gRNA is the second gRNA. The method according to claim 1, wherein the method is configured to hybridize to a binding site that is 30 to 80 base pairs away from the binding site capable of hybridizing to the gRNA of 3. 細胞内の目的のゲノム領域内の遺伝子を改変するためのシステムであって、前記システムは、 A system for modifying a gene in a gene of interest in a cell, said system.
(a)(i)目的のゲノム領域とハイブリダイズするように構成されており、ヌクレアーゼと相互作用して第1の二本鎖切断部位を生成することができる、第1のgRNA、(ii)目的の前記ゲノム領域とハイブリダイズするように構成されており、前記ヌクレアーゼと相互作用して第2の二本鎖切断部位を生成することができる、第2のgRNA、および(iii)目的の前記ゲノム領域とハイブリダイズするように構成されており、前記ヌクレアーゼと相互作用して第3の二本鎖切断部位を生成する、第3のガイドRNAを含む1組のガイドRNA(gRNA)であって、前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAは異なっており、それぞれ、前記遺伝子内の互いに少なくとも10塩基対離れている部位にハイブリダイズする、1組のgRNA、ならびに (A) A first gRNA, (ii) that is configured to hybridize to a genomic region of interest and is capable of interacting with a nuclease to generate a first double-strand break site. A second gRNA that is configured to hybridize to the genomic region of interest and is capable of interacting with the nuclease to generate a second double-strand break site, and (iii) the said of interest. A set of guide RNAs (gRNAs) containing a third guide RNA that is configured to hybridize to the genomic region and interacts with the nuclease to generate a third double-strand break site. , The first gRNA, the second gRNA and the third gRNA are different, a set of gRNAs that hybridize to sites in the gene that are at least 10 base pairs apart from each other, and a set of gRNAs, respectively.
(b)ヌクレアーゼ (B) Nuclease
を含むシステム。System including.
前記第1のgRNAが、第1の複合体を形成するように前記ヌクレアーゼと複合体を形成し、前記第2のgRNAが、第2の複合体を形成するように前記ヌクレアーゼと複合体を形成し、前記第3のgRNAが、第3の複合体を形成するように前記ヌクレアーゼと複合体を形成する、請求項26に記載のシステム。 The first gRNA forms a complex with the nuclease to form a first complex, and the second gRNA forms a complex with the nuclease to form a second complex. 26. The system of claim 26, wherein the third gRNA forms a complex with the nuclease to form a third complex. 所望の遺伝子編集配列を含むドナーポリヌクレオチドをさらに含み、DNA修復プロセスによる目的の前記ゲノム領域における前記二本鎖切断部位の修復が、前記所望の遺伝子編集配列の組込みをもたらす、請求項26に記載のシステム。 26. Claim 26, further comprising a donor polynucleotide comprising the desired gene editing sequence, wherein repair of the double-stranded cleavage site in the genomic region of interest by a DNA repair process results in integration of the desired gene editing sequence. System. 前記所望の遺伝子編集配列が、前記細胞の野生型遺伝子型と比較して点突然変異、対立遺伝子、タグまたは外因性エクソンを含む、請求項28に記載のシステム。 28. The system of claim 28, wherein the desired gene editing sequence comprises a point mutation, allele, tag or exogenous exon as compared to the wild-type genotype of the cell. 目的の別のゲノム領域にハイブリダイズするように構成されている別の組のgRNAをさらに含み、目的の前記ゲノム領域と目的の前記別のゲノム領域とは異なっており、前記細胞が、前記別の組のgRNAと接触される、請求項26に記載のシステム。 It further comprises another set of gRNAs that are configured to hybridize to another genomic region of interest, and the said genomic region of interest is different from the other genomic region of interest. 26. The system of claim 26, which is contacted with a set of gRNAs. 目的の別のゲノム領域にハイブリダイズするように構成されている別の組のgRNAをさらに含み、別の細胞が、前記別の組のgRNAと接触され、前記細胞と前記別の細胞とは異なっており、前記1組のgRNAと前記別の組のgRNAとは異なっており、目的の前記ゲノム領域と目的の前記別のゲノム領域とは異なっている、請求項26に記載のシステム。 It further comprises another set of gRNAs that are configured to hybridize to another set of genomic regions of interest, and another cell is contacted with the other set of gRNAs, which makes the cell different from the other cell. 26. The system of claim 26, wherein the set of gRNAs is different from the other set of gRNAs, and the genomic region of interest is different from the other genomic region of interest. 前記システムが、前記細胞をリボ核タンパク質複合体としての前記1組のgRNAでトランスフェクション可能なトランスフェクション試薬をさらに含む、請求項26に記載のシステム。 26. The system of claim 26, wherein the system further comprises a transfection reagent capable of transfecting the cells with the set of gRNAs as a ribonuclear protein complex. 前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、5’末端改変および3’末端改変を含む、請求項26に記載のシステム。 26. The system of claim 26, wherein the first gRNA, the second gRNA and the third gRNA comprise a 5'end modification and a 3'end modification. 前記5’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含み、前記3’末端改変が、ホスホロチオエートヌクレオチド間結合および2’-O-メチル糖改変を含む、請求項33に記載のシステム。 33. The 5'end modification comprises a phosphorothioate internucleotide bond and a 2'-O-methyl sugar modification, and the 3'end modification comprises a phosphorothioate internucleotide bond and a 2'-O-methyl sugar modification. The system described. 前記ヌクレアーゼが、Cas9ヌクレアーゼ、C2c1ヌクレアーゼ、C2c3ヌクレアーゼまたはCpf1ヌクレアーゼを含む、請求項26に記載のシステム。 26. The system of claim 26, wherein the nuclease comprises a Cas9 nuclease, a C2c1 nuclease, a C2c3 nuclease or a Cpf1 nuclease. 前記ヌクレアーゼが、Cas9ヌクレアーゼである、請求項35に記載のシステム。 35. The system of claim 35, wherein the nuclease is a Cas9 nuclease. 前記編集が、欠失、インデルまたはノックアウトである、請求項26に記載のシステム。 26. The system of claim 26, wherein the edit is a deletion, indel or knockout. 前記第1のgRNAが、前記第2のgRNAにハイブリダイズ可能な結合部位から30~150塩基対離れている結合部位にハイブリダイズするように構成されており、前記第2のgRNAが、前記第3のgRNAにハイブリダイズ可能な結合部位から30~150塩基対離れている結合部位にハイブリダイズするように構成されている、請求項26に記載のシステム。 The first gRNA is configured to hybridize to a binding site 30 to 150 base pairs away from the binding site capable of hybridizing to the second gRNA, and the second gRNA is the second gRNA. 26. The system of claim 26, which is configured to hybridize to a binding site 30 to 150 base pairs away from the binding site capable of hybridizing to the gRNA of 3. 前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAが、前記遺伝子内のエクソンにハイブリダイズするように構成されている、請求項38に記載のシステム。 38. The system of claim 38, wherein the first gRNA, the second gRNA and the third gRNA are configured to hybridize to exons within the gene. 前記第1のgRNA、前記第2のgRNAまたは前記第3のgRNAが、シス調節エレメントまたはトランス調節エレメントにハイブリダイズするように構成されている、請求項26に記載のシステム。 26. The system of claim 26, wherein the first gRNA, the second gRNA or the third gRNA is configured to hybridize to a cis-regulatory element or a trans-regulatory element. 前記結合部位を少なくとも30塩基対離して配置することにより前記結合部位を30塩基対未満離して配置するのと比較して編集効率の増加がもたらされる、請求項26に記載のシステム。 26. The system of claim 26, wherein placing the binding sites at least 30 base pairs apart results in an increase in editing efficiency as compared to placing the binding sites less than 30 base pairs apart. 前記第1のgRNA、前記第2のgRNAおよび前記第3のgRNAの組み合わせでの使用が、前記遺伝子を改変するための前記第1のgRNA、前記第2のgRNAまたは前記第3のgRNAのいずれか1つの個々の使用よりも高い編集効率をもたらす、請求項26に記載のシステム。 Use in combination of the first gRNA, the second gRNA and the third gRNA can be either the first gRNA, the second gRNA or the third gRNA for modifying the gene. 26. The system of claim 26, which provides higher editing efficiency than one individual use.
JP2021514944A 2018-05-16 2019-05-16 Methods and systems for guide RNA design and use Pending JP2021523745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024060965A JP2024079842A (en) 2018-05-16 2024-04-04 Methods and systems for guide RNA design and use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862672437P 2018-05-16 2018-05-16
US62/672,437 2018-05-16
PCT/US2019/032735 WO2019222545A1 (en) 2018-05-16 2019-05-16 Methods and systems for guide rna design and use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024060965A Division JP2024079842A (en) 2018-05-16 2024-04-04 Methods and systems for guide RNA design and use

Publications (2)

Publication Number Publication Date
JP2021523745A JP2021523745A (en) 2021-09-09
JPWO2019222545A5 true JPWO2019222545A5 (en) 2022-05-23

Family

ID=68540760

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021514944A Pending JP2021523745A (en) 2018-05-16 2019-05-16 Methods and systems for guide RNA design and use
JP2024060965A Pending JP2024079842A (en) 2018-05-16 2024-04-04 Methods and systems for guide RNA design and use

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024060965A Pending JP2024079842A (en) 2018-05-16 2024-04-04 Methods and systems for guide RNA design and use

Country Status (7)

Country Link
US (4) US11345932B2 (en)
EP (1) EP3794130A4 (en)
JP (2) JP2021523745A (en)
KR (1) KR20210045360A (en)
CN (1) CN112654710A (en)
GB (1) GB2589246A (en)
WO (1) WO2019222545A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523745A (en) 2018-05-16 2021-09-09 シンテゴ コーポレイション Methods and systems for guide RNA design and use

Family Cites Families (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
JP2005538437A (en) 2002-08-22 2005-12-15 エイジェンシー フォー サイエンス, テクノロジー アンド リサーチ Prediction with likelihood set from emerging patterns
JP4243680B2 (en) 2003-02-13 2009-03-25 独立行政法人産業技術総合研究所 Foreign insert selection marker
MXPA05014215A (en) 2003-07-03 2006-03-13 Univ California Genome mapping of functional dna elements and cellular proteins.
EP3284833B1 (en) 2005-08-26 2021-12-01 DuPont Nutrition Biosciences ApS Use of crispr associated genes (cas)
US8158595B2 (en) 2006-11-09 2012-04-17 California Institute Of Technology Modular aptamer-regulated ribozymes
US9371348B2 (en) 2006-11-27 2016-06-21 The Trustees Of The University Of Pennsylvania Photocleavable oligonucleotide and uses thereof
US7897737B2 (en) 2006-12-05 2011-03-01 Lasergen, Inc. 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing
US10155038B2 (en) 2007-02-02 2018-12-18 Yale University Cells prepared by transient transfection and methods of use thereof
CA2689042A1 (en) 2007-02-16 2008-08-28 Merck & Co., Inc. Compositions and methods for potentiated activity of biologicaly active molecules
FR2925918A1 (en) 2007-12-28 2009-07-03 Pasteur Institut Typing or subtyping Salmonella bacteria comprises determining the variable sequence composition of a nucleic acid fragment amplified from the CRISPR1 and/or CRISPR2 locus
SI2285350T1 (en) 2008-06-16 2018-03-30 Pfizer Inc. Methods for the preparation of targeting agent functionalized diblock copolymers for use in fabrication of therapeutic nanoparticles
US7923562B2 (en) 2008-06-16 2011-04-12 The Board Of Trustees Of The Leland Stanford Junior University Photocleavable linker methods and compositions
WO2010030763A2 (en) 2008-09-10 2010-03-18 Bind Biosciences, Inc. High throughput fabrication of nanoparticles
ES2776126T3 (en) 2008-12-15 2020-07-29 Pfizer Long-circulating nanoparticles for sustained release of therapeutic agents
WO2010101129A1 (en) 2009-03-04 2010-09-10 財団法人野田産業科学研究所 Transcription regulatory factors for mannanases or cellulases, and genes for the transcription regulatory factors
KR20180026571A (en) 2009-05-27 2018-03-12 셀렉타 바이오사이언시즈, 인크. Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
JP6175237B2 (en) 2009-12-15 2017-08-02 ファイザー・インク Therapeutic polymer nanoparticles containing corticosteroids and methods of making and using the same
EP2558074B1 (en) 2010-04-08 2018-06-06 The Trustees of Princeton University Preparation of lipid nanoparticles
WO2012092552A1 (en) 2010-12-30 2012-07-05 Selecta Biosciences, Inc. Synthetic nanocarriers with reactive groups that release biologically active agents
EP2663548B1 (en) 2011-01-11 2017-04-05 Alnylam Pharmaceuticals, Inc. Pegylated lipids and their use for drug delivery
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
WO2013065827A1 (en) 2011-11-04 2013-05-10 国立大学法人埼玉大学 Nucleic acid linker
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
UA118014C2 (en) 2012-05-25 2018-11-12 Те Ріджентс Оф Те Юніверсіті Оф Каліфорнія METHOD OF METHOD MODIFICATION
CN105188767A (en) 2012-07-25 2015-12-23 布罗德研究所有限公司 Inducible DNA binding proteins and genome perturbation tools and applications thereof
CN110669746B (en) 2012-10-23 2024-04-16 基因工具股份有限公司 Composition for cleaving target DNA and use thereof
IL300199A (en) 2012-12-06 2023-03-01 Sigma Aldrich Co Llc Crispr-based genome modification and regulation
RU2721275C2 (en) 2012-12-12 2020-05-18 Те Брод Инститьют, Инк. Delivery, construction and optimization of systems, methods and compositions for sequence manipulation and use in therapy
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
PL2921557T3 (en) 2012-12-12 2017-03-31 Broad Inst Inc Engineering of systems, methods and optimized guide compositions for sequence manipulation
DK2921557T3 (en) 2012-12-12 2016-11-07 Broad Inst Inc Design of systems, methods and optimized sequence manipulation guide compositions
SG10201912327SA (en) 2012-12-12 2020-02-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
CA2894668A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas systems and methods for altering expression of gene products in eukaryotic cells
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
ES2741951T3 (en) 2012-12-17 2020-02-12 Harvard College Genetic engineering modification of the human genome guided by RNA
CA2905289C (en) 2013-03-12 2023-03-07 Pioneer Hi-Bred International, Inc. Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof
AU2014235794A1 (en) 2013-03-14 2015-10-22 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
CA3161835A1 (en) 2013-03-15 2014-09-25 The General Hospital Corporation Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
DK3309248T3 (en) 2013-05-29 2021-08-02 Cellectis Method for manipulating T cells for immunotherapy using an RNA-guided CAS nuclease system
ES2883131T3 (en) 2013-05-29 2021-12-07 Cellectis Methods for modifying T cells for immunotherapy using the RNA-guided CAS nuclease system
KR20230136697A (en) 2013-06-05 2023-09-26 듀크 유니버시티 Rna-guided gene editing and gene regulation
EP3011033B1 (en) 2013-06-17 2020-02-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
WO2014204729A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
EP3011035B1 (en) 2013-06-17 2020-05-13 The Broad Institute, Inc. Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences
RU2764637C2 (en) 2013-07-09 2022-01-19 Президент Энд Фэллоуз Оф Харвард Коллидж Multiplex genomic engineering guided by rna
US9663782B2 (en) 2013-07-19 2017-05-30 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
US11060083B2 (en) 2013-07-19 2021-07-13 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
WO2015026886A1 (en) 2013-08-22 2015-02-26 E. I. Du Pont De Nemours And Company Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
US9388430B2 (en) * 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US20150079680A1 (en) 2013-09-18 2015-03-19 Kymab Limited Methods, cells & organisms
US10093929B2 (en) 2013-10-14 2018-10-09 Stc.Unm Modular RNA regulators and methods
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
CN111218447A (en) 2013-11-07 2020-06-02 爱迪塔斯医药有限公司 CRISPR-associated methods and compositions using dominant grnas
EP3074515B1 (en) 2013-11-28 2018-11-14 Horizon Discovery Limited Somatic haploid human cell line
KR102170502B1 (en) 2013-12-11 2020-10-28 리제너론 파마슈티칼스 인코포레이티드 Methods and compositions for the targeted modification of a genome
EP3080266B1 (en) * 2013-12-12 2021-02-03 The Regents of The University of California Methods and compositions for modifying a single stranded target nucleic acid
KR20160089526A (en) 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
EP4219699A1 (en) 2013-12-12 2023-08-02 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
CA2932436A1 (en) 2013-12-12 2015-06-18 The Broad Institute, Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
WO2015113063A1 (en) 2014-01-27 2015-07-30 Georgia Tech Research Corporation Methods and systems for identifying crispr/cas off-target sites
TR201819571T4 (en) 2014-02-14 2019-01-21 Cellectis Cells for immunotherapy that have been modified to target antigens found on both immune cells and pathological cells.
EP3981876A1 (en) * 2014-03-26 2022-04-13 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
LT3152312T (en) 2014-06-06 2020-04-27 Regeneron Pharmaceuticals, Inc. Methods and compositions for modifying a targeted locus
CA2952697A1 (en) 2014-06-16 2015-12-23 The Johns Hopkins University Compositions and methods for the expression of crispr guide rnas using the h1 promoter
WO2015200555A2 (en) 2014-06-25 2015-12-30 Caribou Biosciences, Inc. Rna modification to engineer cas9 activity
US20150376586A1 (en) 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
CN107109401B (en) 2014-07-21 2021-02-19 亿明达股份有限公司 Polynucleotide enrichment Using CRISPR-CAS System
CA2956224A1 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US20160076093A1 (en) 2014-08-04 2016-03-17 University Of Washington Multiplex homology-directed repair
KR20180015731A (en) 2014-08-06 2018-02-13 주식회사 툴젠 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
WO2016033246A1 (en) 2014-08-27 2016-03-03 Caribou Biosciences, Inc. Methods for increasing cas9-mediated engineering efficiency
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
EP3998344A1 (en) 2014-10-09 2022-05-18 Life Technologies Corporation Crispr oligonucleotides and gene editing
US20180250424A1 (en) 2014-10-10 2018-09-06 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
EP3207139A1 (en) 2014-10-17 2017-08-23 The Penn State Research Foundation Methods and compositions for multiplex rna guided genome editing and other rna technologies
WO2016065364A1 (en) 2014-10-24 2016-04-28 Life Technologies Corporation Compositions and methods for enhancing homologous recombination
CA2964953A1 (en) 2014-10-31 2016-05-06 The Trustees Of The University Of Pennsylvania Altering gene expression in cart cells and uses thereof
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
CA2963820A1 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
US10017825B2 (en) 2014-11-17 2018-07-10 Beth Israel Deaconess Medical Center, Inc. Compositions and methods for characterizing a DNA repair variant polypeptide
JP6772067B2 (en) 2014-11-20 2020-10-21 国立大学法人京都大学 Methods and cells for knocking in DNA into the target genomic region of mammals
US10457960B2 (en) 2014-11-21 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide RNAs
WO2016089866A1 (en) 2014-12-01 2016-06-09 President And Fellows Of Harvard College Rna-guided systems for in vivo gene editing
CA2969619A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
WO2016094880A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs)
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016094867A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Protected guide rnas (pgrnas)
US9840702B2 (en) 2014-12-18 2017-12-12 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
WO2016104716A1 (en) * 2014-12-26 2016-06-30 国立研究開発法人理化学研究所 Gene knockout method
SG10201906070XA (en) * 2014-12-31 2019-08-27 Synthetic Genomics Inc Compositions and methods for high efficiency in vivo genome editing
US10059940B2 (en) 2015-01-27 2018-08-28 Minghong Zhong Chemically ligated RNAs for CRISPR/Cas9-lgRNA complexes as antiviral therapeutic agents
KR102319192B1 (en) 2015-01-28 2021-10-28 카리부 바이오사이언시스 인코포레이티드 Crispr hybrid dna/rna polynucleotides and methods of use
EP3250693B2 (en) 2015-01-30 2023-12-20 The Regents of The University of California Protein delivery in primary hematopoietic cells
KR102194612B1 (en) 2015-03-16 2020-12-23 인스티튜트 오브 제네틱스 앤드 디벨롭멘털 바이오롤지, 차이니즈 아카데미 오브 사이언시스 Site-specific modification method of plant genome using non-genetic material
EP3274454B1 (en) * 2015-03-25 2021-08-25 Editas Medicine, Inc. Crispr/cas-related methods, compositions and components
AU2016246450B2 (en) 2015-04-06 2022-03-17 Agilent Technologies, Inc. Chemically modified guide RNAs for CRISPR/Cas-mediated gene regulation
WO2016183402A2 (en) 2015-05-13 2016-11-17 President And Fellows Of Harvard College Methods of making and using guide rna for use with cas9 systems
WO2016183345A1 (en) 2015-05-13 2016-11-17 Seattle Children' S Hospital (Dba Seattle Children 's Research Institute) Enhancing endonuclease based gene editing in primary cells
WO2016186745A1 (en) 2015-05-15 2016-11-24 Ge Healthcare Dharmacon, Inc. Synthetic single guide rna for cas9-mediated gene editing
US10117911B2 (en) * 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
WO2016196283A1 (en) 2015-05-29 2016-12-08 Agenovir Corporation Antiviral methods and compositions
JP2018516983A (en) 2015-05-29 2018-06-28 アジェノビア コーポレーション Compositions and methods for treating viral infections
US20160362667A1 (en) 2015-06-10 2016-12-15 Caribou Biosciences, Inc. CRISPR-Cas Compositions and Methods
JP2018521642A (en) 2015-06-12 2018-08-09 ロンザ ウォカーズビル インコーポレーティッド A method for nuclear reprogramming using synthetic transcription factors
JP2018519811A (en) 2015-06-29 2018-07-26 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
US20170020922A1 (en) 2015-07-16 2017-01-26 Batu Biologics Inc. Gene editing for immunological destruction of neoplasia
GB2595063B (en) 2015-07-31 2022-03-09 Univ Minnesota Modified cells and methods of therapy
US20170165332A1 (en) 2015-08-03 2017-06-15 Batu Biologics, Inc. Gene edited antigen presenting cells
WO2017031483A1 (en) 2015-08-20 2017-02-23 Applied Stemcell, Inc. Nuclease with enhanced efficiency of genome editing
ES2929110T3 (en) 2015-08-25 2022-11-24 Univ Duke Compositions and methods to improve the specificity in genetic engineering using RNA-guided endonucleases
US20170152506A1 (en) 2015-08-28 2017-06-01 Batu Biologics, Inc. Inactivation of lymphocyte immunological checkpoints by gene editing
WO2017040709A1 (en) 2015-08-31 2017-03-09 Caribou Biosciences, Inc. Directed nucleic acid repair
EP3344771A4 (en) 2015-08-31 2019-03-20 Agilent Technologies, Inc. Compounds and methods for crispr/cas-based genome editing by homologous recombination
WO2017044419A1 (en) 2015-09-08 2017-03-16 University Of Massachusetts Dnase h activity of neisseria meningitidis cas9
WO2017049266A2 (en) 2015-09-18 2017-03-23 The Regents Of The University Of California Methods for autocatalytic genome editing and neutralizing autocatalytic genome editing and compositions thereof
CA2999500A1 (en) 2015-09-24 2017-03-30 Editas Medicine, Inc. Use of exonucleases to improve crispr/cas-mediated genome editing
EP3353309A4 (en) 2015-09-25 2019-04-10 Tarveda Therapeutics, Inc. Compositions and methods for genome editing
WO2017053729A1 (en) 2015-09-25 2017-03-30 The Board Of Trustees Of The Leland Stanford Junior University Nuclease-mediated genome editing of primary cells and enrichment thereof
EP3365439A1 (en) 2015-10-20 2018-08-29 Pioneer Hi-Bred International, Inc. Methods and compositions for marker-free genome modification
EP3159407A1 (en) 2015-10-23 2017-04-26 Silence Therapeutics (London) Ltd Guide rnas, methods and uses
EA201891092A1 (en) 2015-11-04 2018-10-31 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания METHODS AND COMPOSITIONS FOR EDITING GENES IN HEMOPOETIC STEM CELLS
JP2018532419A (en) 2015-11-09 2018-11-08 イフォム・フォンダツィオーネ・イスティトゥート・フィルチ・ディ・オンコロジア・モレコラーレ CRISPR-Cas sgRNA library
US20170137845A1 (en) 2015-11-13 2017-05-18 Biogen Methods and compositions for increasing rna activity in a cell
US11306308B2 (en) 2015-11-13 2022-04-19 Massachusetts Institute Of Technology High-throughput CRISPR-based library screening
US11905521B2 (en) 2015-11-17 2024-02-20 The Chinese University Of Hong Kong Methods and systems for targeted gene manipulation
EP3383409A4 (en) 2015-12-02 2019-10-02 The Regents of The University of California Compositions and methods for modifying a target nucleic acid
WO2017093370A1 (en) 2015-12-03 2017-06-08 Technische Universität München T-cell specific genome editing
BR112018011089A2 (en) 2015-12-04 2018-12-04 Intellia Therapeutics Inc compositions and methods for immuno-oncology
NZ756843A (en) 2015-12-04 2021-07-30 Caribou Biosciences Inc Engineered nucleic-acid targeting nucleic acids
DK3386550T3 (en) 2015-12-07 2021-04-26 Arc Bio Llc Methods for preparing and using guide nucleic acids
US11118194B2 (en) 2015-12-18 2021-09-14 The Regents Of The University Of California Modified site-directed modifying polypeptides and methods of use thereof
WO2017115268A1 (en) 2015-12-28 2017-07-06 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
WO2017120410A1 (en) 2016-01-08 2017-07-13 University Of Georgia Research Foundation, Inc. Methods for cleaving dna and rna molecules
US11427837B2 (en) 2016-01-12 2022-08-30 The Regents Of The University Of California Compositions and methods for enhanced genome editing
CN106967685B (en) 2016-01-13 2020-06-02 北京马力喏生物科技有限公司 Transgenic lymphocytes co-expressing anti-EGFRvIII chimeric antigen receptor and immune checkpoint inhibitory molecules and uses thereof
CN106967681B (en) 2016-01-13 2020-06-05 北京马力喏生物科技有限公司 Therapeutic composition for treating glioblastoma
EP3199632A1 (en) 2016-01-26 2017-08-02 ACIB GmbH Temperature-inducible crispr/cas system
EP3426784A1 (en) 2016-03-11 2019-01-16 Wageningen Universiteit Improved crispr-cpf1 genome editing tool
EP3426776A1 (en) 2016-03-11 2019-01-16 Erasmus University Medical Center Rotterdam Improved crispr-cas9 genome editing tool
US20190167814A1 (en) 2016-04-14 2019-06-06 Université de Lausanne Treatment And/Or Prevention Of DNA-Triplet Repeat Diseases Or Disorders
EP3445852A1 (en) 2016-04-18 2019-02-27 Ruprecht-Karls-Universität Heidelberg Means and methods for inactivating therapeutic dna in a cell
EP3445854A1 (en) 2016-04-21 2019-02-27 Life Technologies Corporation Gene editing reagents with reduced toxicity
WO2017189336A1 (en) 2016-04-25 2017-11-02 The Regents Of The University Of California Methods and compositions for genomic editing
MA44869A (en) * 2016-05-06 2019-03-13 Editas Medicine Inc GENETICALLY MODIFIED CELLS AND THEIR MANUFACTURING PROCESSES
WO2017197238A1 (en) 2016-05-12 2017-11-16 President And Fellows Of Harvard College Aav split cas9 genome editing and transcriptional regulation
EP3457840B1 (en) * 2016-05-20 2024-04-10 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide rnas
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
KR102523302B1 (en) 2016-06-15 2023-04-20 주식회사 툴젠 Target-specific genetic scissors screening method using on-target and off-target multi-target systems and uses thereof
WO2017216771A2 (en) * 2016-06-17 2017-12-21 Genesis Technologies Limited Crispr-cas system, materials and methods
US20210222164A1 (en) 2016-06-29 2021-07-22 The Broad Institute, Inc. Crispr-cas systems having destabilization domain
CA3029860A1 (en) 2016-07-05 2018-01-11 The Johns Hopkins University Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter
CN106191062B (en) 2016-07-18 2019-06-14 广东华南疫苗股份有限公司 A kind of TCR-/PD-1- double negative t cells and its construction method
WO2018030208A1 (en) 2016-08-10 2018-02-15 国立大学法人東京医科歯科大学 Method for producing gene knock-in cells
WO2018031950A1 (en) 2016-08-12 2018-02-15 Caribou Biosciences, Inc. Protein engineering methods
CN106520824A (en) * 2016-09-30 2017-03-22 北京大北农科技集团股份有限公司 Multi-target-point editing system and application thereof
EP3523422A1 (en) 2016-10-05 2019-08-14 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with mecp2 disruption
US10669539B2 (en) * 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
WO2018067991A1 (en) 2016-10-07 2018-04-12 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
WO2018068257A1 (en) 2016-10-13 2018-04-19 北京艺妙神州医疗科技有限公司 Universal car-t cell and preparation method and application therefor
CN106637421B (en) 2016-10-28 2019-12-27 博雅缉因(北京)生物科技有限公司 Construction of double sgRNA library and method for applying double sgRNA library to high-throughput functional screening research
CA3041582A1 (en) 2016-11-02 2018-05-11 Universitat Basel Immunologically discernible cell surface variants for use in cell therapy
CA3042691A1 (en) 2016-11-03 2018-05-11 Youhealth Biotech, Limited Methods and compositions for cellular reprogramming
US10648002B2 (en) 2016-11-22 2020-05-12 Regents Of The University Of Minnesota Method for correcting a genetic sequence
WO2018096356A1 (en) 2016-11-28 2018-05-31 Horizon Discovery Limited Methods for conditional gene knock-out
US9816093B1 (en) 2016-12-06 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
KR102618864B1 (en) 2016-12-30 2024-01-02 에디타스 메디신, 인코포레이티드 Synthetic guide molecules, compositions and methods related thereto
WO2018130830A1 (en) 2017-01-11 2018-07-19 Oxford University Innovation Limited Crispr rna
CA3051585A1 (en) * 2017-01-28 2018-08-02 Inari Agriculture, Inc. Novel plant cells, plants, and seeds
CN118006597A (en) 2017-03-22 2024-05-10 国立大学法人神户大学 Method for changing target site of DNA in cell and complex used for the method
IL269458B2 (en) 2017-03-23 2024-02-01 Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
WO2018205926A1 (en) 2017-05-08 2018-11-15 中国科学院动物研究所 Modified t cell, preparation method for same, and uses thereof
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
US20200157611A1 (en) 2017-06-05 2020-05-21 The Board Of Trustees Of The Leland Stanford Junior University Ribonucleoprotein-based imaging and detection
US20200362355A1 (en) 2017-06-15 2020-11-19 The Regents Of The University Of California Targeted non-viral dna insertions
US20200181608A1 (en) 2017-06-20 2020-06-11 Jiangsu Hengrui Medicine Co., Ltd. METHOD FOR KNOCKING OUT TARGET GENE IN T CELL IN VITRO AND crRNA USED IN THE METHOD
WO2019010384A1 (en) 2017-07-07 2019-01-10 The Broad Institute, Inc. Methods for designing guide sequences for guided nucleases
EP3652320A4 (en) 2017-07-12 2021-04-14 Mayo Foundation for Medical Education and Research Materials and methods for efficient targeted knock in or gene replacement
US10805284B2 (en) 2017-07-12 2020-10-13 Logmein, Inc. Federated login for password vault
US11021719B2 (en) * 2017-07-31 2021-06-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
SG11201912024RA (en) 2017-07-31 2020-02-27 Sigma Aldrich Co Llc Synthetic guide rna for crispr/cas activator systems
WO2019040645A1 (en) 2017-08-22 2019-02-28 Napigen, Inc. Organelle genome modification using polynucleotide guided endonuclease
BR112020005217A2 (en) 2017-09-18 2020-09-15 Amyris, Inc. methods for genetic engineering of kluyveromyces host cells
IL273460B1 (en) 2017-09-19 2024-03-01 Tropic Biosciences Uk Ltd Modifying the specificity of plant non-coding rna molecules for silencing gene expression
EP3707256A1 (en) 2017-11-09 2020-09-16 CRISPR Therapeutics AG Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof
EP3710583A1 (en) 2017-11-16 2020-09-23 Astrazeneca AB Compositions and methods for improving the efficacy of cas9-based knock-in strategies
WO2019106522A1 (en) 2017-11-28 2019-06-06 Novartis Ag Pooled crispr/cas9 screening in primary cells using guide swap technology
WO2019118948A2 (en) 2017-12-15 2019-06-20 Massachusetts Institute Of Technology Systems and methods for predicting repair outcomes in genetic engineering
WO2019118949A1 (en) 2017-12-15 2019-06-20 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US20200392473A1 (en) * 2017-12-22 2020-12-17 The Broad Institute, Inc. Novel crispr enzymes and systems
EP3732286A4 (en) 2017-12-28 2022-01-05 The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone Generation of induced pluripotent cells by crispr activation
US11268092B2 (en) 2018-01-12 2022-03-08 GenEdit, Inc. Structure-engineered guide RNA
WO2019147275A1 (en) 2018-01-26 2019-08-01 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
BR112020010479A2 (en) 2018-02-15 2020-11-24 Sigma-Aldrich Co. Llc genetically modified cas9 systems for eukaryotic genome modification
WO2019204668A1 (en) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions and methods for knockdown of apo(a) by gene editing for treatment of cardiovascular disease
JP2021523745A (en) 2018-05-16 2021-09-09 シンテゴ コーポレイション Methods and systems for guide RNA design and use
WO2019232494A2 (en) 2018-06-01 2019-12-05 Synthego Corporation Methods and systems for determining editing outcomes from repair of targeted endonuclease mediated cuts
US11970733B2 (en) 2018-11-01 2024-04-30 Synthego Corporation Methods for analyzing nucleic acid sequences
WO2020154714A2 (en) 2019-01-25 2020-07-30 Synthego Corporation Systems and methods for modulating crispr activity
FR3098353B1 (en) 2019-07-02 2021-06-18 Psa Automobiles Sa SPRING PRE-CHARGED MULTI-CELL STORAGE MODULE
GB2603223A (en) 2019-07-19 2022-08-03 Synthego Corp Stabilized Crispr complexes

Similar Documents

Publication Publication Date Title
US20200172935A1 (en) Modified cpf1 mrna, modified guide rna, and uses thereof
Konkel et al. LINEs and SINEs of primate evolution
US11339431B2 (en) Methods and compositions for enrichment of target polynucleotides
KR20150131251A (en) Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
KR20180043369A (en) Complete call and sequencing of nuclease DSB (FIND-SEQ)
JP2022078058A (en) Genome editing method
Peška et al. BAL31-NGS approach for identification of telomeres de novo in large genomes
JP2024079842A (en) Methods and systems for guide RNA design and use
WO2019232494A2 (en) Methods and systems for determining editing outcomes from repair of targeted endonuclease mediated cuts
US20190241911A1 (en) Engineered guide rna and uses thereof
JPWO2019222545A5 (en)
US20220127661A1 (en) Compositions and methods of targeted nucleic acid enrichment by loop adapter protection and exonuclease digestion
WO2018222941A1 (en) Preparation of concatenated polynucleotides
US20210180053A1 (en) Synthetic rnas and methods of use
Spaller et al. TRE5-A retrotransposition profiling reveals putative RNA polymerase III transcription complex binding sites on the Dictyostelium extrachromosomal rDNA element
US20220238181A1 (en) Crispr guide selection
WO2023225410A2 (en) Systems and methods for assessing risk of genome editing events
Li et al. The intragenomic polymorphism of a partially inverted repeat (PIR) in Gallus gallus domesticus, potential role of inverted repeats in satellite DNAs evolution
Rassoulzadegan et al. DNA-RNA hybrid (R-loop): from a unified picture of the mammalian telomere to the genome-wide
JP2023538537A (en) Methods for targeted removal of nucleic acids
WO2024059516A1 (en) Methods for generating cdna library from rna
EP4381093A1 (en) Methods of determining the number of copies or sequence of one or more rna molecules
Goldfarb Noncoding MRP RNA Function Investigated by Genetic Manipulation and Biochemical Analysis
Callinan Alu retrotransposition-mediated genomic variation within the primate order
Tulshiram RNA Editing and its Potential Role in Evolution