JPWO2019220615A1 - Optical systems, optical instruments, and methods of manufacturing optical systems - Google Patents

Optical systems, optical instruments, and methods of manufacturing optical systems Download PDF

Info

Publication number
JPWO2019220615A1
JPWO2019220615A1 JP2020518917A JP2020518917A JPWO2019220615A1 JP WO2019220615 A1 JPWO2019220615 A1 JP WO2019220615A1 JP 2020518917 A JP2020518917 A JP 2020518917A JP 2020518917 A JP2020518917 A JP 2020518917A JP WO2019220615 A1 JPWO2019220615 A1 JP WO2019220615A1
Authority
JP
Japan
Prior art keywords
lens
conditional expression
lens group
optical system
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020518917A
Other languages
Japanese (ja)
Inventor
知之 幸島
知之 幸島
三郎 真杉
三郎 真杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2019220615A1 publication Critical patent/JPWO2019220615A1/en
Priority to JP2022123776A priority Critical patent/JP2022140661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

光学系(LS)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)と、負の屈折力を有する第3レンズ群(G3)とを有し、合焦の際、第2レンズ群(G2)が光軸に沿って移動し、以下の条件式を満足する。−5.000<(−G1R1)/f<500.0000.20<f2/(−f3)<1.20但し、f2:第2レンズ群(G2)の焦点距離f3:第3レンズ群(G3)の焦点距離f:光学系(LS)の焦点距離G1R1:第1レンズ群(G1)の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径The optical system (LS) has a first lens group (G1) having a positive refractive power, a second lens group (G2) having a positive refractive power, and a negative refractive power arranged in order from the object side. It has a third lens group (G3), and at the time of focusing, the second lens group (G2) moves along the optical axis and satisfies the following conditional expression. -5.000 <(-G1R1) / f <500.0000.20 <f2 / (-f3) <1.20 However, f2: focal length of the second lens group (G2) f3: third lens group (G3) ) Focal length f: Focal length of the optical system (LS) G1R1: Radius of curvature of the lens surface on the object side in the lens component arranged on the most object side of the first lens group (G1).

Description

本発明は、光学系、光学機器、および光学系の製造方法に関する。 The present invention relates to optical systems, optical instruments, and methods for manufacturing optical systems.

従来から、絞りの像側に配置された正レンズ群を物体側に繰り出して合焦を行うインナーフォーカス方式の単焦点光学系(例えば、特許文献1を参照)が提案されている。このような光学系では、大口径化した場合に、諸収差を良好に補正することが難しかった。 Conventionally, an inner focus type single focus optical system (see, for example, Patent Document 1) has been proposed in which a group of positive lenses arranged on the image side of an aperture is extended toward an object side to focus. With such an optical system, it has been difficult to satisfactorily correct various aberrations when the diameter is increased.

特開2012−234169号公報Japanese Unexamined Patent Publication No. 2012-234169

第1の態様に係る光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有し、合焦の際、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足する。
−5.000<(−G1R1)/f<500.000
0.20<f2/(−f3)<1.20
但し、f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f:前記光学系の焦点距離
G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
The optical system according to the first aspect includes a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power arranged in order from the object side. It has a group, and at the time of focusing, the second lens group moves along the optical axis and satisfies the following conditional expression.
-5.000 <(-G1R1) / f <500.000
0.20 <f2 / (-f3) <1.20
However, f2: the focal length of the second lens group f3: the focal length of the third lens group f: the focal length of the optical system G1R1: the object side of the lens component arranged on the most object side of the first lens group. Radical length of the lens surface of

第2の態様に係る光学機器は、上記光学系を備えて構成される。 The optical device according to the second aspect includes the above optical system.

第3の態様に係る光学系の製造方法は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、合焦の際、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
−5.000<(−G1R1)/f<500.000
0.20<f2/(−f3)<1.20
但し、f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f:前記光学系の焦点距離
G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
The method for manufacturing an optical system according to a third aspect has a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative refractive power arranged in order from the object side. A method for manufacturing an optical system having a third lens group, in which the second lens group moves along an optical axis during focusing and is contained in a lens barrel so as to satisfy the following conditional expression. Place each lens.
-5.000 <(-G1R1) / f <500.000
0.20 <f2 / (-f3) <1.20
However, f2: the focal length of the second lens group f3: the focal length of the third lens group f: the focal length of the optical system G1R1: the object side of the lens component arranged on the most object side of the first lens group. Radical length of the lens surface of

第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 1st Example. 図2(A)は第1実施例に係る光学系の無限遠合焦時の諸収差図であり、図2(B)は第1実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 2A is a diagram of various aberrations of the optical system according to the first embodiment during infinity focusing, and FIG. 2B is a diagram of various aberrations of the optical system according to the first embodiment during short-distance focusing. It is a figure. 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 2nd Example. 図4(A)は第2実施例に係る光学系の無限遠合焦時の諸収差図であり、図4(B)は第2実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 4A is a diagram of various aberrations of the optical system according to the second embodiment during infinity focusing, and FIG. 4B is a diagram of various aberrations of the optical system according to the second embodiment during short-distance focusing. It is a figure. 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 3rd Example. 図6(A)は第3実施例に係る光学系の無限遠合焦時の諸収差図であり、図6(B)は第3実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 6A is a diagram of various aberrations of the optical system according to the third embodiment during infinity focusing, and FIG. 6B is a diagram of various aberrations of the optical system according to the third embodiment during short-distance focusing. It is a figure. 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 4th Example. 図8(A)は第4実施例に係る光学系の無限遠合焦時の諸収差図であり、図8(B)は第4実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 8A is a diagram of various aberrations of the optical system according to the fourth embodiment during infinity focusing, and FIG. 8B is a diagram of various aberrations of the optical system according to the fourth embodiment during short-distance focusing. It is a figure. 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 5th Example. 図10(A)は第5実施例に係る光学系の無限遠合焦時の諸収差図であり、図10(B)は第5実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 10A is a diagram of various aberrations of the optical system according to the fifth embodiment during infinity focusing, and FIG. 10B is a diagram of various aberrations of the optical system according to the fifth embodiment during short-distance focusing. It is a figure. 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 6th Example. 図12(A)は第6実施例に係る光学系の無限遠合焦時の諸収差図であり、図12(B)は第6実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 12A is a diagram of various aberrations of the optical system according to the sixth embodiment during infinity focusing, and FIG. 12B is a diagram of various aberrations of the optical system according to the sixth embodiment during short-distance focusing. It is a figure. 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 7th Example. 図14(A)は第7実施例に係る光学系の無限遠合焦時の諸収差図であり、図14(B)は第7実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 14 (A) is a diagram of various aberrations of the optical system according to the seventh embodiment during infinity focusing, and FIG. 14 (B) is a diagram of various aberrations of the optical system according to the seventh embodiment during short-distance focusing. It is a figure. 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 8th Example. 図16(A)は第8実施例に係る光学系の無限遠合焦時の諸収差図であり、図16(B)は第8実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 16A is a diagram of various aberrations of the optical system according to the eighth embodiment during infinity focusing, and FIG. 16B is a diagram of various aberrations of the optical system according to the eighth embodiment during short-distance focusing. It is a figure. 第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 9th Example. 図18(A)は第9実施例に係る光学系の無限遠合焦時の諸収差図であり、図18(B)は第9実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 18A is a diagram of various aberrations of the optical system according to the ninth embodiment during infinity focusing, and FIG. 18B is a diagram of various aberrations of the optical system according to the ninth embodiment during short-distance focusing. It is a figure. 第10実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 10th Example. 図20(A)は第10実施例に係る光学系の無限遠合焦時の諸収差図であり、図20(B)は第10実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 20A is a diagram of various aberrations of the optical system according to the tenth embodiment during infinity focusing, and FIG. 20B is a diagram of various aberrations of the optical system according to the tenth embodiment during short-distance focusing. It is a figure. 第11実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on eleventh embodiment. 図22(A)は第11実施例に係る光学系の無限遠合焦時の諸収差図であり、図22(B)は第11実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 22 (A) is a diagram of various aberrations of the optical system according to the eleventh embodiment during infinity focusing, and FIG. 22 (B) is a diagram of various aberrations of the optical system according to the eleventh embodiment during short-distance focusing. It is a figure. 第12実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on a twelfth embodiment. 図24(A)は第12実施例に係る光学系の無限遠合焦時の諸収差図であり、図24(B)は第12実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 24 (A) is a diagram of various aberrations of the optical system according to the twelfth embodiment during infinity focusing, and FIG. 24 (B) is a diagram of various aberrations of the optical system according to the twelfth embodiment during short-distance focusing. It is a figure. 第13実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 13th Example. 図26(A)は第13実施例に係る光学系の無限遠合焦時の諸収差図であり、図26(B)は第13実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 26A is a diagram of various aberrations of the optical system according to the thirteenth embodiment during infinity focusing, and FIG. 26B is a diagram of various aberrations of the optical system according to the thirteenth embodiment during short-distance focusing. It is a figure. 第14実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 14th Example. 図28(A)は第14実施例に係る光学系の無限遠合焦時の諸収差図であり、図28(B)は第14実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 28 (A) is a diagram of various aberrations of the optical system according to the 14th embodiment during infinity focusing, and FIG. 28 (B) is a diagram of various aberrations of the optical system according to the 14th embodiment during short-distance focusing. It is a figure. 第15実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 15th Example. 図30(A)は第15実施例に係る光学系の無限遠合焦時の諸収差図であり、図30(B)は第15実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 30A is a diagram of various aberrations of the optical system according to the fifteenth embodiment during infinity focusing, and FIG. 30B is a diagram of various aberrations of the optical system according to the fifteenth embodiment during short-distance focusing. It is a figure. 第16実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on the 16th Example. 図32(A)は第16実施例に係る光学系の無限遠合焦時の諸収差図であり、図32(B)は第16実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 32 (A) is a diagram of various aberrations of the optical system according to the 16th embodiment during infinity focusing, and FIG. 32 (B) is a diagram of various aberrations of the optical system according to the 16th embodiment during short-distance focusing. It is a figure. 第17実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 17th Example. 図34(A)は第17実施例に係る光学系の無限遠合焦時の諸収差図であり、図34(B)は第17実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 34 (A) is a diagram of various aberrations of the optical system according to the 17th embodiment during infinity focusing, and FIG. 34 (B) is a diagram of various aberrations of the optical system according to the 17th embodiment during short-distance focusing. It is a figure. 第18実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 18th Example. 図36(A)は第18実施例に係る光学系の無限遠合焦時の諸収差図であり、図36(B)は第18実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 36 (A) is a diagram of various aberrations of the optical system according to the eighteenth embodiment during infinity focusing, and FIG. 36 (B) is a diagram of various aberrations of the optical system according to the eighteenth embodiment during short-distance focusing. It is a figure. 第19実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 19th Example. 図38(A)は第19実施例に係る光学系の無限遠合焦時の諸収差図であり、図38(B)は第19実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 38 (A) is a diagram of various aberrations of the optical system according to the 19th embodiment during infinity focusing, and FIG. 38 (B) is a diagram of various aberrations of the optical system according to the 19th embodiment during short-distance focusing. It is a figure. 第20実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 20th Example. 図40(A)は第20実施例に係る光学系の無限遠合焦時の諸収差図であり、図40(B)は第20実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 40 (A) is a diagram of various aberrations of the optical system according to the twentieth embodiment during infinity focusing, and FIG. 40 (B) is a diagram of various aberrations of the optical system according to the twentieth embodiment during short-distance focusing. It is a figure. 第21実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 21st Example. 図42(A)は第21実施例に係る光学系の無限遠合焦時の諸収差図であり、図42(B)は第21実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 42 (A) is a diagram of various aberrations of the optical system according to the 21st embodiment during infinity focusing, and FIG. 42 (B) is a diagram of various aberrations of the optical system according to the 21st embodiment during short-distance focusing. It is a figure. 第22実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 22nd Example. 図44(A)は第22実施例に係る光学系の無限遠合焦時の諸収差図であり、図44(B)は第22実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 44 (A) is a diagram of various aberrations of the optical system according to the 22nd embodiment during infinity focusing, and FIG. 44 (B) is a diagram of various aberrations of the optical system according to the 22nd embodiment during short-distance focusing. It is a figure. 第23実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 23rd Example. 図46(A)は第23実施例に係る光学系の無限遠合焦時の諸収差図であり、図46(B)は第23実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 46 (A) is a diagram of various aberrations of the optical system according to the 23rd embodiment during infinity focusing, and FIG. 46 (B) is a diagram of various aberrations of the optical system according to the 23rd embodiment during short-distance focusing. It is a figure. 第24実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 24th Example. 図48(A)は第24実施例に係る光学系の無限遠合焦時の諸収差図であり、図48(B)は第24実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 48 (A) is a diagram of various aberrations of the optical system according to the 24th embodiment during infinity focusing, and FIG. 48 (B) is a diagram of various aberrations of the optical system according to the 24th embodiment during short-distance focusing. It is a figure. 第25実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on the 25th Example. 図50(A)は第25実施例に係る光学系の無限遠合焦時の諸収差図であり、図50(B)は第25実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 50 (A) is a diagram of various aberrations of the optical system according to the 25th embodiment during infinity focusing, and FIG. 50 (B) is a diagram of various aberrations of the optical system according to the 25th embodiment during short-distance focusing. It is a figure. 第26実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on the 26th Example. 図52(A)は第26実施例に係る光学系の無限遠合焦時の諸収差図であり、図52(B)は第26実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 52 (A) is a diagram of various aberrations of the optical system according to the 26th embodiment during infinity focusing, and FIG. 52 (B) is a diagram of various aberrations of the optical system according to the 26th embodiment during short-distance focusing. It is a figure. 第27実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 27th Embodiment. 図54(A)は第27実施例に係る光学系の無限遠合焦時の諸収差図であり、図54(B)は第27実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 54 (A) is a diagram of various aberrations of the optical system according to the 27th embodiment during infinity focusing, and FIG. 54 (B) is a diagram of various aberrations of the optical system according to the 27th embodiment during short-distance focusing. It is a figure. 第28実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 28th Example. 図56(A)は第28実施例に係る光学系の無限遠合焦時の諸収差図であり、図56(B)は第28実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 56 (A) is a diagram of various aberrations of the optical system according to the 28th embodiment during infinity focusing, and FIG. 56 (B) is a diagram of various aberrations of the optical system according to the 28th embodiment during short-distance focusing. It is a figure. 第29実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 29th Embodiment. 図58(A)は第29実施例に係る光学系の無限遠合焦時の諸収差図であり、図58(B)は第29実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 58 (A) is a diagram of various aberrations of the optical system according to the 29th embodiment during infinity focusing, and FIG. 58 (B) is a diagram of various aberrations of the optical system according to the 29th embodiment during short-distance focusing. It is a figure. 第30実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 30th Example. 図60(A)は第30実施例に係る光学系の無限遠合焦時の諸収差図であり、図60(B)は第30実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 60 (A) is a diagram of various aberrations of the optical system according to the thirtieth embodiment during infinity focusing, and FIG. 60 (B) is a diagram of various aberrations of the optical system according to the thirtieth embodiment during short-distance focusing. It is a figure. 第31実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 31st Example. 図62(A)は第31実施例に係る光学系の無限遠合焦時の諸収差図であり、図62(B)は第31実施例に係る光学系の近距離合焦時の諸収差図である。FIG. 62 (A) is a diagram of various aberrations of the optical system according to the 31st embodiment at infinity focusing, and FIG. 62 (B) shows various aberrations of the optical system according to the 31st embodiment at the time of short-distance focusing. It is a figure. 本実施形態に係る光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system which concerns on this embodiment. 本実施形態に係る光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.

以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図63に基づいて説明する。このカメラ1は、図63に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。 Hereinafter, the optical system and the optical device according to the present embodiment will be described with reference to the drawings. First, a camera (optical device) provided with an optical system according to the present embodiment will be described with reference to FIG. 63. As shown in FIG. 63, the camera 1 is a digital camera provided with an optical system according to the present embodiment as a photographing lens 2. In the camera 1, the light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. As a result, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.

本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とを有して構成される。合焦の際、第2レンズ群G2が光軸に沿って移動する。これにより、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能になる。 As shown in FIG. 1, the optical system LS (1) as an example of the optical system (photographing lens) LS according to the present embodiment includes a first lens group G1 having a positive refractive power arranged in order from the object side. It is composed of a second lens group G2 having a positive refractive power and a third lens group G3 having a negative refractive power. At the time of focusing, the second lens group G2 moves along the optical axis. This makes it possible to obtain good optical performance while suppressing changes in image magnification from the infinity focusing state to the short distance focusing state.

本実施形態に係る光学系LSは、図1に示す光学系LS(1)に限られるものではなく、図3に示す光学系LS(2)でも良い。同様に、本実施形態に係る光学系LSは、図5以降に示す光学系LS(3)〜LS(31)でも良い。 The optical system LS according to the present embodiment is not limited to the optical system LS (1) shown in FIG. 1, and may be the optical system LS (2) shown in FIG. Similarly, the optical system LS according to the present embodiment may be the optical systems LS (3) to LS (31) shown in FIGS. 5 and 5 and thereafter.

上記構成の下、本実施形態に係る光学系LSは、以下の条件式を満足する。 Under the above configuration, the optical system LS according to the present embodiment satisfies the following conditional expression.

−5.000<(−G1R1)/f<500.000 ・・・(1)
0.20<f2/(−f3)<1.20 ・・・(2)
但し、f2:第2レンズ群G2の焦点距離
f3:第3レンズ群G3の焦点距離
f:光学系LSの焦点距離
G1R1:第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
-5.000 <(-G1R1) / f <500.000 ... (1)
0.20 <f2 / (-f3) <1.20 ... (2)
However, f2: the focal length of the second lens group G2 f3: the focal length of the third lens group G3 f: the focal length of the optical system LS G1R1: the object side of the lens component arranged on the most object side of the first lens group G1. Radical length of the lens surface of

条件式(1)は、第1レンズ群G1の最も物体側のレンズ面の曲率半径と光学系LS全系の焦点距離との比の適正範囲を規定するものである。条件式(1)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。本実施形態において、レンズ成分は、単レンズ又は接合レンズを示すものである。 The conditional expression (1) defines an appropriate range of the ratio between the radius of curvature of the lens surface on the most object side of the first lens group G1 and the focal length of the entire optical system LS. By satisfying the conditional expression (1), good optical performance can be ensured in the infinity in-focus state. In the present embodiment, the lens component indicates a single lens or a junction lens.

条件式(1)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が小さくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(1)の上限値を400.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、300.000、200.000、100.000、85.000、75.000、60.000、45.000、30.000、さらに20.000とすることが好ましい。 When the corresponding value of the conditional expression (1) exceeds the upper limit value, the radius of curvature of the lens surface on the most object side of the first lens group G1 becomes smaller, so that the amount of various aberrations generated increases and the coma at the time of focusing increases. The fluctuation of aberration becomes large. By setting the upper limit value of the conditional expression (1) to 400.000, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (1) is set to 300.000, 200.000, 100.000, 85.000, 75.000, 60.000, 45.000. It is preferably 30.000, more preferably 20.000.

条件式(1)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が大きくなるため、コマ収差の補正が困難になる。条件式(1)の下限値を−4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の下限値を、−3.000、−2.000、−1.000、0.010、0.100、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.550、0.600、0.650、さらに0.700とすることが好ましい。 When the corresponding value of the conditional expression (1) is less than the lower limit value, the radius of curvature of the lens surface on the most object side of the first lens group G1 becomes large, so that it becomes difficult to correct coma. By setting the lower limit value of the conditional expression (1) to -4.00, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (1) is set to -3000, -2000, -1.00, 0.010, 0.100, 0.200, It is preferably 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550, 0.600, 0.650, and further 0.700.

条件式(2)は、第2レンズ群G2の焦点距離と第3レンズ群G3の焦点距離との比の適正範囲を規定するものである。条件式(2)を満足することで、近距離合焦状態において良好な光学性能を確保することができる。 The conditional expression (2) defines an appropriate range of the ratio between the focal length of the second lens group G2 and the focal length of the third lens group G3. By satisfying the conditional expression (2), good optical performance can be ensured in a short-distance focusing state.

条件式(2)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(2)の上限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、0.95、0.90、0.88、0.85、0.80、0.77、0.75、0.72、0.70、さらに0.68とすることが好ましい。 When the corresponding value of the conditional expression (2) exceeds the upper limit value, the focal length of the second lens group G2 becomes long, so that the amount of movement of the second lens group G2 during focusing increases, and the amount of movement during focusing increases. Fluctuations in spherical aberration and curvature of field increase. By setting the upper limit value of the conditional expression (2) to 1.00, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (2) is set to 0.95, 0.90, 0.88, 0.85, 0.80, 0.77, 0.75. , 0.72, 0.70, and more preferably 0.68.

条件式(2)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。また、第3レンズ群G3の焦点距離がマイナス側に長くなるため、諸収差の補正が困難になり、合焦の際の像面湾曲の変動が大きくなる。条件式(2)の下限値を0.23に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、0.29、0.35、0.37、0.39、0.40、0.41、さらに0.42とすることが好ましい。 When the corresponding value of the conditional expression (2) is less than the lower limit value, the focal length of the second lens group G2 becomes short, so that the amount of various aberrations generated increases and the fluctuation of coma during focusing becomes large. Further, since the focal length of the third lens group G3 becomes longer on the minus side, it becomes difficult to correct various aberrations, and the curvature of field at the time of focusing becomes large. By setting the lower limit value of the conditional expression (2) to 0.23, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (2) is set to 0.29, 0.35, 0.37, 0.39, 0.40, 0.41, and further 0. It is preferably 42.

本実施形態の光学系LSは、以下の条件式(3)を満足することが望ましい。
−5.000<(−G1R1)/f1<50.000 ・・・(3)
但し、f1:第1レンズ群G1の焦点距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (3).
-5.000 <(-G1R1) / f1 <50.000 ... (3)
However, f1: the focal length of the first lens group G1

条件式(3)は、第1レンズ群G1の最も物体側のレンズ面の曲率半径と第1レンズ群G1の焦点距離との比の適正範囲を規定するものである。条件式(3)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。 Conditional expression (3) defines an appropriate range of the ratio between the radius of curvature of the lens surface on the most object side of the first lens group G1 and the focal length of the first lens group G1. By satisfying the conditional expression (3), good optical performance can be ensured in the infinity in-focus state.

条件式(3)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が小さくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(3)の上限値を40.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の上限値を、30.000、20.000、10.000、さらに5.000とすることが好ましい。 When the corresponding value of the conditional expression (3) exceeds the upper limit value, the radius of curvature of the lens surface on the most object side of the first lens group G1 becomes smaller, so that the amount of various aberrations generated increases and the coma at the time of focusing increases. The fluctuation of aberration becomes large. By setting the upper limit value of the conditional expression (3) to 40.000, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (3) is preferably 30.000, 20.000, 10.000, and further 5.000.

条件式(3)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が大きくなるため、コマ収差の補正が困難になる。条件式(3)の下限値を−4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、−3.000、−2.000、−1.000、0.010、0.050、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、さらに0.500とすることが好ましい。 When the corresponding value of the conditional expression (3) is less than the lower limit value, the radius of curvature of the lens surface on the most object side of the first lens group G1 becomes large, so that it becomes difficult to correct coma. By setting the lower limit value of the conditional expression (3) to -4.00, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (3) is set to -3000, -2000, -1.00, 0.010, 0.050, 0.100, It is preferably 0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, and more preferably 0.500.

本実施形態の光学系LSは、以下の条件式(3−1)を満足してもよい。
0.010<(−G1R1)/f1<1.100 ・・・(3−1)
但し、f1:第1レンズ群G1の焦点距離
The optical system LS of the present embodiment may satisfy the following conditional expression (3-1).
0.010 <(-G1R1) /f1 <1.10 ... (3-1)
However, f1: the focal length of the first lens group G1

条件式(3−1)は、条件式(3)と同様の式であり、条件式(3)と同様の効果を得ることができる。この範囲のとき、コマ収差等の諸収差が良好に補正されるので好ましい。特に、条件式(3−1)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3−1)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、さらに0.500とすることが好ましい。 The conditional expression (3-1) is the same expression as the conditional expression (3), and the same effect as the conditional expression (3) can be obtained. Within this range, various aberrations such as coma are satisfactorily corrected, which is preferable. In particular, by setting the lower limit value of the conditional expression (3-1) to 0.050, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (3-1) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0. It is preferably .400, 0.450, and more preferably 0.500.

本実施形態の光学系LSは、以下の条件式(3−2)を満足してもよい。
1.000<(−G1R1)/f1<50.000 ・・・(3−2)
但し、f1:第1レンズ群G1の焦点距離
The optical system LS of the present embodiment may satisfy the following conditional expression (3-2).
1.000 <(-G1R1) /f1 <50.000 ... (3-2)
However, f1: the focal length of the first lens group G1

条件式(3−2)は、条件式(3)と同様の式であり、条件式(3)と同様の効果を得ることができる。この範囲のとき、コマ収差等の諸収差が良好に補正されるので好ましい。特に、条件式(3−2)の上限値を40.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3−2)の上限値を、30.000、20.000、10.000、さらに5.000とすることが好ましい。 The conditional expression (3-2) is the same expression as the conditional expression (3), and the same effect as the conditional expression (3) can be obtained. Within this range, various aberrations such as coma are satisfactorily corrected, which is preferable. In particular, by setting the upper limit value of the conditional expression (3-2) to 40.000, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (3-2) is preferably 30.000, 20.000, 10.000, and further 5.000.

本実施形態の光学系LSにおいて、第1レンズ群G1は、絞りを有することが望ましい。これにより、近距離合焦状態におけるコマ収差、非点収差等の諸収差を良好に補正することができる。 In the optical system LS of the present embodiment, it is desirable that the first lens group G1 has an aperture. Thereby, various aberrations such as coma aberration and astigmatism in the short-distance focusing state can be satisfactorily corrected.

本実施形態の光学系LSにおいて、第1レンズ群G1が固定されることが望ましい。これにより、光学系LSの全体を小型化することができる。 In the optical system LS of the present embodiment, it is desirable that the first lens group G1 is fixed. As a result, the entire optical system LS can be miniaturized.

本実施形態の光学系LSは、以下の条件式(4)を満足することが望ましい。
0.010<f/f1<5.000 ・・・(4)
但し、f1:第1レンズ群G1の焦点距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (4).
0.010 <f / f1 <5.000 ... (4)
However, f1: the focal length of the first lens group G1

条件式(4)は、光学系LS全系の焦点距離と第1レンズ群G1の焦点距離との比の適正範囲を規定するものである。条件式(4)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。 The conditional expression (4) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the focal length of the first lens group G1. By satisfying the conditional expression (4), good optical performance can be ensured in the infinity in-focus state.

条件式(4)の対応値が上限値を上回ると、第1レンズ群G1の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(4)の上限値を4.500に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を、4.000、3.500、3.000、2.500、2.000、1.500、1.200、さらに1.000とすることが好ましい。 When the corresponding value of the conditional expression (4) exceeds the upper limit value, the focal length of the first lens group G1 becomes short, so that the amount of various aberrations generated increases and the fluctuation of coma during focusing becomes large. By setting the upper limit value of the conditional expression (4) to 4.500, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (4) is set to 4.000, 3.500, 3.000, 2.500, 2.000, 1.500, 1.200. , Further preferably 1.000.

条件式(4)の対応値が下限値を下回ると、第1レンズ群G1の焦点距離が長くなるため、コマ収差の補正が困難になる。条件式(4)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、0.500、さらに0.550とすることが好ましい。 If the corresponding value of the conditional expression (4) is less than the lower limit value, the focal length of the first lens group G1 becomes long, and it becomes difficult to correct the coma aberration. By setting the lower limit value of the conditional expression (4) to 0.050, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (4) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400. , 0.450, 0.500, and more preferably 0.550.

本実施形態の光学系LSは、以下の条件式(5)を満足することが望ましい。
0.010<f/f2<5.000 ・・・(5)
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (5).
0.010 <f / f2 <5.000 ... (5)

条件式(5)は、光学系LS全系の焦点距離と第2レンズ群G2の焦点距離との比の適正範囲を規定するものである。条件式(5)を満足することで、近距離合焦状態において良好な光学性能を確保することができる。 The conditional expression (5) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the focal length of the second lens group G2. By satisfying the conditional expression (5), good optical performance can be ensured in a short-distance focusing state.

条件式(5)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(5)の上限値を4.500に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の上限値を、4.000、3.500、3.000、2.500、2.000、1.800、1.500、さらに1.300とすることが好ましい。 When the corresponding value of the conditional expression (5) exceeds the upper limit value, the focal length of the second lens group G2 becomes short, so that the amount of various aberrations generated increases and the fluctuation of coma during focusing becomes large. By setting the upper limit value of the conditional expression (5) to 4.500, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (5) is set to 4.000, 3.500, 3.000, 2.500, 2.000, 1.800, 1.500. , Further preferably 1.300.

条件式(5)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(5)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.550、0.600、さらに0.650とすることが好ましい。 When the corresponding value of the conditional expression (5) is less than the lower limit value, the focal length of the second lens group G2 becomes long, so that the amount of movement of the second lens group G2 during focusing increases, and the amount of movement during focusing increases. Fluctuations in spherical aberration and curvature of field increase. By setting the lower limit value of the conditional expression (5) to 0.050, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (5) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400. , 0.450, 0.500, 0.550, 0.600, and more preferably 0.650.

本実施形態の光学系LSは、以下の条件式(6)を満足することが望ましい。
0.010<f1/f2<5.000 ・・・(6)
但し、f1:第1レンズ群G1の焦点距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (6).
0.010 <f1 / f2 <5.000 ... (6)
However, f1: the focal length of the first lens group G1

条件式(6)は、第1レンズ群G1の焦点距離と第2レンズ群G2の焦点距離との比の適正範囲を規定するものである。条件式(6)を満足することで、無限遠合焦状態および近距離合焦状態において良好な光学性能を確保することができる。 The conditional expression (6) defines an appropriate range of the ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2. By satisfying the conditional expression (6), good optical performance can be ensured in the infinity focusing state and the short distance focusing state.

条件式(6)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(6)の上限値を4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の上限値を、3.500、3.000、2.500、2.000、さらに1.800とすることが好ましい。 When the corresponding value of the conditional expression (6) exceeds the upper limit value, the focal length of the second lens group G2 becomes short, so that the amount of various aberrations generated increases and the fluctuation of coma during focusing becomes large. By setting the upper limit value of the conditional expression (6) to 4.000, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (6) is preferably 3.500, 3.000, 2.500, 2.000, and further 1.800.

条件式(6)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(6)の下限値を0.100に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.600、0.700、0.800、さらに0.900とすることが好ましい。 When the corresponding value of the conditional expression (6) is less than the lower limit value, the focal length of the second lens group G2 becomes long, so that the amount of movement of the second lens group G2 during focusing increases, and the amount of movement during focusing increases. Fluctuations in spherical aberration and curvature of field increase. By setting the lower limit value of the conditional expression (6) to 0.100, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (6) is set to 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500. , 0.600, 0.700, 0.800, and more preferably 0.900.

本実施形態の光学系LSは、以下の条件式(7)を満足することが望ましい。
0.100<BFa/f<0.500 ・・・(7)
但し、Bfa:光学系LSの最も像側に配置されたレンズにおける像側のレンズ面から像面までの光軸上の空気換算距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (7).
0.100 <BFa / f <0.500 ... (7)
However, Bfa: the air conversion distance on the optical axis from the lens surface on the image side to the image surface in the lens arranged on the most image side of the optical system LS.

条件式(7)は、光学系LS全系の焦点距離とバックフォーカスとの比の適正範囲を規定するものである。条件式(7)を満足することで、非点収差を良好に補正することができる。 The conditional expression (7) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the back focus. By satisfying the conditional expression (7), astigmatism can be satisfactorily corrected.

条件式(7)の対応値が上限値を上回ると、非点収差の補正が困難になる。条件式(7)の上限値を0.450に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、0.420、0.400、0.380、0.350、さらに0.320とすることが好ましい。 If the corresponding value of the conditional expression (7) exceeds the upper limit value, it becomes difficult to correct the astigmatism. By setting the upper limit value of the conditional expression (7) to 0.450, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (7) is preferably 0.420, 0.400, 0.380, 0.350, and further 0.320.

条件式(7)の対応値が下限値を下回っても、非点収差の補正が困難になる。条件式(7)の下限値を0.110に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の下限値を、0.120、0.130、0.140、0.150、0.160、さらに0.170とすることが好ましい。 Even if the corresponding value of the conditional expression (7) is less than the lower limit value, it becomes difficult to correct the astigmatism. By setting the lower limit value of the conditional expression (7) to 0.110, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (7) is set to 0.120, 0.130, 0.140, 0.150, 0.160, and further 0.170. Is preferable.

本実施形態の光学系LSは、以下の条件式(8)を満足することが望ましい。
0.10<fF/fR<3.00 ・・・(8)
但し、fF:光学系LSにおける絞りより物体側に配置されたレンズの合成焦点距離
fR:光学系LSにおける絞りより像側に配置されたレンズの合成焦点距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (8).
0.10 <fF / fR <3.00 ... (8)
However, fF: the combined focal length of the lens arranged on the object side of the aperture in the optical system LS fR: the combined focal length of the lens arranged on the image side of the aperture in the optical system LS.

条件式(8)は、絞りより物体側に配置されたレンズの合成焦点距離と絞りより像側に配置されたレンズの合成焦点距離との比の適正範囲を規定するものである。なお、各合成焦点距離は、無限遠合焦状態での合成焦点距離である。条件式(8)を満足することで、非点収差および歪曲収差を良好に補正することができる。 Conditional expression (8) defines an appropriate range of the ratio between the combined focal length of the lens arranged on the object side of the aperture and the combined focal length of the lens arranged on the image side of the aperture. Each composite focal length is the composite focal length in the infinity in-focus state. By satisfying the conditional expression (8), astigmatism and distortion can be satisfactorily corrected.

条件式(8)の対応値が上限値を上回ると、非点収差および歪曲収差の補正が困難になる。条件式(8)の上限値を2.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、2.00、1.80、1.50、1.20、さらに1.10とすることが好ましい。 If the corresponding value of the conditional expression (8) exceeds the upper limit value, it becomes difficult to correct astigmatism and distortion. By setting the upper limit value of the conditional expression (8) to 2.50, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (8) is preferably 2.00, 1.80, 1.50, 1.20, and further 1.10.

条件式(8)の対応値が下限値を下回っても、非点収差および歪曲収差の補正が困難になる。条件式(8)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の下限値を、0.25、0.27、0.30、0.34、さらに0.35とすることが好ましい。 Even if the corresponding value of the conditional expression (8) is less than the lower limit value, it becomes difficult to correct astigmatism and distortion. By setting the lower limit value of the conditional expression (8) to 0.20, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, it is preferable that the lower limit of the conditional expression (8) is 0.25, 0.25, 0.30, 0.34, and further 0.35.

本実施形態の光学系LSは、以下の条件式(9)を満足することが望ましい。
−10.0<(G1R2+G1R1)/(G1R2−G1R1)<10.0 ・・・(9)
但し、G1R2:第1レンズ群G1の最も物体側に配置されたレンズ成分における像側のレンズ面の曲率半径
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (9).
-10.0 <(G1R2 + G1R1) / (G1R2-G1R1) <10.0 ... (9)
However, G1R2: radius of curvature of the lens surface on the image side in the lens component arranged on the most object side of the first lens group G1.

条件式(9)は、第1レンズ群G1の最も物体側に配置されたレンズ成分のシェイプファクターを規定するものである。条件式(9)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。 The conditional expression (9) defines the shape factor of the lens component arranged on the most object side of the first lens group G1. By satisfying the conditional expression (9), good optical performance can be ensured in the infinity in-focus state.

条件式(9)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率がきつくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(9)の上限値を8.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の上限値を、7.0、6.0、5.0、さらに4.0とすることが好ましい。 When the corresponding value of the conditional expression (9) exceeds the upper limit value, the curvature of the lens surface on the object side in the lens component arranged on the most object side of the first lens group G1 becomes tight, so that the amount of various aberrations generated increases. However, the fluctuation of coma aberration during focusing becomes large. By setting the upper limit value of the conditional expression (9) to 8.0, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (9) is preferably 7.0, 6.0, 5.0, and further 4.0.

条件式(9)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率が緩くなるため、コマ収差の補正が困難になる。条件式(9)の下限値を−8.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の下限値を、−7.0、−6.0、−5.0、−4.0、−3.0、さらに−2.0とすることが好ましい。 When the corresponding value of the conditional expression (9) is less than the lower limit value, the curvature of the lens surface on the object side in the lens component arranged on the most object side of the first lens group G1 becomes loose, and it becomes difficult to correct the coma aberration. Become. By setting the lower limit value of the conditional expression (9) to −8.0, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (9) is set to -7.0, -6.0, -5.0, -4.0, -3.0, and further-. It is preferably 2.0.

本実施形態の光学系LSは、以下の条件式(10)を満足することが望ましい。
0.30<{1−(β2)2}×(β3)2<2.00 ・・・(10)
但し、β2:無限遠合焦状態における第2レンズ群G2の横倍率
β3:第3レンズ群G3の横倍率
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (10).
0.30 << {1- (β2) 2 } × (β3) 2 <2.00 ... (10)
However, β2: lateral magnification of the second lens group G2 in the infinity focusing state β3: lateral magnification of the third lens group G3

条件式(10)は、第2レンズ群G2の移動に対する焦点位置の変位量を規定するものである。条件式(10)を満足することで、軸上および軸外で、近距離合焦状態において良好な光学性能を確保することができる。 The conditional expression (10) defines the amount of displacement of the focal position with respect to the movement of the second lens group G2. By satisfying the conditional expression (10), good optical performance can be ensured on-axis and off-axis in a short-distance focusing state.

条件式(10)の対応値が上限値を上回ると、近距離合焦状態におけるコマ収差および非点収差の補正が困難になる。条件式(10)の上限値を1.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の上限値を、1.60、1.40、1.20、1.00、0.95、0.91、さらに0.89とすることが好ましい。 If the corresponding value of the conditional expression (10) exceeds the upper limit value, it becomes difficult to correct coma and astigmatism in the short-distance focusing state. By setting the upper limit value of the conditional expression (10) to 1.80, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (10) is set to 1.60, 1.40, 1.20, 1.00, 0.95, 0.91, and further 0. It is preferably 89.

条件式(10)の対応値が下限値を下回っても、近距離合焦状態におけるコマ収差および非点収差の補正が困難になる。条件式(10)の下限値を0.35に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の下限値を、0.40、0.45、0.48、さらに0.50とすることが好ましい。 Even if the corresponding value of the conditional expression (10) is less than the lower limit value, it becomes difficult to correct coma and astigmatism in the short-distance focusing state. By setting the lower limit value of the conditional expression (10) to 0.35, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (10) is preferably 0.40, 0.45, 0.48, and further 0.50.

本実施形態の光学系LSは、以下の条件式(11)を満足することが望ましい。
0.50<FNO×(f1/f)<5.50 ・・・(11)
但し、FNO:光学系LSのFナンバー
f1:第1レンズ群G1の焦点距離
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (11).
0.50 <FNO × (f1 / f) <5.50 ... (11)
However, FNO: F number of the optical system LS f1: Focal length of the first lens group G1

条件式(11)は、第1レンズ群G1のFナンバーに相当する値を規定するものである。条件式(11)を満足することで、コマ収差等の諸収差を良好に補正することができる。 The conditional expression (11) defines a value corresponding to the F number of the first lens group G1. By satisfying the conditional expression (11), various aberrations such as coma can be satisfactorily corrected.

条件式(11)の対応値が上限値を上回ると、コマ収差および非点収差の補正が困難になる。条件式(11)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の上限値を、4.50、4.00、3.50、3.20、さらに3.00とすることが好ましい。 If the corresponding value of the conditional expression (11) exceeds the upper limit value, it becomes difficult to correct coma and astigmatism. By setting the upper limit value of the conditional expression (11) to 5.00, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (11) is preferably 4.50, 4.00, 3.50, 3.20, and further 3.00.

条件式(11)の対応値が下限値を下回っても、球面収差およびコマ収差の補正が困難になる。条件式(11)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の下限値を、1.00、1.40、1.60、1.80、さらに1.95とすることが好ましい。 Even if the corresponding value of the conditional expression (11) is less than the lower limit value, it becomes difficult to correct the spherical aberration and the coma aberration. By setting the lower limit value of the conditional expression (11) to 0.80, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, it is preferable that the lower limit of the conditional expression (11) is 1.00, 1.40, 1.60, 1.80, and further 1.95.

本実施形態の光学系LSは、以下の条件式(12)を満足することが望ましい。
15.0°<2ω<85.0° ・・・(12)
但し、2ω:光学系LSの画角
It is desirable that the optical system LS of the present embodiment satisfies the following conditional expression (12).
15.0 ° <2ω <85.0 ° ・ ・ ・ (12)
However, 2ω: angle of view of the optical system LS

条件式(12)は、光学系LSの画角を規定するものである。条件式(12)を満足することで、広い画角を有しつつ、諸収差を良好に補正することができる。条件式(12)の上限値を80.0°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(12)の上限値を、75.0°、70.0°、68.0°、さらに65.0°とすることが好ましい。条件式(12)の下限値を17.0°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(12)の下限値を、18.0°、20.0°、22.0°、さらに25.0°とすることが好ましい。 The conditional expression (12) defines the angle of view of the optical system LS. By satisfying the conditional expression (12), various aberrations can be satisfactorily corrected while having a wide angle of view. By setting the upper limit value of the conditional expression (12) to 80.0 °, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (12) is preferably 75.0 °, 70.0 °, 68.0 °, and further 65.0 °. By setting the lower limit value of the conditional expression (12) to 17.0 °, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (12) is preferably set to 18.0 °, 20.0 °, 22.0 °, and further 25.0 °.

本実施形態の光学系LSにおいて、第1レンズ群G1の最も物体側に配置されたレンズが負レンズであってもよい。これにより、コマ収差を良好に補正することができる。 In the optical system LS of the present embodiment, the lens arranged on the object side of the first lens group G1 may be a negative lens. As a result, coma aberration can be satisfactorily corrected.

本実施形態の光学系LSにおいて、第2レンズ群G2の最も物体側に配置されたレンズが負レンズであってもよい。これにより、像面湾曲を良好に補正することができる。 In the optical system LS of the present embodiment, the lens arranged on the object side of the second lens group G2 may be a negative lens. Thereby, the curvature of field can be satisfactorily corrected.

本実施形態の光学系LSにおいて、第2レンズ群G2は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有してもよい。これにより、色収差等の諸収差を良好に補正することができる。 In the optical system LS of the present embodiment, the second lens group G2 may have at least one positive lens and at least one negative lens. Thereby, various aberrations such as chromatic aberration can be satisfactorily corrected.

本実施形態の光学系LSにおいて、第3レンズ群G3は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有してもよい。これにより、色収差等の諸収差を良好に補正することができる。 In the optical system LS of the present embodiment, the third lens group G3 may have at least one positive lens and at least one negative lens. Thereby, various aberrations such as chromatic aberration can be satisfactorily corrected.

続いて、図64を参照しながら、上述の光学系LSの製造方法について概説する。まず、物体側から順に並べて、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とを配置する(ステップST1)。そして、合焦の際、第2レンズ群G2が光軸に沿って移動するように構成する(ステップST2)。また、少なくとも上記条件式(1)〜(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能な光学系を製造することができる。 Subsequently, the method for manufacturing the above-mentioned optical system LS will be outlined with reference to FIG. 64. First, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group G3 having a negative refractive power are arranged in order from the object side (). Step ST1). Then, at the time of focusing, the second lens group G2 is configured to move along the optical axis (step ST2). Further, each lens is arranged in the lens barrel so as to satisfy at least the above conditional expressions (1) and (2) (step ST3). According to such a manufacturing method, it is possible to manufacture an optical system capable of obtaining good optical performance while suppressing a change in image magnification from an infinity focusing state to a short distance focusing state.

以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1は、第1実施例に係る光学系LS{LS(1)}の構成及び屈折力配分を示す断面図である。同様に、図3、図5、図7、図9、図11、図13、図15、図17、図19、図21は、第2〜第11実施例に係る光学系LS{LS(2)〜LS(11)}の構成及び屈折力配分を示す断面図である。図23、図25、図27、図29、図31、図33、図35、図37、図39、図41は、第12〜第21実施例に係る光学系LS{LS(12)〜LS(21)}の構成及び屈折力配分を示す断面図である。図43、図45、図47、図49、図51、図53、図55、図57、図59、図61は、第22〜第31実施例に係る光学系LS{LS(22)〜LS(31)}の構成及び屈折力配分を示す断面図である。各断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。 Hereinafter, the optical system LS according to the embodiment of the present embodiment will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration and refractive power distribution of the optical system LS {LS (1)} according to the first embodiment. Similarly, FIGS. 3, 5, 7, 9, 9, 11, 13, 15, 17, 17, 19, and 21 show the optical system LS {LS (2) according to the second to eleventh embodiments. ) To LS (11)} and a cross-sectional view showing the refractive power distribution. 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 are optical systems LS {LS (12) to LS according to the twelfth to twenty-first embodiments. It is sectional drawing which shows the structure of (21)} and the refractive power distribution. 43, 45, 47, 49, 51, 53, 55, 57, 59, 61 are optical systems LS {LS (22) to LS according to the 22nd to 31st embodiments. It is sectional drawing which shows the structure of (31)} and the refractive power distribution. In each cross-sectional view, the direction of movement when the focusing lens group focuses on a short-range object from infinity is indicated by an arrow together with the word "focus".

これらの図において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。 In these figures, each lens group is represented by a combination of reference numerals G and numbers, and each lens is represented by a combination of reference numerals L and numbers. In this case, in order to prevent the types and numbers of the symbols and numbers from becoming large and complicated, the lens group and the like are represented by independently using combinations of the symbols and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.

以下に表1〜表31を示すが、この表1〜表31は、第1〜第31実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)を選んでいる。 Tables 1 to 31 are shown below, and Tables 1 to 31 are tables showing each specification data in the first to 31st examples. In each embodiment, the d-line (wavelength λ = 587.6 nm) is selected as the calculation target of the aberration characteristics.

[全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、ωは半画角(単位は°(度))、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示し、BFaはバックフォーカスの空気換算長を示す。 In the [Overall specifications] table, f is the focal length of the entire lens system, FNO is the F number, ω is the half angle of view (unit is ° (degrees)), and Y is the image height. TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity, plus BF, and BF is the image from the final surface of the lens on the optical axis at infinity. The distance to the surface I (back focus) is shown, and BFa shows the air-equivalent length of the back focus.

[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。 In the [Lens Specifications] table, the surface numbers indicate the order of the optical surfaces from the object side along the direction in which the light beam travels, and R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side). (Positive value), D is the distance on the optical axis from each optical surface to the next optical surface (or image surface), nd is the refractive index of the material of the optical member with respect to the d line, and νd is optical. The Abbe number based on the d-line of the material of the member is shown. The radius of curvature "∞" indicates a plane or an aperture, and (aperture S) indicates an aperture stop S. The description of the refractive index nd of air = 1.00000 is omitted. When the optical surface is aspherical, the surface number is marked with *, and the column of radius of curvature R indicates the paraxial radius of curvature.

[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。In the table of [Aspherical surface data], the shape of the aspherical surface shown in [Lens specifications] is shown by the following equation (A). X (y) is the distance (zag amount) along the optical axis direction from the tangent plane at the aspherical apex to the position on the aspherical surface at the height y, and R is the radius of curvature of the reference sphere (near-axis radius of curvature). , Κ indicates the conical constant, and Ai indicates the i-th order aspherical coefficient. "E-n" indicates " x10 -n". For example, 1.234E-05 = 1.234 × 10 -5 . The second-order aspherical coefficient A2 is 0, and the description thereof is omitted.

[可変間隔データ]の表には、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号iにおける次の面までの面間隔Diを示す。例えば、第1実施例では、面番号11,17,23での面間隔D11,D17,D23を示す。これらの値は、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。 The table of [variable spacing data] shows the surface spacing Di up to the next surface at the surface number i in which the surface spacing is "variable" in the table showing [lens specifications]. For example, in the first embodiment, the surface spacings D11, D17, and D23 at the surface numbers 11, 17, and 23 are shown. These values are shown for each of the infinity in-focus state and the short-distance (close-distance) in-focus state.

[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。 The [lens group data] table shows the starting surface (the surface closest to the object) and the focal length of each lens group.

[条件式対応値]の表には、各条件式に対応する値を示す。 The table of [Conditional expression corresponding values] shows the values corresponding to each conditional expression.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。 Hereinafter, in all the specification values, "mm" is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。 The description of the table so far is common to all the examples, and the duplicate description below is omitted.

(第1実施例)
第1実施例について、図1〜図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。各レンズ群記号に付けている符号(+)もしくは(−)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
(First Example)
The first embodiment will be described with reference to FIGS. 1 to 2 and Table 1. FIG. 1 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the first embodiment of the present embodiment. In the optical system LS (1) according to the first embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .. The symbol (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、両凸形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第2負レンズL15と、開口絞りSと、から構成される。第2正レンズL13は、両側のレンズ面が非球面である。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a concave surface facing the object side, a meniscus-shaped first positive lens L12 having a concave surface facing the object side, and biconvex lenses arranged in order from the object side. It is composed of a second positive lens L13 having a shape, a third positive lens L14 having a biconvex shape, a second negative lens L15 having a meniscus shape with a convex surface facing the object side, and an aperture stop S. The second positive lens L13 has aspherical lens surfaces on both sides.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。なお、後述する第2〜第31実施例に記載の抜き差し交換可能な光学フィルターFLについても同様である。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a biconcave-shaped negative lens L32 arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I. As the interchangeable optical filter FL, for example, an NC filter (neutral color filter), a color filter, a polarizing filter, an ND filter (neutral density filter), an IR filter (infrared cut filter) and the like are used. The same applies to the interchangeable optical filter FL described in the second to 31st Examples described later.

以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。 Table 1 below lists the values of the specifications of the optical system according to the first embodiment.

(表1)
[全体諸元]
f 51.59
FNO 1.85
ω 22.6
Y 21.70
TL 80.800
BF 13.599
BFa 13.054
[レンズ諸元]
面番号 R D nd νd
1 -37.21999 1.800 1.60342 38.0
2 -301.75553 2.422
3 -50.10561 3.350 1.49782 82.6
4 -32.57310 0.200
5* 45.59156 5.050 1.82080 42.7
6* -214.20431 0.200
7 24.72595 7.194 1.59319 67.9
8 -5040.38050 0.100
9 1752.78680 1.000 1.60342 38.0
10 18.45027 5.608
11 ∞ D11(可変) (絞りS)
12 -23.43011 1.000 1.67270 32.2
13 -582.82234 0.200
14* 127.87476 4.350 1.82080 42.7
15* -43.94757 1.950
16 -157.95993 5.600 1.60300 65.4
17 -28.85150 D17(可変)
18 -374.08672 3.200 2.00100 29.1
19 -68.25108 4.109
20 -36.81307 1.500 1.69895 30.1
21 177.00000 11.000
22 ∞ 1.600 1.51680 63.9
23 ∞ D23(可変)
[非球面データ]
第5面
κ=1.00000
A4=-1.10646E-06, A6=-5.14585E-10, A8=0.00000E+00, A10=0.00000E+00
第6面
κ=1.00000
A4=3.82437E-07, A6=-2.48354E-10, A8=0.00000E+00, A10=0.00000E+00
第14面
κ=1.00000
A4=2.59966E-06, A6=2.78570E-09, A8=0.00000E+00, A10=0.00000E+00
第15面
κ=1.00000
A4=9.97453E-06, A6=1.00933E-08, A8=0.00000E+00, A10=0.00000E+00
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.59 β=-0.1508
D0 ∞ 319.20
D11 15.367 5.165
D17 3.000 13.203
D23 0.999 0.999
[レンズ群データ]
群 始面 焦点距離
G1 1 68.17
G2 12 56.22
G3 18 -101.37
[条件式対応値]
条件式(1) (−G1R1)/f=0.721
条件式(2) f2/(−f3)=0.555
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.546
条件式(4) f/f1=0.757
条件式(5) f/f2=0.918
条件式(6) f1/f2=1.213
条件式(7) BFa/f=0.253
条件式(8) fF/fR=0.646
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=1.281
条件式(10) {1−(β2)2}×(β3)2=0.613
条件式(11) FNO×(f1/f)=2.451
条件式(12) 2ω=45.2
(Table 1)
[Overall specifications]
f 51.59
FNO 1.85
ω 22.6
Y 21.70
TL 80.800
BF 13.599
BFa 13.054
[Lens specifications]
Surface number RD nd νd
1 -37.21999 1.800 1.60342 38.0
2-301.75553 2.422
3 -50.10561 3.350 1.49782 82.6
4 -32.57310 0.200
5 * 45.59156 5.050 1.82080 42.7
6 * -214.20431 0.200
7 24.72595 7.194 1.59319 67.9
8-5040.38050 0.100
9 1752.78680 1.000 1.60342 38.0
10 18.45027 5.608
11 ∞ D11 (variable) (aperture S)
12 -23.43011 1.000 1.67270 32.2
13 -582.82234 0.200
14 * 127.87476 4.350 1.82080 42.7
15 * -43.94757 1.950
16 -157.95993 5.600 1.60300 65.4
17 -28.85150 D17 (variable)
18 -374.08672 3.200 2.00100 29.1
19 -68.25108 4.109
20 -36.81307 1.500 1.69895 30.1
21 177.00000 11.000
22 ∞ 1.600 1.51680 63.9
23 ∞ D23 (variable)
[Aspherical data]
Side 5 κ = 1.0000
A4 = -1.10646E-06, A6 = -5.14585E-10, A8 = 0.00000E + 00, A10 = 0.00000E + 00
Side 6 κ = 1.0000
A4 = 3.82437E-07, A6 = -2.48354E-10, A8 = 0.00000E + 00, A10 = 0.0000E + 00
14th surface κ = 1.0000
A4 = 2.59966E-06, A6 = 2.78570E-09, A8 = 0.00000E + 00, A10 = 0.0000E + 00
Surface 15 κ = 1.0000
A4 = 9.97453E-06, A6 = 1.00933E-08, A8 = 0.00000E + 00, A10 = 0.0000E + 00
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.59 β = -0.1508
D0 ∞ 319.20
D11 15.367 5.165
D17 3.000 13.203
D23 0.999 0.999
[Lens group data]
Focal length
G1 1 68.17
G2 12 56.22
G3 18 -101.37
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.721
Conditional expression (2) f2 / (-f3) = 0.555
Conditional expressions (3), (3-1), (3-2)
(-G1R1) / f1 = 0.546
Conditional expression (4) f / f1 = 0.757
Conditional expression (5) f / f2 = 0.918
Conditional expression (6) f1 / f2 = 1.213
Conditional expression (7) BFa / f = 0.253
Conditional expression (8) fF / fR = 0.646
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 1.281
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.613
Conditional expression (11) FNO × (f1 / f) = 2.451
Conditional expression (12) 2ω = 45.2

図2(A)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(A)の各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では半画角の最大値をそれぞれ示し、横収差図では各半画角の値を示す。図2(B)は、第1実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。図2(B)の各収差図において、NAは開口数、H0は物体高をそれぞれ示す。なお、球面収差図では最大口径に対応する開口数の値を示し、非点収差図および歪曲収差図では物体高の最大値をそれぞれ示し、横収差図では各物体高の値を示す。また、図2(A)および図2(B)の非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。 FIG. 2A is an aberration diagram at infinity focusing of the optical system according to the first embodiment. In each aberration diagram of FIG. 2A, FNO indicates an F number and A indicates a half angle of view. The spherical aberration diagram shows the value of the F number corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum value of the half angle of view, and the transverse aberration diagram shows the value of each half angle of view. FIG. 2B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the first embodiment. In each aberration diagram of FIG. 2B, NA indicates the numerical aperture and H0 indicates the object height. The spherical aberration diagram shows the numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion aberration diagram show the maximum value of the object height, and the transverse aberration diagram shows the value of each object height. Further, in the astigmatism diagrams of FIGS. 2 (A) and 2 (B), the solid line indicates the sagittal image plane and the broken line indicates the meridional image plane. In the aberration diagrams of each of the following examples, the same reference numerals as those of the present embodiment will be used, and duplicate description will be omitted.

各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the optical system according to the first embodiment has various aberrations corrected well and has excellent imaging performance.

(第2実施例)
第2実施例について、図3〜図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(Second Example)
The second embodiment will be described with reference to FIGS. 3 to 4 and Table 2. FIG. 3 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the second embodiment of the present embodiment. In the optical system LS (2) according to the second embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 is a junction lens composed of a meniscus-shaped first negative lens L11 having a concave surface facing the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, arranged in order from the object side. It is composed of a meniscus-shaped second positive lens L13 with a concave surface facing the object side, a biconvex third positive lens L14, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 includes a meniscus-shaped positive lens L31 with a concave surface facing the object side, a meniscus-shaped first negative lens L32 with a concave surface facing the object side, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a second negative lens L33 having a flat concave shape and facing the lens. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 2 below lists the values of the specifications of the optical system according to the second embodiment. The thirteenth surface is a virtual surface.

(表2)
[全体諸元]
f 51.60
FNO 1.85
ω 22.8
Y 21.70
TL 88.456
BF 13.100
BFa 12.555
[レンズ諸元]
面番号 R D nd νd
1 -39.70605 1.800 1.73800 32.3
2 68.44172 3.469 1.92286 20.9
3 740.55070 0.985
4 -250.61896 4.504 1.59319 67.9
5 -42.16654 0.200
6* 41.73745 0.103 1.56093 36.6
7 40.99975 5.408 1.83481 42.7
8 -316.20679 0.200
9 36.83151 7.628 1.49782 82.6
10 -47.01014 1.500 1.62004 36.4
11 25.38130 4.386
12 ∞ D12(可変) (絞りS)
13 ∞ 3.000
14 -22.68035 1.100 1.64769 33.7
15 219.09880 0.200
16 85.95366 4.848 1.83481 42.7
17 -48.70070 0.100 1.56093 36.6
18* -38.65718 2.196
19 -133.55548 6.300 1.60300 65.4
20 -26.81373 D20(可変)
21 -112.24414 2.782 1.90265 35.7
22 -53.62057 5.134
23 -41.69274 2.000 1.53172 48.8
24 -133.37205 2.166
25 -49.50596 2.000 1.60342 38.0
26 ∞ 10.500
27 ∞ 1.600 1.51680 64.1
28 ∞ D28(可変)
[非球面データ]
第6面
κ=1.00000
A4=-8.44128E-07, A6= 9.38473E-10, A8=-2.90073E-12, A10= 6.84753E-15
第18面
κ=1.00000
A4= 1.66834E-05, A6= 1.07396E-08, A=8 3.36895E-11, A10=-1.25245E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1562
D0 ∞ 311.54
D12 10.848 2.392
D20 2.500 10.956
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 78.05
G2 13 49.80
G3 21 -88.77
[条件式対応値]
条件式(1) (−G1R1)/f=0.769
条件式(2) f2/(−f3)=0.561
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.509
条件式(4) f/f1=0.661
条件式(5) f/f2=1.036
条件式(6) f1/f2=1.567
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.877
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.898
条件式(10) {1−(β2)2}×(β3)2=0.827
条件式(11) FNO×(f1/f)=2.805
条件式(12) 2ω=45.6
(Table 2)
[Overall specifications]
f 51.60
FNO 1.85
ω 22.8
Y 21.70
TL 88.456
BF 13.100
BFa 12.555
[Lens specifications]
Surface number RD nd νd
1 -39.70605 1.800 1.73800 32.3
2 68.44172 3.469 1.92286 20.9
3 740.55070 0.985
4-250.61896 4.504 1.59319 67.9
5 -42.16654 0.200
6 * 41.73745 0.103 1.56093 36.6
7 40.99975 5.408 1.83481 42.7
8 -316.20679 0.200
9 36.83151 7.628 1.49782 82.6
10 -47.01014 1.500 1.62004 36.4
11 25.38130 4.386
12 ∞ D12 (variable) (aperture S)
13 ∞ 3.000
14 -22.68035 1.100 1.64769 33.7
15 219.09880 0.200
16 85.95366 4.848 1.83481 42.7
17 -48.70070 0.100 1.56093 36.6
18 * -38.65718 2.196
19 -133.55548 6.300 1.60300 65.4
20 -26.81373 D20 (variable)
21 -112.24414 2.782 1.90265 35.7
22 -53.62057 5.134
23 -41.69274 2.000 1.53172 48.8
24-133.37205 2.166
25 -49.50596 2.000 1.60342 38.0
26 ∞ 10.500
27 ∞ 1.600 1.51680 64.1
28 ∞ D28 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -8.44128E-07, A6 = 9.38473E-10, A8 = -2.90073E-12, A10 = 6.84753E-15
Surface 18 κ = 1.0000
A4 = 1.66834E-05, A6 = 1.07396E-08, A = 8 3.36895E-11, A10 = -1.25245E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1562
D0 ∞ 311.54
D12 10.848 2.392
D20 2.500 10.956
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 78.05
G2 13 49.80
G3 21 -88.77
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.769
Conditional expression (2) f2 / (-f3) = 0.561
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.509
Conditional expression (4) f / f1 = 0.661
Conditional expression (5) f / f2 = 1.036
Conditional expression (6) f1 / f2 = 1.567
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.877
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.898
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.827
Conditional expression (11) FNO × (f1 / f) = 2.805
Conditional expression (12) 2ω = 45.6

図4(A)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 4A is an aberration diagram at infinity focusing of the optical system according to the second embodiment. FIG. 4B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the second embodiment. From each aberration diagram, it can be seen that the optical system according to the second embodiment has various aberrations corrected well and has excellent imaging performance.

(第3実施例)
第3実施例について、図5〜図6および表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(Third Example)
The third embodiment will be described with reference to FIGS. 5 to 6 and Table 3. FIG. 5 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the third embodiment of the present embodiment. In the optical system LS (3) according to the third embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および両凸形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 is a junction lens composed of a biconcave first negative lens L11 and a biconvex first positive lens L12 arranged in order from the object side, and a meniscus-shaped first lens having a concave surface facing the object side. It is composed of a biconvex third positive lens L14, a biconvex fourth positive lens L15, a biconcave second negative lens L16, and an aperture aperture S. Lens. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、両凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 has a meniscus-shaped positive lens L31 having a concave surface facing the object side, a meniscus-shaped first negative lens L32 having a concave surface facing the object side, and a biconcave shape, which are arranged in order from the object side. It is composed of a second negative lens L33. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。なお、第6面および第14面は仮想面である。 Table 3 below lists the values of the specifications of the optical system according to the third embodiment. The sixth and 14th surfaces are virtual surfaces.

(表3)
[全体諸元]
f 51.60
FNO 1.86
ω 23.0
Y 21.70
TL 95.000
BF 13.826
BFa 13.291
[レンズ諸元]
面番号 R D nd νd
1 -43.62202 1.800 1.95375 32.3
2 62.41759 5.000 1.84666 23.8
3 -281.93425 0.654
4 -167.37782 5.500 1.59319 67.9
5 -40.10469 0.476
6 ∞ 0.000
7* 39.95627 0.100 1.56093 36.6
8 41.35117 6.000 1.83481 42.7
9 -308.32218 0.200
10 32.49687 8.500 1.49782 82.6
11 -50.34522 1.500 1.58144 41.0
12 20.84633 5.400
13 ∞ D13(可変) (絞りS)
14 ∞ 3.100
15 -19.87542 1.100 1.67270 32.2
16 -102.49215 0.200
17 349.06334 4.800 1.75500 52.3
18 -33.68733 0.100 1.56093 36.6
19* -30.20400 1.700
20 -294.17915 6.900 1.49782 82.6
21 -26.73936 D21(可変)
22 -208.87897 3.500 2.00069 25.5
23 -59.64897 4.172
24 -45.02223 2.000 1.62004 36.4
25 -133.33333 2.419
26 -45.00000 2.000 1.62004 36.4
27 224.57692 11.236
28 ∞ 1.600 1.51680 64.1
29 ∞ D29(可変)
[非球面データ]
第7面
κ=1.00000
A4=-1.17140E-06, A6= 4.04242E-10, A8= 0.00000E+00, A10= 0.00000E+00
第19面
κ=1.00000
A4= 1.13379E-05, A6= 1.62636E-08, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1591
D0 ∞ 305.00
D13 11.043 2.821
D21 3.000 11.223
D29 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 82.69
G2 14 49.27
G3 22 -80.88
[条件式対応値]
条件式(1) (−G1R1)/f=0.845
条件式(2) f2/(−f3)=0.609
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.528
条件式(4) f/f1=0.624
条件式(5) f/f2=1.047
条件式(6) f1/f2=1.678
条件式(7) BFa/f=0.258
条件式(8) fF/fR=0.923
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=1.366
条件式(10) {1−(β2)2}×(β3)2=0.881
条件式(11) FNO×(f1/f)=2.983
条件式(12) 2ω=46.0
(Table 3)
[Overall specifications]
f 51.60
FNO 1.86
ω 23.0
Y 21.70
TL 95.000
BF 13.826
BFa 13.291
[Lens specifications]
Surface number RD nd νd
1 -43.62202 1.800 1.95375 32.3
2 62.41759 5.000 1.84666 23.8
3 -281.93425 0.654
4-167.37782 5.500 1.59319 67.9
5 -40.10469 0.476
6 ∞ 0.000
7 * 39.95627 0.100 1.56093 36.6
8 41.35117 6.000 1.83481 42.7
9 -308.32218 0.200
10 32.49687 8.500 1.49782 82.6
11 -50.34522 1.500 1.58144 41.0
12 20.84633 5.400
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.100
15 -19.87542 1.100 1.67270 32.2
16 -102.49215 0.200
17 349.06334 4.800 1.75500 52.3
18 -33.68733 0.100 1.56093 36.6
19 * -30.20400 1.700
20 -294.17915 6.900 1.49782 82.6
21 -26.73936 D21 (variable)
22 -208.87897 3.500 2.00069 25.5
23 -59.64897 4.172
24-45.02223 2.000 1.62004 36.4
25 -133.33333 2.419
26 -45.00000 2.000 1.62004 36.4
27 224.57692 11.236
28 ∞ 1.600 1.51680 64.1
29 ∞ D29 (variable)
[Aspherical data]
Side 7 κ = 1.0000
A4 = -1.17140E-06, A6 = 4.04242E-10, A8 = 0.00000E + 00, A10 = 0.00000E + 00
Surface 19 κ = 1.0000
A4 = 1.13379E-05, A6 = 1.62636E-08, A8 = 0.00000E + 00, A10 = 0.00000E + 00
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1591
D0 ∞ 305.00
D13 11.043 2.821
D21 3.000 11.223
D29 1.000 1.000
[Lens group data]
Focal length
G1 1 82.69
G2 14 49.27
G3 22 -80.88
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.845
Conditional expression (2) f2 / (-f3) = 0.609
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.528
Conditional expression (4) f / f1 = 0.624
Conditional expression (5) f / f2 = 1.047
Conditional expression (6) f1 / f2 = 1.678
Conditional expression (7) BFa / f = 0.258
Conditional expression (8) fF / fR = 0.923
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 1.366
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.881
Conditional expression (11) FNO × (f1 / f) = 2.983
Conditional expression (12) 2ω = 46.0

図6(A)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 6A is an aberration diagram at infinity focusing of the optical system according to the third embodiment. FIG. 6B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the third embodiment. From each aberration diagram, it can be seen that the optical system according to the third embodiment has various aberrations corrected well and has excellent imaging performance.

(第4実施例)
第4実施例について、図7〜図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(Fourth Example)
The fourth embodiment will be described with reference to FIGS. 7 to 8 and Table 4. FIG. 7 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the fourth embodiment of the present embodiment. In the optical system LS (4) according to the fourth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、物体側に凹面を向けたメニスカス形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 includes a meniscus-shaped positive lens L31 with a concave surface facing the object side, a meniscus-shaped first negative lens L32 with a concave surface facing the object side, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a second negative lens L33 having a meniscus shape and facing the lens. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 4 below lists the values of the specifications of the optical system according to the fourth embodiment. The thirteenth surface is a virtual surface.

(表4)
[全体諸元]
f 51.60
FNO 1.85
ω 23.0
Y 21.70
TL 93.423
BF 13.099
BFa 12.554
[レンズ諸元]
面番号 R D nd νd
1 -49.34582 1.800 1.64769 33.7
2 46.34338 4.852 1.94595 18.0
3 88.17135 2.830
4 -385.68443 6.805 1.75500 52.3
5 -55.81519 0.100
6* 32.37146 0.300 1.56093 36.6
7 34.78660 6.291 1.75500 52.3
8 3421.80810 0.200
9 34.21341 7.021 1.59319 67.9
10 -76.80721 1.500 1.64769 33.7
11 20.90542 5.045
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.99823 1.100 1.64769 33.7
15 814.45031 0.200
16 93.44777 5.100 1.80400 46.6
17 -40.16052 0.152 1.56093 36.6
18* -34.60672 3.204
19 -128.30142 6.400 1.49782 82.6
20 -26.31276 D20(可変)
21 -78.26552 2.798 1.94595 18.0
22 -44.00653 2.232
23 -46.73961 2.000 1.64769 33.7
24 -150.55235 2.958
25 -40.00000 1.900 1.64769 33.7
26 -179.87126 10.500
27 ∞ 1.600 1.51680 64.1
28 ∞ D28(可変)
[非球面データ]
第6面
κ=1.00000
A4=-1.82369E-06, A6=-1.73726E-09, A8= 2.00735E-12, A10=-4.32700E-15
第18面
κ=1.00000
A4= 1.61711E-05, A6= 1.10899E-08, A8= 3.81964E-11, A10=-1.19949E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1563
D0 ∞ 306.58
D12 10.336 2.398
D20 2.500 10.438
D28 0.999 0.999
[レンズ群データ]
群 始面 焦点距離
G1 1 73.48
G2 13 47.81
G3 21 -81.77
[条件式対応値]
条件式(1) (−G1R1)/f=0.956
条件式(2) f2/(−f3)=0.585
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.672
条件式(4) f/f1=0.702
条件式(5) f/f2=1.079
条件式(6) f1/f2=1.537
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.773
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.282
条件式(10) {1−(β2)2}×(β3)2=0.879
条件式(11) FNO×(f1/f)=2.640
条件式(12) 2ω=46.0
(Table 4)
[Overall specifications]
f 51.60
FNO 1.85
ω 23.0
Y 21.70
TL 93.423
BF 13.099
BFa 12.554
[Lens specifications]
Surface number RD nd νd
1 -49.34582 1.800 1.64769 33.7
2 46.34338 4.852 1.94595 18.0
3 88.17135 2.830
4-385.68443 6.805 1.75500 52.3
5 -55.81519 0.100
6 * 32.37146 0.300 1.56093 36.6
7 34.78660 6.291 1.75500 52.3
8 3421.80810 0.200
9 34.21341 7.021 1.59319 67.9
10 -76.80721 1.500 1.64769 33.7
11 20.90542 5.045
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.99823 1.100 1.64769 33.7
15 814.45031 0.200
16 93.44777 5.100 1.80400 46.6
17 -40.16052 0.152 1.56093 36.6
18 * -34.60672 3.204
19 -128.30142 6.400 1.49782 82.6
20 -26.31276 D20 (variable)
21 -78.26552 2.798 1.94595 18.0
22 -44.00653 2.232
23 -46.73961 2.000 1.64769 33.7
24-150.55235 2.958
25 -40.00000 1.900 1.64769 33.7
26 -179.87126 10.500
27 ∞ 1.600 1.51680 64.1
28 ∞ D28 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -1.82369E-06, A6 = -1.73726E-09, A8 = 2.00735E-12, A10 = -4.32700E-15
Surface 18 κ = 1.0000
A4 = 1.61711E-05, A6 = 1.10899E-08, A8 = 3.81964E-11, A10 = -1.19949E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1563
D0 ∞ 306.58
D12 10.336 2.398
D20 2.500 10.438
D28 0.999 0.999
[Lens group data]
Focal length
G1 1 73.48
G2 13 47.81
G3 21 -81.77
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.956
Conditional expression (2) f2 / (-f3) = 0.585
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.672
Conditional expression (4) f / f1 = 0.702
Conditional expression (5) f / f2 = 1.079
Conditional expression (6) f1 / f2 = 1.537
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.773
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.282
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.879
Conditional expression (11) FNO × (f1 / f) = 2.640
Conditional expression (12) 2ω = 46.0

図8(A)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 8A is an aberration diagram at infinity focusing of the optical system according to the fourth embodiment. FIG. 8B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the fourth embodiment. From each aberration diagram, it can be seen that the optical system according to the fourth embodiment has various aberrations corrected well and has excellent imaging performance.

(第5実施例)
第5実施例について、図9〜図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(Fifth Example)
A fifth embodiment will be described with reference to FIGS. 9 to 10 and Table 5. FIG. 9 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the fifth embodiment of the present embodiment. In the optical system LS (5) according to the fifth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 5 below lists the values of the specifications of the optical system according to the fifth embodiment. The thirteenth surface is a virtual surface.

(表5)
[全体諸元]
f 51.61
FNO 1.85
ω 22.8
Y 21.70
TL 94.298
BF 13.104
BFa 12.558
[レンズ諸元]
面番号 R D nd νd
1 -55.81981 2.351 1.67270 32.2
2 40.92718 3.030 1.94595 18.0
3 73.81686 2.866
4 -2179.29960 8.923 1.75500 52.3
5 -55.86755 0.100
6* 31.91227 0.300 1.56093 36.6
7 33.62812 5.941 1.80400 46.6
8 179.47342 0.200
9 31.36834 7.114 1.59319 67.9
10 -117.41333 1.500 1.67270 32.2
11 20.83074 5.078
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.88176 1.100 1.64769 33.7
15 -464.00395 0.306
16* 107.59212 4.886 1.77377 47.2
17* -34.57866 3.604
18 -87.29087 6.386 1.49782 82.6
19 -24.79412 D19(可変)
20 -168.93770 2.949 1.94595 18.0
21 -62.61109 1.900 1.62004 36.4
22 -408.98106 2.897
23 -49.70122 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-9.25285E-07, A6=-2.44172E-10, A8=-5.83429E-13, A10= 9.84913E-16
第16面
κ=1.00000
A4= 2.83184E-06, A6= 1.30771E-08, A8= 3.97727E-11, A10= 2.50432E-13
第17面
κ=1.00000
A4= 1.51803E-05, A6= 3.07472E-08, A8=-2.44486E-11, A10= 5.97193E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.61 β=-0.1566
D0 ∞ 305.70
D12 10.295 2.359
D19 4.868 12.804
D26 1.004 1.004
[レンズ群データ]
群 始面 焦点距離
G1 1 74.25
G2 13 47.70
G3 20 -83.87
[条件式対応値]
条件式(1) (−G1R1)/f=1.082
条件式(2) f2/(−f3)=0.569
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.752
条件式(4) f/f1=0.695
条件式(5) f/f2=1.082
条件式(6) f1/f2=1.556
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.805
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.139
条件式(10) {1−(β2)2}×(β3)2=0.883
条件式(11) FNO×(f1/f)=2.668
条件式(12) 2ω=45.6
(Table 5)
[Overall specifications]
f 51.61
FNO 1.85
ω 22.8
Y 21.70
TL 94.298
BF 13.104
BFa 12.558
[Lens specifications]
Surface number RD nd νd
1 -55.81981 2.351 1.67270 32.2
2 40.92718 3.030 1.94595 18.0
3 73.81686 2.866
4-2179.29960 8.923 1.75500 52.3
5 -55.86755 0.100
6 * 31.91227 0.300 1.56093 36.6
7 33.62812 5.941 1.80400 46.6
8 179.47342 0.200
9 31.36834 7.114 1.59319 67.9
10 -117.41333 1.500 1.67270 32.2
11 20.83074 5.078
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.88176 1.100 1.64769 33.7
15 -464.00395 0.306
16 * 107.59212 4.886 1.77377 47.2
17 * -34.57866 3.604
18 -87.29087 6.386 1.49782 82.6
19 -24.79412 D19 (variable)
20 -168.93770 2.949 1.94595 18.0
21 -62.61109 1.900 1.62004 36.4
22 -408.98106 2.897
23 -49.70122 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -9.25285E-07, A6 = -2.44172E-10, A8 = -5.83429E-13, A10 = 9.84913E-16
16th surface κ = 1.0000
A4 = 2.83184E-06, A6 = 1.30771E-08, A8 = 3.97727E-11, A10 = 2.50432E-13
Surface 17 κ = 1.0000
A4 = 1.51803E-05, A6 = 3.07472E-08, A8 = -2.44486E-11, A10 = 5.97193E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.61 β = -0.1566
D0 ∞ 305.70
D12 10.295 2.359
D19 4.868 12.804
D26 1.004 1.004
[Lens group data]
Focal length
G1 1 74.25
G2 13 47.70
G3 20 -83.87
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=1.082
Conditional expression (2) f2 / (-f3) = 0.569
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.752
Conditional expression (4) f / f1 = 0.695
Conditional expression (5) f / f2 = 1.082
Conditional expression (6) f1 / f2 = 1.556
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.805
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.139
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.883
Conditional expression (11) FNO × (f1 / f) = 2.668
Conditional expression (12) 2ω = 45.6

図10(A)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 10A is a diagram of various aberrations of the optical system according to the fifth embodiment at infinity focusing. FIG. 10B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the fifth embodiment. From each aberration diagram, it can be seen that the optical system according to the fifth embodiment has various aberrations corrected well and has excellent imaging performance.

(第6実施例)
第6実施例について、図11〜図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(6th Example)
The sixth embodiment will be described with reference to FIGS. 11 to 12 and Table 6. FIG. 11 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the sixth embodiment of the present embodiment. In the optical system LS (6) according to the sixth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 is a junction lens composed of a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a biconvex first lens group G1. A junction lens consisting of a 2 positive lens L13, a meniscus-shaped 3rd positive lens L14 with a convex surface facing the object side, a biconvex 4th positive lens L15, and a biconcave 2nd negative lens L16, and an aperture aperture. It is composed of S and. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 6 below lists the values of the specifications of the optical system according to the sixth embodiment. The thirteenth surface is a virtual surface.

(表6)
[全体諸元]
f 51.61
FNO 1.85
ω 22.7
Y 21.70
TL 94.879
BF 13.103
BFa 12.558
[レンズ諸元]
面番号 R D nd νd
1 -59.41700 3.521 1.67270 32.2
2 39.22460 3.028 1.94595 18.0
3 67.63630 2.963
4 3381.87660 8.656 1.75500 52.3
5 -56.77477 0.200
6* 32.10469 0.100 1.56093 36.6
7 32.39825 5.977 1.77250 49.6
8 150.72327 0.200
9 29.50426 7.110 1.59319 67.9
10 -150.81319 1.500 1.64769 33.7
11 20.38598 5.145
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.88655 1.100 1.64769 33.7
15 11241.53800 0.200
16* 115.09348 4.892 1.77377 47.2
17* -33.45446 3.784
18 -154.31773 6.454 1.49782 82.6
19 -26.83890 D19(可変)
20 -99.15080 2.941 1.94595 18.0
21 -50.06903 1.900 1.60342 38.0
22 -157.80139 2.610
23 -45.69693 1.900 1.64769 33.7
24 -615.80945 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-7.49375E-07, A6=-1.64453E-10, A8=-6.23627E-13, A10= 1.37024E-15
第16面
κ=1.00000
A4= 4.71706E-08, A6= 1.49836E-08, A8= 4.37655E-13, A10= 2.84793E-13
第17面
κ=1.00000
A4= 1.11172E-05, A6= 3.11358E-08, A8=-9.41425E-11, A10= 7.16057E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.61 β=-0.1560
D0 ∞ 305.12
D12 10.330 2.348
D19 4.563 12.545
D26 1.003 1.005
[レンズ群データ]
群 始面 焦点距離
G1 1 71.11
G2 13 47.97
G3 20 -83.32
[条件式対応値]
条件式(1) (−G1R1)/f=1.151
条件式(2) f2/(−f3)=0.576
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.836
条件式(4) f/f1=0.726
条件式(5) f/f2=1.076
条件式(6) f1/f2=1.482
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.731
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.065
条件式(10) {1−(β2)2}×(β3)2=0.886
条件式(11) FNO×(f1/f)=2.555
条件式(12) 2ω=45.4
(Table 6)
[Overall specifications]
f 51.61
FNO 1.85
ω 22.7
Y 21.70
TL 94.879
BF 13.103
BFa 12.558
[Lens specifications]
Surface number RD nd νd
1 -59.41700 3.521 1.67270 32.2
2 39.22460 3.028 1.94595 18.0
3 67.63630 2.963
4 3381.87660 8.656 1.75500 52.3
5 -56.77477 0.200
6 * 32.10469 0.100 1.56093 36.6
7 32.39825 5.977 1.77250 49.6
8 150.72327 0.200
9 29.50426 7.110 1.59319 67.9
10 -150.81319 1.500 1.64769 33.7
11 20.38598 5.145
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.88655 1.100 1.64769 33.7
15 11241.53800 0.200
16 * 115.09348 4.892 1.77377 47.2
17 * -33.45446 3.784
18 -154.31773 6.454 1.49782 82.6
19 -26.83890 D19 (variable)
20 -99.15080 2.941 1.94595 18.0
21 -50.06903 1.900 1.60342 38.0
22 -157.80139 2.610
23 -45.69693 1.900 1.64769 33.7
24 -615.80945 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -7.49375E-07, A6 = -1.64453E-10, A8 = -6.263627E-13, A10 = 1.37024E-15
16th surface κ = 1.0000
A4 = 4.71706E-08, A6 = 1.49836E-08, A8 = 4.37655E-13, A10 = 2.84793E-13
Surface 17 κ = 1.0000
A4 = 1.11172E-05, A6 = 3.11358E-08, A8 = -9.41425E-11, A10 = 7.16057E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.61 β = -0.1560
D0 ∞ 305.12
D12 10.330 2.348
D19 4.563 12.545
D26 1.003 1.005
[Lens group data]
Focal length
G1 1 71.11
G2 13 47.97
G3 20 -83.32
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=1.151
Conditional expression (2) f2 / (-f3) = 0.576
Conditional expressions (3), (3-1), (3-2)
(-G1R1) / f1 = 0.836
Conditional expression (4) f / f1 = 0.726
Conditional expression (5) f / f2 = 1.076
Conditional expression (6) f1 / f2 = 1.482
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.731
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.065
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.886
Conditional expression (11) FNO × (f1 / f) = 2.555
Conditional expression (12) 2ω = 45.4

図12(A)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(B)は、第6実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 12A is a diagram of various aberrations of the optical system according to the sixth embodiment at infinity focusing. FIG. 12B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the sixth embodiment. From each aberration diagram, it can be seen that the optical system according to the sixth embodiment has various aberrations corrected well and has excellent imaging performance.

(第7実施例)
第7実施例について、図13〜図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(7th Example)
A seventh embodiment will be described with reference to FIGS. 13 to 14 and Table 7. FIG. 13 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the seventh embodiment of the present embodiment. In the optical system LS (7) according to the seventh embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 7 below lists the values of the specifications of the optical system according to the seventh embodiment. The thirteenth surface is a virtual surface.

(表7)
[全体諸元]
f 51.60
FNO 1.85
ω 23.0
Y 21.70
TL 92.606
BF 13.099
BFa 12.554
[レンズ諸元]
面番号 R D nd νd
1 -45.97401 3.464 1.67270 32.2
2 49.61070 3.386 1.94595 18.0
3 104.71966 2.977
4 -171.07801 4.990 1.72916 54.6
5 -45.04067 0.200
6* 34.58722 0.100 1.56093 36.6
7 35.08925 6.046 1.80400 46.6
8 271.36284 0.200
9 30.75373 7.301 1.59319 67.9
10 -109.57751 1.500 1.64769 33.7
11 21.09749 5.107
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.42611 1.100 1.64769 33.7
15 1293.83890 0.200
16* 96.25206 5.000 1.77377 47.2
17* -33.63182 2.984
18 -84.68095 6.400 1.49782 82.6
19 -24.24361 D19(可変)
20 -198.33414 2.923 1.94595 18.0
21 -66.60448 2.000 1.64769 33.7
22 -1255.72680 2.962
23 -53.07631 2.000 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-9.44039E-07, A6=-7.11276E-10, A8= 1.77477E-12, A10=-1.49090E-15
第16面
κ=1.00000
A4=-7.09863E-07, A6= 1.39281E-08, A8=-7.11118E-11, A10=-9.85203E-14
第17面
κ=1.00000
A4= 1.29000E-05, A6= 1.77000E-08, A8= 4.64016E-11, A10=-4.30856E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1564
D0 ∞ 307.39
D12 10.322 2.393
D19 5.645 13.574
D26 0.999 0.999
[レンズ群データ]
群 始面 焦点距離
G1 1 73.64
G2 13 48.40
G3 20 -83.16
[条件式対応値]
条件式(1) (−G1R1)/f=0.891
条件式(2) f2/(−f3)=0.582
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.624
条件式(4) f/f1=0.701
条件式(5) f/f2=1.066
条件式(6) f1/f2=1.522
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.769
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.390
条件式(10) {1−(β2)2}×(β3)2=0.883
条件式(11) FNO×(f1/f)=2.646
条件式(12) 2ω=46.0
(Table 7)
[Overall specifications]
f 51.60
FNO 1.85
ω 23.0
Y 21.70
TL 92.606
BF 13.099
BFa 12.554
[Lens specifications]
Surface number RD nd νd
1 -45.97401 3.464 1.67270 32.2
2 49.61070 3.386 1.94595 18.0
3 104.71966 2.977
4-171.07801 4.990 1.72916 54.6
5 -45.04067 0.200
6 * 34.58722 0.100 1.56093 36.6
7 35.08925 6.046 1.80400 46.6
8 271.36284 0.200
9 30.75373 7.301 1.59319 67.9
10 -109.57751 1.500 1.64769 33.7
11 21.09749 5.107
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.42611 1.100 1.64769 33.7
15 1293.83890 0.200
16 * 96.25206 5.000 1.77377 47.2
17 * -33.63182 2.984
18 -84.68095 6.400 1.49782 82.6
19 -24.24361 D19 (variable)
20 -198.33414 2.923 1.94595 18.0
21 -66.60448 2.000 1.64769 33.7
22 -1255.72680 2.962
23 -53.07631 2.000 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -9.44039E-07, A6 = -7.11276E-10, A8 = 1.77477E-12, A10 = -1.49090E-15
16th surface κ = 1.0000
A4 = -7.09863E-07, A6 = 1.39281E-08, A8 = -7.11118E-11, A10 = -9.85203E-14
Surface 17 κ = 1.0000
A4 = 1.29000E-05, A6 = 1.77000E-08, A8 = 4.64016E-11, A10 = -4.30856E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1564
D0 ∞ 307.39
D12 10.322 2.393
D19 5.645 13.574
D26 0.999 0.999
[Lens group data]
Focal length
G1 1 73.64
G2 13 48.40
G3 20 -83.16
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.891
Conditional expression (2) f2 / (-f3) = 0.582
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.624
Conditional expression (4) f / f1 = 0.701
Conditional expression (5) f / f2 = 1.066
Conditional expression (6) f1 / f2 = 1.522
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.769
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.390
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.883
Conditional expression (11) FNO × (f1 / f) = 2.646
Conditional expression (12) 2ω = 46.0

図14(A)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(B)は、第7実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 14A is a diagram of various aberrations of the optical system according to the seventh embodiment when the optical system is in focus at infinity. FIG. 14B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the seventh embodiment. From each aberration diagram, it can be seen that the optical system according to the seventh embodiment has various aberrations corrected well and has excellent imaging performance.

(第8実施例)
第8実施例について、図15〜図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(8th Example)
The eighth embodiment will be described with reference to FIGS. 15 to 16 and Table 8. FIG. 15 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the eighth embodiment of the present embodiment. In the optical system LS (8) according to the eighth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 8 below lists the values of the specifications of the optical system according to the eighth embodiment. The thirteenth surface is a virtual surface.

(表8)
[全体諸元]
f 51.60
FNO 1.85
ω 22.9
Y 21.70
TL 93.035
BF 13.101
BFa 12.556
[レンズ諸元]
面番号 R D nd νd
1 -49.74101 3.508 1.67270 32.2
2 51.83840 3.342 1.94595 18.0
3 105.00000 2.890
4 -198.79923 5.698 1.72916 54.6
5 -48.74109 0.216
6* 39.85460 0.100 1.56093 36.6
7 39.94369 5.459 1.80400 46.6
8 306.55979 0.200
9 27.39919 7.979 1.59319 67.9
10 -244.36823 1.500 1.64769 33.7
11 21.09582 5.098
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.37434 1.100 1.64769 33.7
15 630.74141 0.200
16* 88.88240 5.000 1.77377 47.2
17* -34.54296 2.466
18 -91.09112 6.400 1.49782 82.6
19 -24.26835 D19(可変)
20 -173.73017 2.915 1.94595 18.0
21 -63.36086 2.000 1.64769 33.7
22 -410.38800 2.872
23 -49.55593 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-1.98971E-07, A6=-9.88462E-10, A8= 4.89667E-12, A10=-4.46361E-15
第16面
κ=1.00000
A4=-1.30154E-06, A6= 1.97109E-08, A8=-1.12019E-10, A10=-2.74309E-14
第17面
κ=1.00000
A4= 1.29000E-05, A6= 1.77000E-08, A8= 4.40194E-11, A10=-4.63161E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1566
D0 ∞ 306.96
D12 10.321 2.394
D19 6.070 13.997
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 73.37
G2 13 48.59
G3 20 -81.56
[条件式対応値]
条件式(1) (−G1R1)/f=0.964
条件式(2) f2/(−f3)=0.596
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.678
条件式(4) f/f1=0.703
条件式(5) f/f2=1.062
条件式(6) f1/f2=1.510
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.747
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.357
条件式(10) {1−(β2)2}×(β3)2=0.885
条件式(11) FNO×(f1/f)=2.636
条件式(12) 2ω=45.8
(Table 8)
[Overall specifications]
f 51.60
FNO 1.85
ω 22.9
Y 21.70
TL 93.035
BF 13.101
BFa 12.556
[Lens specifications]
Surface number RD nd νd
1 -49.74101 3.508 1.67270 32.2
2 51.83840 3.342 1.94595 18.0
3 105.00000 2.890
4 -198.79923 5.698 1.72916 54.6
5 -48.74109 0.216
6 * 39.85460 0.100 1.56093 36.6
7 39.94369 5.459 1.80400 46.6
8 306.55979 0.200
9 27.39919 7.979 1.59319 67.9
10 -244.36823 1.500 1.64769 33.7
11 21.09582 5.098
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.37434 1.100 1.64769 33.7
15 630.74141 0.200
16 * 88.88240 5.000 1.77377 47.2
17 * -34.54296 2.466
18 -91.09112 6.400 1.49782 82.6
19 -24.26835 D19 (variable)
20 -173.73017 2.915 1.94595 18.0
21 -63.36086 2.000 1.64769 33.7
22 -410.38800 2.872
23 -49.55593 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -1.98971E-07, A6 = -9.88462E-10, A8 = 4.89667E-12, A10 = -4.46361E-15
16th surface κ = 1.0000
A4 = -1.30154E-06, A6 = 1.97109E-08, A8 = -1.12019E-10, A10 = -2.74309E-14
Surface 17 κ = 1.0000
A4 = 1.29000E-05, A6 = 1.77000E-08, A8 = 4.40194E-11, A10 = -4.63161E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1566
D0 ∞ 306.96
D12 10.321 2.394
D19 6.070 13.997
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 73.37
G2 13 48.59
G3 20 -81.56
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.964
Conditional expression (2) f2 / (-f3) = 0.596
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.678
Conditional expression (4) f / f1 = 0.703
Conditional expression (5) f / f2 = 1.062
Conditional expression (6) f1 / f2 = 1.510
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.747
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.357
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.885
Conditional expression (11) FNO × (f1 / f) = 2.636
Conditional expression (12) 2ω = 45.8

図16(A)は、第8実施例に係る光学系の無限遠合焦時の諸収差図である。図16(B)は、第8実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 16A is an aberration diagram at infinity focusing of the optical system according to the eighth embodiment. FIG. 16B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the eighth embodiment. From each aberration diagram, it can be seen that the optical system according to the eighth embodiment has various aberrations corrected well and has excellent imaging performance.

(第9実施例)
第9実施例について、図17〜図18および表9を用いて説明する。図17は、本実施形態の第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第9実施例に係る光学系LS(9)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(9th Example)
A ninth embodiment will be described with reference to FIGS. 17-18 and Table 9. FIG. 17 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the ninth embodiment of the present embodiment. In the optical system LS (9) according to the ninth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 9 below lists the values of the specifications of the optical system according to the ninth embodiment. The thirteenth surface is a virtual surface.

(表9)
[全体諸元]
f 51.60
FNO 1.85
ω 22.9
Y 21.70
TL 92.330
BF 13.100
BFa 12.554
[レンズ諸元]
面番号 R D nd νd
1 -48.06457 2.000 1.67270 32.2
2 50.03333 2.861 1.94595 18.0
3 105.00000 2.805
4 -226.31231 6.827 1.72916 54.6
5 -47.98013 0.644
6* 36.64910 0.100 1.56093 36.6
7 36.85687 5.622 1.80400 46.6
8 217.92780 0.200
9 28.49361 7.332 1.59319 67.9
10 -161.37986 1.500 1.64769 33.7
11 20.99038 5.164
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.41799 1.100 1.64769 33.7
15 998.77224 0.200
16* 85.12299 5.000 1.77377 47.2
17* -35.29338 2.485
18 -73.80381 6.400 1.49782 82.6
19 -23.23519 D19(可変)
20 -177.75440 2.927 1.94595 18.0
21 -63.69645 1.900 1.64769 33.7
22 -482.01125 2.887
23 -50.20764 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-4.74106E-07, A6=-3.40824E-10, A8= 2.15394E-12, A10=-1.54492E-15
第16面
κ=1.00000
A4=-1.95205E-07, A6= 1.94342E-08, A8=-8.61846E-11, A10=-2.07763E-13
第17面
κ=1.00000
A4= 1.47643E-05, A6= 2.08671E-08, A8= 8.44852E-11, A10=-6.93210E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1565
D0 ∞ 307.67
D12 10.320 2.409
D19 6.356 14.267
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 73.63
G2 13 48.76
G3 20 -81.76
[条件式対応値]
条件式(1) (−G1R1)/f=0.964
条件式(2) f2/(−f3)=0.596
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.676
条件式(4) f/f1=0.701
条件式(5) f/f2=1.058
条件式(6) f1/f2=1.510
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.748
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.357
条件式(10) {1−(β2)2}×(β3)2=0.888
条件式(11) FNO×(f1/f)=2.645
条件式(12) 2ω=45.8
(Table 9)
[Overall specifications]
f 51.60
FNO 1.85
ω 22.9
Y 21.70
TL 92.330
BF 13.100
BFa 12.554
[Lens specifications]
Surface number RD nd νd
1 -48.06457 2.000 1.67270 32.2
2 50.03333 2.861 1.94595 18.0
3 105.00000 2.805
4-226.31231 6.827 1.72916 54.6
5 -47.98013 0.644
6 * 36.64910 0.100 1.56093 36.6
7 36.85687 5.622 1.80400 46.6
8 217.92780 0.200
9 28.49361 7.332 1.59319 67.9
10 -161.37986 1.500 1.64769 33.7
11 20.99038 5.164
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.41799 1.100 1.64769 33.7
15 998.77224 0.200
16 * 85.12299 5.000 1.77377 47.2
17 * -35.29338 2.485
18 -73.80381 6.400 1.49782 82.6
19 -23.23519 D19 (variable)
20 -177.75440 2.927 1.94595 18.0
21 -63.69645 1.900 1.64769 33.7
22 -482.01125 2.887
23 -50.20764 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -4.74106E-07, A6 = -3.40824E-10, A8 = 2.15394E-12, A10 = -1.54492E-15
16th surface κ = 1.0000
A4 = -1.95205E-07, A6 = 1.94342E-08, A8 = -8.61846E-11, A10 = -2.07763E-13
Surface 17 κ = 1.0000
A4 = 1.47643E-05, A6 = 2.08671E-08, A8 = 8.44852E-11, A10 = -6.93210E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1565
D0 ∞ 307.67
D12 10.320 2.409
D19 6.356 14.267
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 73.63
G2 13 48.76
G3 20 -81.76
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.964
Conditional expression (2) f2 / (-f3) = 0.596
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.676
Conditional expression (4) f / f1 = 0.701
Conditional expression (5) f / f2 = 1.058
Conditional expression (6) f1 / f2 = 1.510
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.748
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.357
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.888
Conditional expression (11) FNO × (f1 / f) = 2.645
Conditional expression (12) 2ω = 45.8

図18(A)は、第9実施例に係る光学系の無限遠合焦時の諸収差図である。図18(B)は、第9実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第9実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 18A is an aberration diagram at infinity focusing of the optical system according to the ninth embodiment. FIG. 18B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the ninth embodiment. From each aberration diagram, it can be seen that the optical system according to the ninth embodiment has various aberrations corrected well and has excellent imaging performance.

(第10実施例)
第10実施例について、図19〜図20および表10を用いて説明する。図19は、本実施形態の第10実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第10実施例に係る光学系LS(10)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(10th Example)
The tenth embodiment will be described with reference to FIGS. 19 to 20 and Table 10. FIG. 19 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the tenth embodiment of the present embodiment. In the optical system LS (10) according to the tenth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. It consists of a meniscus-shaped second positive lens L13, a meniscus-shaped third positive lens L14 with a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16. It is composed of a bonded lens and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus-shaped second positive lens L23 with a concave surface facing the object side, which are arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表10に、第10実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 10 below lists the values of the specifications of the optical system according to the tenth embodiment. The thirteenth surface is a virtual surface.

(表10)
[全体諸元]
f 51.61
FNO 1.85
ω 23.0
Y 21.70
TL 92.630
BF 13.111
BFa 12.566
[レンズ諸元]
面番号 R D nd νd
1 -47.48420 2.000 1.67270 32.2
2 49.34200 2.900 1.94595 18.0
3 105.06869 2.850
4 -214.61709 6.650 1.72916 54.6
5 -47.45376 0.640
6* 36.92032 0.100 1.56093 36.6
7 37.08029 5.650 1.80400 46.6
8 227.67817 0.250
9 28.81243 7.400 1.59319 67.9
10 -141.32000 1.500 1.64769 33.7
11 21.19231 5.130
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -23.47056 1.100 1.64769 33.7
15 682.91466 0.200
16* 83.29512 5.000 1.77377 47.2
17* -35.02672 2.570
18 -71.96528 6.400 1.49782 82.6
19 -23.20263 D19(可変)
20 -192.79576 2.950 1.94595 18.0
21 -65.62300 2.000 1.64769 33.7
22 -664.53730 2.909
23 -51.20031 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-4.82693E-07, A6=-2.32147E-10, A8= 1.82978E-12, A10=-1.19713E-15
第16面
κ=1.00000
A4=-2.77465E-07, A6= 1.84476E-08, A8=-7.60811E-11, A10=-2.05509E-13
第17面
κ=1.00000
A4= 1.46947E-05, A6= 2.13572E-08, A8= 8.25934E-11, A10=-6.58549E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.61 β=-0.1568
D0 ∞ 307.37
D12 10.320 2.403
D19 6.400 14.317
D26 1.011 1.011
[レンズ群データ]
群 始面 焦点距離
G1 1 74.30
G2 13 48.80
G3 20 -82.85
[条件式対応値]
条件式(1) (−G1R1)/f=0.920
条件式(2) f2/(−f3)=0.589
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.639
条件式(4) f/f1=0.695
条件式(5) f/f2=1.058
条件式(6) f1/f2=1.523
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.768
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.377
条件式(10) {1−(β2)2}×(β3)2=0.890
条件式(11) FNO×(f1/f)=2.670
条件式(12) 2ω=46.0
(Table 10)
[Overall specifications]
f 51.61
FNO 1.85
ω 23.0
Y 21.70
TL 92.630
BF 13.111
BFa 12.566
[Lens specifications]
Surface number RD nd νd
1 -47.48420 2.000 1.67270 32.2
2 49.34200 2.900 1.94595 18.0
3 105.06869 2.850
4-214.61709 6.650 1.72916 54.6
5 -47.45376 0.640
6 * 36.92032 0.100 1.56093 36.6
7 37.08029 5.650 1.80400 46.6
8 227.67817 0.250
9 28.81243 7.400 1.59319 67.9
10 -141.32000 1.500 1.64769 33.7
11 21.19231 5.130
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -23.47056 1.100 1.64769 33.7
15 682.91466 0.200
16 * 83.29512 5.000 1.77377 47.2
17 * -35.02672 2.570
18 -71.96528 6.400 1.49782 82.6
19 -23.20263 D19 (variable)
20 -192.79576 2.950 1.94595 18.0
21 -65.62300 2.000 1.64769 33.7
22 -664.53730 2.909
23 -51.20031 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -4.82693E-07, A6 = -2.32147E-10, A8 = 1.82978E-12, A10 = -1.19713E-15
16th surface κ = 1.0000
A4 = -2.777465E-07, A6 = 1.84476E-08, A8 = -7.60811E-11, A10 = -2.05509E-13
Surface 17 κ = 1.0000
A4 = 1.46947E-05, A6 = 2.13572E-08, A8 = 8.25934E-11, A10 =-6.58549E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.61 β = -0.1568
D0 ∞ 307.37
D12 10.320 2.403
D19 6.400 14.317
D26 1.011 1.011
[Lens group data]
Focal length
G1 1 74.30
G2 13 48.80
G3 20 -82.85
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.920
Conditional expression (2) f2 / (-f3) = 0.589
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.639
Conditional expression (4) f / f1 = 0.695
Conditional expression (5) f / f2 = 1.058
Conditional expression (6) f1 / f2 = 1.523
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.768
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.377
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.890
Conditional expression (11) FNO × (f1 / f) = 2.670
Conditional expression (12) 2ω = 46.0

図20(A)は、第10実施例に係る光学系の無限遠合焦時の諸収差図である。図20(B)は、第10実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第10実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 20A is a diagram of various aberrations of the optical system according to the tenth embodiment at infinity focusing. FIG. 20B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the tenth embodiment. From each aberration diagram, it can be seen that the optical system according to the tenth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第11実施例)
第11実施例について、図21〜図22および表11を用いて説明する。図21は、本実施形態の第11実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第11実施例に係る光学系LS(11)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(11th Example)
The eleventh embodiment will be described with reference to FIGS. 21 to 22 and Table 11. FIG. 21 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the eleventh embodiment of the present embodiment. In the optical system LS (11) according to the eleventh embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a biconcave second negative lens L12, and a meniscus-shaped first positive lens L13 with a convex surface facing the object side. A junction lens consisting of a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third negative lens L17. It is composed of a lens and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、両凸形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 includes a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a biconvex second positive lens L23 arranged in order from the object side. , Consists of. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表11に、第11実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 11 below lists the values of the specifications of the optical system according to the eleventh embodiment. The 14th surface is a virtual surface.

(表11)
[全体諸元]
f 37.63
FNO 1.85
ω 30.0
Y 21.70
TL 110.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -662.83160 3.000 1.80920 33.6
2 33.87219 9.404
3 -109.33916 3.000 1.48749 70.4
4 89.77072 4.000 1.94595 18.0
5 317.57072 1.945
6 44.26915 8.500 1.48749 70.4
7 -112.47821 3.972
8* 41.20576 6.500 1.80400 46.6
9 -255.27183 0.200
10 26.75656 9.000 1.59319 67.9
11 -57.15784 1.500 1.67270 32.2
12 17.14008 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -21.57444 1.000 1.67270 32.2
16 -1291.14570 0.200
17* 157.44017 4.500 1.77377 47.2
18* -44.84339 0.200
19 155.77289 9.000 1.59319 67.9
20 -25.32306 D20(可変)
21 71.98835 3.000 1.94595 18.0
22 81.46254 6.736
23* -41.56282 1.500 1.64769 33.7
24 -168.89768 7.000
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第8面
κ=1.00000
A4=-1.90145E-06, A6=-9.52591E-10, A8=-1.08708E-12, A10=-6.77034E-16
第17面
κ=1.00000
A4= 6.23513E-06, A6=-1.23942E-08, A8= 3.34827E-11, A10=-3.01713E-13
第18面
κ=1.00000
A4= 1.88293E-05, A6= 1.24857E-08, A8= 2.84962E-11, A10=-3.23051E-13
第23面
κ=1.00000
A4= 5.43854E-06, A6=-1.52554E-08, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=37.63 β=-0.2078
D0 ∞ 151.72
D13 11.387 2.404
D20 3.456 12.439
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 58.79
G2 14 43.00
G3 21 -104.59
[条件式対応値]
条件式(1) (−G1R1)/f=17.613
条件式(2) f2/(−f3)=0.411
条件式(3),(3−1),(3−2)
(−G1R1)/f1=11.275
条件式(4) f/f1=0.640
条件式(5) f/f2=0.875
条件式(6) f1/f2=1.367
条件式(7) BFa/f=0.241
条件式(8) fF/fR=0.945
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.903
条件式(10) {1−(β2)2}×(β3)2=0.728
条件式(11) FNO×(f1/f)=2.893
条件式(12) 2ω=60.0
(Table 11)
[Overall specifications]
f 37.63
FNO 1.85
ω 30.0
Y 21.70
TL 110.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -662.83160 3.000 1.80920 33.6
2 33.87219 9.404
3-109.33916 3.000 1.48749 70.4
4 89.77072 4.000 1.94595 18.0
5 317.57072 1.945
6 44.26915 8.500 1.48749 70.4
7 -112.47821 3.972
8 * 41.20576 6.500 1.80400 46.6
9 -255.27183 0.200
10 26.75656 9.000 1.59319 67.9
11 -57.15784 1.500 1.67270 32.2
12 17.14008 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15-21.57444 1.000 1.67270 32.2
16 -1291.14570 0.200
17 * 157.44017 4.500 1.77377 47.2
18 * -44.84339 0.200
19 155.77289 9.000 1.59319 67.9
20 -25.32306 D20 (variable)
21 71.98835 3.000 1.94595 18.0
22 81.46254 6.736
23 * -41.56282 1.500 1.64769 33.7
24-168.89768 7.000
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -1.90145E-06, A6 = -9.52591E-10, A8 = -1.08708E-12, A10 = -6.77034E-16
Surface 17 κ = 1.0000
A4 = 6.23513E-06, A6 = -1.23942E-08, A8 = 3.34827E-11, A10 = -3.01713E-13
Surface 18 κ = 1.0000
A4 = 1.88293E-05, A6 = 1.24857E-08, A8 = 2.84962E-11, A10 = -3.23051E-13
Side 23 κ = 1.0000
A4 = 5.43854E-06, A6 = -1.52554E-08, A8 = 0.00000E + 00, A10 = 0.00000E + 00
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 37.63 β = -0.2078
D0 ∞ 151.72
D13 11.387 2.404
D20 3.456 12.439
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 58.79
G2 14 43.00
G3 21 -104.59
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=17.613
Conditional expression (2) f2 / (-f3) = 0.411
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=11.275
Conditional expression (4) f / f1 = 0.640
Conditional expression (5) f / f2 = 0.875
Conditional expression (6) f1 / f2 = 1.637
Conditional expression (7) BFa / f = 0.241
Conditional expression (8) fF / fR = 0.945
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.903
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.728
Conditional expression (11) FNO × (f1 / f) = 2.893
Conditional expression (12) 2ω = 60.0

図22(A)は、第11実施例に係る光学系の無限遠合焦時の諸収差図である。図22(B)は、第11実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第11実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 22A is a diagram of various aberrations of the optical system according to the eleventh embodiment at infinity focusing. FIG. 22B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the eleventh embodiment. From each aberration diagram, it can be seen that the optical system according to the eleventh embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第12実施例)
第12実施例について、図23〜図24および表12を用いて説明する。図23は、本実施形態の第12実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第12実施例に係る光学系LS(12)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(12th Example)
A twelfth embodiment will be described with reference to FIGS. 23 to 24 and Table 12. FIG. 23 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the twelfth embodiment of the present embodiment. In the optical system LS (12) according to the twelfth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a biconcave second negative lens L12, and a meniscus-shaped first positive lens L13 with a convex surface facing the object side. A junction lens consisting of a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third negative lens L17. It is composed of a lens and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a meniscus-shaped first positive lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表12に、第12実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 12 below lists the values of the specifications of the optical system according to the twelfth embodiment. The 14th surface is a virtual surface.

(表12)
[全体諸元]
f 37.70
FNO 1.88
ω 30.0
Y 21.70
TL 110.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -3112.32120 3.000 1.73282 32.6
2 32.68764 8.690
3 -440.00413 3.000 1.48749 70.4
4 57.93171 4.000 1.94595 18.0
5 108.74454 3.168
6 42.60783 8.500 1.50267 62.2
7 -141.78756 3.866
8* 45.06258 6.500 1.80400 46.6
9 -210.82291 0.200
10 36.02017 9.000 1.59319 67.9
11 -45.79266 1.500 1.67270 32.2
12 22.46589 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -22.15003 1.000 1.67270 32.2
16 -98.33346 0.318
17* -130.89892 2.500 1.77377 47.2
18* -43.35291 1.224
19 101.79100 5.500 1.59319 67.9
20 -53.62571 0.100
21 -81.82793 6.000 1.59319 67.9
22 -25.48031 D22(可変)
23 -75.16977 3.000 1.94595 18.0
24 -63.16701 8.776
25* -25.51533 1.500 1.64769 33.7
26 -99.50792 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28(可変)
[非球面データ]
第8面
κ=1.00000
A6=-1.62936E-06, A6=-1.61898E-09, A8= 3.72851E-12, A10=-6.56781E-15
第17面
κ=1.00000
A4= 3.15178E-05, A6= 1.77790E-07, A8=-3.27517E-10, A10=-1.26227E-12
第18面
κ=1.00000
A4= 4.17433E-05, A6= 1.91618E-07, A8= 1.40927E-10, A10=-2.86119E-12
第25面
κ=1.00000
A4= 1.10584E-05, A6=-1.56481E-10, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=37.70 β=-0.1179
D0 ∞ 290.00
D13 6.605 2.441
D22 4.053 8.217
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 63.38
G2 14 39.22
G3 23 -62.57
[条件式対応値]
条件式(1) (−G1R1)/f=82.547
条件式(2) f2/(−f3)=0.627
条件式(3),(3−1),(3−2)
(−G1R1)/f1=49.101
条件式(4) f/f1=0.595
条件式(5) f/f2=0.961
条件式(6) f1/f2=1.616
条件式(7) BFa/f=0.240
条件式(8) fF/fR=0.873
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.979
条件式(10) {1−(β2)2}×(β3)2=0.994
条件式(11) FNO×(f1/f)=3.160
条件式(12) 2ω=60.0
(Table 12)
[Overall specifications]
f 37.70
FNO 1.88
ω 30.0
Y 21.70
TL 110.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -3112.32120 3.000 1.73282 32.6
2 32.68764 8.690
3-440.00413 3.000 1.48749 70.4
4 57.93171 4.000 1.94595 18.0
5 108.74454 3.168
6 42.60783 8.500 1.50267 62.2
7 -141.78756 3.866
8 * 45.06258 6.500 1.80400 46.6
9 -210.82291 0.200
10 36.02017 9.000 1.59319 67.9
11 -45.79266 1.500 1.67270 32.2
12 22.46589 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15 -22.15003 1.000 1.67270 32.2
16 -98.33346 0.318
17 * -130.89892 2.500 1.77377 47.2
18 * -43.35291 1.224
19 101.79100 5.500 1.59319 67.9
20 -53.62571 0.100
21 -81.82793 6.000 1.59319 67.9
22 -25.48031 D22 (variable)
23 -75.16977 3.000 1.94595 18.0
24-63.16701 8.776
25 * -25.51533 1.500 1.64769 33.7
26 -99.50792 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A6 = -1.62936E-06, A6 = -1.61898E-09, A8 = 3.72851E-12, A10 = -6.56781E-15
Surface 17 κ = 1.0000
A4 = 3.15178E-05, A6 = 1.77790E-07, A8 = -3.27517E-10, A10 = -1.26227E-12
Surface 18 κ = 1.0000
A4 = 4.17433E-05, A6 = 1.91618E-07, A8 = 1.40927E-10, A10 = -2.86119E-12
Side 25 κ = 1.0000
A4 = 1.10584E-05, A6 = -1.56481E-10, A8 = 0.00000E + 00, A10 = 0.00000E + 00
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 37.70 β = -0.1179
D0 ∞ 290.00
D13 6.605 2.441
D22 4.053 8.217
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 63.38
G2 14 39.22
G3 23 -62.57
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=82.547
Conditional expression (2) f2 / (-f3) = 0.627
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=49.101
Conditional expression (4) f / f1 = 0.595
Conditional expression (5) f / f2 = 0.961
Conditional expression (6) f1 / f2 = 1.616
Conditional expression (7) BFa / f = 0.240
Conditional expression (8) fF / fR = 0.873
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.979
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.994
Conditional expression (11) FNO × (f1 / f) = 3.160
Conditional expression (12) 2ω = 60.0

図24(A)は、第12実施例に係る光学系の無限遠合焦時の諸収差図である。図24(B)は、第12実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第12実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 24A is a diagram of various aberrations of the optical system according to the twelfth embodiment at infinity focusing. FIG. 24B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the twelfth embodiment. From each aberration diagram, it can be seen that the optical system according to the twelfth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第13実施例)
第13実施例について、図25〜図26および表13を用いて説明する。図25は、本実施形態の第13実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第13実施例に係る光学系LS(13)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(13th Example)
The thirteenth embodiment will be described with reference to FIGS. 25 to 26 and Table 13. FIG. 25 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the thirteenth embodiment of the present embodiment. In the optical system LS (13) according to the thirteenth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a biconcave second negative lens L12, and a meniscus-shaped first positive lens L13 with a convex surface facing the object side. A junction lens consisting of a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third negative lens L17. It is composed of a lens and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a meniscus-shaped first positive lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has an aspherical lens surface on the object side.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表13に、第13実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 13 below lists the values of the specifications of the optical system according to the thirteenth embodiment. The 14th surface is a virtual surface.

(表13)
[全体諸元]
f 36.52
FNO 1.85
ω 30.6
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -344.23276 3.000 1.71736 29.6
2 31.47663 8.864
3 -5197.94500 3.000 1.48749 70.3
4 59.50193 4.000 1.94595 18.0
5 141.00357 0.152
6 49.20783 7.500 1.60300 65.4
7 -563.87665 4.981
8* 39.11480 6.000 1.77250 49.6
9 -139.68211 0.427
10 28.58681 8.000 1.59319 67.9
11 -50.06370 1.500 1.67270 32.2
12 19.18437 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -22.50724 1.000 1.67270 32.2
16 -81.31951 0.549
17* -74.31824 3.000 1.77377 47.2
18 -35.67165 0.203
19 180.93759 5.000 1.59319 67.9
20 -43.85092 0.500
21 -132.62507 6.000 1.59319 67.9
22 -29.07561 D22(可変)
23 317.64282 3.000 1.94595 18.0
24 314.90339 6.932
25* -26.84153 1.500 1.64769 33.7
26 -77.55848 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28(可変)
[非球面データ]
第8面
κ=1.00000
A4=-1.59558E-06, A6=-1.61180E-09, A8= 2.67206E-12, A10=-4.02129E-15
第17面
κ=1.00000
A4=-1.62012E-05, A6=-2.42502E-08, A8= 1.25145E-10, A10=-1.02694E-12
第25面
κ=1.00000
A4= 7.25982E-06, A6= 1.79235E-08, A8=-4.70327E-11, A10= 2.68072E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.52 β=-0.1131
D0 ∞ 290.00
D13 6.346 1.987
D22 0.549 4.907
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 52.27
G2 14 37.19
G3 23 -64.36
[条件式対応値]
条件式(1) (−G1R1)/f=9.427
条件式(2) f2/(−f3)=0.578
条件式(3),(3−1),(3−2)
(−G1R1)/f1=6.586
条件式(4) f/f1=0.699
条件式(5) f/f2=0.982
条件式(6) f1/f2=1.406
条件式(7) BFa/f=0.248
条件式(8) fF/fR=0.724
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.832
条件式(10) {1−(β2)2}×(β3)2=0.853
条件式(11) FNO×(f1/f)=2.645
条件式(12) 2ω=61.2
(Table 13)
[Overall specifications]
f 36.52
FNO 1.85
ω 30.6
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -344.23276 3.000 1.71736 29.6
2 31.47663 8.864
3 -5197.94500 3.000 1.48749 70.3
4 59.50193 4.000 1.94595 18.0
5 141.00357 0.152
6 49.20783 7.500 1.60300 65.4
7 -563.87665 4.981
8 * 39.11480 6.000 1.77250 49.6
9 -139.68211 0.427
10 28.58681 8.000 1.59319 67.9
11 -50.06370 1.500 1.67270 32.2
12 19.18437 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15 -22.50724 1.000 1.67270 32.2
16 -81.31951 0.549
17 * -74.31824 3.000 1.77377 47.2
18 -35.67165 0.203
19 180.93759 5.000 1.59319 67.9
20 -43.85092 0.500
21 -132.62507 6.000 1.59319 67.9
22 -29.07561 D22 (variable)
23 317.64282 3.000 1.94595 18.0
24 314.90339 6.932
25 * -26.84153 1.500 1.64769 33.7
26 -77.55848 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -1.59558E-06, A6 = -1.61180E-09, A8 = 2.67206E-12, A10 = -4.02129E-15
Surface 17 κ = 1.0000
A4 = -1.62012E-05, A6 = -2.42502E-08, A8 = 1.25145E-10, A10 = -1.02694E-12
Side 25 κ = 1.0000
A4 = 7.25982E-06, A6 = 1.79235E-08, A8 = -4.70327E-11, A10 = 2.68072E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.52 β = -0.1131
D0 ∞ 290.00
D13 6.346 1.987
D22 0.549 4.907
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 52.27
G2 14 37.19
G3 23 -64.36
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=9.427
Conditional expression (2) f2 / (-f3) = 0.578
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=6.586
Conditional expression (4) f / f1 = 0.699
Conditional expression (5) f / f2 = 0.982
Conditional expression (6) f1 / f2 = 1.406
Conditional expression (7) BFa / f = 0.248
Conditional expression (8) fF / fR = 0.724
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = -0.832
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.853
Conditional expression (11) FNO × (f1 / f) = 2.645
Conditional expression (12) 2ω = 61.2

図26(A)は、第13実施例に係る光学系の無限遠合焦時の諸収差図である。図26(B)は、第13実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第13実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 26A is a diagram of various aberrations of the optical system according to the thirteenth embodiment at infinity focusing. FIG. 26B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the thirteenth embodiment. From each aberration diagram, it can be seen that the optical system according to the thirteenth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第14実施例)
第14実施例について、図27〜図28および表14を用いて説明する。図27は、本実施形態の第14実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第14実施例に係る光学系LS(14)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(14th Example)
The 14th embodiment will be described with reference to FIGS. 27 to 28 and Table 14. FIG. 27 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 14th embodiment of the present embodiment. In the optical system LS (14) according to the 14th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、物体側に凸面を向けたメニスカス形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped second negative lens L12 with a convex surface facing the object side, and a meniscus shape with a convex surface facing the object side. A junction lens composed of the first positive lens L13, a meniscus-shaped second positive lens L14 with a convex surface facing the object side, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and It is composed of a junction lens made of a biconcave third negative lens L17 and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a meniscus-shaped first positive lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表14に、第14実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 14 below lists the values of the specifications of the optical system according to the 14th embodiment. The 14th surface is a virtual surface.

(表14)
[全体諸元]
f 36.50
FNO 1.85
ω 30.7
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -328.51209 3.000 1.71736 29.6
2 30.62735 8.724
3 862.45645 3.000 1.48749 70.3
4 57.42336 4.000 1.94595 18.0
5 141.63170 0.100
6 44.98135 7.500 1.60300 65.4
7 5539.31740 5.241
8* 41.34810 6.000 1.77250 49.6
9 -119.73719 0.200
10 28.47480 8.000 1.59319 67.9
11 -45.24565 1.500 1.67270 32.2
12 19.20206 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -23.51305 1.000 1.67270 32.2
16 -129.15388 0.457
17* -103.44705 3.000 1.77377 47.2
18* -39.20704 0.417
19 131.40567 5.000 1.59319 67.9
20 -48.12075 0.500
21 -100.00000 6.000 1.59319 67.9
22 -26.83541 D22(可変)
23 102.68371 3.000 1.94595 18.0
24 106.30512 6.996
25* -28.73049 1.500 1.64769 33.7
26 -98.04242 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28(可変)
[非球面データ]
第8面
κ=1.00000
A4=-1.74572E-06, A6=-1.86902E-09, A8= 3.70243E-12, A10=-5.65794E-15
第17面
κ=1.00000
A4=-4.49752E-06, A6=-4.35264E-08, A8= 1.70129E-10, A10=-7.71012E-13
第18面
κ=1.00000
A4= 1.06552E-05, A6= 0.00000E+00, A8= 0.00000E+00, A10= 0.00000E+00
第25面
κ=1.00000
A4= 6.97711E-06, A6= 8.30426E-09, A8=-3.04728E-11, A10=-2.65514E-15
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.50 β=-0.1131
D0 ∞ 290.00
D13 6.366 1.830
D22 0.500 5.036
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 52.56
G2 14 38.05
G3 23 -66.26
[条件式対応値]
条件式(1) (−G1R1)/f=9.000
条件式(2) f2/(−f3)=0.574
条件式(3),(3−1),(3−2)
(−G1R1)/f1=6.250
条件式(4) f/f1=0.694
条件式(5) f/f2=0.959
条件式(6) f1/f2=1.381
条件式(7) BFa/f=0.248
条件式(8) fF/fR=0.729
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.829
条件式(10) {1−(β2)2}×(β3)2=0.815
条件式(11) FNO×(f1/f)=2.664
条件式(12) 2ω=61.4
(Table 14)
[Overall specifications]
f 36.50
FNO 1.85
ω 30.7
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -328.51209 3.000 1.71736 29.6
2 30.62735 8.724
3 862.45645 3.000 1.48749 70.3
4 57.42336 4.000 1.94595 18.0
5 141.63170 0.100
6 44.98135 7.500 1.60300 65.4
7 5539.31740 5.241
8 * 41.34810 6.000 1.77250 49.6
9 -119.73719 0.200
10 28.47480 8.000 1.59319 67.9
11 -45.24565 1.500 1.67270 32.2
12 19.20206 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15 -23.51305 1.000 1.67270 32.2
16 -129.15388 0.457
17 * -103.44705 3.000 1.77377 47.2
18 * -39.20704 0.417
19 131.40567 5.000 1.59319 67.9
20 -48.12075 0.500
21 -100.00000 6.000 1.59319 67.9
22 -26.83541 D22 (variable)
23 102.68371 3.000 1.94595 18.0
24 106.30512 6.996
25 * -28.73049 1.500 1.64769 33.7
26 -98.04242 7.000
27 ∞ 1.600 1.51680 64.1
28 ∞ D28 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -1.74572E-06, A6 = -1.86902E-09, A8 = 3.70243E-12, A10 = -5.65794E-15
Surface 17 κ = 1.0000
A4 = -4.49752E-06, A6 = -4.35264E-08, A8 = 1.70129E-10, A10 = -7.71012E-13
Surface 18 κ = 1.0000
A4 = 1.06552E-05, A6 = 0.00000E + 00, A8 = 0.00000E + 00, A10 = 0.00000E + 00
Side 25 κ = 1.0000
A4 = 6.97711E-06, A6 = 8.30426E-09, A8 = -3.04728E-11, A10 = -2.65514E-15
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.50 β = -0.1131
D0 ∞ 290.00
D13 6.366 1.830
D22 0.500 5.036
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 52.56
G2 14 38.05
G3 23 -66.26
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=9.000
Conditional expression (2) f2 / (-f3) = 0.574
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=6.250
Conditional expression (4) f / f1 = 0.694
Conditional expression (5) f / f2 = 0.959
Conditional expression (6) f1 / f2 = 1.381
Conditional expression (7) BFa / f = 0.248
Conditional expression (8) fF / fR = 0.729
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = -0.829
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.815
Conditional expression (11) FNO × (f1 / f) = 2.664
Conditional expression (12) 2ω = 61.4

図28(A)は、第14実施例に係る光学系の無限遠合焦時の諸収差図である。図28(B)は、第14実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第14実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 28A is an aberration diagram of the optical system according to the 14th embodiment at infinity focusing. FIG. 28B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 14th embodiment. From each aberration diagram, it can be seen that the optical system according to the 14th embodiment has various aberrations corrected well and has excellent imaging performance.

(第15実施例)
第15実施例について、図29〜図30および表15を用いて説明する。図29は、本実施形態の第15実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第15実施例に係る光学系LS(15)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(15th Example)
A fifteenth embodiment will be described with reference to FIGS. 29 to 30 and Table 15. FIG. 29 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the fifteenth embodiment of the present embodiment. In the optical system LS (15) according to the fifteenth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped second negative lens L12 with a convex surface facing the object side, and a meniscus shape with a convex surface facing the object side. A junction lens composed of the first positive lens L13, a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third. It is composed of a junction lens made of a negative lens L17 and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a meniscus-shaped first positive lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側に凹面を向けたメニスカス形状の負レンズL31から構成される。負レンズL31は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped negative lens L31 with a concave surface facing the object side. The negative lens L31 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表15に、第15実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 15 below lists the values of the specifications of the optical system according to the 15th embodiment. The 14th surface is a virtual surface.

(表15)
[全体諸元]
f 36.50
FNO 1.87
ω 30.7
Y 21.70
TL 100.000
BF 9.600
BFa 9.054
[レンズ諸元]
面番号 R D nd νd
1 -188.20085 3.000 1.71736 29.6
2 30.66496 8.404
3 547.03690 3.000 1.48749 70.3
4 62.69373 4.000 1.94595 18.0
5 190.11798 0.100
6 45.62385 7.500 1.60300 65.4
7 -115579.46000 5.673
8* 44.63892 6.000 1.77250 49.6
9 -102.19551 0.200
10 28.17341 8.000 1.59319 67.9
11 -42.44281 1.500 1.67270 32.2
12 19.02911 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -23.61092 1.000 1.67270 32.2
16 -109.82047 0.899
17* -60.75679 3.000 1.77377 47.2
18* -33.74626 0.200
19 105.85192 5.000 1.59319 67.9
20 -52.67684 0.500
21 -100.00000 6.000 1.59319 67.9
22 -26.83541 D22(可変)
23* -35.17199 1.500 1.64769 33.7
24 -148.75840 7.000
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第8面
κ=1.00000
A4=-1.59317E-06, A6=-1.58329E-09, A8= 3.51477E-12, A10=-5.52433E-15
第17面
κ=1.00000
A4=-1.23191E-05, A6=-4.63629E-08, A8= 2.30352E-10, A10=-1.55636E-12
第18面
κ=1.00000
A4= 3.43104E-06, A6= 0.00000E+00, A8= 0.00000E+00, A10= 0.00000E+00
第23面
κ=1.00000
A4= 2.07644E-06, A6= 2.61568E-09, A8= -1.43218E-11, A10=-5.83085E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.50 β=-0.1132
D0 ∞ 290.00
D13 6.253 1.764
D22 10.273 14.761
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 52.70
G2 14 38.26
G3 23 -71.49
[条件式対応値]
条件式(1) (−G1R1)/f=5.156
条件式(2) f2/(−f3)=0.535
条件式(3),(3−1),(3−2)
(−G1R1)/f1=3.571
条件式(4) f/f1=0.693
条件式(5) f/f2=0.954
条件式(6) f1/f2=1.377
条件式(7) BFa/f=0.248
条件式(8) fF/fR=0.758
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.720
条件式(10) {1−(β2)2}×(β3)2=0.828
条件式(11) FNO×(f1/f)=2.696
条件式(12) 2ω=61.4
(Table 15)
[Overall specifications]
f 36.50
FNO 1.87
ω 30.7
Y 21.70
TL 100.000
BF 9.600
BFa 9.054
[Lens specifications]
Surface number RD nd νd
1 -188.20085 3.000 1.71736 29.6
2 30.66496 8.404
3 547.03690 3.000 1.48749 70.3
4 62.69373 4.000 1.94595 18.0
5 190.11798 0.100
6 45.62385 7.500 1.60300 65.4
7 -115579.46000 5.673
8 * 44.63892 6.000 1.77250 49.6
9 -102.19551 0.200
10 28.17341 8.000 1.59319 67.9
11 -42.44281 1.500 1.67270 32.2
12 19.02911 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15 -23.61092 1.000 1.67270 32.2
16 -109.82047 0.899
17 * -60.75679 3.000 1.77377 47.2
18 * -33.74626 0.200
19 105.85192 5.000 1.59319 67.9
20 -52.67684 0.500
21 -100.00000 6.000 1.59319 67.9
22 -26.83541 D22 (variable)
23 * -35.17199 1.500 1.64769 33.7
24-148.75840 7.000
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -1.59317E-06, A6 = -1.58329E-09, A8 = 3.51477E-12, A10 = -5.52433E-15
Surface 17 κ = 1.0000
A4 = -1.23191E-05, A6 = -4.63629E-08, A8 = 2.30352E-10, A10 = -1.55636E-12
Surface 18 κ = 1.0000
A4 = 3.43104E-06, A6 = 0.00000E + 00, A8 = 0.00000E + 00, A10 = 0.00000E + 00
Side 23 κ = 1.0000
A4 = 2.07644E-06, A6 = 2.61568E-09, A8 = -1.43218E-11, A10 = -5.83085E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.50 β = -0.1132
D0 ∞ 290.00
D13 6.253 1.764
D22 10.273 14.761
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 52.70
G2 14 38.26
G3 23 -71.49
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=5.156
Conditional expression (2) f2 / (-f3) = 0.535
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=3.571
Conditional expression (4) f / f1 = 0.693
Conditional expression (5) f / f2 = 0.954
Conditional expression (6) f1 / f2 = 1.377
Conditional expression (7) BFa / f = 0.248
Conditional expression (8) fF / fR = 0.758
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = -0.720
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.828
Conditional expression (11) FNO × (f1 / f) = 2.696
Conditional expression (12) 2ω = 61.4

図30(A)は、第15実施例に係る光学系の無限遠合焦時の諸収差図である。図30(B)は、第15実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第15実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 30A is a diagram of various aberrations of the optical system according to the fifteenth embodiment at infinity focusing. FIG. 30B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the fifteenth embodiment. From each aberration diagram, it can be seen that the optical system according to the fifteenth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第16実施例)
第16実施例について、図31〜図32および表16を用いて説明する。図31は、本実施形態の第16実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第16実施例に係る光学系LS(16)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(16th Example)
The sixteenth embodiment will be described with reference to FIGS. 31 to 32 and Table 16. FIG. 31 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 16th embodiment of the present embodiment. In the optical system LS (16) according to the 16th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped second negative lens L12 with a convex surface facing the object side, and a meniscus shape with a convex surface facing the object side. A junction lens composed of the first positive lens L13, a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third. It is composed of a junction lens made of a negative lens L17 and an aperture aperture S. The third positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表16に、第16実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。 Table 16 below lists the values of the specifications of the optical system according to the 16th embodiment. The 14th surface is a virtual surface.

(表16)
[全体諸元]
f 36.50
FNO 1.86
ω 30.8
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -133.60683 2.000 1.71736 29.6
2 32.54620 8.076
3 388.71645 2.500 1.48749 70.3
4 65.47753 4.000 1.94595 18.0
5 219.57835 0.100
6 57.60424 7.000 1.60300 65.4
7 -387.08519 6.523
8* 44.24367 6.000 1.77250 49.6
9 -104.52830 0.200
10 31.09490 9.000 1.59319 67.9
11 -42.99037 1.500 1.67270 32.2
12 20.68411 5.399
13 ∞ D13(可変) (絞りS)
14 ∞ 3.000
15 -23.39527 1.000 1.67270 32.2
16 -374.05277 0.224
17* 89.21164 4.000 1.77377 47.2
18* -62.00927 1.388
19 -586.47623 4.500 1.59319 67.9
20 -38.88857 0.500
21 -100.00000 5.500 1.59319 67.9
22 -29.94109 D22(可変)
23 59.66877 3.000 1.94595 18.0
24 59.44379 6.722
25* -32.82899 1.500 1.64769 33.7
26 -177.92654 7.000
27 ∞ 1.600 1.51680 63.9
28 ∞ D28(可変)
[非球面データ]
第8面
κ=1.00000
A4=-1.04917E-06, A6=-1.42831E-09, A8= 4.66129E-12, A10=-6.33796E-15
第17面
κ=1.00000
A4= 1.65960E-05, A6= 5.96989E-08, A6=-6.57382E-11, A10= 1.19611E-13
第18面
κ=1.00000
A4= 2.95825E-05, A6= 7.91633E-08, A8= 0.00000E+00, A10= 0.00000E+00
第25面
κ=1.00000
A4= 4.39415E-06, A6=-1.10198E-08, A8= 5.26933E-11, A10=-1.66739E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.50 β=-0.1137
D0 ∞ 290.00
D13 6.258 1.649
D22 0.509 5.118
D28 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 53.58
G2 14 39.30
G3 23 -65.49
[条件式対応値]
条件式(1) (−G1R1)/f=3.660
条件式(2) f2/(−f3)=0.600
条件式(3),(3−1),(3−2)
(−G1R1)/f1=2.494
条件式(4) f/f1=0.681
条件式(5) f/f2=0.929
条件式(6) f1/f2=1.363
条件式(7) BFa/f=0.248
条件式(8) fF/fR=0.714
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.608
条件式(10) {1−(β2)2}×(β3)2=0.810
条件式(11) FNO×(f1/f)=2.734
条件式(12) 2ω=61.6
(Table 16)
[Overall specifications]
f 36.50
FNO 1.86
ω 30.8
Y 21.70
TL 100.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -133.60683 2.000 1.71736 29.6
2 32.54620 8.076
3 388.71645 2.500 1.48749 70.3
4 65.47753 4.000 1.94595 18.0
5 219.57835 0.100
6 57.60424 7.000 1.60300 65.4
7 -387.08519 6.523
8 * 44.24367 6.000 1.77250 49.6
9 -104.52830 0.200
10 31.09490 9.000 1.59319 67.9
11 -42.99037 1.500 1.67270 32.2
12 20.68411 5.399
13 ∞ D13 (variable) (aperture S)
14 ∞ 3.000
15 -23.39527 1.000 1.67270 32.2
16 -374.05277 0.224
17 * 89.21164 4.000 1.77377 47.2
18 * -62.00927 1.388
19 -586.47623 4.500 1.59319 67.9
20 -38.88857 0.500
21 -100.00000 5.500 1.59319 67.9
22 -29.94109 D22 (variable)
23 59.66877 3.000 1.94595 18.0
24 59.44379 6.722
25 * -32.82899 1.500 1.64769 33.7
26 -177.92654 7.000
27 ∞ 1.600 1.51680 63.9
28 ∞ D28 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -1.04917E-06, A6 = -1.42831E-09, A8 = 4.66129E-12, A10 = -6.33796E-15
Surface 17 κ = 1.0000
A4 = 1.65960E-05, A6 = 5.96989E-08, A6 = -6.57382E-11, A10 = 1.19611E-13
Surface 18 κ = 1.0000
A4 = 2.95825E-05, A6 = 7.91633E-08, A8 = 0.00000E + 00, A10 = 0.00000E + 00
Side 25 κ = 1.0000
A4 = 4.39415E-06, A6 = -1.10198E-08, A8 = 5.26933E-11, A10 = -1.66739E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.50 β = -0.1137
D0 ∞ 290.00
D13 6.258 1.649
D22 0.509 5.118
D28 1.000 1.000
[Lens group data]
Focal length
G1 1 53.58
G2 14 39.30
G3 23 -65.49
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=3.660
Conditional expression (2) f2 / (-f3) = 0.600
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=2.494
Conditional expression (4) f / f1 = 0.681
Conditional expression (5) f / f2 = 0.929
Conditional expression (6) f1 / f2 = 1.363
Conditional expression (7) BFa / f = 0.248
Conditional expression (8) fF / fR = 0.714
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.608
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.810
Conditional expression (11) FNO × (f1 / f) = 2.734
Conditional expression (12) 2ω = 61.6

図32(A)は、第16実施例に係る光学系の無限遠合焦時の諸収差図である。図32(B)は、第16実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第16実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 32 (A) is a diagram of various aberrations of the optical system according to the 16th embodiment at infinity focusing. FIG. 32B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the sixteenth embodiment. From each aberration diagram, it can be seen that the optical system according to the 16th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第17実施例)
第17実施例について、図33〜図34および表17を用いて説明する。図33は、本実施形態の第17実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第17実施例に係る光学系LS(17)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(17th Example)
The seventeenth embodiment will be described with reference to FIGS. 33 to 34 and Table 17. FIG. 33 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 17th embodiment of the present embodiment. In the optical system LS (17) according to the 17th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、物体側に凹面を向けたメニスカス形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15および両凹形状の第3負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第2負レンズL13は、像面I側のレンズ面が非球面である。第2正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 with a convex surface facing the object side, and a meniscus with a concave surface facing the object side. A junction lens composed of a second negative lens L13 having a shape, a second positive lens L14 having a biconvex shape, a third positive lens L15 having a biconvex shape, and a third negative lens L16 having a biconcave shape, an aperture aperture S, and the like. Consists of. The second negative lens L13 has an aspherical lens surface on the image plane I side. The second positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表17に、第17実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。 Table 17 below lists the values of the specifications of the optical system according to the 17th embodiment. The thirteenth surface is a virtual surface.

(表17)
[全体諸元]
f 36.05
FNO 1.85
ω 31.6
Y 21.70
TL 99.592
BF 13.100
BFa 12.555
[レンズ諸元]
面番号 R D nd νd
1 -500.00000 2.000 1.59270 35.3
2 27.30135 8.716
3 60.46320 3.840 1.94594 18.0
4 220.11217 9.742
5 -29.41908 1.659 1.77377 47.2
6* -33.35969 1.884
7* 47.17368 10.592 1.76801 49.2
8 -60.97010 0.200
9 27.06671 6.869 1.59319 67.9
10 -38.40610 1.500 1.69895 30.1
11 22.53254 3.899
12 ∞ D12(可変) (絞りS)
13 ∞ 2.700
14 -20.48042 1.100 1.64769 33.7
15 -452.00052 0.648
16* 80.79578 4.788 1.77377 47.2
17* -31.41145 0.568
18 -137.97943 6.400 1.49782 82.6
19 -21.82018 D19(可変)
20 -72.37319 4.704 1.94594 18.0
21 -25.72015 1.900 1.80518 25.4
22 -96.08935 2.660
23 -34.82473 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第6面
κ=1.00000
A4=-1.02986E-07, A6= 4.20882E-09, A8=-1.01963E-11, A10= 2.17897E-14
第7面
κ=1.00000
A4=-2.57635E-07, A6= 3.44388E-09, A8=-9.56027E-12, A10= 7.45193E-15
第16面
κ=1.00000
A4=-2.53184E-06, A6= 4.68537E-08, A8=-1.77268E-11, A10=-7.02284E-13
第17面
κ=1.00000
A4= 2.23902E-05, A6= 1.94868E-08, A8= 4.29642E-10, A10=-1.80787E-12
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.05 β=-0.1049
D0 ∞ 314.50
D12 5.722 2.550
D19 2.500 5.667
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 49.49
G2 13 36.41
G3 20 -55.61
[条件式対応値]
条件式(1) (−G1R1)/f=13.870
条件式(2) f2/(−f3)=0.655
条件式(3),(3−1),(3−2)
(−G1R1)/f1=10.103
条件式(4) f/f1=0.728
条件式(5) f/f2=0.990
条件式(6) f1/f2=1.359
条件式(7) BFa/f=0.348
条件式(8) fF/fR=0.554
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.896
条件式(10) {1−(β2)2}×(β3)2=1.114
条件式(11) FNO×(f1/f)=2.534
条件式(12) 2ω=63.2
(Table 17)
[Overall specifications]
f 36.05
FNO 1.85
ω 31.6
Y 21.70
TL 99.592
BF 13.100
BFa 12.555
[Lens specifications]
Surface number RD nd νd
1 -500.00000 2.000 1.59270 35.3
2 27.30135 8.716
3 60.46320 3.840 1.94594 18.0
4 220.11217 9.742
5 -29.41908 1.659 1.77377 47.2
6 * -33.35969 1.884
7 * 47.17368 10.592 1.76801 49.2
8 -60.97010 0.200
9 27.06671 6.869 1.59319 67.9
10 -38.40610 1.500 1.69895 30.1
11 22.53254 3.899
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.700
14 -20.48042 1.100 1.64769 33.7
15 -452.00052 0.648
16 * 80.79578 4.788 1.77377 47.2
17 * -31.41145 0.568
18 -137.97943 6.400 1.49782 82.6
19 -21.82018 D19 (variable)
20 -72.37319 4.704 1.94594 18.0
21 -25.72015 1.900 1.80518 25.4
22 -96.08935 2.660
23 -34.82473 1.900 1.64769 33.7
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -1.02986E-07, A6 = 4.20882E-09, A8 = -1.01963E-11, A10 = 2.17897E-14
Side 7 κ = 1.0000
A4 = -2.57635E-07, A6 = 3.44388E-09, A8 = -9.56027E-12, A10 = 7.45193E-15
16th surface κ = 1.0000
A4 = -2.53184E-06, A6 = 4.68537E-08, A8 = -1.77268E-11, A10 = -7.02284E-13
Surface 17 κ = 1.0000
A4 = 2.23902E-05, A6 = 1.94868E-08, A8 = 4.29642E-10, A10 = -1.80787E-12
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.05 β = -0.1049
D0 ∞ 314.50
D12 5.722 2.550
D19 2.500 5.667
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 49.49
G2 13 36.41
G3 20 -55.61
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=13.870
Conditional expression (2) f2 / (-f3) = 0.655
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=10.103
Conditional expression (4) f / f1 = 0.728
Conditional expression (5) f / f2 = 0.990
Conditional expression (6) f1 / f2 = 1.359
Conditional expression (7) BFa / f = 0.348
Conditional expression (8) fF / fR = 0.554
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.896
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 1.114
Conditional expression (11) FNO × (f1 / f) = 2.534
Conditional expression (12) 2ω = 63.2

図34(A)は、第17実施例に係る光学系の無限遠合焦時の諸収差図である。図34(B)は、第17実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第17実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 34 (A) is a diagram of various aberrations of the optical system according to the 17th embodiment at infinity focusing. FIG. 34 (B) is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 17th embodiment. From each aberration diagram, it can be seen that the optical system according to the 17th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第18実施例)
第18実施例について、図35〜図36および表18を用いて説明する。図35は、本実施形態の第18実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第18実施例に係る光学系LS(18)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(18th Example)
The eighteenth embodiment will be described with reference to FIGS. 35 to 36 and Table 18. FIG. 35 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the eighteenth embodiment of the present embodiment. In the optical system LS (18) according to the eighteenth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凸形状の第1正レンズL12と、物体側に凹面を向けたメニスカス形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15および両凹形状の第3負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第2負レンズL13は、像面I側のレンズ面が非球面である。第2正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11, a biconvex first positive lens L12, and a meniscus-shaped second negative lens with a concave surface facing the object side, which are arranged in order from the object side. It is composed of L13, a biconvex second positive lens L14, a junction lens composed of a biconvex third positive lens L15 and a biconcave third negative lens L16, and an aperture aperture S. The second negative lens L13 has an aspherical lens surface on the image plane I side. The second positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凸形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。 The second lens group G2 includes a biconvex first positive lens L21 arranged in order from the object side, a meniscus-shaped negative lens L22 with a concave surface facing the object side, and a biconvex second positive lens L23. It is composed of a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The second positive lens L23 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および両凹形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 consists of a junction lens consisting of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a biconcave first negative lens L32 arranged in order from the object side, and a concave surface facing the object side. It is composed of a second negative lens L33 having a plano-concave shape. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表18に、第18実施例に係る光学系の諸元の値を掲げる。 Table 18 below lists the values of the specifications of the optical system according to the eighteenth embodiment.

(表18)
[全体諸元]
f 36.05
FNO 1.86
ω 31.6
Y 21.70
TL 99.539
BF 13.100
BFa 12.555
[レンズ諸元]
面番号 R D nd νd
1 -500.00000 2.000 1.59270 35.3
2 31.30252 8.752
3 77.05411 4.224 1.94594 18.0
4 -4995.87340 12.332
5 -34.14226 3.140 1.77377 47.2
6* -47.59110 0.100
7* 41.62130 5.898 1.76801 49.2
8 -65.35489 0.294
9 31.07689 6.046 1.59319 67.9
10 -44.14843 1.500 1.69895 30.1
11 22.96400 3.883
12 ∞ D12(可変) (絞りS)
13 95.03984 2.062 1.49782 82.6
14 -345.94097 2.289
15 -19.00516 1.100 1.64769 33.7
16 -992.59484 1.622
17* 123.45937 4.722 1.77377 47.2
18* -28.92599 0.200
19 -129.08817 6.400 1.49782 82.6
20 -21.31763 D20(可変)
21 -134.41671 5.154 1.94594 18.0
22 -26.15911 1.900 1.80518 25.4
23 1225.10730 3.764
24 -34.85007 1.900 1.64769 33.7
25 ∞ 10.500
26 ∞ 1.600 1.51680 64.1
27 ∞ D27(可変)
[非球面データ]
第6面
κ=1.00000
A4= 9.02554E-07, A6= 3.14643E-09, A8=-1.89905E-12, A10= 1.77634E-14
第7面
κ=1.00000
A4=-1.81054E-07, A6= 2.54149E-09, A8=-7.43973E-12, A10= 8.48515E-15
第17面
κ=1.00000
A4= 3.23226E-07, A6= 4.85057E-08, A8= 1.37810E-11, A10=-1.32577E-13
第18面
κ=1.00000
A4= 2.32157E-05, A6= 3.57378E-08, A8= 3.07145E-10, A10=-6.42283E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.05 β=-0.1053
D0 ∞ 314.50
D12 4.656 2.000
D20 2.500 5.150
D27 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 58.73
G2 13 33.00
G3 21 -46.85
[条件式対応値]
条件式(1) (−G1R1)/f=13.870
条件式(2) f2/(−f3)=0.704
条件式(3),(3−1),(3−2)
(−G1R1)/f1=8.514
条件式(4) f/f1=0.614
条件式(5) f/f2=1.092
条件式(6) f1/f2=1.780
条件式(7) BFa/f=0.348
条件式(8) fF/fR=0.765
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.882
条件式(10) {1−(β2)2}×(β3)2=1.369
条件式(11) FNO×(f1/f)=3.025
条件式(12) 2ω=63.2
(Table 18)
[Overall specifications]
f 36.05
FNO 1.86
ω 31.6
Y 21.70
TL 99.539
BF 13.100
BFa 12.555
[Lens specifications]
Surface number RD nd νd
1 -500.00000 2.000 1.59270 35.3
2 31.30252 8.752
3 77.05411 4.224 1.94594 18.0
4-4995.87340 12.332
5 -34.14226 3.140 1.77377 47.2
6 * -47.59110 0.100
7 * 41.62130 5.898 1.76801 49.2
8 -65.35489 0.294
9 31.07689 6.046 1.59319 67.9
10 -44.14843 1.500 1.69895 30.1
11 22.96400 3.883
12 ∞ D12 (variable) (aperture S)
13 95.03984 2.062 1.49782 82.6
14 -345.94097 2.289
15 -19.00516 1.100 1.64769 33.7
16 -992.59484 1.622
17 * 123.45937 4.722 1.77377 47.2
18 * -28.92599 0.200
19 -129.08817 6.400 1.49782 82.6
20 -21.31763 D20 (variable)
21 -134.41671 5.154 1.94594 18.0
22 -26.15911 1.900 1.80518 25.4
23 1225.10730 3.764
24-34.85007 1.900 1.64769 33.7
25 ∞ 10.500
26 ∞ 1.600 1.51680 64.1
27 ∞ D27 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = 9.02554E-07, A6 = 3.14643E-09, A8 = -1.89905E-12, A10 = 1.77634E-14
Side 7 κ = 1.0000
A4 = -1.81054E-07, A6 = 2.54149E-09, A8 = -7.43973E-12, A10 = 8.48515E-15
Surface 17 κ = 1.0000
A4 = 3.23226E-07, A6 = 4.85057E-08, A8 = 1.37810E-11, A10 = -1.32577E-13
Surface 18 κ = 1.0000
A4 = 2.32157E-05, A6 = 3.57378E-08, A8 = 3.07145E-10, A10 = -6.42283E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.05 β = -0.153
D0 ∞ 314.50
D12 4.656 2.000
D20 2.500 5.150
D27 1.000 1.000
[Lens group data]
Focal length
G1 1 58.73
G2 13 33.00
G3 21 -46.85
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=13.870
Conditional expression (2) f2 / (-f3) = 0.704
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=8.514
Conditional expression (4) f / f1 = 0.614
Conditional expression (5) f / f2 = 1.092
Conditional expression (6) f1 / f2 = 1.780
Conditional expression (7) BFa / f = 0.348
Conditional expression (8) fF / fR = 0.765
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.882
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 1.369
Conditional expression (11) FNO × (f1 / f) = 3.025
Conditional expression (12) 2ω = 63.2

図36(A)は、第18実施例に係る光学系の無限遠合焦時の諸収差図である。図36(B)は、第18実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第18実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 36A is a diagram of various aberrations of the optical system according to the eighteenth embodiment at infinity focusing. FIG. 36B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the eighteenth embodiment. From each aberration diagram, it can be seen that the optical system according to the eighteenth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第19実施例)
第19実施例について、図37〜図38および表19を用いて説明する。図37は、本実施形態の第19実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第19実施例に係る光学系LS(19)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(19th Example)
The nineteenth embodiment will be described with reference to FIGS. 37 to 38 and Table 19. FIG. 37 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 19th embodiment of the present embodiment. In the optical system LS (19) according to the nineteenth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、両凸形状の第3正レンズL14および両凹形状の第2負レンズL15からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL13は、両側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 with a convex surface facing the object side, and a biconvex second positive lens. It is composed of L13, a junction lens composed of a biconvex third positive lens L14 and a biconcave second negative lens L15, and an aperture stop S. The second positive lens L13 has aspherical lens surfaces on both sides.

第2レンズ群G2は、物体側から順に並んだ、像面I側に凸面を向けた平凸形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。 The second lens group G2 includes a plano-convex first positive lens L21 having a convex surface facing the image plane I side and a meniscus-shaped negative lens L22 having a concave surface facing the object side, which are arranged in order from the object side. It is composed of a convex second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The second positive lens L23 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is a junction lens composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped first negative lens L32 having a concave surface facing the object side, arranged in order from the object side, and an object. It is composed of a second negative lens L33 having a flat concave shape with a concave surface facing to the side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表19に、第19実施例に係る光学系の諸元の値を掲げる。なお、第5面および第6面は仮想面である。 Table 19 below lists the values of the specifications of the optical system according to the 19th embodiment. The fifth and sixth surfaces are virtual surfaces.

(表19)
[全体諸元]
f 36.05
FNO 1.87
ω 31.2
Y 21.70
TL 99.566
BF 13.100
BFa 12.555
[レンズ諸元]
面番号 R D nd νd
1 -500.00000 2.000 1.59270 35.3
2 26.44740 11.431
3 54.58955 3.977 1.94594 18.0
4 151.93034 2.197
5 ∞ 0.000
6 ∞ 10.067
7* 40.90811 5.557 1.76801 49.2
8* -104.02802 0.200
9 29.51647 6.609 1.59319 67.9
10 -42.76988 1.500 1.69895 30.1
11 23.53316 6.210
12 ∞ D12(可変) (絞りS)
13 ∞ 2.090 1.49782 82.6
14 -74.67300 2.012
15 -18.81061 1.100 1.64769 33.7
16 -248.50402 1.512
17* 118.78898 4.866 1.77377 47.2
18* -28.64501 0.200
19 -125.10532 6.400 1.49782 82.6
20 -22.16547 D20(可変)
21 -66.18341 4.709 1.94594 18.0
22 -24.96921 1.900 1.80518 25.4
23 -199.98195 2.935
24 -38.28094 1.900 1.64769 33.7
25 ∞ 10.500
26 ∞ 1.600 1.51680 64.1
27 ∞ D27(可変)
[非球面データ]
第7面
κ=1.00000
A4= 3.16584E-07, A6= 2.60390E-09, A8=-1.78975E-11, A10= 5.41316E-14
第8面
κ=1.00000
A4= 4.34400E-08, A6=-4.51994E-10, A8=-7.80080E-12, A10= 3.78367E-14
第17面
κ=1.00000
A4=-3.61366E-06, A6= 5.25325E-08, A8=-5.32628E-12, A10= 1.17020E-14
第18面
κ=1.00000
A4= 2.00858E-05, A6= 3.18374E-08, A8= 2.71615E-10, A10=-4.03272E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.05 β=-0.1049
D0 ∞ 314.50
D12 4.594 2.000
D20 2.500 5.088
D27 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 53.15
G2 13 32.25
G3 21 -45.20
[条件式対応値]
条件式(1) (−G1R1)/f=13.870
条件式(2) f2/(−f3)=0.714
条件式(3),(3−1),(3−2)
(−G1R1)/f1=9.407
条件式(4) f/f1=0.678
条件式(5) f/f2=1.118
条件式(6) f1/f2=1.648
条件式(7) BFa/f=0.348
条件式(8) fF/fR=0.626
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.900
条件式(10) {1−(β2)2}×(β3)2=1.388
条件式(11) FNO×(f1/f)=2.751
条件式(12) 2ω=62.4
(Table 19)
[Overall specifications]
f 36.05
FNO 1.87
ω 31.2
Y 21.70
TL 99.566
BF 13.100
BFa 12.555
[Lens specifications]
Surface number RD nd νd
1 -500.00000 2.000 1.59270 35.3
2 26.44740 11.431
3 54.58955 3.977 1.94594 18.0
4 151.93034 2.197
5 ∞ 0.000
6 ∞ 10.067
7 * 40.90811 5.557 1.76801 49.2
8 * -104.02802 0.200
9 29.51647 6.609 1.59319 67.9
10 -42.76988 1.500 1.69895 30.1
11 23.53316 6.210
12 ∞ D12 (variable) (aperture S)
13 ∞ 2.090 1.49782 82.6
14 -74.67300 2.012
15 -18.81061 1.100 1.64769 33.7
16 -248.50402 1.512
17 * 118.78898 4.866 1.77377 47.2
18 * -28.64501 0.200
19 -125.10532 6.400 1.49782 82.6
20 -22.16547 D20 (variable)
21 -66.18341 4.709 1.94594 18.0
22 -24.96921 1.900 1.80518 25.4
23 -199.98195 2.935
24-38.28094 1.900 1.64769 33.7
25 ∞ 10.500
26 ∞ 1.600 1.51680 64.1
27 ∞ D27 (variable)
[Aspherical data]
Side 7 κ = 1.0000
A4 = 3.16584E-07, A6 = 2.60390E-09, A8 = -1.78975E-11, A10 = 5.41316E-14
Side 8 κ = 1.0000
A4 = 4.34400E-08, A6 = -4.51994E-10, A8 = -7.80080E-12, A10 = 3.78367E-14
Surface 17 κ = 1.0000
A4 = -3.61366E-06, A6 = 5.25325E-08, A8 = -5.32628E-12, A10 = 1.17020E-14
Surface 18 κ = 1.0000
A4 = 2.00858E-05, A6 = 3.18374E-08, A8 = 2.71615E-10, A10 = -4.03272E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.05 β = -0.1049
D0 ∞ 314.50
D12 4.594 2.000
D20 2.500 5.088
D27 1.000 1.000
[Lens group data]
Focal length
G1 1 53.15
G2 13 32.25
G3 21 -45.20
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=13.870
Conditional expression (2) f2 / (-f3) = 0.714
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=9.407
Conditional expression (4) f / f1 = 0.678
Conditional expression (5) f / f2 = 1.118
Conditional expression (6) f1 / f2 = 1.648
Conditional expression (7) BFa / f = 0.348
Conditional expression (8) fF / fR = 0.626
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-0.900
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 1.388
Conditional expression (11) FNO × (f1 / f) = 2.751
Conditional expression (12) 2ω = 62.4

図38(A)は、第19実施例に係る光学系の無限遠合焦時の諸収差図である。図38(B)は、第19実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第19実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 38 (A) is a diagram of various aberrations of the optical system according to the 19th embodiment at infinity focusing. FIG. 38B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the nineteenth embodiment. From each aberration diagram, it can be seen that the optical system according to the 19th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第20実施例)
第20実施例について、図39〜図40および表20を用いて説明する。図39は、本実施形態の第20実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第20実施例に係る光学系LS(20)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(20th Example)
A twentieth embodiment will be described with reference to FIGS. 39 to 40 and Table 20. FIG. 39 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 20th embodiment of the present embodiment. In the optical system LS (20) according to the twentieth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第3負レンズL14と、両凸形状の第2正レンズL15と、両凸形状の第3正レンズL16および両凹形状の第4負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL15は、物体側のレンズ面が非球面である。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a convex surface facing the object side, a meniscus-shaped second negative lens L12 having a convex surface facing the object side, and a meniscus-shaped second negative lens L12 arranged in order from the object side. A junction lens consisting of a meniscus-shaped first positive lens L13 with a convex surface, a meniscus-shaped third negative lens L14 with a concave surface facing the object side, a biconvex second positive lens L15, and a biconvex shape. It is composed of a junction lens composed of a third positive lens L16 and a biconcave fourth negative lens L17, and an aperture aperture S. The second positive lens L15 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。 The second lens group G2 includes a biconcave negative lens L21 arranged in order from the object side, a meniscus-shaped first positive lens L22 with a concave surface facing the object side, and a biconvex second positive lens L23. It is composed of a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has an aspherical lens surface on the object side.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けたメニスカス形状の第2負レンズL32と、から構成される。第2負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped first negative lens L31 having a convex surface facing the object side and a meniscus-shaped second negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. Will be done. The second negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表20に、第20実施例に係る光学系の諸元の値を掲げる。 Table 20 below lists the values of the specifications of the optical system according to the 20th embodiment.

(表20)
[全体諸元]
f 36.41
FNO 1.45
ω 30.7
Y 21.70
TL 120.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 117.52540 2.000 1.71736 29.6
2 26.99520 8.652
3 42.97983 2.500 1.48749 70.3
4 34.72137 5.000 1.94595 18.0
5 45.17490 9.389
6 -52.71945 6.000 1.60300 65.4
7 -131.66451 0.200
8* 55.12835 9.000 1.77250 49.6
9 -66.63993 0.200
10 57.67591 13.000 1.59319 67.9
11 -28.99052 1.500 1.67270 32.2
12 230.60272 5.399
13 ∞ D13(可変) (絞りS)
14 -30.96994 1.000 1.67270 32.2
15 1151.90580 2.000
16* -406.76312 4.000 1.77377 47.2
17 -45.06075 0.881
18 140.10078 6.000 1.59319 67.9
19 -58.07296 0.500
20 -100.00000 7.000 1.59319 67.9
21 -30.10496 D21(可変)
22 74.17179 3.000 1.94595 18.0
23 67.04188 7.824
24* -26.97932 1.500 1.64769 33.7
25 -290.34268 7.000
26 ∞ 1.600 1.51680 63.9
27 ∞ D27(可変)
[非球面データ]
第8面
κ=1.00000
A4=-6.93107E-07, A6=-4.54051E-10, A8= 1.72053E-12, A10=-1.39325E-15
第16面
κ=1.00000
A4=-1.46752E-05, A6=-1.19814E-08, A8= 3.20679E-11, A10=-2.43972E-13
第24面
κ=1.00000
A4= 1.09875E-05, A6= 2.56103E-09, A8=-8.64670E-12, A10=-3.14024E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.41 β=-0.1095
D0 ∞ 290.00
D13 13.354 9.399
D21 0.500 4.455
D27 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 48.51
G2 14 38.61
G3 22 -44.33
[条件式対応値]
条件式(1) (−G1R1)/f=-3.228
条件式(2) f2/(−f3)=0.871
条件式(3),(3−1),(3−2)
(−G1R1)/f1=-2.423
条件式(4) f/f1=0.751
条件式(5) f/f2=0.943
条件式(6) f1/f2=1.256
条件式(7) BFa/f=0.249
条件式(8) fF/fR=0.358
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-1.596
条件式(10) {1−(β2)2}×(β3)2=0.914
条件式(11) FNO×(f1/f)=1.936
条件式(12) 2ω=61.4
(Table 20)
[Overall specifications]
f 36.41
FNO 1.45
ω 30.7
Y 21.70
TL 120.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 117.52540 2.000 1.71736 29.6
2 26.99520 8.652
3 42.97983 2.500 1.48749 70.3
4 34.72137 5.000 1.94595 18.0
5 45.17490 9.389
6 -52.71945 6.000 1.60300 65.4
7 -131.66451 0.200
8 * 55.12835 9.000 1.77250 49.6
9 -66.63993 0.200
10 57.67591 13.000 1.59319 67.9
11 -28.99052 1.500 1.67270 32.2
12 230.60272 5.399
13 ∞ D13 (variable) (aperture S)
14 -30.96994 1.000 1.67270 32.2
15 1151.90580 2.000
16 * -406.76312 4.000 1.77377 47.2
17 -45.06075 0.881
18 140.10078 6.000 1.59319 67.9
19 -58.07296 0.500
20 -100.00000 7.000 1.59319 67.9
21 -30.10496 D21 (variable)
22 74.17179 3.000 1.94595 18.0
23 67.04188 7.824
24 * -26.97932 1.500 1.64769 33.7
25 -290.34268 7.000
26 ∞ 1.600 1.51680 63.9
27 ∞ D27 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = -6.93107E-07, A6 = -4.54051E-10, A8 = 1.72053E-12, A10 = -1.39325E-15
16th surface κ = 1.0000
A4 = -1.46752E-05, A6 = -1.19814E-08, A8 = 3.20679E-11, A10 = -2.43972E-13
Side 24 κ = 1.0000
A4 = 1.09875E-05, A6 = 2.56103E-09, A8 = -8.64670E-12, A10 = -3.14024E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.41 β = -0.1095
D0 ∞ 290.00
D13 13.354 9.399
D21 0.500 4.455
D27 1.000 1.000
[Lens group data]
Focal length
G1 1 48.51
G2 14 38.61
G3 22 -44.33
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=-3.228
Conditional expression (2) f2 / (-f3) = 0.871
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=-2.423
Conditional expression (4) f / f1 = 0.751
Conditional expression (5) f / f2 = 0.943
Conditional expression (6) f1 / f2 = 1.256
Conditional expression (7) BFa / f = 0.249
Conditional expression (8) fF / fR = 0.358
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) =-1.596
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.914
Conditional expression (11) FNO × (f1 / f) = 1.936
Conditional expression (12) 2ω = 61.4

図40(A)は、第20実施例に係る光学系の無限遠合焦時の諸収差図である。図40(B)は、第20実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第20実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 40A is a diagram of various aberrations of the optical system according to the twentieth embodiment at infinity focusing. FIG. 40B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the twentieth embodiment. From each aberration diagram, it can be seen that the optical system according to the twentieth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第21実施例)
第21実施例について、図41〜図42および表21を用いて説明する。図41は、本実施形態の第21実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第21実施例に係る光学系LS(21)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(21st Example)
The 21st Example will be described with reference to FIGS. 41 to 42 and Table 21. FIG. 41 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 21st embodiment of the present embodiment. In the optical system LS (21) according to the 21st embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凹形状の第3負レンズL14と、両凸形状の第2正レンズL15と、物体側に凸面を向けたメニスカス形状の第3正レンズL16と、物体側に凸面を向けたメニスカス形状の第4負レンズL17および物体側に凸面を向けたメニスカス形状の第4正レンズL18からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL15は、両側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped second negative lens L12 with a convex surface facing the object side, and a meniscus shape with a convex surface facing the object side. A junction lens composed of the first positive lens L13, a biconcave third negative lens L14, a biconvex second positive lens L15, and a meniscus-shaped third positive lens L16 with a convex surface facing the object side. It is composed of a junction lens consisting of a meniscus-shaped fourth negative lens L17 having a convex surface facing the object side and a meniscus-shaped fourth positive lens L18 having a convex surface facing the object side, and an aperture aperture S. The second positive lens L15 has aspherical lens surfaces on both sides.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a meniscus-shaped first positive lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23 and a meniscus-shaped third positive lens L24 with a concave surface facing the object side. The first positive lens L22 has an aspherical lens surface on the object side.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けた平凹形状の第2負レンズL32と、から構成される。第2負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 consists of a meniscus-shaped first negative lens L31 having a convex surface facing the object side and a plano-concave second negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. It is composed. The second negative lens L32 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表21に、第21実施例に係る光学系の諸元の値を掲げる。 Table 21 below lists the values of the specifications of the optical system according to the 21st embodiment.

(表21)
[全体諸元]
f 36.00
FNO 1.42
ω 31.2
Y 21.70
TL 125.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -2103.91320 2.000 1.67884 31.5
2 35.70457 7.893
3 323.10172 2.500 1.49086 69.1
4 67.22138 5.500 1.94595 18.0
5 787.71792 7.911
6 -39.04627 2.000 1.69166 30.1
7 213.89102 0.100
8* 137.58827 12.000 1.85135 40.1
9* -47.56574 0.200
10 39.72534 7.000 1.83481 42.7
11 181.94050 2.130
12 117.83429 1.500 1.75520 27.6
13 23.80746 9.000 1.59319 67.9
14 183.46004 3.500
15 ∞ D15(可変) (絞りS)
16 -34.21404 1.000 1.67270 32.2
17 -122.91319 2.000
18* -86.16442 3.500 1.77377 47.2
19 -48.56224 2.416
20 1800.15400 5.500 1.59319 67.9
21 -42.45537 0.500
22 -100.00000 6.500 1.59319 67.9
23 -30.05033 D23(可変)
24 39.40559 3.000 1.94595 18.0
25 34.37457 9.136
26* -44.57372 1.500 1.64769 33.7
27 ∞ 7.000
28 ∞ 1.600 1.51680 63.9
29 ∞ D29(可変)
[非球面データ]
第8面
κ=1.00000
A4= 3.90875E-07, A6= 5.99792E-10, A8=-1.78965E-12, A10= 1.89102E-15
第9面
κ=1.00000
A4= 5.52339E-07, A6= 1.13820E-09, A8=-1.99242E-12, A10= 2.23323E-15
第18面
κ=1.00000
A4=-1.62045E-05, A6=-1.75085E-08, A8= 3.19334E-11, A10=-3.05989E-13
第26面
κ=1.00000
A4=-1.48857E-06, A6=-3.93600E-09, A8= 2.22864E-12, A10=-4.82017E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=36.00 β=-0.1086
D0 ∞ 290.00
D15 16.614 12.490
D23 0.500 4.624
D29 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 52.88
G2 16 39.96
G3 24 -59.46
[条件式対応値]
条件式(1) (−G1R1)/f=58.442
条件式(2) f2/(−f3)=0.672
条件式(3),(3−1),(3−2)
(−G1R1)/f1=39.787
条件式(4) f/f1=0.681
条件式(5) f/f2=0.901
条件式(6) f1/f2=1.323
条件式(7) BFa/f=0.252
条件式(8) fF/fR=0.622
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=-0.967
条件式(10) {1−(β2)2}×(β3)2=0.867
条件式(11) FNO×(f1/f)=2.080
条件式(12) 2ω=62.4
(Table 21)
[Overall specifications]
f 36.00
FNO 1.42
ω 31.2
Y 21.70
TL 125.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -2103.91320 2.000 1.67884 31.5
2 35.70457 7.893
3 323.10172 2.500 1.49086 69.1
4 67.22138 5.500 1.94595 18.0
5 787.71792 7.911
6 -39.04627 2.000 1.69166 30.1
7 213.89102 0.100
8 * 137.58827 12.000 1.85135 40.1
9 * -47.56574 0.200
10 39.72534 7.000 1.83481 42.7
11 181.94050 2.130
12 117.83429 1.500 1.75520 27.6
13 23.80746 9.000 1.59319 67.9
14 183.46004 3.500
15 ∞ D15 (variable) (aperture S)
16 -34.21404 1.000 1.67270 32.2
17 -122.91319 2.000
18 * -86.16442 3.500 1.77377 47.2
19 -48.56224 2.416
20 1800.15400 5.500 1.59319 67.9
21 -42.45537 0.500
22 -100.00000 6.500 1.59319 67.9
23 -30.05033 D23 (variable)
24 39.40559 3.000 1.94595 18.0
25 34.37457 9.136
26 * -44.57372 1.500 1.64769 33.7
27 ∞ 7.000
28 ∞ 1.600 1.51680 63.9
29 ∞ D29 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = 3.90875E-07, A6 = 5.99792E-10, A8 = -1.78965E-12, A10 = 1.89102E-15
Side 9 κ = 1.0000
A4 = 5.52339E-07, A6 = 1.13820E-09, A8 = -1.99242E-12, A10 = 2.23323E-15
Surface 18 κ = 1.0000
A4 = -1.62045E-05, A6 = -1.75085E-08, A8 = 3.19334E-11, A10 = -3.05989E-13
Side 26 κ = 1.0000
A4 = -1.48857E-06, A6 = -3.93600E-09, A8 = 2.22864E-12, A10 = -4.82017E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 36.00 β = -0.1086
D0 ∞ 290.00
D15 16.614 12.490
D23 0.500 4.624
D29 1.000 1.000
[Lens group data]
Focal length
G1 1 52.88
G2 16 39.96
G3 24 -59.46
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=58.442
Conditional expression (2) f2 / (-f3) = 0.672
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=39.787
Conditional expression (4) f / f1 = 0.681
Conditional expression (5) f / f2 = 0.901
Conditional expression (6) f1 / f2 = 1.323
Conditional expression (7) BFa / f = 0.252
Conditional expression (8) fF / fR = 0.622
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = -0.967
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.867
Conditional expression (11) FNO × (f1 / f) = 2.080
Conditional expression (12) 2ω = 62.4

図42(A)は、第21実施例に係る光学系の無限遠合焦時の諸収差図である。図42(B)は、第21実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第21実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 42 (A) is an aberration diagram of the optical system according to the 21st embodiment at infinity focusing. FIG. 42B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 21st embodiment. From each aberration diagram, it can be seen that the optical system according to the 21st embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第22実施例)
第22実施例について、図43〜図44および表22を用いて説明する。図43は、本実施形態の第22実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第22実施例に係る光学系LS(22)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(22nd Example)
The 22nd embodiment will be described with reference to FIGS. 43 to 44 and Table 22. FIG. 43 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 22nd embodiment of the present embodiment. In the optical system LS (22) according to the 22nd embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. A junction lens consisting of a meniscus-shaped second positive lens L13, a biconvex third positive lens L14, a biconvex fourth positive lens L15, and a biconcave second negative lens L16, and an aperture aperture. It is composed of S and. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の正レンズL22と、から構成される。正レンズL22は、両側のレンズ面が非球面である。 The second lens group G2 is composed of a meniscus-shaped negative lens L21 having a concave surface facing the object side and a biconvex positive lens L22 arranged in order from the object side. The positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表22に、第22実施例に係る光学系の諸元の値を掲げる。なお、第12面は仮想面である。 Table 22 below lists the values of the specifications of the optical system according to the 22nd embodiment. The twelfth surface is a virtual surface.

(表22)
[全体諸元]
f 51.50
FNO 1.85
ω 22.9
Y 21.70
TL 89.489
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -47.35217 2.500 1.67270 32.2
2 94.47970 3.500 1.94595 18.0
3 340.13397 3.236
4 -287.21979 5.000 1.72916 54.6
5 -56.34930 0.100
6* 35.86692 6.000 1.80400 46.6
7 -2318.43510 0.200
8 45.67330 7.000 1.59319 67.9
9 -80.81919 1.500 1.64769 33.7
10 23.62983 4.933
11 ∞ D11(可変) (絞りS)
12 ∞ 3.000
13 -19.53832 1.100 1.75520 27.6
14 -43.18210 1.500
15* 190.26772 7.000 1.75501 51.2
16* -24.77289 D16(可変)
17 -104.87147 2.500 1.94595 18.0
18 -78.84438 14.090
19 -38.56539 1.900 1.64769 33.7
20 -200.67448 7.000
21 ∞ 1.600 1.51680 64.1
22 ∞ D22(可変)
[非球面データ]
第6面
κ=1.00000
A4=-1.58615E-06, A6=-8.54477E-10, A8=-4.09102E-13, A10= 5.85218E-16
第15面
κ=1.00000
A4= 4.66858E-07, A6=-2.10629E-08, A8= 1.67228E-10, A10=-2.90665E-13
第16面
κ=1.00000
A4= 8.47233E-06, A6= 2.18602E-10, A8= 2.67616E-11, A10= 1.23427E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.50 β=-0.1588
D0 ∞ 305.05
D11 12.719 2.695
D16 2.111 12.136
D22 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 75.53
G2 12 56.74
G3 17 -100.37
[条件式対応値]
条件式(1) (−G1R1)/f=0.919
条件式(2) f2/(−f3)=0.565
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.627
条件式(4) f/f1=0.682
条件式(5) f/f2=0.908
条件式(6) f1/f2=1.331
条件式(7) BFa/f=0.176
条件式(8) fF/fR=0.762
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.756
条件式(10) {1−(β2)2}×(β3)2=0.687
条件式(11) FNO×(f1/f)=2.716
条件式(12) 2ω=45.8
(Table 22)
[Overall specifications]
f 51.50
FNO 1.85
ω 22.9
Y 21.70
TL 89.489
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -47.35217 2.500 1.67270 32.2
2 94.47970 3.500 1.94595 18.0
3 340.13397 3.236
4-287.21979 5.000 1.72916 54.6
5 -56.34930 0.100
6 * 35.86692 6.000 1.80400 46.6
7 -2318.43510 0.200
8 45.67330 7.000 1.59319 67.9
9-80.81919 1.500 1.64769 33.7
10 23.62983 4.933
11 ∞ D11 (variable) (aperture S)
12 ∞ 3.000
13 -19.53832 1.100 1.75520 27.6
14 -43.18210 1.500
15 * 190.26772 7.000 1.75501 51.2
16 * -24.77289 D16 (variable)
17 -104.87147 2.500 1.94595 18.0
18 -78.84438 14.090
19 -38.56539 1.900 1.64769 33.7
20 -200.67448 7.000
21 ∞ 1.600 1.51680 64.1
22 ∞ D22 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -1.58615E-06, A6 = -8.54477E-10, A8 = -4.09102E-13, A10 = 5.85218E-16
Surface 15 κ = 1.0000
A4 = 4.66858E-07, A6 = -2.10629E-08, A8 = 1.67228E-10, A10 = -2.90665E-13
16th surface κ = 1.0000
A4 = 8.47233E-06, A6 = 2.18602E-10, A8 = 2.67616E-11, A10 = 1.23427E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.50 β = -0.1588
D0 ∞ 305.05
D11 12.719 2.695
D16 2.111 12.136
D22 1.000 1.000
[Lens group data]
Focal length
G1 1 75.53
G2 12 56.74
G3 17 -100.37
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.919
Conditional expression (2) f2 / (-f3) = 0.565
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.627
Conditional expression (4) f / f1 = 0.682
Conditional expression (5) f / f2 = 0.908
Conditional expression (6) f1 / f2 = 1.331
Conditional expression (7) BFa / f = 0.176
Conditional expression (8) fF / fR = 0.762
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.756
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.687
Conditional expression (11) FNO × (f1 / f) = 2.716
Conditional expression (12) 2ω = 45.8

図44(A)は、第22実施例に係る光学系の無限遠合焦時の諸収差図である。図44(B)は、第22実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第22実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 44A is a diagram of various aberrations of the optical system according to the 22nd embodiment at infinity focusing. FIG. 44B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 22nd embodiment. From each aberration diagram, it can be seen that the optical system according to the 22nd embodiment has various aberrations corrected well and has excellent imaging performance.

(第23実施例)
第23実施例について、図45〜図46および表23を用いて説明する。図45は、本実施形態の第23実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第23実施例に係る光学系LS(23)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(23rd Example)
The 23rd embodiment will be described with reference to FIGS. 45 to 46 and Table 23. FIG. 45 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 23rd embodiment of the present embodiment. In the optical system LS (23) according to the 23rd embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第4正レンズL15および物体側に凸面を向けたメニスカス形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a junction lens consisting of a biconcave first negative lens L11 arranged in order from the object side and a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a concave surface on the object side. A meniscus-shaped second positive lens L13, a biconvex third positive lens L14, a meniscus-shaped fourth positive lens L15 with a convex surface facing the object side, and a meniscus-shaped second lens L15 with a convex surface facing the object side. It is composed of a junction lens made of 2 negative lenses L16 and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped first positive lens L21 having a concave surface facing the object side, a meniscus-shaped negative lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23. The second positive lens L23 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けたメニスカス形状の第2負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped first negative lens L31 having a concave surface facing the object side and a meniscus-shaped second negative lens L32 having a concave surface facing the object side, arranged in order from the object side. Will be done. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表23に、第23実施例に係る光学系の諸元の値を掲げる。なお、第20面は仮想面である。 Table 23 below lists the values of the specifications of the optical system according to the 23rd embodiment. The 20th surface is a virtual surface.

(表23)
[全体諸元]
f 51.08
FNO 1.86
ω 23.0
Y 21.70
TL 90.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -52.31571 2.500 1.67270 32.2
2 167.47695 3.500 1.94595 18.0
3 223.17328 4.121
4 -82.07390 4.000 1.72916 54.6
5 -45.42951 0.100
6* 38.12626 6.000 1.80400 46.6
7 -3600.28350 1.699
8 27.04928 5.000 1.59319 67.9
9 41.33566 1.500 1.64769 33.7
10 20.68760 5.718
11 ∞ D11(可変) (絞りS)
12 -22.93194 2.500 1.49700 81.6
13 -17.98615 0.500
14 -17.23374 1.100 1.67270 32.2
15 -49.04852 1.500
16* 279.75740 6.000 1.75501 51.2
17* -26.00590 D17(可変)
18 -221.46549 2.500 1.94595 18.0
19 -230.39803 0.000
20 ∞ 10.724
21 -38.50025 1.900 1.64769 33.7
22 -110.45885 7.000
23 ∞ 1.600 1.51680 63.9
24 ∞ D24(可変)
[非球面データ]
第6面
κ=1.00000
A4=-1.19548E-06, A6=-9.73538E-10, A8= 3.03150E-12, A10=-5.31839E-15
第16面
κ=1.00000
A4=-1.22099E-06, A6=-9.91302E-09, A8= 8.68866E-11, A10=-1.19726E-13
第17面
κ=1.00000
A4= 5.66916E-06, A6= 2.72450E-09, A8=-8.54602E-12, A10= 1.63651E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.08 β=-0.1171
D0 ∞ 413.36
D11 12.216 4.956
D17 7.322 14.582
D24 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 68.94
G2 12 58.61
G3 18 -90.38
[条件式対応値]
条件式(1) (−G1R1)/f=1.024
条件式(2) f2/(−f3)=0.648
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.759
条件式(4) f/f1=0.741
条件式(5) f/f2=0.872
条件式(6) f1/f2=1.176
条件式(7) BFa/f=0.177
条件式(8) fF/fR=0.542
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.620
条件式(10) {1−(β2)2}×(β3)2=0.721
条件式(11) FNO×(f1/f)=2.508
条件式(12) 2ω=46.0
(Table 23)
[Overall specifications]
f 51.08
FNO 1.86
ω 23.0
Y 21.70
TL 90.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -52.31571 2.500 1.67270 32.2
2 167.47695 3.500 1.94595 18.0
3 223.17328 4.121
4-82.07390 4.000 1.72916 54.6
5 -45.42951 0.100
6 * 38.12626 6.000 1.80400 46.6
7 -3600.28350 1.699
8 27.04928 5.000 1.59319 67.9
9 41.33566 1.500 1.64769 33.7
10 20.68760 5.718
11 ∞ D11 (variable) (aperture S)
12 -22.93194 2.500 1.49700 81.6
13 -17.98615 0.500
14 -17.23374 1.100 1.67270 32.2
15 -49.04852 1.500
16 * 279.75740 6.000 1.75501 51.2
17 * -26.00590 D17 (variable)
18 -221.46549 2.500 1.94595 18.0
19 -230.39803 0.000
20 ∞ 10.724
21 -38.50025 1.900 1.64769 33.7
22 -110.45885 7.000
23 ∞ 1.600 1.51680 63.9
24 ∞ D24 (variable)
[Aspherical data]
Side 6 κ = 1.0000
A4 = -1.19548E-06, A6 = -9.73538E-10, A8 = 3.03150E-12, A10 = -5.31839E-15
16th surface κ = 1.0000
A4 = -1.22099E-06, A6 = -9.91302E-09, A8 = 8.68866E-11, A10 = -1.19726E-13
Surface 17 κ = 1.0000
A4 = 5.66916E-06, A6 = 2.72450E-09, A8 = -8.54602E-12, A10 = 1.63651E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.08 β = -0.1171
D0 ∞ 413.36
D11 12.216 4.956
D17 7.322 14.582
D24 1.000 1.000
[Lens group data]
Focal length
G1 1 68.94
G2 12 58.61
G3 18 -90.38
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=1.024
Conditional expression (2) f2 / (-f3) = 0.648
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.759
Conditional expression (4) f / f1 = 0.741
Conditional expression (5) f / f2 = 0.872
Conditional expression (6) f1 / f2 = 1.176
Conditional expression (7) BFa / f = 0.177
Conditional expression (8) fF / fR = 0.542
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.620
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.721
Conditional expression (11) FNO × (f1 / f) = 2.508
Conditional expression (12) 2ω = 46.0

図46(A)は、第23実施例に係る光学系の無限遠合焦時の諸収差図である。図46(B)は、第23実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第23実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 46 (A) is a diagram of various aberrations of the optical system according to the 23rd embodiment at infinity focusing. FIG. 46B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 23rd embodiment. From each aberration diagram, it can be seen that the optical system according to the 23rd embodiment has various aberrations corrected well and has excellent imaging performance.

(第24実施例)
第24実施例について、図47〜図48および表24を用いて説明する。図47は、本実施形態の第24実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第24実施例に係る光学系LS(24)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(24th Example)
The 24th embodiment will be described with reference to FIGS. 47 to 48 and Table 24. FIG. 47 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 24th embodiment of the present embodiment. In the optical system LS (24) according to the 24th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、物体側に凸面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14および物体側に凸面を向けたメニスカス形状の第2負レンズL15からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL13は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 with a concave surface facing the object side, and a meniscus with a convex surface facing the object side. A junction lens consisting of a second positive lens L13 having a shape, a meniscus-shaped third positive lens L14 having a convex surface facing the object side, and a meniscus-shaped second negative lens L15 having a convex surface facing the object side, and an aperture diaphragm S. , Consists of. The second positive lens L13 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped first positive lens L21 having a concave surface facing the object side, a meniscus-shaped negative lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23. The second positive lens L23 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表24に、第24実施例に係る光学系の諸元の値を掲げる。 Table 24 below lists the values of the specifications of the optical system according to the 24th embodiment.

(表24)
[全体諸元]
f 51.50
FNO 1.85
ω 22.9
Y 21.70
TL 82.941
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -47.29734 2.000 1.67270 32.2
2 2331.06620 3.670
3 -71.21945 4.000 1.72916 54.6
4 -42.49265 0.100
5* 34.70954 6.000 1.80400 46.6
6 6260.90290 0.947
7 27.53256 5.000 1.59319 67.9
8 40.45186 1.500 1.64769 33.7
9 19.48030 5.755
10 ∞ D10(可変) (絞りS)
11 -21.95759 2.500 1.49700 81.6
12 -17.97990 0.500
13 -17.33726 1.100 1.67270 32.2
14 -65.42718 0.387
15* 210.98797 6.000 1.75501 51.2
16* -24.41048 D16(可変)
17 79.42309 2.500 1.94595 18.0
18 102.63179 8.767
19 -46.77211 1.900 1.84666 23.8
20 -182.21442 7.000
21 ∞ 1.600 1.51680 63.9
22 ∞ D22(可変)
[非球面データ]
第5面
κ=1.00000
A4=-1.79931E-06, A6=-1.35228E-09, A8= 1.30531E-12, A10=-3.27717E-15
第15面
κ=1.00000
A4=-1.14256E-06, A6=-1.30370E-08, A8= 1.13854E-10, A10=-1.79669E-13
第16面
κ=1.00000
A4= 6.47116E-06, A6= 6.32503E-09, A8=-2.44521E-11, A10= 2.46075E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.50 β=-0.1181
D0 ∞ 413.36
D10 14.069 5.072
D16 6.646 15.643
D22 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 68.06
G2 11 64.03
G3 17 -99.89
[条件式対応値]
条件式(1) (−G1R1)/f=0.918
条件式(2) f2/(−f3)=0.641
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.695
条件式(4) f/f1=0.757
条件式(5) f/f2=0.804
条件式(6) f1/f2=1.063
条件式(7) BFa/f=0.176
条件式(8) fF/fR=0.514
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.960
条件式(10) {1−(β2)2}×(β3)2=0.563
条件式(11) FNO×(f1/f)=2.445
条件式(12) 2ω=45.8
(Table 24)
[Overall specifications]
f 51.50
FNO 1.85
ω 22.9
Y 21.70
TL 82.941
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -47.29734 2.000 1.67270 32.2
2 2331.06620 3.670
3 -71.21945 4.000 1.72916 54.6
4-42.49265 0.100
5 * 34.70954 6.000 1.80400 46.6
6 6260.90290 0.947
7 27.53256 5.000 1.59319 67.9
8 40.45186 1.500 1.64769 33.7
9 19.48030 5.755
10 ∞ D10 (variable) (aperture S)
11 -21.95759 2.500 1.49700 81.6
12 -17.97990 0.500
13 -17.33726 1.100 1.67270 32.2
14 -65.42718 0.387
15 * 210.98797 6.000 1.75501 51.2
16 * -24.41048 D16 (variable)
17 79.42309 2.500 1.94595 18.0
18 102.63179 8.767
19 -46.77211 1.900 1.84666 23.8
20 -182.21442 7.000
21 ∞ 1.600 1.51680 63.9
22 ∞ D22 (variable)
[Aspherical data]
Side 5 κ = 1.0000
A4 = -1.79931E-06, A6 = -1.35228E-09, A8 = 1.30531E-12, A10 = -3.27717E-15
Surface 15 κ = 1.0000
A4 = -1.14256E-06, A6 = -1.30370E-08, A8 = 1.13854E-10, A10 = -1.79669E-13
16th surface κ = 1.0000
A4 = 6.47116E-06, A6 = 6.32503E-09, A8 = -2.44521E-11, A10 = 2.46075E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.50 β = -0.1181
D0 ∞ 413.36
D10 14.069 5.072
D16 6.646 15.643
D22 1.000 1.000
[Lens group data]
Focal length
G1 1 68.06
G2 11 64.03
G3 17 -99.89
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.918
Conditional expression (2) f2 / (-f3) = 0.641
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.695
Conditional expression (4) f / f1 = 0.757
Conditional expression (5) f / f2 = 0.804
Conditional expression (6) f1 / f2 = 1.063
Conditional expression (7) BFa / f = 0.176
Conditional expression (8) fF / fR = 0.514
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.960
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.563
Conditional expression (11) FNO × (f1 / f) = 2.445
Conditional expression (12) 2ω = 45.8

図48(A)は、第24実施例に係る光学系の無限遠合焦時の諸収差図である。図48(B)は、第24実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第24実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 48A is a diagram of various aberrations of the optical system according to the 24th embodiment at infinity focusing. FIG. 48B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 24th embodiment. From each aberration diagram, it can be seen that the optical system according to the 24th embodiment has various aberrations corrected well and has excellent imaging performance.

(第25実施例)
第25実施例について、図49〜図50および表25を用いて説明する。図49は、本実施形態の第25実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第25実施例に係る光学系LS(25)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(25th Example)
The 25th embodiment will be described with reference to FIGS. 49 to 50 and Table 25. FIG. 49 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 25th embodiment of the present embodiment. In the optical system LS (25) according to the 25th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、物体側に凸面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第2負レンズL14と、開口絞りSと、から構成される。第2正レンズL13は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 with a concave surface facing the object side, and a meniscus with a convex surface facing the object side. It is composed of a second positive lens L13 having a shape, a second negative lens L14 having a meniscus shape with a convex surface facing the object side, and an aperture stop S. The second positive lens L13 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped first positive lens L21 having a concave surface facing the object side, a meniscus-shaped negative lens L22 having a concave surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a second positive lens L23. The second positive lens L23 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けた平凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a convex surface facing the object side and a plano-concave-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表25に、第25実施例に係る光学系の諸元の値を掲げる。 Table 25 below lists the values of the specifications of the optical system according to the 25th embodiment.

(表25)
[全体諸元]
f 50.81
FNO 1.85
ω 23.1
Y 21.70
TL 80.000
BF 9.600
BFa 9.055
[レンズ諸元]
面番号 R D nd νd
1 -48.70279 2.000 1.67270 32.2
2 958.65257 2.567
3 -87.18050 3.500 1.72916 54.6
4 -45.33683 0.100
5* 28.25675 6.500 1.77250 49.6
6 735.50092 0.365
7 28.50942 2.465 1.67270 32.2
8 19.47871 6.238
9 ∞ D9(可変) (絞りS)
10 -21.86257 2.000 1.49700 81.6
11 -18.15776 0.500
12 -17.46272 1.100 1.67270 32.2
13 -78.54612 0.200
14* 259.64263 6.500 1.75501 51.2
15* -23.47358 D15(可変)
16 45.54867 2.500 1.94595 18.0
17 56.06952 6.419
18 -49.21248 1.900 1.84666 23.8
19 ∞ 7.000
20 ∞ 1.600 1.51680 63.9
21 ∞ D21(可変)
[非球面データ]
第5面
κ=1.00000
A4=-3.06009E-06, A6=-3.83923E-09, A8= 3.08021E-12, A10=-1.31813E-14
第14面
κ=1.00000
A4=-2.38445E-06, A6=-7.07397E-10, A8= 4.93804E-11, A10=-6.99716E-14
第15面
κ=1.00000
A4= 6.07250E-06, A6= 1.41158E-08, A8=-5.03385E-11, A10= 2.68237E-13
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=50.81 β=-0.1180
D0 ∞ 413.36
D9 14.286 5.350
D15 11.261 20.197
D21 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 67.37
G2 10 68.93
G3 16 -83.91
[条件式対応値]
条件式(1) (−G1R1)/f=0.958
条件式(2) f2/(−f3)=0.821
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.723
条件式(4) f/f1=0.754
条件式(5) f/f2=0.737
条件式(6) f1/f2=0.977
条件式(7) BFa/f=0.178
条件式(8) fF/fR=0.349
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.903
条件式(10) {1−(β2)2}×(β3)2=0.567
条件式(11) FNO×(f1/f)=2.456
条件式(12) 2ω=46.2
(Table 25)
[Overall specifications]
f 50.81
FNO 1.85
ω 23.1
Y 21.70
TL 80.000
BF 9.600
BFa 9.055
[Lens specifications]
Surface number RD nd νd
1 -48.70279 2.000 1.67270 32.2
2 958.65257 2.567
3 -87.18050 3.500 1.72916 54.6
4-45.33683 0.100
5 * 28.25675 6.500 1.77250 49.6
6 735.50092 0.365
7 28.50942 2.465 1.67270 32.2
8 19.47871 6.238
9 ∞ D9 (variable) (aperture S)
10 -21.86257 2.000 1.49700 81.6
11 -18.15776 0.500
12 -17.46272 1.100 1.67270 32.2
13 -78.54612 0.200
14 * 259.64263 6.500 1.75501 51.2
15 * -23.47358 D15 (variable)
16 45.54867 2.500 1.94595 18.0
17 56.06952 6.419
18 -49.21248 1.900 1.84666 23.8
19 ∞ 7.000
20 ∞ 1.600 1.51680 63.9
21 ∞ D21 (variable)
[Aspherical data]
Side 5 κ = 1.0000
A4 = -3.06009E-06, A6 = -3.83923E-09, A8 = 3.08021E-12, A10 = -1.31813E-14
14th surface κ = 1.0000
A4 = -2.38445E-06, A6 = -7.07397E-10, A8 = 4.93804E-11, A10 = -6.99716E-14
Surface 15 κ = 1.0000
A4 = 6.07250E-06, A6 = 1.41158E-08, A8 = -5.03385E-11, A10 = 2.68237E-13
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 50.81 β = -0.1180
D0 ∞ 413.36
D9 14.286 5.350
D15 11.261 20.197
D21 1.000 1.000
[Lens group data]
Focal length
G1 1 67.37
G2 10 68.93
G3 16 -83.91
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.958
Conditional expression (2) f2 / (-f3) = 0.821
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.723
Conditional expression (4) f / f1 = 0.754
Conditional expression (5) f / f2 = 0.737
Conditional expression (6) f1 / f2 = 0.977
Conditional expression (7) BFa / f = 0.178
Conditional expression (8) fF / fR = 0.349
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.903
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.567
Conditional expression (11) FNO × (f1 / f) = 2.456
Conditional expression (12) 2ω = 46.2

図50(A)は、第25実施例に係る光学系の無限遠合焦時の諸収差図である。図50(B)は、第25実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第25実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 50A is an aberration diagram of the optical system according to the 25th embodiment at infinity focusing. FIG. 50B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 25th embodiment. From each aberration diagram, it can be seen that the optical system according to the 25th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第26実施例)
第26実施例について、図51〜図52および表26を用いて説明する。図51は、本実施形態の第26実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第26実施例に係る光学系LS(26)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。また、第2レンズ群G2は、物体側から順に並んだ、負の屈折力を有する第1部分群G2Aと、正の屈折力を有する第2部分群G2Bとから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2の第1部分群G2Aと第2部分群G2Bとが、光軸に沿って互いに異なる移動量で物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(26th Example)
The 26th embodiment will be described with reference to FIGS. 51 to 52 and Table 26. FIG. 51 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 26th embodiment of the present embodiment. In the optical system LS (26) according to the 26th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. Further, the second lens group G2 is composed of a first subgroup G2A having a negative refractive power and a second subgroup G2B having a positive refractive power arranged in order from the object side. When focusing from an infinity object to a short-distance (finite distance) object, the first subgroup G2A and the second subgroup G2B of the second lens group G2 move along the optical axis with different amounts of movement on the object side. The first lens group G1 and the third lens group G3 are fixed.

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、両凹形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、両側のレンズ面が非球面である。 The first lens group G1 is a junction lens composed of a biconcave first negative lens L11 arranged in order from the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and a biconcave first lens group G1. A junction consisting of a 2-negative lens L13, a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third negative lens L17. It is composed of a lens and an aperture aperture S. The third positive lens L15 has aspherical lens surfaces on both sides.

第2レンズ群G2の第1部分群G2Aは、物体側に凹面を向けたメニスカス形状の負レンズL21から構成される。第2レンズ群G2の第2部分群G2Bは、物体側から順に並んだ、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。 The first subgroup G2A of the second lens group G2 is composed of a meniscus-shaped negative lens L21 with a concave surface facing the object side. The second subgroup G2B of the second lens group G2 is composed of a biconvex first positive lens L22 arranged in order from the object side and a meniscus-shaped second regular lens L23 with a concave surface facing the object side. Will be done. The first positive lens L22 has aspherical lens surfaces on both sides.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および両凹形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第2負レンズL33は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 consists of a junction lens consisting of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a biconcave first negative lens L32 arranged in order from the object side, and a concave surface facing the object side. It is composed of a second negative lens L33 having a plano-concave shape. The second negative lens L33 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表26に、第26実施例に係る光学系の諸元の値を掲げる。 Table 26 below lists the values of the specifications of the optical system according to the 26th embodiment.

(表26)
[全体諸元]
f 51.60
FNO 1.44
ω 22.7
Y 21.70
TL 113.685
BF 13.100
BFa 12.555
[レンズ諸元]
面番号 R D nd νd
1 -171.72474 2.000 1.62588 35.7
2 35.44631 5.392 1.94594 18.0
3 74.33039 6.970
4 -53.50931 3.610 1.75520 27.6
5 91.70821 0.200
6 74.06522 7.512 1.90265 35.7
7 -104.97613 0.100
8* 56.97323 7.742 1.85135 40.1
9* -173.82221 0.200
10 38.89486 12.894 1.59319 67.9
11 -34.37837 1.500 1.74077 27.7
12 37.65571 4.597
13 ∞ D13(可変) (絞りS)
14 -22.59808 1.100 1.64769 33.7
15 -145.29857 D15(可変)
16* 85.83165 6.797 1.77377 47.2
17* -32.92442 1.000
18 -62.36306 6.400 1.49782 82.6
19 -26.53221 D19(可変)
20 -15532.87600 5.451 1.94594 18.0
21 -42.26207 4.169 1.75520 27.6
22 1509.21760 3.688
23* -47.39475 1.900 1.88202 37.2
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26(可変)
[非球面データ]
第8面
κ=1.00000
A4= 1.10048E-06, A6= 1.15261E-10, A8= 4.34134E-12, A10=-9.02791E-16
第9面
κ=1.00000
A4= 2.53480E-06, A6=-1.36378E-09, A8= 6.90741E-12, A10=-6.44423E-15
第16面
κ=1.00000
A4=-2.74525E-06, A6= 1.71160E-08, A8=-1.40699E-11, A10= 1.45752E-14
第17面
κ=1.00000
A4= 1.20601E-05, A6= 1.19411E-08, A8= 3.74420E-11, A10=-3.48136E-14
第23面
κ=1.00000
A4= 1.37602E-06, A6=-3.97295E-09, A8= 7.39073E-12, A10=-9.76367E-15
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=51.60 β=-0.1471
D0 ∞ 314.50
D13 13.416 6.329
D15 1.447 1.481
D19 2.500 9.547
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 81.01
G2 14 42.29
(G2A 14 -41.46)
(G2B 16 25.11)
G4 20 -70.49
[条件式対応値]
条件式(1) (−G1R1)/f=0.922
条件式(2) f2/(−f3)=0.614
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.588
条件式(4) f/f1=0.637
条件式(5) f/f2=1.192
条件式(6) f1/f2=1.871
条件式(7) BFa/f=0.243
条件式(8) fF/fR=0.976
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.219
条件式(10) {1−(β2)2}×(β3)2=0.957
条件式(11) FNO×(f1/f)=2.263
条件式(12) 2ω=45.4
(Table 26)
[Overall specifications]
f 51.60
FNO 1.44
ω 22.7
Y 21.70
TL 113.685
BF 13.100
BFa 12.555
[Lens specifications]
Surface number RD nd νd
1 -171.72474 2.000 1.62588 35.7
2 35.44631 5.392 1.94594 18.0
3 74.33039 6.970
4-53.50931 3.610 1.75520 27.6
5 91.70821 0.200
6 74.06522 7.512 1.90265 35.7
7 -104.97613 0.100
8 * 56.97323 7.742 1.85135 40.1
9 * -173.82221 0.200
10 38.89486 12.894 1.59319 67.9
11 -34.37837 1.500 1.74077 27.7
12 37.65571 4.597
13 ∞ D13 (variable) (aperture S)
14 -22.59808 1.100 1.64769 33.7
15 -145.29857 D15 (variable)
16 * 85.83165 6.797 1.77377 47.2
17 * -32.92442 1.000
18 -62.36306 6.400 1.49782 82.6
19 -26.53221 D19 (variable)
20 -15532.87600 5.451 1.94594 18.0
21 -42.26207 4.169 1.75520 27.6
22 1509.21760 3.688
23 * -47.39475 1.900 1.88202 37.2
24 ∞ 10.500
25 ∞ 1.600 1.51680 64.1
26 ∞ D26 (variable)
[Aspherical data]
Side 8 κ = 1.0000
A4 = 1.10048E-06, A6 = 1.15261E-10, A8 = 4.34134E-12, A10 = -9.02791E-16
Side 9 κ = 1.0000
A4 = 2.53480E-06, A6 = -1.36378E-09, A8 = 6.90741E-12, A10 = -6.444423E-15
16th surface κ = 1.0000
A4 = -2.75452E-06, A6 = 1.71160E-08, A8 = -1.40699E-11, A10 = 1.45752E-14
Surface 17 κ = 1.0000
A4 = 1.20601E-05, A6 = 1.19411E-08, A8 = 3.74420E-11, A10 = -3.48136E-14
Side 23 κ = 1.0000
A4 = 1.37602E-06, A6 = -3.97295E-09, A8 = 7.39073E-12, A10 = -9.76367E-15
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 51.60 β = -0.1471
D0 ∞ 314.50
D13 13.416 6.329
D15 1.447 1.481
D19 2.500 9.547
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 81.01
G2 14 42.29
(G2A 14 -41.46)
(G2B 16 25.11)
G4 20 -70.49
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.922
Conditional expression (2) f2 / (-f3) = 0.614
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.588
Conditional expression (4) f / f1 = 0.637
Conditional expression (5) f / f2 = 1.192
Conditional expression (6) f1 / f2 = 1.871
Conditional expression (7) BFa / f = 0.243
Conditional expression (8) fF / fR = 0.976
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.219
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.957
Conditional expression (11) FNO × (f1 / f) = 2.263
Conditional expression (12) 2ω = 45.4

図52(A)は、第26実施例に係る光学系の無限遠合焦時の諸収差図である。図52(B)は、第26実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第26実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 52 (A) is a diagram of various aberrations of the optical system according to the 26th embodiment at infinity focusing. FIG. 52 (B) is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 26th embodiment. From each aberration diagram, it can be seen that the optical system according to the 26th embodiment has various aberrations corrected well and has excellent imaging performance.

(第27実施例)
第27実施例について、図53〜図54および表27を用いて説明する。図53は、本実施形態の第27実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第27実施例に係る光学系LS(27)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(27th Example)
The 27th embodiment will be described with reference to FIGS. 53 to 54 and Table 27. FIG. 53 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 27th embodiment of the present embodiment. In the optical system LS (27) according to the 27th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a concave surface facing the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and biconvex lenses arranged in order from the object side. A junction lens consisting of a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape. , And an opening aperture S.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a meniscus-shaped negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表27に、第27実施例に係る光学系の諸元の値を掲げる。 Table 27 below lists the values of the specifications of the optical system according to the 27th embodiment.

(表27)
[全体諸元]
f 85.00
FNO 1.86
ω 14.2
Y 21.70
TL 115.209
BF 21.685
BFa 21.004
[レンズ諸元]
面番号 R D nd νd
1 -64.83088 2.500 1.67270 32.2
2 -188.98518 0.300
3 153.82997 4.500 1.94595 18.0
4 508.32386 0.300
5 420.81318 6.000 1.72916 54.6
6 -110.04917 0.100
7 48.16622 7.000 1.72916 54.6
8 79.79724 0.200
9 40.00000 10.958 1.59282 68.7
10 -125.87904 2.500 1.67270 32.2
11 25.51317 7.152
12 ∞ D12(可変) (絞りS)
13 -30.69513 1.500 1.64769 33.7
14 -1583.64670 1.500
15 84.28063 5.000 1.77377 47.2
16* -60.30181 1.500
17 -115.77812 4.500 1.49700 81.6
18 -35.95414 D18(可変)
19 -79.69114 4.000 1.94595 18.0
20 -48.89207 6.639
21 -37.38750 2.000 1.64769 33.7
22 -237.55752 18.685
23 ∞ 2.000 1.51680 64.1
24 ∞ D24(可変)
[非球面データ]
第16面
κ=1.00000
A4= 4.07807E-06, A6= 3.17226E-09, A8=-8.77566E-12, A10= 1.60757E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=85.00 β=-0.1252
D0 ∞ 661.16
D12 17.304 5.692
D18 8.071 19.684
D24 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 129.04
G2 13 75.91
G3 19 -161.19
[条件式対応値]
条件式(1) (−G1R1)/f=0.763
条件式(2) f2/(−f3)=0.471
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.502
条件式(4) f/f1=0.659
条件式(5) f/f2=1.120
条件式(6) f1/f2=1.700
条件式(7) BFa/f=0.247
条件式(8) fF/fR=1.054
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=2.044
条件式(10) {1−(β2)2}×(β3)2=0.804
条件式(11) FNO×(f1/f)=2.825
条件式(12) 2ω=28.4
(Table 27)
[Overall specifications]
f 85.00
FNO 1.86
ω 14.2
Y 21.70
TL 115.209
BF 21.685
BFa 21.004
[Lens specifications]
Surface number RD nd νd
1 -64.83088 2.500 1.67270 32.2
2-188.98518 0.300
3 153.82997 4.500 1.94595 18.0
4 508.32386 0.300
5 420.81318 6.000 1.72916 54.6
6 -110.04917 0.100
7 48.16622 7.000 1.72916 54.6
8 79.79724 0.200
9 40.00000 10.958 1.59282 68.7
10 -125.87904 2.500 1.67270 32.2
11 25.51317 7.152
12 ∞ D12 (variable) (aperture S)
13 -30.69513 1.500 1.64769 33.7
14 -1583.64670 1.500
15 84.28063 5.000 1.77377 47.2
16 * -60.30181 1.500
17 -115.77812 4.500 1.49700 81.6
18 -35.95414 D18 (variable)
19 -79.69114 4.000 1.94595 18.0
20 -48.89207 6.639
21 -37.38750 2.000 1.64769 33.7
22 -237.55752 18.685
23 ∞ 2.000 1.51680 64.1
24 ∞ D24 (variable)
[Aspherical data]
16th surface κ = 1.0000
A4 = 4.07807E-06, A6 = 3.17226E-09, A8 = -8.77566E-12, A10 = 1.60757E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 85.00 β = -0.1252
D0 ∞ 661.16
D12 17.304 5.692
D18 8.071 19.684
D24 1.000 1.000
[Lens group data]
Focal length
G1 1 129.04
G2 13 75.91
G3 19 -161.19
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.763
Conditional expression (2) f2 / (-f3) = 0.471
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.502
Conditional expression (4) f / f1 = 0.659
Conditional expression (5) f / f2 = 1.120
Conditional expression (6) f1 / f2 = 1.700
Conditional expression (7) BFa / f = 0.247
Conditional expression (8) fF / fR = 1.054
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 2.044
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.804
Conditional expression (11) FNO × (f1 / f) = 2.825
Conditional expression (12) 2ω = 28.4

図54(A)は、第27実施例に係る光学系の無限遠合焦時の諸収差図である。図54(B)は、第27実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第27実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 54 (A) is a diagram of various aberrations of the optical system according to the 27th embodiment at infinity focusing. FIG. 54B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 27th embodiment. From each aberration diagram, it can be seen that the optical system according to the 27th embodiment has various aberrations corrected well and has excellent imaging performance.

(第28実施例)
第28実施例について、図55〜図56および表28を用いて説明する。図55は、本実施形態の第28実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第28実施例に係る光学系LS(28)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(28th Example)
The 28th embodiment will be described with reference to FIGS. 55 to 56 and Table 28. FIG. 55 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 28th embodiment of the present embodiment. In the optical system LS (28) according to the 28th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a concave surface facing the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and biconvex lenses arranged in order from the object side. A junction lens consisting of a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape. , And an opening aperture S.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表28に、第28実施例に係る光学系の諸元の値を掲げる。 Table 28 below lists the values of the specifications of the optical system according to the 28th embodiment.

(表28)
[全体諸元]
f 85.00
FNO 1.83
ω 14.2
Y 21.70
TL 115.187
BF 19.721
BFa 19.039
[レンズ諸元]
面番号 R D nd νd
1 -72.98373 2.500 1.67270 32.2
2 -170.26652 0.300
3 117.64422 4.500 1.94595 18.0
4 186.71439 0.436
5 189.13820 6.000 1.72916 54.6
6 -151.29429 0.100
7 50.47764 7.000 1.72916 54.6
8 72.74698 0.200
9 40.25986 11.919 1.59282 68.7
10 -195.06452 2.500 1.67270 32.2
11 26.55143 6.702
12 ∞ D12(可変) (絞りS)
13 -29.45199 1.500 1.64769 33.7
14 -432.91007 1.500
15 95.51607 5.000 1.77377 47.2
16* -57.35798 1.500
17 -90.11025 4.500 1.49700 81.6
18 -33.31937 D18(可変)
19 17922.25800 4.000 1.94595 18.0
20 -128.51263 6.878
21 -63.86657 2.000 1.64769 33.7
22 153.63984 16.721
23 ∞ 2.000 1.51680 64.1
24 ∞ D24(可変)
[非球面データ]
第16面
κ=1.00000
A4= 4.53083E-06, A6= 3.16311E-09, A8=-8.83761E-12, A10= 1.81194E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=85.00 β=-0.1247
D0 ∞ 661.16
D12 18.306 5.696
D18 8.127 20.736
D24 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 131.54
G2 13 77.05
G3 19 -160.72
[条件式対応値]
条件式(1) (−G1R1)/f=0.859
条件式(2) f2/(−f3)=0.479
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.555
条件式(4) f/f1=0.646
条件式(5) f/f2=1.103
条件式(6) f1/f2=1.707
条件式(7) BFa/f=0.224
条件式(8) fF/fR=1.101
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=2.500
条件式(10) {1−(β2)2}×(β3)2=0.727
条件式(11) FNO×(f1/f)=2.839
条件式(12) 2ω=28.4
(Table 28)
[Overall specifications]
f 85.00
FNO 1.83
ω 14.2
Y 21.70
TL 115.187
BF 19.721
BFa 19.039
[Lens specifications]
Surface number RD nd νd
1 -72.98373 2.500 1.67270 32.2
2 -170.26652 0.300
3 117.64422 4.500 1.94595 18.0
4 186.71439 0.436
5 189.13820 6.000 1.72916 54.6
6 -151.29429 0.100
7 50.47764 7.000 1.72916 54.6
8 72.74698 0.200
9 40.25986 11.919 1.59282 68.7
10 -195.06452 2.500 1.67270 32.2
11 26.55143 6.702
12 ∞ D12 (variable) (aperture S)
13 -29.45199 1.500 1.64769 33.7
14 -432.91007 1.500
15 95.51607 5.000 1.77377 47.2
16 * -57.35798 1.500
17 -90.11025 4.500 1.49700 81.6
18 -33.31937 D18 (variable)
19 17922.25800 4.000 1.94595 18.0
20 -128.51263 6.878
21 -63.86657 2.000 1.64769 33.7
22 153.63984 16.721
23 ∞ 2.000 1.51680 64.1
24 ∞ D24 (variable)
[Aspherical data]
16th surface κ = 1.0000
A4 = 4.53083E-06, A6 = 3.16311E-09, A8 = -8.83761E-12, A10 = 1.81194E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 85.00 β = -0.1247
D0 ∞ 661.16
D12 18.306 5.696
D18 8.127 20.736
D24 1.000 1.000
[Lens group data]
Focal length
G1 1 131.54
G2 13 77.05
G3 19 -160.72
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.859
Conditional expression (2) f2 / (-f3) = 0.479
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.555
Conditional expression (4) f / f1 = 0.646
Conditional expression (5) f / f2 = 1.103
Conditional expression (6) f1 / f2 = 1.707
Conditional expression (7) BFa / f = 0.224
Conditional expression (8) fF / fR = 1.101
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 2.500
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.727
Conditional expression (11) FNO × (f1 / f) = 2.839
Conditional expression (12) 2ω = 28.4

図56(A)は、第28実施例に係る光学系の無限遠合焦時の諸収差図である。図56(B)は、第28実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第28実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 56A is an aberration diagram of the optical system according to the 28th embodiment at infinity focusing. FIG. 56B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 28th embodiment. From each aberration diagram, it can be seen that the optical system according to the 28th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第29実施例)
第29実施例について、図57〜図58および表29を用いて説明する。図57は、本実施形態の第29実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第29実施例に係る光学系LS(29)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(29th Example)
The 29th embodiment will be described with reference to FIGS. 57 to 58 and Table 29. FIG. 57 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 29th embodiment of the present embodiment. In the optical system LS (29) according to the 29th embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a concave surface facing the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and biconvex lenses arranged in order from the object side. A junction lens consisting of a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape. , And an opening aperture S.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表29に、第29実施例に係る光学系の諸元の値を掲げる。 Table 29 below lists the values of the specifications of the optical system according to the 29th embodiment.

(表29)
[全体諸元]
f 85.00
FNO 1.85
ω 14.2
Y 21.70
TL 115.297
BF 15.435
BFa 14.754
[レンズ諸元]
面番号 R D nd νd
1 -75.54007 2.500 1.67270 32.2
2 -147.54550 0.300
3 88.89576 4.500 1.94595 18.0
4 118.01688 0.648
5 127.59306 6.000 1.80400 46.6
6 -246.54425 0.100
7 47.61283 6.000 1.59282 68.6
8 67.76235 0.200
9 40.00000 10.476 1.59282 68.7
10 -185.31557 2.500 1.67270 32.2
11 26.38137 6.867
12 ∞ D12(可変) (絞りS)
13 -28.70718 1.500 1.64769 33.7
14 -336.87946 1.500
15 97.83173 5.000 1.77377 47.2
16* -54.59764 1.500
17 -87.32308 4.500 1.49700 81.6
18 -32.94421 D18(可変)
19 3326.05740 4.000 1.94595 18.0
20 -105.25167 4.274
21 -57.51449 2.000 1.64769 33.7
22 111.93382 12.435
23 ∞ 2.000 1.51680 64.1
24 ∞ D24(可変)
[非球面データ]
第16面
κ=1.00000
A4= 4.61985E-06, A6= 4.41333E-09, A8=-1.50995E-11, A10= 2.98769E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=85.00 β=-0.1232
D0 ∞ 661.16
D12 21.713 9.146
D18 13.783 26.349
D24 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 131.08
G2 13 74.60
G3 19 -140.71
[条件式対応値]
条件式(1) (−G1R1)/f=0.889
条件式(2) f2/(−f3)=0.530
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.576
条件式(4) f/f1=0.648
条件式(5) f/f2=1.139
条件式(6) f1/f2=1.757
条件式(7) BFa/f=0.174
条件式(8) fF/fR=1.081
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=3.098
条件式(10) {1−(β2)2}×(β3)2=0.717
条件式(11) FNO×(f1/f)=2.850
条件式(12) 2ω=28.4
(Table 29)
[Overall specifications]
f 85.00
FNO 1.85
ω 14.2
Y 21.70
TL 115.297
BF 15.435
BFa 14.754
[Lens specifications]
Surface number RD nd νd
1 -75.54007 2.500 1.67270 32.2
2 -147.54550 0.300
3 88.89576 4.500 1.94595 18.0
4 118.01688 0.648
5 127.59306 6.000 1.80400 46.6
6 -246.54425 0.100
7 47.61283 6.000 1.59282 68.6
8 67.76235 0.200
9 40.00000 10.476 1.59282 68.7
10 -185.31557 2.500 1.67270 32.2
11 26.38137 6.867
12 ∞ D12 (variable) (aperture S)
13 -28.70718 1.500 1.64769 33.7
14 -336.87946 1.500
15 97.83173 5.000 1.77377 47.2
16 * -54.59764 1.500
17 -87.32308 4.500 1.49700 81.6
18 -32.94421 D18 (variable)
19 3326.05740 4.000 1.94595 18.0
20 -105.25167 4.274
21 -57.51449 2.000 1.64769 33.7
22 111.93382 12.435
23 ∞ 2.000 1.51680 64.1
24 ∞ D24 (variable)
[Aspherical data]
16th surface κ = 1.0000
A4 = 4.61985E-06, A6 = 4.41333E-09, A8 = -1.50995E-11, A10 = 2.98769E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 85.00 β = -0.1232
D0 ∞ 661.16
D12 21.713 9.146
D18 13.783 26.349
D24 1.000 1.000
[Lens group data]
Focal length
G1 1 131.08
G2 13 74.60
G3 19 -140.71
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.889
Conditional expression (2) f2 / (-f3) = 0.530
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.576
Conditional expression (4) f / f1 = 0.648
Conditional expression (5) f / f2 = 1.139
Conditional expression (6) f1 / f2 = 1.757
Conditional expression (7) BFa / f = 0.174
Conditional expression (8) fF / fR = 1.081
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 3.098
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.717
Conditional expression (11) FNO × (f1 / f) = 2.850
Conditional expression (12) 2ω = 28.4

図58(A)は、第29実施例に係る光学系の無限遠合焦時の諸収差図である。図58(B)は、第29実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第29実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 58 (A) is an aberration diagram of the optical system according to the 29th embodiment at infinity focusing. FIG. 58 (B) is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 29th embodiment. From each aberration diagram, it can be seen that the optical system according to the 29th embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第30実施例)
第30実施例について、図59〜図60および表30を用いて説明する。図59は、本実施形態の第30実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第30実施例に係る光学系LS(30)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(30th Example)
The thirtieth embodiment will be described with reference to FIGS. 59 to 60 and Table 30. FIG. 59 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the thirtieth embodiment of the present embodiment. In the optical system LS (30) according to the thirtieth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。 The first lens group G1 includes a meniscus-shaped first negative lens L11 having a concave surface facing the object side, a meniscus-shaped first positive lens L12 having a convex surface facing the object side, and biconvex lenses arranged in order from the object side. A junction lens consisting of a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape. , And an opening aperture S.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a biconcave-shaped negative lens L32 arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表30に、第30実施例に係る光学系の諸元の値を掲げる。 Table 30 below lists the values of the specifications of the optical system according to the thirtieth embodiment.

(表30)
[全体諸元]
f 85.00
FNO 1.85
ω 14.2
Y 21.70
TL 115.242
BF 14.943
BFa 14.261
[レンズ諸元]
面番号 R D nd νd
1 -74.95148 2.500 1.67270 32.2
2 -131.91024 0.300
3 85.64889 4.000 1.94595 18.0
4 120.40884 0.300
5 115.73186 7.000 1.59282 68.6
6 -191.64403 0.100
7 48.88487 5.000 1.80400 46.6
8 63.21824 0.200
9 40.00000 10.246 1.59282 68.7
10 -287.51510 2.500 1.67270 32.2
11 26.35774 7.011
12 ∞ D12(可変) (絞りS)
13 -28.44113 1.500 1.64769 33.7
14 -287.07114 1.500
15 102.04030 5.000 1.77377 47.2
16* -53.66013 1.500
17 -88.84311 4.500 1.49700 81.6
18 -33.17367 D18(可変)
19 -397.22387 4.000 1.94595 18.0
20 -86.37143 4.578
21 -52.43868 2.000 1.64769 33.7
22 143.09995 11.943
23 ∞ 2.000 1.51680 64.1
24 ∞ D24(可変)
[非球面データ]
第16面
κ=1.00000
A4= 4.49957E-06, A6= 4.10925E-09, A8=-1.26128E-11, A10= 2.42467E-14
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=85.00 β=-0.1242
D0 ∞ 661.16
D12 20.672 8.633
D18 15.892 27.931
D24 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 134.72
G2 13 74.30
G3 19 -130.08
[条件式対応値]
条件式(1) (−G1R1)/f=0.882
条件式(2) f2/(−f3)=0.571
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.556
条件式(4) f/f1=0.631
条件式(5) f/f2=1.144
条件式(6) f1/f2=1.813
条件式(7) BFa/f=0.168
条件式(8) fF/fR=1.075
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=3.632
条件式(10) {1−(β2)2}×(β3)2=0.766
条件式(11) FNO×(f1/f)=2.929
条件式(12) 2ω=28.4
(Table 30)
[Overall specifications]
f 85.00
FNO 1.85
ω 14.2
Y 21.70
TL 115.242
BF 14.943
BFa 14.261
[Lens specifications]
Surface number RD nd νd
1 -74.95148 2.500 1.67270 32.2
2 -131.91024 0.300
3 85.64889 4.000 1.94595 18.0
4 120.40884 0.300
5 115.73186 7.000 1.59282 68.6
6 -191.64403 0.100
7 48.88487 5.000 1.80400 46.6
8 63.21824 0.200
9 40.00000 10.246 1.59282 68.7
10 -287.51510 2.500 1.67270 32.2
11 26.35774 7.011
12 ∞ D12 (variable) (aperture S)
13 -28.44113 1.500 1.64769 33.7
14 -287.07114 1.500
15 102.04030 5.000 1.77377 47.2
16 * -53.66013 1.500
17 -88.84311 4.500 1.49700 81.6
18 -33.17367 D18 (variable)
19 -397.22387 4.000 1.94595 18.0
20 -86.37143 4.578
21 -52.43868 2.000 1.64769 33.7
22 143.09995 11.943
23 ∞ 2.000 1.51680 64.1
24 ∞ D24 (variable)
[Aspherical data]
16th surface κ = 1.0000
A4 = 4.49957E-06, A6 = 4.10925E-09, A8 = -1.26128E-11, A10 = 2.42467E-14
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 85.00 β = -0.1242
D0 ∞ 661.16
D12 20.672 8.633
D18 15.892 27.931
D24 1.000 1.000
[Lens group data]
Focal length
G1 1 134.72
G2 13 74.30
G3 19 -130.08
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) / f = 0.882
Conditional expression (2) f2 / (-f3) = 0.571
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.556
Conditional expression (4) f / f1 = 0.631
Conditional expression (5) f / f2 = 1.144
Conditional expression (6) f1 / f2 = 1.813
Conditional expression (7) BFa / f = 0.168
Conditional expression (8) fF / fR = 1.075
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 3.632
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.766
Conditional expression (11) FNO × (f1 / f) = 2.929
Conditional expression (12) 2ω = 28.4

図60(A)は、第30実施例に係る光学系の無限遠合焦時の諸収差図である。図60(B)は、第30実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第30実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 60A is a diagram of various aberrations of the optical system according to the thirtieth embodiment at infinity focusing. FIG. 60B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the thirtieth embodiment. From each aberration diagram, it can be seen that the optical system according to the thirtieth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第31実施例)
第31実施例について、図61〜図62および表31を用いて説明する。図61は、本実施形態の第31実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第31実施例に係る光学系LS(31)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
(31st Example)
The 31st Example will be described with reference to FIGS. 61 to 62 and Table 31. FIG. 61 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the 31st embodiment of the present embodiment. In the optical system LS (31) according to the 31st embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. ..

第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凸形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第4正レンズL15と、両凸形状の第5正レンズL16および両凹形状の第2負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。 The first lens group G1 includes a biconcave first negative lens L11, a biconvex first positive lens L12, a biconvex second positive lens L13, and a biconvex second positive lens L13 arranged in order from the object side. A meniscus-shaped third positive lens L14 with a convex surface, a meniscus-shaped fourth positive lens L15 with a convex surface facing the object side, a biconvex fifth positive lens L16, and a biconcave second negative lens L17. It is composed of a junction lens made of, and an aperture aperture S. The third positive lens L14 has an aspherical lens surface on the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。 The second lens group G2 has a meniscus-shaped negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus-shaped lens L22 having a concave surface facing the object side, arranged in order from the object side. It is composed of a second positive lens L23. The lens surface of the first positive lens L22 on the image plane I side is an aspherical surface.

第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。 The third lens group G3 is composed of a meniscus-shaped positive lens L31 having a concave surface facing the object side and a biconcave-shaped negative lens L32 arranged in order from the object side. The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I.

以下の表31に、第31実施例に係る光学系の諸元の値を掲げる。 Table 31 below lists the values of the specifications of the optical system according to the 31st embodiment.

(表31)
[全体諸元]
f 85.00
FNO 1.42
ω 14.2
Y 21.70
TL 145.265
BF 14.071
BFa 13.389
[レンズ諸元]
面番号 R D nd νd
1 -79.06766 3.000 1.67270 32.2
2 104.61579 5.110
3 243.58488 6.500 1.94595 18.0
4 -628.66078 0.300
5 109.12437 16.500 1.59282 68.6
6 -110.85187 0.100
7* 63.25612 11.500 1.77250 49.6
8 360.60495 0.200
9 52.11101 8.500 1.59282 68.7
10 88.79834 0.200
11 71.03249 8.500 1.59282 68.6
12 -790.77200 2.500 1.85025 30.0
13 30.29304 9.299
14 ∞ D14(可変) (絞りS)
15 -35.50553 1.500 1.67270 32.2
16 -19114.07500 1.500
17 96.59624 6.000 1.77377 47.2
18* -65.15132 1.500
19 -154.43166 6.000 1.49700 81.6
20 -40.92465 D20(可変)
21 -793.09360 4.000 1.94595 18.0
22 -123.62638 9.551
23 -59.68219 2.000 1.64769 33.7
24 388.46258 11.071
25 ∞ 2.000 1.51680 63.9
26 ∞ D26(可変)
[非球面データ]
第7面
A4=-1.31502E-07, A6=-4.69010E-11, A8= 1.13722E-14, A10=-8.34540E-18
第18面
κ=1.00000
A4= 2.96560E-06, A6= 2.23513E-09, A8=-5.41262E-12, A10= 7.26232E-15
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=85.00 β=-0.1177
D0 ∞ 661.16
D14 23.433 7.955
D20 3.500 18.978
D26 1.000 1.000
[レンズ群データ]
群 始面 焦点距離
G1 1 117.63
G2 15 83.50
G3 21 -188.48
[条件式対応値]
条件式(1) (−G1R1)/f=0.930
条件式(2) f2/(−f3)=0.443
条件式(3),(3−1),(3−2)
(−G1R1)/f1=0.672
条件式(4) f/f1=0.723
条件式(5) f/f2=1.018
条件式(6) f1/f2=1.409
条件式(7) BFa/f=0.158
条件式(8) fF/fR=0.943
条件式(9) (G1R2+G1R1)/(G1R2−G1R1)=0.139
条件式(10) {1−(β2)2}×(β3)2=0.510
条件式(11) FNO×(f1/f)=1.968
条件式(12) 2ω=28.4
(Table 31)
[Overall specifications]
f 85.00
FNO 1.42
ω 14.2
Y 21.70
TL 145.265
BF 14.071
BFa 13.389
[Lens specifications]
Surface number RD nd νd
1 -79.06766 3.000 1.67270 32.2
2 104.61579 5.110
3 243.58488 6.500 1.94595 18.0
4-628.66078 0.300
5 109.12437 16.500 1.59282 68.6
6 -110.85187 0.100
7 * 63.25612 11.500 1.77250 49.6
8 360.60495 0.200
9 52.11101 8.500 1.59282 68.7
10 88.79834 0.200
11 71.03249 8.500 1.59282 68.6
12 -790.77200 2.500 1.85025 30.0
13 30.29304 9.299
14 ∞ D14 (variable) (aperture S)
15 -35.50553 1.500 1.67270 32.2
16 -19114.07500 1.500
17 96.59624 6.000 1.77377 47.2
18 * -65.15132 1.500
19 -154.43166 6.000 1.49700 81.6
20 -40.92465 D20 (variable)
21 -793.09360 4.000 1.94595 18.0
22 -123.62638 9.551
23 -59.68219 2.000 1.64769 33.7
24 388.46258 11.071
25 ∞ 2.000 1.51680 63.9
26 ∞ D26 (variable)
[Aspherical data]
7th page
A4 = -1.31502E-07, A6 = -4.69010E-11, A8 = 1.13722E-14, A10 = -8.34540E-18
Surface 18 κ = 1.0000
A4 = 2.96560E-06, A6 = 2.23513E-09, A8 = -5.41262E-12, A10 = 7.26232E-15
[Variable interval data]
Infinity in-focus state Short-distance in-focus state
f = 85.00 β = -0.1177
D0 ∞ 661.16
D14 23.433 7.955
D20 3.500 18.978
D26 1.000 1.000
[Lens group data]
Focal length
G1 1 117.63
G2 15 83.50
G3 21 -188.48
[Conditional expression correspondence value]
Conditional expression (1) (-G1R1) /f=0.930
Conditional expression (2) f2 / (-f3) = 0.443
Conditional expressions (3), (3-1), (3-2)
(-G1R1) /f1=0.672
Conditional expression (4) f / f1 = 0.723
Conditional expression (5) f / f2 = 1.018
Conditional expression (6) f1 / f2 = 1.409
Conditional expression (7) BFa / f = 0.158
Conditional expression (8) fF / fR = 0.943
Conditional expression (9) (G1R2 + G1R1) / (G1R2-G1R1) = 0.139
Conditional expression (10) {1- (β2) 2 } × (β3) 2 = 0.510
Conditional expression (11) FNO × (f1 / f) = 1.968
Conditional expression (12) 2ω = 28.4

図62(A)は、第31実施例に係る光学系の無限遠合焦時の諸収差図である。図62(B)は、第31実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第31実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 62 (A) is an aberration diagram of the optical system according to the 31st embodiment at infinity focusing. FIG. 62B is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the 31st embodiment. From each aberration diagram, it can be seen that the optical system according to the 31st embodiment has various aberrations corrected well and has excellent imaging performance.

上記各実施例によれば、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能な光学系を実現することができる。 According to each of the above embodiments, it is possible to realize an optical system capable of obtaining good optical performance while suppressing a change in image magnification from an infinity focusing state to a short distance focusing state.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 Here, each of the above examples shows a specific example of the present invention, and the present invention is not limited thereto.

なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.

合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すもの(例えば、本実施形態の第2レンズ群)とする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。 The focusing lens group refers to a portion having at least one lens separated by an air interval that changes during focusing (for example, the second lens group of the present embodiment). That is, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to focus on a short-range object from an infinity object. This focusing lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).

本実施形態の光学系の各実施例において、防振機能を有していない構成のものを示したが、本願はこれに限られず、防振機能を有する構成とすることができる。 In each embodiment of the optical system of the present embodiment, a configuration having no anti-vibration function is shown, but the present application is not limited to this, and a configuration having an anti-vibration function can be used.

レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。 The lens surface may be formed on a spherical surface or a flat surface, or may be formed on an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is deviated, the depiction performance is less deteriorated, which is preferable.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。 When the lens surface is aspherical, the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 An antireflection film having a high transmittance in a wide wavelength range may be applied to each lens surface in order to reduce flare and ghost and achieve high contrast optical performance. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群
I 像面 S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group I image plane S Aperture diaphragm

Claims (17)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有し、
合焦の際、前記第2レンズ群が光軸に沿って移動し、
以下の条件式を満足する光学系。
−5.000<(−G1R1)/f<500.000
0.20<f2/(−f3)<1.20
但し、f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f:前記光学系の焦点距離
G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
It has a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power arranged in order from the object side.
At the time of focusing, the second lens group moves along the optical axis and
An optical system that satisfies the following conditional expression.
-5.000 <(-G1R1) / f <500.000
0.20 <f2 / (-f3) <1.20
However, f2: the focal length of the second lens group f3: the focal length of the third lens group f: the focal length of the optical system G1R1: the object side of the lens component arranged on the most object side of the first lens group. Radical length of the lens surface of
以下の条件式を満足する請求項1に記載の光学系。
−5.000<(−G1R1)/f1<50.000
但し、f1:前記第1レンズ群の焦点距離
The optical system according to claim 1, which satisfies the following conditional expression.
-5.000 <(-G1R1) / f1 <50.000
However, f1: the focal length of the first lens group
以下の条件式を満足する請求項1に記載の光学系。
0.010<(−G1R1)/f1<1.100
但し、f1:前記第1レンズ群の焦点距離
The optical system according to claim 1, which satisfies the following conditional expression.
0.010 <(-G1R1) /f1 <1.100
However, f1: the focal length of the first lens group
以下の条件式を満足する請求項1に記載の光学系。
1.000<(−G1R1)/f1<50.000
但し、f1:前記第1レンズ群の焦点距離
The optical system according to claim 1, which satisfies the following conditional expression.
1.000 <(-G1R1) / f1 <50.000
However, f1: the focal length of the first lens group
前記第1レンズ群は、絞りを有する請求項1〜4のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 4, wherein the first lens group has an aperture. 合焦の際、前記第1レンズ群が固定される請求項1〜5のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 5, wherein the first lens group is fixed at the time of focusing. 以下の条件式を満足する請求項1〜6のいずれか一項に記載の光学系。
0.010<f/f1<5.000
但し、f1:前記第1レンズ群の焦点距離
The optical system according to any one of claims 1 to 6, which satisfies the following conditional expression.
0.010 <f / f1 <5.000
However, f1: the focal length of the first lens group
以下の条件式を満足する請求項1〜7のいずれか一項に記載の光学系。
0.010<f/f2<5.000
The optical system according to any one of claims 1 to 7, which satisfies the following conditional expression.
0.010 <f / f2 <5.000
以下の条件式を満足する請求項1〜8のいずれか一項に記載の光学系。
0.010<f1/f2<5.000
但し、f1:前記第1レンズ群の焦点距離
The optical system according to any one of claims 1 to 8, which satisfies the following conditional expression.
0.010 <f1 / f2 <5.000
However, f1: the focal length of the first lens group
以下の条件式を満足する請求項1〜9のいずれか一項に記載の光学系。
0.100<BFa/f<0.500
但し、Bfa:前記光学系の最も像側に配置されたレンズにおける像側のレンズ面から像面までの光軸上の空気換算距離
The optical system according to any one of claims 1 to 9, which satisfies the following conditional expression.
0.100 <BFa / f <0.500
However, Bfa: the air conversion distance on the optical axis from the lens surface on the image side to the image surface in the lens arranged on the most image side of the optical system.
以下の条件式を満足する請求項1〜10のいずれか一項に記載の光学系。
0.10<fF/fR<3.00
但し、fF:前記光学系における絞りより物体側に配置されたレンズの合成焦点距離
fR:前記光学系における絞りより像側に配置されたレンズの合成焦点距離
The optical system according to any one of claims 1 to 10, which satisfies the following conditional expression.
0.10 <fF / fR <3.00
However, fF: the combined focal length of the lens arranged on the object side of the aperture in the optical system fR: the combined focal length of the lens arranged on the image side of the aperture in the optical system.
以下の条件式を満足する請求項1〜11のいずれか一項に記載の光学系。
−10.0<(G1R2+G1R1)/(G1R2−G1R1)<10.0
但し、G1R2:前記第1レンズ群の最も物体側に配置されたレンズ成分における像側のレンズ面の曲率半径
The optical system according to any one of claims 1 to 11, which satisfies the following conditional expression.
-10.0 <(G1R2 + G1R1) / (G1R2-G1R1) <10.0
However, G1R2: radius of curvature of the lens surface on the image side in the lens component arranged on the most object side of the first lens group.
以下の条件式を満足する請求項1〜12のいずれか一項に記載の光学系。
0.30<{1−(β2)2}×(β3)2<2.00
但し、β2:無限遠合焦状態における前記第2レンズ群の横倍率
β3:前記第3レンズ群の横倍率
The optical system according to any one of claims 1 to 12, which satisfies the following conditional expression.
0.30 << {1- (β2) 2 } × (β3) 2 <2.00
However, β2: lateral magnification of the second lens group in an infinity focusing state β3: lateral magnification of the third lens group
以下の条件式を満足する請求項1〜13のいずれか一項に記載の光学系。
0.50<FNO×(f1/f)<5.50
但し、FNO:前記光学系のFナンバー
f1:前記第1レンズ群の焦点距離
The optical system according to any one of claims 1 to 13, which satisfies the following conditional expression.
0.50 <FNO × (f1 / f) <5.50
However, FNO: F number of the optical system f1: Focal length of the first lens group
以下の条件式を満足する請求項1〜14のいずれか一項に記載の光学系。
15.0°<2ω<85.0°
但し、2ω:前記光学系の画角
The optical system according to any one of claims 1 to 14, which satisfies the following conditional expression.
15.0 ° <2ω <85.0 °
However, 2ω: the angle of view of the optical system
請求項1〜15のいずれか一項に記載の光学系を備えて構成される光学機器。 An optical device including the optical system according to any one of claims 1 to 15. 物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
合焦の際、前記第2レンズ群が光軸に沿って移動し、
以下の条件式を満足するように、
レンズ鏡筒内に各レンズを配置する光学系の製造方法。
−5.000<(−G1R1)/f<500.000
0.20<f2/(−f3)<1.20
但し、f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f:前記光学系の焦点距離
G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
A method for manufacturing an optical system having a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power arranged in order from the object side. There,
At the time of focusing, the second lens group moves along the optical axis and
To satisfy the following conditional expression
A method of manufacturing an optical system in which each lens is arranged in a lens barrel.
-5.000 <(-G1R1) / f <500.000
0.20 <f2 / (-f3) <1.20
However, f2: the focal length of the second lens group f3: the focal length of the third lens group f: the focal length of the optical system G1R1: the object side of the lens component arranged on the most object side of the first lens group. Radical length of the lens surface of
JP2020518917A 2018-05-18 2018-05-18 Optical systems, optical instruments, and methods of manufacturing optical systems Pending JPWO2019220615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022123776A JP2022140661A (en) 2018-05-18 2022-08-03 Optical system and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019266 WO2019220615A1 (en) 2018-05-18 2018-05-18 Optical system, optical device, and method for manufacturing optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022123776A Division JP2022140661A (en) 2018-05-18 2022-08-03 Optical system and optical device

Publications (1)

Publication Number Publication Date
JPWO2019220615A1 true JPWO2019220615A1 (en) 2021-04-22

Family

ID=68539919

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020518917A Pending JPWO2019220615A1 (en) 2018-05-18 2018-05-18 Optical systems, optical instruments, and methods of manufacturing optical systems
JP2022123776A Pending JP2022140661A (en) 2018-05-18 2022-08-03 Optical system and optical device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022123776A Pending JP2022140661A (en) 2018-05-18 2022-08-03 Optical system and optical device

Country Status (2)

Country Link
JP (2) JPWO2019220615A1 (en)
WO (1) WO2019220615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220617A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and optical system manufacturing method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338910A (en) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd High variable power rate zoom lens with small short-distance aberration variation
JPH06294932A (en) * 1993-04-07 1994-10-21 Canon Inc Zoom lens
JP2002098894A (en) * 2000-09-26 2002-04-05 Canon Inc Zoom lens and optical equipment provided therewith
JP2011209352A (en) * 2010-03-29 2011-10-20 Konica Minolta Opto Inc Optical system and lens positioning method
JP2012155223A (en) * 2011-01-27 2012-08-16 Tamron Co Ltd Wide-angle single-focus lens
JP2012234169A (en) * 2011-04-18 2012-11-29 Sigma Corp Imaging optical system with anti-vibration mechanism
JP2012255842A (en) * 2011-06-07 2012-12-27 Sony Corp Imaging lens and imaging apparatus
JP2013061570A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Imaging lens, camera, and portable information terminal device
JP2013061547A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Image forming lens, photographic lens unit, and imaging apparatus
JP2013125213A (en) * 2011-12-15 2013-06-24 Olympus Imaging Corp Inner focus lens system and imaging apparatus with the same
WO2013118466A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Wide-angle lens and imaging device
WO2013118467A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Super-wide angle lens, and imaging device
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
JP2013195558A (en) * 2012-03-16 2013-09-30 Ricoh Co Ltd Wide angle lens, imaging lens unit and imaging apparatus
JP2014035458A (en) * 2012-08-09 2014-02-24 Ricoh Co Ltd Imaging optical system, camera device and portable information terminal device
JP2014102358A (en) * 2012-11-19 2014-06-05 Ricoh Co Ltd Imaging lens, imaging device, and information device
JP2014142604A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2015001641A (en) * 2013-06-17 2015-01-05 富士フイルム株式会社 Image capturing lens and image capturing device
WO2017130571A1 (en) * 2016-01-26 2017-08-03 ソニー株式会社 Image pickup lens and image pickup device
JP2018205527A (en) * 2017-06-05 2018-12-27 株式会社シグマ Large diameter wide-angle lens
JP2019090949A (en) * 2017-11-15 2019-06-13 コニカミノルタ株式会社 Image capturing lens, image capturing optical device, and digital equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327991A (en) * 2006-06-06 2007-12-20 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
JP6164894B2 (en) * 2013-04-02 2017-07-19 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338910A (en) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd High variable power rate zoom lens with small short-distance aberration variation
JPH06294932A (en) * 1993-04-07 1994-10-21 Canon Inc Zoom lens
JP2002098894A (en) * 2000-09-26 2002-04-05 Canon Inc Zoom lens and optical equipment provided therewith
JP2011209352A (en) * 2010-03-29 2011-10-20 Konica Minolta Opto Inc Optical system and lens positioning method
JP2012155223A (en) * 2011-01-27 2012-08-16 Tamron Co Ltd Wide-angle single-focus lens
JP2012234169A (en) * 2011-04-18 2012-11-29 Sigma Corp Imaging optical system with anti-vibration mechanism
JP2012255842A (en) * 2011-06-07 2012-12-27 Sony Corp Imaging lens and imaging apparatus
JP2013061570A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Imaging lens, camera, and portable information terminal device
JP2013061547A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Image forming lens, photographic lens unit, and imaging apparatus
JP2013125213A (en) * 2011-12-15 2013-06-24 Olympus Imaging Corp Inner focus lens system and imaging apparatus with the same
WO2013118466A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Wide-angle lens and imaging device
WO2013118467A1 (en) * 2012-02-06 2013-08-15 富士フイルム株式会社 Super-wide angle lens, and imaging device
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
JP2013195558A (en) * 2012-03-16 2013-09-30 Ricoh Co Ltd Wide angle lens, imaging lens unit and imaging apparatus
JP2014035458A (en) * 2012-08-09 2014-02-24 Ricoh Co Ltd Imaging optical system, camera device and portable information terminal device
JP2014102358A (en) * 2012-11-19 2014-06-05 Ricoh Co Ltd Imaging lens, imaging device, and information device
JP2014142604A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2015001641A (en) * 2013-06-17 2015-01-05 富士フイルム株式会社 Image capturing lens and image capturing device
WO2017130571A1 (en) * 2016-01-26 2017-08-03 ソニー株式会社 Image pickup lens and image pickup device
JP2018205527A (en) * 2017-06-05 2018-12-27 株式会社シグマ Large diameter wide-angle lens
JP2019090949A (en) * 2017-11-15 2019-06-13 コニカミノルタ株式会社 Image capturing lens, image capturing optical device, and digital equipment

Also Published As

Publication number Publication date
WO2019220615A1 (en) 2019-11-21
JP2022140661A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP7409442B2 (en) Optical system and optical equipment
JPWO2019220616A1 (en) Optical systems, optical instruments, and methods of manufacturing optical systems
JP5904273B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5176410B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JPH05173071A (en) Wide angle zoom lens
WO2014065264A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
WO2016121966A1 (en) Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system
JP2011186159A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2016104747A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP7047905B2 (en) Optical system and optical equipment
WO2015016112A1 (en) Variable power optical system, optical device and method for manufacturing variable power optical system
JP5724189B2 (en) Variable magnification optical system, optical device
WO2018185868A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2018185870A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2022140661A (en) Optical system and optical device
JP7131609B2 (en) Optics and optics
WO2016104742A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6911869B2 (en) Variable magnification optical system, optical equipment and imaging equipment using this
JP7459981B2 (en) Optical Systems and Instruments
JP6349801B2 (en) Zoom lens, optical device
JP6070054B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP7031739B2 (en) Zoom lens and optical equipment
WO2019220629A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220517