JPH04338910A - High variable power rate zoom lens with small short-distance aberration variation - Google Patents

High variable power rate zoom lens with small short-distance aberration variation

Info

Publication number
JPH04338910A
JPH04338910A JP1610991A JP1610991A JPH04338910A JP H04338910 A JPH04338910 A JP H04338910A JP 1610991 A JP1610991 A JP 1610991A JP 1610991 A JP1610991 A JP 1610991A JP H04338910 A JPH04338910 A JP H04338910A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
focusing
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1610991A
Other languages
Japanese (ja)
Other versions
JP3060118B2 (en
Inventor
Takanori Yamanashi
山梨隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3016109A priority Critical patent/JP3060118B2/en
Publication of JPH04338910A publication Critical patent/JPH04338910A/en
Application granted granted Critical
Publication of JP3060118B2 publication Critical patent/JP3060118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent performance from infinity to a short distance by stabilizing the performance of a three-group zoom lens and a four-group zoom lens in short-distance focusing. CONSTITUTION:The zoom lens consists of a 1st positive lens group I, a 2nd positive lens group II, and a 3rd negative lens group III and the power is varied from a wide-angle end to a telephoto end by moving the respective lens groups toward an object. While the most image-side lens element LF among lens elements constituting the 2nd lens group is fixed at a constant position, the remaining lens elements of the 2nd lens group are moved toward the object and the lens system consists of the 1st positive lens group I, the 2nd positive or negative lens group II, the 3rd negative lens group III, and a 4th negative lens group IV; and the power is varied from the wide-angle end to the telephoto end by moving the respective lens groups along the optical axis respectively. The most image-side lens element LF among elements constituting the 3rd lens group is fixed at a constant position and the remaining lens elements of the 2nd and 3rd lens groups are moved toward the object to put the lens system in focus.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高変倍率ズームレンズ
に関し、特に、近距離にフォーカシングしても収差変動
が少なく最短撮影距離の短縮を図った高変倍率ズームレ
ンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens with a high zoom ratio, and more particularly to a zoom lens with a high zoom ratio that exhibits little variation in aberrations even when focusing at short distances and is designed to shorten the shortest photographing distance.

【0002】0002

【従来の技術】近年、高変倍率を有するズームレンズを
装備した全自動カメラは、ニューコンセプトカメラとし
てその製品化に勢いを増している。その中で、変倍比が
3程度を越える場合には、簡単な構成の2群ズームレン
ズでは実現が困難であるため、新しいレンズタイプが考
案されている。
BACKGROUND OF THE INVENTION In recent years, fully automatic cameras equipped with zoom lenses with high variable magnification are being commercialized as new concept cameras. Among these, when the variable power ratio exceeds about 3, it is difficult to realize it with a simple two-group zoom lens, so new lens types have been devised.

【0003】このような状況において、本出願人は、独
自の4群ズームレンズ(特開昭63−43115号)か
ら発展した高変倍率3群ズームレンズを特開昭63−1
53511号にて提案し、また、近距離時の収差変動を
少なくするフォーカシング方法を特開平1−20401
3号にて提案した。
Under these circumstances, the present applicant developed a high variable magnification 3-group zoom lens developed from the original 4-group zoom lens (Japanese Patent Application Laid-Open No. 63-43115) in JP-A-63-1.
53511, and a focusing method that reduces aberration fluctuations at close distances was proposed in Japanese Patent Application Laid-Open No. 1-20401.
This was proposed in issue 3.

【0004】このフォーカシング方法は、近距離までの
フォーカシング移動量が少なくてすみ、かつ、収差変動
が比較的に少ないので、前記のようなズームレンズの実
現には不可欠な技術であった。
[0004] This focusing method requires only a small amount of focusing movement up to short distances, and has relatively little variation in aberrations, so it was an indispensable technology for realizing the above-mentioned zoom lens.

【0005】ところで、従来のズームレンズのフォーカ
シングは、一般的に、第1レンズ群移動による方法が知
られ、また、近軸解として収差変動をあまり考慮しない
方法論としてのフォーカシング方法は、数多く提案され
ている。
[0005] By the way, focusing of a conventional zoom lens is generally performed by moving the first lens group, and many focusing methods have been proposed that do not take much account of aberration fluctuations as a paraxial solution. ing.

【0006】[0006]

【発明が解決しようとする課題】一方で、さらに至近距
離短縮に対する要望があり、上記本出願人の発明におい
て、フォーカシング移動量が大きくなる望遠端付近での
収差変動を抑え、高性能化を達成するには、さらに新し
い技術が必要となる。
[Problems to be Solved by the Invention] On the other hand, there is a desire to further shorten the close-up distance, and in the above-mentioned invention of the applicant, aberration fluctuations are suppressed near the telephoto end where the amount of focusing movement becomes large, and high performance has been achieved. To do so, newer technology is required.

【0007】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、本出願人提案による、物体側
より順に、正屈折力の第1レンズ群、正屈折力の第2レ
ンズ群及び負屈折力の第3レンズ群で構成された3群ズ
ームレンズ、並びに、物体側より順に、正屈折力の第1
レンズ群、正屈折力又は負屈折力の第2レンズ群、正屈
折力の第3レンズ群及び負屈折力の第4レンズ群で構成
された4群ズームレンズを対象にして、近距離フォーカ
シング時の光学性能を安定させ、無限遠より至近距離ま
で満足いく性能が得られるズームレンズを提供すること
にある。
The present invention has been made in view of the above circumstances, and its object is to provide, in order from the object side, a first lens group with positive refractive power and a second lens group with positive refractive power, as proposed by the applicant. and a third lens group with negative refractive power, and a first lens group with positive refractive power in order from the object side.
During close-range focusing, a 4-group zoom lens consisting of a lens group, a second lens group with positive refractive power or negative refractive power, a third lens group with positive refractive power, and a fourth lens group with negative refractive power is used. The object of the present invention is to provide a zoom lens that has stable optical performance and can provide satisfactory performance from infinity to close range.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の近距離収差変動の少ない高変倍率ズームレンズは、
物体側より順に、正屈折力の第1レンズ群、正屈折力の
第2レンズ群及び負屈折力の第3レンズ群で構成され、
広角端より望遠端への変倍は、各レンズ群を物体側に移
動することによって行い、第2レンズ群をフォーカシン
グレンズ群として、この第2レンズ群を構成する最も像
側のレンズ成分を定位置に固定して、第2レンズ群の残
るレンズ成分を物体側に移動することによってフォーカ
シングするようにしたことを特徴とするものである。
[Means for Solving the Problems] A high-power zoom lens with little variation in close-range aberrations of the present invention, which achieves the above objects, has the following features:
Consisting of, in order from the object side, a first lens group with positive refractive power, a second lens group with positive refractive power, and a third lens group with negative refractive power,
Changing the magnification from the wide-angle end to the telephoto end is performed by moving each lens group toward the object side.The second lens group is used as a focusing lens group, and the lens component closest to the image side that makes up this second lens group is fixed. This is characterized in that focusing is performed by fixing the lens component at a fixed position and moving the remaining lens components of the second lens group toward the object side.

【0009】別の発明は、物体側より順に、正屈折力の
第1レンズ群、正屈折力又は負屈折力の第2レンズ群、
正屈折力の第3レンズ群及び負屈折力の第4レンズ群で
構成され、広角端より望遠端への変倍は、各レンズ群を
各々光軸に沿って移動することによって行い、第2レン
ズ群及び第3レンズ群をフォーカシングレンズ群として
、第3レンズ群を構成する最も像側のレンズ成分を定位
置に固定して、第2レンズ群と第3レンズ群の残るレン
ズ成分とを物体側に移動することによってフォーカシン
グするようにしたことを特徴とするものである。
Another invention provides, in order from the object side, a first lens group with positive refractive power, a second lens group with positive refractive power or negative refractive power,
Consisting of a third lens group with positive refractive power and a fourth lens group with negative refractive power, zooming from the wide-angle end to the telephoto end is performed by moving each lens group along the optical axis, and the second lens group The lens group and the third lens group are used as focusing lens groups, and the lens component closest to the image side constituting the third lens group is fixed at a fixed position, and the remaining lens components of the second lens group and the third lens group are focused on the object. The feature is that focusing is performed by moving to the side.

【0010】0010

【作用】前記したように、従来、数多くのフォーカシン
グ方法が提案されているが、実際には、収差変動の抑制
が極めて重要であり、また、フォーカシングレンズ群に
関わる駆動方法や制御手段も重要な意味を持っている。
[Operation] As mentioned above, many focusing methods have been proposed in the past, but in reality, it is extremely important to suppress aberration fluctuations, and the driving method and control means related to the focusing lens group are also important. It has meaning.

【0011】本発明では、主として望遠端近傍でのフォ
ーカシングによる球面収差と非点収差の変動を抑制する
ことに主眼を置いており、今後の需要が予測される高変
倍率化と最短撮影距離の短縮を考えたものである。すな
わち、その実現方法として、ここでは、いわゆる内焦方
式でフローティングの考え方を導入し、簡単なレンズ構
成で収差変動の程度を小さくし、性能の安定化を意図し
たものである。
The present invention mainly focuses on suppressing fluctuations in spherical aberration and astigmatism caused by focusing near the telephoto end, and it is aimed at suppressing fluctuations in spherical aberration and astigmatism caused by focusing near the telephoto end. It was designed to be shortened. That is, as a method for achieving this, the concept of floating is introduced here using a so-called internal focusing method, and the degree of aberration fluctuation is reduced with a simple lens configuration, with the intention of stabilizing performance.

【0012】ズームレンズにおけるフォーカシングには
、上記したように、第1レンズ群移動による方法が一般
的であったが、近年、オートフォーカス方式が採用され
、ズーミング時の焦点位置移動は、電気的手段によって
解決することか可能となっている。そのため、焦点位置
がほぼ一定の焦点深度内に入るパワー配置の決定法や、
メカニカルに焦点位置補正を実現することが技術的に可
能になり、光学設計の自由度も増えていると考えてよい
As mentioned above, focusing in a zoom lens has generally been carried out by moving the first lens group, but in recent years, an autofocus method has been adopted, and the focus position during zooming is moved by electrical means. It is possible to solve the problem by Therefore, we need a method to determine the power arrangement so that the focal position is within a nearly constant depth of focus,
It has become technically possible to mechanically correct the focal position, and it can be considered that the degree of freedom in optical design has increased.

【0013】このような状況の下に、本発明では、先ず
、物体側より順に、正屈折力の第1レンズ群、正屈折力
の第2レンズ群及び負屈折力の第3レンズ群で構成され
た3群ズームレンズを対象として、収差変動なく近距離
にフォーカシングする方法を検討した。また、この光学
系の基本構成となった4群ズームレンズであって、上記
の第2レンズ群が負の前群と正の後群でなるタイプ、並
びに、第2レンズ群の前群が正の屈折力を持つ同様の光
学系にも、そのフォーカシング方法が適用できることが
確認された。
Under these circumstances, in the present invention, first, in order from the object side, the first lens group has a positive refractive power, the second lens group has a positive refractive power, and the third lens group has a negative refractive power. We investigated a method for focusing at short distances without changing aberrations using a three-group zoom lens. In addition, there are four-group zoom lenses that form the basic configuration of this optical system, including a type in which the second lens group is a negative front group and a positive rear group, and a type in which the front group of the second lens group is a positive group. It was confirmed that the focusing method can be applied to a similar optical system with a refractive power of .

【0014】基本となるフォーカシング方法は、図1に
示すように、正屈折力の第1レンズ群(パワーはφ1 
)、正屈折力の第2レンズ群(パワーはφ2 )、及び
、負屈折力の第3レンズ群(パワーはφ3 )からなる
3群ズームレンズにおいて、第2レンズ群を物体側に移
動することによって近距離物点にピントを合わせようと
する方法である。この方法によれば、第1レンズ群と第
2レンズ群間隔及び第2レンズ群と第3レンズ群間隔が
変化することになり、収差の変動を補償する作用を利用
することができるわけである。
The basic focusing method is as shown in FIG.
), a second lens group with positive refractive power (power is φ2), and a third lens group with negative refractive power (power is φ3), in which the second lens group is moved toward the object side. This method attempts to focus on a nearby object point. According to this method, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group change, making it possible to utilize the effect of compensating for variations in aberrations. .

【0015】一方で、至近距離をさらに短縮すると、特
定の焦点距離でのフォーカシングレンズの焦点距離は一
定であるが、一般にフォーカシング移動量は、長焦点側
で顕著に増大する。したがって、ここで、さらに工夫を
加えて、収差変動を小さくする必要性が生ずることにな
る。
On the other hand, when the close distance is further shortened, although the focal length of the focusing lens at a specific focal length remains constant, the amount of focusing movement generally increases significantly on the long focal length side. Therefore, there is a need to take further measures to reduce aberration fluctuations.

【0016】また、フォーカシングする際に、広角レン
ズ等で採用されているレンズ群間隔を微妙に変化させな
がら像面湾曲を補正すると言う考えは容易に発想される
が、ズームレンズの変倍のための移動とフォーカシング
の移動において独立してカムを持つことは、機構上から
もまた製造誤差積算面でもあまり望ましいものではない
Furthermore, when focusing, it is easy to think of the idea of correcting field curvature by subtly changing the distance between lens groups, which is used in wide-angle lenses, etc., but due to the variable power of zoom lenses, It is not very desirable to have separate cams for the movement of the lens and for the movement of the focusing, both from a mechanical standpoint and from the standpoint of accumulating manufacturing errors.

【0017】そこで、本発明では、図1と同様なパワー
配置の3群ズームレンズにおいて、図2に示すように、
フォーカシングレンズ群をなす第2群の最も像面側に、
パワーが比較的に小さいレンズ成分LF (パワーはφ
LF)を設け、フォーカシング中にはこれを固定とし、
残りのレンズ群(パワーはφ2F)を物体側へ移動する
ことによって、フローティングの効果を得ようとするも
のである。
Therefore, in the present invention, as shown in FIG. 2, in a three-group zoom lens having a power arrangement similar to that in FIG.
The closest to the image plane of the second group forming the focusing lens group,
Lens component LF with relatively small power (power is φ
LF) and fixed it during focusing.
By moving the remaining lens group (power: φ2F) toward the object side, a floating effect is obtained.

【0018】さて、次の表−1に、変倍比がそれ程大き
くはない後記の第4実施例の望遠端における無限遠物点
に対する各レンズ群の収差係数を示し、基準値とする。 表−1において、SA3、SA5、SA7は、それぞれ
3次、5次、7次の球面収差係数であり、CMA3、C
MA5は、それぞれ3次、5次のコマ収差係数であり、
AST3、AST5は、それぞれ3次、5次の非点収差
係数であり、DIS3、DIS5は、それぞれ3次、5
次の歪曲収差係数である(以下、同じ。)。
Now, Table 1 below shows the aberration coefficients of each lens group with respect to an object point at infinity at the telephoto end in the fourth embodiment, which will be described later, in which the variable power ratio is not so large, and is used as a reference value. In Table-1, SA3, SA5, and SA7 are the 3rd, 5th, and 7th order spherical aberration coefficients, respectively, and CMA3, C
MA5 is the third-order and fifth-order coma aberration coefficients, respectively,
AST3 and AST5 are 3rd and 5th order astigmatism coefficients, respectively, and DIS3 and DIS5 are 3rd and 5th order astigmatism coefficients, respectively.
It is the following distortion aberration coefficient (the same applies hereinafter).

【0019】                 表−1      
無限遠物点(∞)レンズ群        SA3  
      SA5        SA7     
   CMA3        CMA5    1 
         −0.08670   −0.00
974   −0.00132    0.12667
     0.02527    2        
  −0.02523    0.04735    
0.02241   −0.05921     0.
00013    3           0.11
403   −0.03713   −0.02335
   −0.06568    −0.03619 総
    和       0.00210    0.
00048   −0.00226    0.001
79    −0.01078 レンズ群      
  AST3       AST5       D
IS3       DIS5    1      
    −0.03661   −0.00235  
  0.05643    0.00245   2 
          0.05276    0.00
227   −0.07744   −0.00097
    3          −0.01668  
 −0.00010    0.04883    0
.00071 総    和      −0.000
53   −0.00018    0.02782 
   0.00219             。
Table-1
Infinity object point (∞) lens group SA3
SA5 SA7
CMA3 CMA5 1
-0.08670 -0.00
974 -0.00132 0.12667
0.02527 2
-0.02523 0.04735
0.02241 -0.05921 0.
00013 3 0.11
403 -0.03713 -0.02335
-0.06568 -0.03619 Total sum 0.00210 0.
00048 -0.00226 0.001
79 -0.01078 Lens group
AST3 AST5 D
IS3 DIS5 1
-0.03661 -0.00235
0.05643 0.00245 2
0.05276 0.00
227 -0.07744 -0.00097
3 -0.01668
-0.00010 0.04883 0
.. 00071 Total sum -0.000
53 -0.00018 0.02782
0.00219.

【0020】次に、表−2に、図2に示す本発明の光学
系において、従来のフォーカシング方法による時の近距
離(−0.5m)での収差係数を示し、また、表−3に
は、本発明によるフォーカシング方法における近距離(
−0.5m)での収差係数を示す。ここで、両者の係数
の比較を厳密に収差レベルで行えるように、高次収差係
数も併記した。これらの表の各群の固有係数と像面での
総和から、無限遠物点の状態と近距離での性能変化を評
価することができるわけである。
Next, Table 2 shows the aberration coefficients at short distance (-0.5 m) when using the conventional focusing method in the optical system of the present invention shown in FIG. is the short distance (
-0.5m). Here, higher-order aberration coefficients are also shown so that the comparison of both coefficients can be made strictly at the aberration level. From the characteristic coefficients of each group in these tables and the sum on the image plane, it is possible to evaluate the state of an object point at infinity and the change in performance at short distances.

【0021】                 表−2      
近距離物点(−0.5m)   従来のフォーカス方法
レンズ群        SA3        SA
5        SA7        CMA3 
       CMA5    1         
 −0.05798   −0.00507   −0
.00055    0.05811     0.0
1023    2          −0.042
58    0.04639    0.02411 
  −0.00529     0.01410   
 3           0.08671   −0
.02459   −0.01352   −0.04
602    −0.03094 総    和   
   −0.01385    0.01674   
 0.01004    0.00680    −0
.00661 レンズ群        AST3  
     AST5       DIS3     
  DIS5    1          −0.0
1779   −0.00093    0.0365
7    0.00110    2        
   0.03422    0.00135   −
0.06202   −0.00039    3  
        −0.01551   −0.000
01    0.04547    0.00035 
総    和       0.00092    0
.00041    0.02003    0.00
107           。
Table-2
Near-distance object point (-0.5m) Conventional focusing method lens group SA3 SA
5 SA7 CMA3
CMA5 1
-0.05798 -0.00507 -0
.. 00055 0.05811 0.0
1023 2 -0.042
58 0.04639 0.02411
-0.00529 0.01410
3 0.08671 -0
.. 02459 -0.01352 -0.04
602 -0.03094 Total sum
-0.01385 0.01674
0.01004 0.00680 -0
.. 00661 Lens group AST3
AST5 DIS3
DIS5 1 -0.0
1779 -0.00093 0.0365
7 0.00110 2
0.03422 0.00135 −
0.06202 -0.00039 3
-0.01551 -0.000
01 0.04547 0.00035
Total sum 0.00092 0
.. 00041 0.02003 0.00
107.

【0022】                 表−3      
近距離物点(−0.5m)   本発明フォーカス方法
レンズ群        SA3        SA
5        SA7        CMA3 
       CMA5    1         
 −0.05872   −0.00517   −0
.00056    0.06027     0.0
1063    2          −0.057
37    0.04083    0.02244 
   0.00358     0.01954   
3           0.08715   −0.
02486   −0.01334   −0.046
37    −0.03083 総    和    
  −0.02894    0.01080    
0.00854    0.01747    −0.
00067 レンズ群        AST3   
    AST5       DIS3      
 DIS5    1          −0.01
822   −0.00096    0.03716
    0.00114    2         
  0.03399    0.00139   −0
.06226   −0.00041    3   
       −0.01553   −0.0000
4    0.04553    0.00037 総
    和       0.00024    0.
00039    0.02043    0.001
10           。
Table-3
Near-distance object point (-0.5m) Invention focusing method lens group SA3 SA
5 SA7 CMA3
CMA5 1
-0.05872 -0.00517 -0
.. 00056 0.06027 0.0
1063 2 -0.057
37 0.04083 0.02244
0.00358 0.01954
3 0.08715 -0.
02486 -0.01334 -0.046
37 -0.03083 Total sum
-0.02894 0.01080
0.00854 0.01747 -0.
00067 Lens group AST3
AST5 DIS3
DIS5 1 -0.01
822 -0.00096 0.03716
0.00114 2
0.03399 0.00139 -0
.. 06226 -0.00041 3
-0.01553 -0.0000
4 0.04553 0.00037 Total sum 0.00024 0.
00039 0.02043 0.001
10.

【0023】これらの表より、望遠側で球面収差を初め
とする高次収差の顕著な変動抑制に本発明のフォーカス
方法が効果を発揮していることが明らかである。収差補
正状態の差は、特に球面収差で顕著である。表−2では
3次に比べて高次(SA5、7)が大きく、全体のバラ
ンスが崩れている。これに対して、表−3ではそのよう
なことはなく、バランスがよい。収差図で示すと、それ
ぞれ図3のAとBのようになる。図のAでは、高次の影
響で+側へ倒れ、他の収差との釣り合いもよくない。
From these tables, it is clear that the focusing method of the present invention is effective in suppressing significant fluctuations in higher-order aberrations including spherical aberrations on the telephoto side. The difference in the aberration correction state is particularly remarkable for spherical aberration. In Table 2, the higher orders (SA5, 7) are larger than the third order, and the overall balance is disrupted. On the other hand, this is not the case in Table 3, and the balance is good. The aberration diagrams are as shown in A and B in FIG. 3, respectively. At A in the figure, the aberration tilts toward the + side due to higher-order effects, and the balance with other aberrations is not good.

【0024】このとき、第2群の最も像面側に配置する
レンズ成分LF のパワーφLFについては、以下の範
囲の値で使用することが望ましい。
At this time, it is desirable to use the power φLF of the lens component LF disposed closest to the image plane in the second group within the following range.

【0025】     φLF/φW <1.5          
                      ・・・
(1)ただし、φW は全系の広角端における屈折力(
パワー)である。
φLF/φW <1.5
...
(1) However, φW is the refractive power (
power).

【0026】この条件式(1)を外れると、このレンズ
成分LF のパワーが大きくなり、複数の枚数のレンズ
で構成する必要が生ずる。この結果として、レンズ系の
全長が大きくなるので望ましくない。フォーカシングレ
ンズ群全体のパワーを大きくすることなしに構成するた
めに、(1)式の値を適切に選択することができれば、
全体の収差補正面でも極めて有利になる。このレンズ成
分LF は、フォーカシング中に固定であるから、図4
に鏡筒断面を例示するように、フォーカシングユニット
と別に保持するようにレンズ保持枠を構成すれば、簡単
に実現し得る。ここで、図4の構成と作用を簡単に説明
しておく。
If conditional expression (1) is not satisfied, the power of this lens component LF becomes large, and it becomes necessary to construct the lens component with a plurality of lenses. As a result, the total length of the lens system increases, which is undesirable. If the value of equation (1) can be appropriately selected in order to configure the focusing lens group without increasing its power as a whole,
This is extremely advantageous in terms of overall aberration correction. Since this lens component LF is fixed during focusing, FIG.
This can be easily achieved by configuring the lens holding frame to be held separately from the focusing unit, as shown in the cross section of the lens barrel. Here, the configuration and operation of FIG. 4 will be briefly explained.

【0027】第1群の各レンズ14は、レンズ保持枠1
に固定されている。第2群のレンズ成分LF を除く各
レンズ15は、レンズ保持枠4に固定されている。さら
に、第3群の各レンズ16も同様にレンズ保持枠7に固
定されている。第2群のレンズ成分LF は、レンズ保
持枠Aに固定されている。レンズ保持枠1は移動枠10
に固定される。移動枠10にはピン3、レンズ保持枠A
にはピン6、レンズ保持枠7にはピン9が、それぞれ植
立されている。固定枠11には、光軸方向の長孔が設け
られていて、各ピン3、6、9がその中を軸方向に摺動
自在になっている。カム環(ズーム環)12には、ズー
ム用カム溝が設けられていて、カム環12を軸のまわり
に回動させることにより、各ピン3、6、9が動き、そ
れに応じて各群がズーム軌跡を描いて動くことにより、
ズーミングが行われる。
Each lens 14 of the first group is attached to the lens holding frame 1.
Fixed. Each lens 15 except for the lens component LF of the second group is fixed to the lens holding frame 4. Furthermore, each lens 16 of the third group is similarly fixed to the lens holding frame 7. The second group lens component LF is fixed to the lens holding frame A. The lens holding frame 1 is a moving frame 10
Fixed. The moving frame 10 has a pin 3 and a lens holding frame A.
A pin 6 is installed in the lens holding frame 7, and a pin 9 is installed in the lens holding frame 7, respectively. The fixed frame 11 is provided with a long hole in the optical axis direction, and each pin 3, 6, and 9 is slidable in the axial direction. The cam ring (zoom ring) 12 is provided with a zoom cam groove, and by rotating the cam ring 12 around its axis, each pin 3, 6, and 9 moves, and each group changes accordingly. By moving in a zoom trajectory,
Zooming is performed.

【0028】ところで、レンズ保持枠Aにはフォーカシ
ングロッド13が取り付けられていて、フォーカシング
ロッド13はレンズ保持枠4に設けられた孔に嵌入して
いる。フォーカシングロッド13周囲に巻き付けられた
バネ17により、レンズ保持枠4をレンズ保持枠Aに押
し当てており、ズーミングの際には、両者が一緒に動く
ようになっている。
By the way, a focusing rod 13 is attached to the lens holding frame A, and the focusing rod 13 is fitted into a hole provided in the lens holding frame 4. A spring 17 wound around the focusing rod 13 presses the lens holding frame 4 against the lens holding frame A, so that both move together during zooming.

【0029】フォーカシングの際には、図示しないフォ
ーカス部材がフォーカス用モータにより動かされて、レ
ンズ保持枠4を左方へ押し、レンズ保持枠4だけがレン
ズ成分LF とは独立にフォーカシングロッド13に沿
って繰り出され、フォーカシングが行われる。バネ17
があるので、押すのを止めれば、レンズ保持枠4は自然
に右方へ戻るので、自由に前後動ができるところで、物
体側より順に、正屈折力の第1レンズ群、正屈折力又は
負屈折力の第2レンズ群、正屈折力の第3レンズ群及び
負屈折力の第4レンズ群で構成された4群ズームレンズ
においても、レンズ群間隔変化に対する像面への影響は
、基本的に上記3群ズームレンズと同様の光学的性質を
有しており、上記のレンズ成分LF と同様のレンズ成
分に対して同様な方法が適用可能である。
During focusing, the focusing member (not shown) is moved by the focusing motor and pushes the lens holding frame 4 to the left, so that only the lens holding frame 4 moves along the focusing rod 13 independently of the lens component LF. The lens is extended and focusing is performed. spring 17
If you stop pushing it, the lens holding frame 4 will naturally return to the right, so that it can move freely back and forth. From the object side, the first lens group with positive refractive power, the first lens group with positive refractive power, or negative refractive power. Even in a four-group zoom lens consisting of a second lens group with refractive power, a third lens group with positive refractive power, and a fourth lens group with negative refractive power, the effect on the image plane due to the change in the distance between the lens groups is basically It has the same optical properties as the above-mentioned three-group zoom lens, and the same method can be applied to the same lens component as the above-mentioned lens component LF.

【0030】このことを示すために、まず、図5に正屈
折力の第1レンズ群(パワーはφ1 )、負屈折力の第
2レンズ群(パワーはφ2 )、正屈折力の第3レンズ
群(パワーはφ1 )、及び、負屈折力の第4レンズ群
(パワーはφ4 )からなる4群ズームレンズを、また
、図6に正屈折力の第1レンズ群(パワーはφ1 )、
正屈折力の第2レンズ群(パワーはφ2 )、正屈折力
の第3レンズ群(パワーはφ1 )、及び、負屈折力の
第4レンズ群(パワーはφ4 )からなる4群ズームレ
ンズのパワー配置を示す。フォーカシングは、フォーカ
シングレンズ群をなす第3群の最も像面側に、パワーが
比較的に小さいレンズ成分LF (パワーはφLF)を
設け、フォーカシング中にはこれを固定とし、第3群の
残りのレンズ群と第2群を一体に移動することによって
、同様にフローティングの効果を得る。
In order to show this, first, FIG. 5 shows the first lens group with positive refractive power (power is φ1), the second lens group with negative refractive power (power is φ2), and the third lens group with positive refractive power. A four-group zoom lens consisting of a lens group (power is φ1), and a fourth lens group with negative refractive power (power is φ4), and a first lens group with positive refractive power (power is φ1),
A four-group zoom lens consisting of a second lens group with positive refractive power (power is φ2), a third lens group with positive refractive power (power is φ1), and a fourth lens group with negative refractive power (power is φ4). Showing power arrangement. Focusing is performed by providing a lens component LF (power is φLF) with relatively small power on the closest to the image plane side of the third group constituting the focusing lens group, and keeping this component fixed during focusing. A similar floating effect can be obtained by moving the lens group and the second group together.

【0031】このことを示すために、後記する変倍比4
.63の高変倍率ズームレンズの第2実施例について、
上記表−1から表−3と同様な収差係数を表す表−4か
ら表−6を示す。
In order to show this, the variable power ratio 4, which will be described later, will be described below.
.. Regarding the second example of the high variable power zoom lens No. 63,
Tables 4 to 6 showing aberration coefficients similar to Tables 1 to 3 above are shown.

【0032】                 表−4      
無限遠物点(∞)レンズ群        SA3  
      SA5        SA7     
   CMA3        CMA5    1 
         −0.04682   −0.00
671   −0.00112    0.04417
     0.01216    2        
   0.24511    0.04398    
0.00840   −0.09794    −0.
02170    3          −0.25
298   −0.01759    0.00057
    0.10612     0.02488  
  4           0.05368   −
0.01927   −0.00739   −0.0
4908    −0.01836 総    和  
    −0.00101    0.00040  
  0.00046    0.00327    −
0.00303 レンズ群        AST3 
      AST5       DIS3    
   DIS5    1          −0.
01074   −0.00012    0.020
40    0.00018    2       
    0.01932    0.00035   
−0.01654   −0.00016    3 
          0.00084    0.00
005   −0.01358    0.00001
   4          −0.00940   
−0.00012    0.01614   −0.
00003 総    和       0.0000
0    0.00016    0.00643  
 −0.00001           。
Table-4
Infinity object point (∞) lens group SA3
SA5 SA7
CMA3 CMA5 1
-0.04682 -0.00
671 -0.00112 0.04417
0.01216 2
0.24511 0.04398
0.00840 -0.09794 -0.
02170 3 -0.25
298 -0.01759 0.00057
0.10612 0.02488
4 0.05368 -
0.01927 -0.00739 -0.0
4908 -0.01836 Total sum
-0.00101 0.00040
0.00046 0.00327 −
0.00303 Lens group AST3
AST5 DIS3
DIS5 1 -0.
01074 -0.00012 0.020
40 0.00018 2
0.01932 0.00035
-0.01654 -0.00016 3
0.00084 0.00
005 -0.01358 0.00001
4 -0.00940
-0.00012 0.01614 -0.
00003 Total sum 0.0000
0 0.00016 0.00643
-0.00001.

【0033】                 表−5      
近距離物点(−0.5m)   従来のフォーカス方法
レンズ群        SA3        SA
5        SA7        CMA3 
       CMA5    1         
 −0.03080   −0.00323   −0
.00039    0.01211     0.0
0400    2           0.222
31    0.04147    0.00851 
  −0.06510    −0.01445   
 3          −0.23046   −0
.01451    0.00078    0.09
470     0.02065    4     
      0.03604   −0.01075 
  −0.00342   −0.03104    
−0.01387 総    和      −0.0
0291    0.01297    0.0054
8    0.01067    −0.00368 
レンズ群        AST3       AS
T5       DIS3       DIS5 
   1          −0.00358   
−0.00002    0.01217    0.
00009    2           0.01
239    0.00018   −0.01157
   −0.00010    3         
 −0.00167    0.00000   −0
.01034    0.00005    4   
       −0.00882   −0.0001
4    0.01415   −0.00007 総
    和      −0.00168    0.
00002    0.00440   −0.000
03           。
Table-5
Near-distance object point (-0.5m) Conventional focusing method lens group SA3 SA
5 SA7 CMA3
CMA5 1
-0.03080 -0.00323 -0
.. 00039 0.01211 0.0
0400 2 0.222
31 0.04147 0.00851
-0.06510 -0.01445
3 -0.23046 -0
.. 01451 0.00078 0.09
470 0.02065 4
0.03604 -0.01075
-0.00342 -0.03104
-0.01387 Total sum -0.0
0291 0.01297 0.0054
8 0.01067 -0.00368
Lens group AST3 AS
T5 DIS3 DIS5
1 -0.00358
-0.00002 0.01217 0.
00009 2 0.01
239 0.00018 -0.01157
-0.00010 3
-0.00167 0.00000 -0
.. 01034 0.00005 4
-0.00882 -0.0001
4 0.01415 -0.00007 Total sum -0.00168 0.
00002 0.00440 -0.000
03.

【0034】                 表−6      
近距離物点(−0.5m)   本発明フォーカス方法
レンズ群        SA3        SA
5        SA7        CMA3 
       CMA5    1         
 −0.03159   −0.00336   −0
.00041    0.01392     0.0
0440    2           0.222
81    0.04140    0.00846 
  −0.06560    −0.01453   
 3          −0.24356   −0
.01785    0.00011    0.10
232     0.02389    4     
      0.03658   −0.01094 
  −0.00332   −0.03169    
−0.01381 総    和      −0.0
1577    0.00925    0.0048
4    0.01894    −0.00005 
レンズ群        AST3       AS
T5       DIS3       DIS5 
  1          −0.00375   −
0.00002    0.01245    0.0
0009    2           0.012
51    0.00018   −0.01170 
  −0.00010    3          
−0.00194    0.00001   −0.
01045    0.00004    4    
      −0.00883   −0.00014
    0.01423   −0.00007 総 
   和      −0.00201    0.0
0003    0.00454   −0.0000
3           。
Table-6
Near-distance object point (-0.5m) Invention focusing method lens group SA3 SA
5 SA7 CMA3
CMA5 1
-0.03159 -0.00336 -0
.. 00041 0.01392 0.0
0440 2 0.222
81 0.04140 0.00846
-0.06560 -0.01453
3 -0.24356 -0
.. 01785 0.00011 0.10
232 0.02389 4
0.03658 -0.01094
-0.00332 -0.03169
-0.01381 Total sum -0.0
1577 0.00925 0.0048
4 0.01894 -0.00005
Lens group AST3 AS
T5 DIS3 DIS5
1 -0.00375 -
0.00002 0.01245 0.0
0009 2 0.012
51 0.00018 -0.01170
-0.00010 3
-0.00194 0.00001 -0.
01045 0.00004 4
-0.00883 -0.00014
0.01423 -0.00007 Total
Sum -0.00201 0.0
0003 0.00454 -0.0000
3.

【0035】これらの表は、本発明のフォーカシング方
法の効果を明確に示すものである。特に高次球面収差の
変動が抑止できる。すなわち、表−5、6においては、
表−1〜3の場合に比較してより高変倍ズームレンズな
ので、フォーカシング方法による差がより明確になる。 表−5では、高次球面収差が非常に大きく、収差図で示
すと、図7Aに示すように、収差カーブは右側へ大きく
倒れてしまう。表−6においては、全体のバランスがと
れており、図7Bに示す収差図にもそれが現れている。
These tables clearly demonstrate the effectiveness of the focusing method of the present invention. In particular, fluctuations in higher-order spherical aberration can be suppressed. That is, in Tables 5 and 6,
Compared to the cases in Tables 1 to 3, this is a zoom lens with a higher zoom ratio, so the difference due to the focusing method becomes clearer. In Table 5, the higher-order spherical aberration is very large, and when shown in an aberration diagram, the aberration curve tilts significantly to the right as shown in FIG. 7A. In Table 6, the overall balance is maintained, and this is also reflected in the aberration diagram shown in FIG. 7B.

【0036】そして、この場合、第2レンズ群と第3レ
ンズ群は、フォーカシング時には一体で移動することを
基本としており、第2−3群のズームカム機構を独立に
物体側に繰り出すことで、近距離物点に合焦させること
になる。したがって、第2−3群は、フォーカシングの
み一体化する別の機構によって実現し得る。また、フィ
ールドフラットナーの作用を有する固定レンズ成分LF
 は、第3群の最も像面側に配置され、フォーカシング
時は特定の位置に固定され移動はしない。一方で、ズー
ミング時には、第3レンズ群の一部として、第3レンズ
群の残りの構成レンズ成分と共に移動することになる。 なお、前記条件式(1)はこの4群ズームレンズにも適
用されるものである。
In this case, the second lens group and the third lens group basically move together during focusing, and by independently extending the zoom cam mechanism of the second and third groups toward the object side, This will focus on the distance object point. Therefore, the second and third groups can be realized by another mechanism that integrates only focusing. In addition, the fixed lens component LF, which has a field flattening effect,
is disposed closest to the image plane side of the third group, and is fixed at a specific position and does not move during focusing. On the other hand, during zooming, the lens moves as part of the third lens group together with the remaining lens components of the third lens group. Note that the above conditional expression (1) is also applied to this four-group zoom lens.

【0037】一方、収差補正面では、上記レンズ成分L
F に像面の平坦性を補正する作用があるため、特定の
焦点位置に限らずレンズ成分LF の前までで像面湾曲
がある程度大きく発生するような収差バランスであって
も、このレンズ成分LF により像面平坦性を得ること
が可能であり、収差補正上の負担が少なくてすむことに
なる。 この点は大きなメリットとなり、従来、遠方の物点に対
しては性能がよく、近距離物点になると性能劣化が顕著
であったズームレンズの欠点を改善するという点で、大
きな意味を持っている。特に、一眼レフレックスカメラ
以外の用途の光学系では、光学性能面では妥協される傾
向にあったが、本発明によると、設計面で大きな改善を
行い、性能面の余裕を与えることで、製品化時に満足の
得られる画質を提供することが可能である。
On the other hand, on the aberration correction surface, the lens component L
Since F has the effect of correcting the flatness of the image plane, even if the aberration balance is such that the field curvature is large to some extent not only at a specific focal position but up to the front of the lens component LF, this lens component LF Therefore, it is possible to obtain image plane flatness, and the burden of aberration correction can be reduced. This point is a big advantage, and it has great significance in that it improves the drawbacks of conventional zoom lenses, which had good performance for distant objects but had a noticeable performance deterioration when it came to close objects. There is. In particular, optical systems for applications other than single-lens reflex cameras have tended to be compromised in terms of optical performance. However, according to the present invention, by making major improvements in design and providing leeway in terms of performance, the product can be improved. It is possible to provide satisfactory image quality during image processing.

【0038】また、本発明のフォーカシング方法を適用
したズームレンズは、以下の近軸的条件式を満足するこ
とが望ましい。
Further, it is desirable that a zoom lens to which the focusing method of the present invention is applied satisfies the following paraxial conditional expression.

【0039】3群ズームレンズについては、    0
.4<φ1 /φW <1.25          
            ・・・(2)    1.1
<φ12/φW <3.0             
           ・・・(3)    1.5<
β3T/β3W<4.0              
          ・・・(4)ただし、φ1 は、
第1レンズ群の屈折力φW は、広角端での全系の屈折
力 φ12は、広角端での第1、第2レンズ群の合成屈折力
β3Wは、広角端での第3レンズ群の近軸横倍率β3T
は、望遠端での第3レンズ群の近軸横倍率である。
Regarding the 3-group zoom lens, 0
.. 4<φ1/φW<1.25
...(2) 1.1
<φ12/φW <3.0
...(3) 1.5<
β3T/β3W<4.0
...(4) However, φ1 is
The refractive power φW of the first lens group is the refractive power φ12 of the entire system at the wide-angle end, and the composite refractive power β3W of the first and second lens groups at the wide-angle end is the near-refractive power of the third lens group at the wide-angle end. Axial horizontal magnification β3T
is the paraxial lateral magnification of the third lens group at the telephoto end.

【0040】また、4群ズームレンズについては、上記
の(3)式のφ12は、以下の関係で表現することによ
り、同様の関係として考えることができる。
Regarding the four-group zoom lens, φ12 in the above equation (3) can be considered as a similar relationship by expressing it as the following relationship.

【0041】 φ2 =Φ2 +Φ3 −e’23Φ2Φ3 φ12=
φ1 +φ2 −e’12φ1 φ2 ここで、Φ2 
、Φ3 は、便宜上、それぞれ4群ズームレンズの第2
群と第3群のパワー、e’23はそれらの間の間隔とし
、φ2 はこの第2群と第3群の合成パワーである。ま
た、e’12は、第1レンズ群と上記により合成された
群との間の間隔である。
[0041] φ2 = φ2 + φ3 −e'23 φ2 φ3 φ12=
φ1 +φ2 −e'12φ1 φ2 Here, φ2
, Φ3 are respectively the second of the four-group zoom lens for convenience.
The power of the group and the third group, e'23 is the interval between them, and φ2 is the combined power of the second group and the third group. Further, e'12 is the distance between the first lens group and the group synthesized above.

【0042】ただし、4群ズームレンズでは、3群ズー
ムレンズの第2群に相当する第2群と第3群の間のレン
ズ群間隔が可変となっていることに留意する必要がる。 この関係から、4群ズームレンズでは、望遠端ではレン
ズ系全長がより短く構成し得るのである。
However, it should be noted that in the four-group zoom lens, the distance between the second and third groups, which corresponds to the second group of the three-group zoom lens, is variable. Because of this relationship, a four-group zoom lens can be configured to have a shorter overall lens system length at the telephoto end.

【0043】上記(2)式は、第1レンズ群のパワーを
規定するもので、変倍比が小さい場合は、特にこの値は
大きくし得る。また、こうした条件下では、第1レンズ
群を特殊低分散ガラス材料からなる単レンズで構成する
ことにも可能である。条件式(2)の下限を越えると、
広角側での倍率色収差に難点を残すこととなる。また、
上限を越えると、第1レンズ群の変倍時の移動量が増大
するので、望遠端でのレンズ系全長が長くなり好ましく
ない。また、第1レンズ群と第3レンズ群の変倍時の移
動量を同じくしてレンズ枠構成を簡単化するような光学
系設計に制約が生ずることにもなる。
The above equation (2) defines the power of the first lens group, and this value can be particularly large when the variable power ratio is small. Further, under such conditions, it is also possible to configure the first lens group with a single lens made of a special low dispersion glass material. If the lower limit of conditional expression (2) is exceeded,
This leaves a problem with chromatic aberration of magnification at the wide-angle end. Also,
If the upper limit is exceeded, the amount of movement of the first lens group during zooming increases, which is undesirable because the overall length of the lens system at the telephoto end becomes longer. Further, there are restrictions on optical system design such as simplifying the lens frame configuration by making the first lens group and the third lens group have the same amount of movement during zooming.

【0044】上記(3)式により、第1レンズ群と第2
レンズ群の合成パワーを規定しており、カメラの大きさ
を決定する広角端でのレンズ系全長に関係するものであ
る。このタイプの光学系の全長短縮には、第2レンズ群
のサイズに依存するところが大きく、第1レンズ群のパ
ワーが(2)式の範囲で決定された後に、(3)式によ
り第2レンズ群のパワーと第1、第2レンズ群間の主点
間隔が決定される。この条件式(3)の下限値を越える
と収差補正面で難が生じ、小型化の目的に対して構成レ
ンズ枚数や新素材等の使用が必然的となるため、望まし
くない。また、収差補正上有利になる上限値を越えると
、変倍時の移動量とレンズ系全長が大きくなり、小型化
する本発明の主旨から逸脱することになる。
According to the above equation (3), the first lens group and the second lens group
It defines the combined power of the lens group and is related to the total length of the lens system at the wide-angle end, which determines the size of the camera. Shortening the total length of this type of optical system largely depends on the size of the second lens group. After the power of the first lens group is determined within the range of equation (2), the power of the second lens group is determined using equation (3). The power of the group and the principal point spacing between the first and second lens groups are determined. Exceeding the lower limit of conditional expression (3) is undesirable because it causes difficulties in correcting aberrations and necessitates increasing the number of constituent lenses and using new materials for the purpose of miniaturization. Furthermore, if the upper limit value, which is advantageous for correcting aberrations, is exceeded, the amount of movement during zooming and the overall length of the lens system will increase, which deviates from the purpose of the present invention, which is miniaturization.

【0045】上記(4)式は、本発明を適用する光学系
に特徴的な第3レンズ群(4群ズームレンズでは、第4
レンズ群)の変倍時の倍率負担について、望遠端と広角
端での値の比として制限した式である。この下限値より
も大きく下回る場合には、本発明のズームレンズタイプ
より構成が簡単なズーム方式による方がむしろ適してい
る(ただし、超広角を広角端とする場合は、必ずしもこ
のようには言えない。)。また、上限値を越えると、機
構構成上から、製造誤差感度が機械加工精度を越えるレ
ベルとなることが考えられ、口径比も小さくなり、レン
ズ系としての実用性を配慮した結果、与えられた制限で
ある。
Equation (4) above is based on the third lens group (in the case of a four-group zoom lens, the fourth lens group), which is characteristic of the optical system to which the present invention is applied.
This is a formula that limits the magnification load when changing the magnification of the lens group (lens group) as the ratio of the values at the telephoto end and the wide-angle end. If the value is significantly below this lower limit, a zoom system with a simpler configuration is more suitable than the zoom lens type of the present invention (however, this may not necessarily be true if the ultra-wide angle is used as the wide-angle end). do not have.). In addition, if the upper limit is exceeded, the manufacturing error sensitivity may exceed the machining accuracy due to the mechanism configuration, and the aperture ratio will become smaller.As a result of considering the practicality of the lens system, It is a restriction.

【0046】[0046]

【実施例】次に、本発明の第1〜6実施例について説明
する。各実施例のレンズデータは後記するが、第1実施
例は、焦点距離が39mm〜148mmの光学系であり
、このクラスではかなりの高変倍率ズームレンズに属す
るものである。そのため、変倍時の収差変動ばかりでな
く、フォーカシング時の収差変動が小さく抑えられてい
ないと、製品化しても性能面での不満足に結び付き、市
場で受け入れられないことになる。図8に広角端と望遠
端のレンズ断面図を示すように、レンズ群I〜III 
からなる3群ズームレンズであり、第2レンズ群中の最
も像面側に位置するレンズ成分LF が、フォーカシン
グ時の収差変動を抑える目的で配置されており、第2レ
ンス群IIの中のレンズ成分LF 以外のレンズ成分を
フォーカシング時に繰り出すことにより、近距離物点へ
合焦することができる。この時のレンズ成分LF の焦
点距離fLFは、fLF≒∞、つまり、このレンズ成分
LF はほぼパワーレスのレンズ成分であることがわか
る。広角端、中間焦点距離及び望遠端において、無限遠
物点時及び近距離−2.0mでの球面収差、非点収差、
倍率色収差及び歪曲収差を各々対比して図14に示す。
[Embodiments] Next, first to sixth embodiments of the present invention will be described. Lens data for each example will be described later, but the first example is an optical system with a focal length of 39 mm to 148 mm, and belongs to a fairly high variable power zoom lens in this class. Therefore, if not only the aberration fluctuations during zooming but also the aberration fluctuations during focusing are not kept small, even if the product is commercialized, it will lead to unsatisfactory performance and will not be accepted in the market. As shown in FIG. 8, which shows lens cross-sectional views at the wide-angle end and the telephoto end, lens groups I to III
It is a three-group zoom lens consisting of a lens component LF, which is located closest to the image plane in the second lens group, and is arranged to suppress aberration fluctuations during focusing, and a lens component LF in the second lens group II. By extending the lens components other than the component LF during focusing, it is possible to focus on a short distance object point. It can be seen that the focal length fLF of the lens component LF at this time is fLF≈∞, that is, this lens component LF is a substantially powerless lens component. At the wide-angle end, intermediate focal length, and telephoto end, spherical aberration, astigmatism, at infinity object point and at close distance -2.0 m,
FIG. 14 shows a comparison of lateral chromatic aberration and distortion.

【0047】さて、この第1実施例に戻ると、広角端で
のレンズ系全長(第1面からフィルム面までの距離)が
約82mm弱であり、望遠端での球面収差が近距離で若
干ではあるがその輪帯で大きくなっているものの、非点
収差の変動がこれと同様であることにより、光学性能は
安定して良好である。
Now, returning to the first example, the total length of the lens system at the wide-angle end (distance from the first surface to the film surface) is just under 82 mm, and the spherical aberration at the telephoto end is slightly smaller at close distances. However, although the astigmatism is large in the annular zone, the fluctuation of astigmatism is similar to this, so the optical performance is stable and good.

【0048】また、第3レンズ群中には樹脂による非球
面の使用を行っており、像面湾曲の補正に大きな効果を
得ている。なお、非球面を第2レンズ群中に用いると、
球面収差の補正に効果を得ることができることは明らか
である。
Furthermore, an aspherical surface made of resin is used in the third lens group, and this has a great effect in correcting field curvature. Note that if an aspherical surface is used in the second lens group,
It is clear that this can be effective in correcting spherical aberration.

【0049】第2実施例は、焦点距離38mm〜176
mmのレンズ群I〜IVからなる4群ズームレンズ光学
系であり、変倍比を若干上げて望遠端での口径比を小さ
くするようにしたものである。レンズ系の構成は、第1
実施例とほぼ同様である。図9にレンズ断面図を示し、
図15に無限遠物点と−2.0m近距離物点に対応する
図14と同様の収差図を示す。フォーカシングについて
は、図5に示す方法で行う。この時のfLF=−199
8.96である。収差図から明らかなように、収差変動
は小さく抑えられている。特に望遠端での近距離はバラ
ンスが良好であり、高倍率撮影に有効である。
The second embodiment has a focal length of 38 mm to 176 mm.
This is a four-group zoom lens optical system consisting of lens groups I to IV of mm, and the variable power ratio is slightly increased to reduce the aperture ratio at the telephoto end. The configuration of the lens system is
This is almost the same as the example. A cross-sectional view of the lens is shown in FIG.
FIG. 15 shows an aberration diagram similar to FIG. 14 corresponding to an object point at infinity and an object point at a short distance of -2.0 m. Focusing is performed by the method shown in FIG. fLF at this time = -199
It is 8.96. As is clear from the aberration diagram, aberration fluctuations are kept small. In particular, it has good balance at short distances at the telephoto end, making it effective for high-magnification photography.

【0050】第3実施例は、焦点距離が38.0mm〜
150mmのレンズ群I〜IVからなる4群ズームレン
ズ光学系であり、通常の撮影を満たす範囲で高性能化と
汎用性を備えたズームレンズを意図したものである。図
10にレンズ断面図を、図16に収差図を示す。レンズ
系の構成は、ほぼ前記実施例と同様である。収差図から
、何れの焦点域でも近距離であっても、光学性能が安定
して実用化レベルにあることがわかる。本実施例の特徴
は、望遠端における口径比が大きくなっていることであ
る。
In the third embodiment, the focal length is 38.0 mm or more.
This is a four-group zoom lens optical system consisting of 150 mm lens groups I to IV, and is intended to be a zoom lens with high performance and versatility within the range that satisfies normal photography. FIG. 10 shows a cross-sectional view of the lens, and FIG. 16 shows an aberration diagram. The configuration of the lens system is almost the same as in the previous embodiment. From the aberration diagram, it can be seen that the optical performance is stable and at a practical level in any focal range and at short distances. A feature of this embodiment is that the aperture ratio at the telephoto end is large.

【0051】第4実施例では、焦点距離が36.2mm
〜131mmのレンズ群I〜III からなる3群ズー
ムレンズ光学系であり、変倍比を小さくしたことで、変
倍域で安定した性能を得ることができる。図11にレン
ズ断面図を、図17に収差図を示す。この時、レンズ成
分LF の焦点距離は、fLF=−5459.76であ
る。
In the fourth embodiment, the focal length is 36.2 mm.
It is a three-group zoom lens optical system consisting of lens groups I to III of ~131 mm, and by reducing the variable power ratio, it is possible to obtain stable performance in the variable power range. FIG. 11 shows a cross-sectional view of the lens, and FIG. 17 shows an aberration diagram. At this time, the focal length of the lens component LF is fLF=-5459.76.

【0052】第5実施例では、焦点距離が29.2mm
〜54mmのレンズ群I〜IVからなる4群ズームレン
ズ光学系であり、広角端の画角が広く、この焦点距離で
の倍率色収差補正に難点が生ずることがあり、そのため
、本実施例では図12に示す構成をとり、非球面の有効
利用をすることで、高性能化を狙っている。この例も4
群ズームレンズであり、第7面(第2レンズ群II中)
と第18面(第4レンズ群IV中)に非球面を採用して
いる。 この時のfLF=77.294であり、これまでの実施
例と比較してよりパワーが大きく、収差補正面で各焦点
位置での補正作用も担っている。図18に収差図を示す
ように、各焦点距離と近距離での収差バランスが良好で
あり、収差変動は極めて小さいことがわかる。
In the fifth embodiment, the focal length is 29.2 mm.
This is a 4-group zoom lens optical system consisting of ~54mm lens groups I to IV, and the angle of view at the wide-angle end is wide, which may cause difficulties in correcting lateral chromatic aberration at this focal length. The aim is to achieve high performance by adopting the configuration shown in Figure 12 and making effective use of the aspherical surface. This example is also 4
It is a group zoom lens, and the seventh surface (in the second lens group II)
The 18th surface (in the fourth lens group IV) is an aspherical surface. At this time, fLF=77.294, and the power is larger than that of the previous embodiments, and the aberration correction surface also plays a correction function at each focal position. As shown in the aberration diagram in FIG. 18, it can be seen that the aberration balance at each focal length and short distance is good, and the aberration fluctuations are extremely small.

【0053】第6実施例は、焦点距離36mm〜131
.5mmの光学系をレンズ群I〜IVからなる4群ズー
ムレンズで構成した例であり、第2レンズ群IIと第3
レンズ群III 間の間隔の変倍時の変化量が小さいこ
とから、収差補正面でこの点が寄与しており、容易に3
群ズームレンズに構成できると推察できるように、基本
的には、同様の効果が得られることがわかる。ここで、
図13にレンズ断面図を、図19に収差図を示す。
The sixth embodiment has a focal length of 36 mm to 131 mm.
.. This is an example in which a 5mm optical system is configured with a four-group zoom lens consisting of lens groups I to IV, with the second lens group II and the third lens group
Since the amount of change in the distance between lens group III during zooming is small, this contributes to aberration correction, and it is easy to
As can be inferred that it can be constructed as a group zoom lens, it can be seen that basically the same effect can be obtained. here,
FIG. 13 shows a cross-sectional view of the lens, and FIG. 19 shows an aberration diagram.

【0054】次の、各実施例のレンズデータを示すが、
以下において、記号は、上記の外、fは全系の焦点距離
、FNOはFナンバー、ωは半画角、fB はバックフ
ォーカス、r1 、r2 …は各レンズ面の曲率半径、
d1 、d2 …は各レンズ面間の間隔、nd1、nd
2…は各レンズのd線の屈折率、νd1、νd2…は各
レンズのアッベ数であり、また、非球面形状は、光軸方
向をx、光軸に直交する方向をyとした時、次の式で表
される。
The lens data of each example is shown below.
In the following, the symbols are as follows: f is the focal length of the entire system, FNO is the F number, ω is the half angle of view, fB is the back focus, r1, r2... are the radius of curvature of each lens surface,
d1, d2... are the distances between each lens surface, nd1, nd
2... is the d-line refractive index of each lens, νd1, νd2... are the Abbe numbers of each lens, and the aspherical shape is as follows: When the optical axis direction is x and the direction orthogonal to the optical axis is y, It is expressed by the following formula.

【0055】x=(y2/r)/[1+{1−P( y
2/r2)}1/2 ] +A4y4 +A6y6 +A8y8 +A10 y1
0ただし、rは近軸曲率半径、Pは円錐係数、A4、A
6、A8は非球面係数である。
x=(y2/r)/[1+{1-P(y
2/r2)}1/2 ] +A4y4 +A6y6 +A8y8 +A10 y1
0 However, r is the paraxial radius of curvature, P is the conic coefficient, A4, A
6. A8 is the aspheric coefficient.

【0056】 第1実施例           f  =  39.0〜  80
.9〜 148.5          FNO=  
4.58〜  6.20〜  8.68       
   ω  =  28.9〜  14.9〜   8
.3°          fB =  9.68〜 
40.53〜 91.44r1 =   −316.3
761         d1 = 1.3400  
  nd1 =1.83400 νd1 =37.16
 r2 =     37.7799        
 d2 = 0.8432  r3 =     55
.0945         d3 = 3.1600
    nd2 =1.61405 νd2 =54.
95 r4 =   −586.4745      
   d4 = 0.1847  r5 =     
29.8948         d5 = 4.90
00    nd3 =1.53996 νd3 =5
9.57 r6 =   −115.6637    
     d6 =(可変)   r7 =    −
37.4745         d7 = 1.18
00    nd4 =1.78590 νd4 =4
4.18 r8 =     21.1223    
     d8 = 0.9701  r9 =   
  36.2884         d9 = 2.
6500    nd5 =1.78472 νd5 
=25.71 r10=    −45.5730  
       d10= 2.3180  r11= 
   −22.6975         d11= 
1.3000    nd6 =1.63854 νd
6 =55.38 r12=    −27.7381
         d12= 4.0650  r13
=     ∞.(絞り)       d13= 4
.0859  r14=   −182.3473  
       d14= 2.0800    nd7
 =1.68893 νd7 =31.08 r15=
   −194.6074         d15=
 0.4088  r16=    100.1782
         d16= 2.3800    n
d8 =1.54739 νd8 =53.55 r1
7=    −36.4417         d1
7= 1.3474  r18=    112.24
52         d18= 1.2900   
 nd9 =1.78472 νd9 =25.71 
r19=     19.0879         
d19= 4.2650    nd10=1.583
13 νd10=59.36 r20=    −28
.1382         d20= 1.6500
  r21=    −20.0777       
  d21= 1.7100    nd11=1.7
2600 νd11=53.56 r22=    −
20.7925         d22=(可変) 
  r23=    −42.0853       
  d23= 3.1200    nd12=1.8
4666 νd12=23.78 r24=    −
22.8307         d24= 2.32
87  r25=    −18.1063(非球面)
 d25= 0.8600    nd13=1.51
742 νd13=52.41 r26=    −1
8.2961         d26= 1.500
0    nd14=1.77250 νd14=49
.66 r27=     89.0676  非球面
係数 第25面 P    =1 A4  = 0.15094×10−4A6  = 0
.36466×10−7A8  =−0.40180×
10−10 A10 = 0.56431×10−12
         。
First Example f = 39.0 to 80
.. 9~148.5 FNO=
4.58~6.20~8.68
ω = 28.9~14.9~8
.. 3° fB = 9.68~
40.53~91.44r1 = -316.3
761 d1 = 1.3400
nd1 = 1.83400 νd1 = 37.16
r2 = 37.7799
d2 = 0.8432 r3 = 55
.. 0945 d3 = 3.1600
nd2 =1.61405 νd2 =54.
95 r4 = -586.4745
d4 = 0.1847 r5 =
29.8948 d5 = 4.90
00 nd3 =1.53996 νd3 =5
9.57 r6 = -115.6637
d6 = (variable) r7 = −
37.4745 d7 = 1.18
00 nd4 =1.78590 νd4 =4
4.18 r8 = 21.1223
d8 = 0.9701 r9 =
36.2884 d9 = 2.
6500 nd5 = 1.78472 νd5
=25.71 r10= -45.5730
d10= 2.3180 r11=
−22.6975 d11=
1.3000 nd6 = 1.63854 νd
6 =55.38 r12= -27.7381
d12= 4.0650 r13
= ∞. (Aperture) d13= 4
.. 0859 r14=-182.3473
d14= 2.0800 nd7
=1.68893 νd7 =31.08 r15=
-194.6074 d15=
0.4088 r16= 100.1782
d16=2.3800n
d8 =1.54739 νd8 =53.55 r1
7=-36.4417 d1
7= 1.3474 r18= 112.24
52 d18= 1.2900
nd9 =1.78472 νd9 =25.71
r19= 19.0879
d19=4.2650 nd10=1.583
13 νd10=59.36 r20=-28
.. 1382 d20= 1.6500
r21=-20.0777
d21=1.7100 nd11=1.7
2600 νd11=53.56 r22= −
20.7925 d22=(variable)
r23=-42.0853
d23=3.1200 nd12=1.8
4666 νd12=23.78 r24= −
22.8307 d24= 2.32
87 r25= -18.1063 (aspherical surface)
d25=0.8600 nd13=1.51
742 νd13=52.41 r26= -1
8.2961 d26= 1.500
0 nd14=1.77250 νd14=49
.. 66 r27= 89.0676 Aspheric coefficient 25th surface P = 1 A4 = 0.15094×10-4A6 = 0
.. 36466×10-7A8 =-0.40180×
10-10 A10 = 0.56431×10-12
.

【0057】 第2実施例           f  =  38.0〜  82
.8〜 176.0          FNO=  
4.62〜  7.53〜 11.15       
   ω  =  29.6〜  14.6〜   6
.9°          fB =  6.18〜 
38.03〜106.05r1 =  −8204.4
298         d1 = 1.4500  
  nd1 =1.83400 νd1 =37.16
 r2 =     32.1497        
 d2 = 0.8500  r3 =     47
.5851         d3 = 3.2000
    nd2 =1.61405 νd2 =54.
95 r4 =  −1942.9777      
   d4 = 0.2150  r5 =     
26.3265         d5 = 5.00
00    nd3 =1.53996 νd3 =5
9.57 r6 =   −200.2508    
     d6 =(可変)   r7 =    −
39.1402         d7 = 1.30
00    nd4 =1.78590 νd4 =4
4.18 r8 =     20.1050    
     d8 = 0.6478  r9 =   
  33.8748         d9 = 2.
6500    nd5 =1.78472 νd5 
=25.68 r10=    −38.3830  
       d10= 1.2259  r11= 
   −29.0561         d11= 
1.3000    nd6 =1.61405 νd
6 =54.95 r12=    −36.4855
         d12=(可変)   r13= 
    ∞.(絞り)       d13= 4.0
000  r14=    −92.6144    
     d14= 2.1000    nd7 =
1.68893 νd7 =31.08 r15=  
 −322.7288         d15= 0
.3250  r16=     88.7094  
       d16= 2.2000    nd8
 =1.54739 νd8 =53.55 r17=
    −33.9960         d17=
 0.5862  r18=    209.5506
         d18= 1.3000    n
d9 =1.78472 νd9 =25.71 r1
9=     21.0222         d1
9= 4.0000    nd10=1.58913
 νd10=60.97 r20=    −25.0
062         d20= 1.0000  
r21=    −19.2691         
d21= 1.7000    nd11=1.741
00 νd11=52.68 r22=    −20
.2562         d22=(可変)   
r23=    −36.6191         
d23= 3.1500    nd12=1.846
66 νd12=23.78 r24=    −21
.2860         d24= 2.7816
  r25=    −16.1349(非球面) d
25= 0.1000    nd13=1.5174
2 νd13=52.41 r26=    −16.
8308         d26= 1.5000 
   nd14=1.77250 νd14=49.6
6 r27=     177.9701  非球面係
数 第25面 P  =1 A4    = 0.25779×10−4A6  =
 0.78006×10−7A8  =−0.1503
3×10−9A10 = 0.17915×10−11
         。
Second Example f = 38.0 to 82
.. 8~176.0 FNO=
4.62~ 7.53~ 11.15
ω = 29.6~14.6~6
.. 9° fB = 6.18~
38.03~106.05r1 = -8204.4
298 d1 = 1.4500
nd1 = 1.83400 νd1 = 37.16
r2 = 32.1497
d2 = 0.8500 r3 = 47
.. 5851 d3 = 3.2000
nd2 =1.61405 νd2 =54.
95 r4 = -1942.9777
d4 = 0.2150 r5 =
26.3265 d5 = 5.00
00 nd3 =1.53996 νd3 =5
9.57 r6 = -200.2508
d6 = (variable) r7 = −
39.1402 d7 = 1.30
00 nd4 =1.78590 νd4 =4
4.18 r8 = 20.1050
d8 = 0.6478 r9 =
33.8748 d9 = 2.
6500 nd5 = 1.78472 νd5
=25.68 r10= -38.3830
d10= 1.2259 r11=
−29.0561 d11=
1.3000 nd6 = 1.61405 νd
6 =54.95 r12= -36.4855
d12=(variable) r13=
∞. (Aperture) d13= 4.0
000 r14=-92.6144
d14= 2.1000 nd7=
1.68893 νd7 =31.08 r15=
-322.7288 d15= 0
.. 3250 r16= 88.7094
d16= 2.2000 nd8
=1.54739 νd8 =53.55 r17=
-33.9960 d17=
0.5862 r18= 209.5506
d18= 1.3000n
d9 =1.78472 νd9 =25.71 r1
9 = 21.0222 d1
9=4.0000 nd10=1.58913
νd10=60.97 r20=-25.0
062 d20= 1.0000
r21=-19.2691
d21=1.7000 nd11=1.741
00 νd11=52.68 r22=-20
.. 2562 d22=(variable)
r23=-36.6191
d23=3.1500 nd12=1.846
66 νd12=23.78 r24= -21
.. 2860 d24= 2.7816
r25= -16.1349 (aspherical surface) d
25=0.1000 nd13=1.5174
2 νd13=52.41 r26= -16.
8308 d26= 1.5000
nd14=1.77250 νd14=49.6
6 r27= 177.9701 Aspheric coefficient 25th surface P = 1 A4 = 0.25779×10-4A6 =
0.78006×10-7A8 =-0.1503
3×10-9A10 = 0.17915×10-11
.

【0058】第3実施例 f  =  38.0〜  81.5〜 150.0F
NO=  4.62〜  6.24〜  8.81ω 
 =  29.6〜  14.9〜   8.2°fB
 =  9.46〜 41.78〜 93.55r1 
=   −531.9150         d1 
= 1.4500    nd1 =1.83400 
νd1 =37.16r2 =     36.758
1         d2 = 0.8500  r3
 =     54.0975         d3
 = 3.2000    nd2 =1.61405
 νd2 =54.95 r4 =   −710.7
728         d4 = 0.2150  
r5 =     28.8796         
d5 = 5.0000    nd3 =1.539
96 νd3 =59.57 r6 =   −126
.5198         d6 =(可変)   
r7 =    −35.3558         
d7 = 1.3000    nd4 =1.785
90 νd4 =44.18 r8 =     20
.9761         d8 = 1.0031
  r9 =     40.6555       
  d9 = 2.6500    nd5 =1.7
8472 νd5 =25.71 r10=    −
41.9853         d10= 2.21
55  r11=    −23.5923     
    d11= 1.3000    nd6 =1
.63854 νd6 =55.38 r12=   
 −27.9570         d12=(可変
)   r13=     ∞.(絞り)      
 d13= 4.0000  r14=   −167
.5276         d14= 2.1000
    nd7 =1.68893 νd7 =31.
08 r15=   −192.1174      
   d15= 0.3250  r16=    1
44.5763         d16= 2.20
00    nd8 =1.54739 νd8 =5
3.55 r17=    −35.1160    
     d17= 1.3859  r18=   
  99.6476         d18= 1.
3000    nd9 =1.78472 νd9 
=25.71 r19=     19.5849  
       d19= 4.0000    nd1
0=1.58313 νd10=59.36 r20=
    −26.8188         d20=
 1.0000  r21=    −20.3106
         d21= 1.7000    n
d11=1.74100 νd11=52.68 r2
2=    −20.9455         d2
2=(可変)   r23=    −39.8644
         d23= 3.1500    n
d12=1.84666 νd12=23.78 r2
4=    −22.9355         d2
4= 2.3185  r25=    −18.82
12(非球面) d25= 0.8500    nd
13=1.51742 νd13=52.41 r26
=    −19.0277         d26
= 1.5000    nd14=1.77250 
νd14=49.66 r27=     85.36
32  非球面係数 第25面 P  =1 A4    = 0.12231×10−4A6  =
 0.29324×10−7A8  =−0.9160
2×10−10 A10 = 0.62671×10−
12         。
Third embodiment f = 38.0~81.5~150.0F
NO=4.62~6.24~8.81ω
= 29.6~14.9~8.2°fB
= 9.46~41.78~93.55r1
= -531.9150 d1
= 1.4500 nd1 = 1.83400
νd1 = 37.16r2 = 36.758
1 d2 = 0.8500 r3
= 54.0975 d3
= 3.2000 nd2 = 1.61405
νd2 = 54.95 r4 = -710.7
728 d4 = 0.2150
r5 = 28.8796
d5 = 5.0000 nd3 = 1.539
96 νd3 = 59.57 r6 = -126
.. 5198 d6 = (variable)
r7 = -35.3558
d7 = 1.3000 nd4 = 1.785
90 νd4 = 44.18 r8 = 20
.. 9761 d8 = 1.0031
r9 = 40.6555
d9 = 2.6500 nd5 = 1.7
8472 νd5 =25.71 r10= −
41.9853 d10= 2.21
55 r11=-23.5923
d11=1.3000 nd6=1
.. 63854 νd6 =55.38 r12=
-27.9570 d12=(variable) r13= ∞. (aperture)
d13= 4.0000 r14= -167
.. 5276 d14= 2.1000
nd7 =1.68893 νd7 =31.
08 r15=-192.1174
d15= 0.3250 r16= 1
44.5763 d16= 2.20
00 nd8 =1.54739 νd8 =5
3.55 r17=-35.1160
d17= 1.3859 r18=
99.6476 d18=1.
3000 nd9 = 1.78472 νd9
=25.71 r19= 19.5849
d19= 4.0000 nd1
0=1.58313 νd10=59.36 r20=
−26.8188 d20=
1.0000 r21=-20.3106
d21= 1.7000n
d11=1.74100 νd11=52.68 r2
2=-20.9455 d2
2=(variable) r23= -39.8644
d23=3.1500n
d12=1.84666 νd12=23.78 r2
4=-22.9355 d2
4 = 2.3185 r25 = -18.82
12 (aspherical surface) d25= 0.8500 nd
13=1.51742 νd13=52.41 r26
= -19.0277 d26
= 1.5000 nd14=1.77250
νd14=49.66 r27=85.36
32 Aspheric coefficient 25th surface P = 1 A4 = 0.12231×10-4A6 =
0.29324×10-7A8 =-0.9160
2×10-10 A10 = 0.62671×10-
12.

【0059】第4実施例 f  =  36.2〜  68.0〜 131.0F
NO=  3.60〜  5.65〜  7.42ω 
 =  30.8〜  17.6〜   9.4°fB
 =  9.78〜 32.68〜 81.23r1 
=    −86.8576         d1 
= 0.9500    nd1 =1.83400 
νd1 =37.16r2 =     41.411
0         d2 = 0.9080  r3
 =     51.8432         d3
 = 3.2800    nd2 =1.65844
 νd2 =50.86 r4 =   −137.6
627         d4 = 0.1200  
r5 =     33.2481         
d5 = 4.5600    nd3 =1.518
23 νd3 =58.96 r6 =    −86
.0513         d6 =(可変)   
r7 =    −56.6012         
d7 = 0.5000    nd4 =1.785
90 νd4 =44.18 r8 =     19
.1893         d8 = 0.8890
  r9 =     36.0325       
  d9 = 2.7900    nd5 =1.7
8470 νd5 =26.22 r10=    −
47.5157         d10= 3.23
80  r11=    −21.0043     
    d11= 1.3300    nd6 =1
.65830 νd6 =53.44 r12=   
 −26.9041         d12= 4.
5520  r13=     ∞.(絞り)    
   d13= 4.1200  r14=   −1
10.2549         d14= 2.13
00    nd7 =1.68893 νd7 =3
1.08 r15=    −69.7784    
     d15= 0.5940  r16=   
 139.7565         d16= 2.
9700    nd8 =1.54739 νd8 
=53.55 r17=    −32.6632  
       d17= 1.2060  r18= 
   161.2610         d18= 
1.1100    nd9 =1.78472 νd
9 =25.71 r19=     18.7929
         d19= 5.1500    n
d10=1.58313 νd10=59.36 r2
0=    −28.0029         d2
0= 0.7190  r21=    −20.98
45         d21= 1.6700   
 nd11=1.74100 νd11=52.68 
r22=    −21.8084         
d22=(可変)   r23=    −49.73
66         d23= 3.0300   
 nd12=1.84666 νd12=23.78 
r24=    −24.4370         
d24= 2.7250  r25=    −17.
5797(非球面) d25= 0.6500    
nd13=1.52492 νd13=51.77 r
26=    −18.2786         d
26= 1.0000    nd14=1.7725
0 νd14=49.66 r27=     71.
7600  非球面係数 第25面 P  =1 A4    = 0.21637×10−4A6  =
 0.49594×10−7A8  =−0.1022
8×10−11 A10 = 0.56359×10−
12         。
Fourth embodiment f=36.2~68.0~131.0F
NO=3.60~5.65~7.42ω
= 30.8~17.6~9.4°fB
= 9.78~32.68~81.23r1
= −86.8576 d1
= 0.9500 nd1 = 1.83400
νd1 = 37.16r2 = 41.411
0 d2 = 0.9080 r3
= 51.8432 d3
= 3.2800 nd2 = 1.65844
νd2 = 50.86 r4 = -137.6
627 d4 = 0.1200
r5 = 33.2481
d5 = 4.5600 nd3 = 1.518
23 νd3 = 58.96 r6 = -86
.. 0513 d6 = (variable)
r7 = -56.6012
d7 = 0.5000 nd4 = 1.785
90 νd4 = 44.18 r8 = 19
.. 1893 d8 = 0.8890
r9 = 36.0325
d9 = 2.7900 nd5 = 1.7
8470 νd5 =26.22 r10= −
47.5157 d10= 3.23
80 r11=-21.0043
d11=1.3300 nd6=1
.. 65830 νd6 =53.44 r12=
-26.9041 d12=4.
5520 r13=∞. (aperture)
d13= 4.1200 r14= -1
10.2549 d14= 2.13
00 nd7 =1.68893 νd7 =3
1.08 r15=-69.7784
d15= 0.5940 r16=
139.7565 d16=2.
9700 nd8 = 1.54739 νd8
=53.55 r17= -32.6632
d17= 1.2060 r18=
161.2610 d18=
1.1100 nd9 = 1.78472 νd
9 = 25.71 r19 = 18.7929
d19=5.1500n
d10=1.58313 νd10=59.36 r2
0=-28.0029 d2
0 = 0.7190 r21 = -20.98
45 d21= 1.6700
nd11=1.74100 νd11=52.68
r22=-21.8084
d22=(variable) r23=-49.73
66 d23= 3.0300
nd12=1.84666 νd12=23.78
r24=-24.4370
d24=2.7250 r25=-17.
5797 (aspherical surface) d25= 0.6500
nd13=1.52492 νd13=51.77 r
26=-18.2786 d
26=1.0000 nd14=1.7725
0 νd14=49.66 r27=71.
7600 Aspheric coefficient 25th surface P = 1 A4 = 0.21637×10-4A6 =
0.49594×10-7A8 =-0.1022
8×10-11 A10 = 0.56359×10-
12.

【0060】第5実施例 f  =  29.2〜  37.0〜  54.0F
NO=  4.60〜  5.11〜  6.30ω 
 =  36.5〜  30.3〜  21.8°fB
 =  5.02〜 11.53〜 27.41r1 
=    −26.4534         d1 
= 1.0000    nd1 =1.83400 
νd1 =37.16r2 =   −881.877
4         d2 = 0.4200  r3
 =   −278.5753         d3
 = 3.6189    nd2 =1.69680
 νd2 =56.49 r4 =    −24.7
811         d4 = 0.5000  
r5 =     27.8321         
d5 = 1.6197    nd3 =1.696
80 νd3 =56.49 r6 =     67
.7204         d6 =(可変)   
r7 =    −54.9522(非球面) d7 
= 3.0703    nd4 =1.78800 
νd4 =47.38 r8 =      9.98
82         d8 = 4.4827   
 nd5 =1.83400 νd5 =37.16 
r9 =   −111.8670         
d9 =(可変)   r10=     ∞.(絞り
)       d10= 4.1130  r11=
   −530.8542         d11=
 3.8073    nd6 =1.61405 ν
d6 =54.95 r12=     −8.819
7         d12= 0.5000    
nd7 =1.84666 νd7 =23.88 r
13=    −17.3752         d
13= 0.5000  r14=    −42.6
880         d14= 1.1971  
  nd8 =1.64000 νd8 =60.09
 r15=    −23.1652        
 d15=(可変)   r16=    −23.7
219         d16= 2.3041  
  nd9 =1.84666 νd9 =23.88
 r17=    −15.7393        
 d17= 2.3156  r18=    −14
.1806(非球面) d18= 0.5000   
 nd10=1.64000 νd10=60.09 
r19=    −87.5074         
d19= 2.0761  r20=    −27.
9339         d20= 0.5500 
   nd11=1.60311 νd11=60.7
0 r21=    334.4222       
  非球面係数 第7面 P  =1 A4  =−0.24960×10−4A6  = 0
.97359×10−7A8  =−0.34211×
10−8A10 = 0.24291×10−10  
第18面 P  =1 A4    = 0.76581×10−5A6  =
−0.54028×10−7A8  = 0.1498
5×10−8A10 =−0.73315×10−11
         。
Fifth embodiment f = 29.2~37.0~54.0F
NO=4.60~5.11~6.30ω
= 36.5~30.3~21.8°fB
= 5.02~11.53~27.41r1
= −26.4534 d1
= 1.0000 nd1 = 1.83400
νd1 = 37.16r2 = -881.877
4 d2 = 0.4200 r3
= −278.5753 d3
= 3.6189 nd2 = 1.69680
νd2 = 56.49 r4 = -24.7
811 d4 = 0.5000
r5 = 27.8321
d5 = 1.6197 nd3 = 1.696
80 νd3 = 56.49 r6 = 67
.. 7204 d6 = (variable)
r7 = -54.9522 (aspherical surface) d7
= 3.0703 nd4 = 1.78800
νd4 = 47.38 r8 = 9.98
82 d8 = 4.4827
nd5 = 1.83400 νd5 = 37.16
r9 = -111.8670
d9 = (variable) r10 = ∞. (Aperture) d10= 4.1130 r11=
−530.8542 d11=
3.8073 nd6 =1.61405 ν
d6 = 54.95 r12 = -8.819
7 d12= 0.5000
nd7 = 1.84666 νd7 = 23.88 r
13=-17.3752 d
13= 0.5000 r14= -42.6
880 d14= 1.1971
nd8 =1.64000 νd8 =60.09
r15=-23.1652
d15=(variable) r16= -23.7
219 d16= 2.3041
nd9 = 1.84666 νd9 = 23.88
r17=-15.7393
d17= 2.3156 r18= -14
.. 1806 (aspherical surface) d18= 0.5000
nd10=1.64000 νd10=60.09
r19=-87.5074
d19=2.0761 r20=-27.
9339 d20= 0.5500
nd11=1.60311 νd11=60.7
0 r21= 334.4222
Aspheric coefficient 7th surface P = 1 A4 = -0.24960×10-4 A6 = 0
.. 97359×10-7A8 =-0.34211×
10-8A10 = 0.24291×10-10
18th surface P = 1 A4 = 0.76581×10-5A6 =
-0.54028×10-7A8 = 0.1498
5 x 10-8 A10 = -0.73315 x 10-11
.

【0061】第6実施例 f  =  36.0〜  68.8〜 131.5F
NO=  4.62〜  5.80〜  7.50ω 
 =  30.9〜  17.5〜   9.3°fB
 =  9.78〜 34.28〜 83.34r1 
=   −179.8187         d1 
= 1.0919    nd1 =1.83400 
νd1 =37.16r2 =     38.465
1         d2 = 0.8788  r3
 =     49.9828         d3
 = 3.1628    nd2 =1.61720
 νd2 =54.04 r4 =   −279.9
562         d4 = 0.1998  
r5 =     30.1522         
d5 = 4.7290    nd3 =1.518
23 νd3 =58.96 r6 =   −112
.6403         d6 =(可変)   
r7 =    −42.9353         
d7 = 0.7101    nd4 =1.785
90 νd4 =44.18 r8 =     19
.2434         d8 = 1.0696
  r9 =     38.2064       
  d9 = 2.7010    nd5 =1.7
8472 νd5 =25.71 r10=    −
44.0457         d10= 2.67
89  r11=    −21.2365     
    d11= 1.2931    nd6 =1
.63854 νd6 =55.38 r12=   
 −27.2568         d12=(可変
)   r13=     ∞.(絞り)      
 d13= 4.0108  r14=   −402
.5078         d14= 2.1024
    nd7 =1.68893 νd7 =31.
08 r15=    −97.7116      
   d15= 0.3479  r16=    1
07.4156         d16= 2.63
54    nd8 =1.54739 νd8 =5
3.55 r17=    −33.2395    
     d17= 1.5238  r18=   
 193.3836         d18= 1.
2076    nd9 =1.78472 νd9 
=25.71 r19=     18.0304  
       d19= 4.6310    nd1
0=1.58313 νd10=59.36 r20=
    −27.2813         d20=
 0.9453  r21=    −19.4411
         d21= 1.6868    n
d11=1.74100 νd11=52.68 r2
2=    −20.1265         d2
2=(可変)   r23=    −47.2575
         d23= 3.0383    n
d12=1.84666 νd12=23.78 r2
4=    −23.6858         d2
4= 2.4178  r25=    −17.74
64(非球面) d25= 0.7957    nd
13=1.50137 νd13=56.40 r26
=    −18.0796         d26
= 0.6371    nd14=1.77250 
νd14=49.66 r27=     74.51
22  非球面係数 第25面 P  =1 A4    = 0.19070×10−4A6  =
 0.49353×10−7A8  =−0.1602
1×10−10 A10 = 0.58494×10−
12         。
Sixth embodiment f = 36.0~68.8~131.5F
NO=4.62~5.80~7.50ω
= 30.9~17.5~9.3°fB
= 9.78~34.28~83.34r1
= −179.8187 d1
= 1.0919 nd1 = 1.83400
νd1 = 37.16r2 = 38.465
1 d2 = 0.8788 r3
= 49.9828 d3
= 3.1628 nd2 = 1.61720
νd2 = 54.04 r4 = -279.9
562 d4 = 0.1998
r5 = 30.1522
d5 = 4.7290 nd3 = 1.518
23 νd3 =58.96 r6 = -112
.. 6403 d6 = (variable)
r7 = -42.9353
d7 = 0.7101 nd4 = 1.785
90 νd4 = 44.18 r8 = 19
.. 2434 d8 = 1.0696
r9 = 38.2064
d9 = 2.7010 nd5 = 1.7
8472 νd5 =25.71 r10= −
44.0457 d10= 2.67
89 r11=-21.2365
d11=1.2931 nd6=1
.. 63854 νd6 =55.38 r12=
−27.2568 d12=(variable) r13= ∞. (aperture)
d13= 4.0108 r14= -402
.. 5078 d14= 2.1024
nd7 =1.68893 νd7 =31.
08 r15=-97.7116
d15= 0.3479 r16= 1
07.4156 d16= 2.63
54 nd8 = 1.54739 νd8 = 5
3.55 r17=-33.2395
d17= 1.5238 r18=
193.3836 d18=1.
2076 nd9 = 1.78472 νd9
=25.71 r19= 18.0304
d19= 4.6310 nd1
0=1.58313 νd10=59.36 r20=
−27.2813 d20=
0.9453 r21=-19.4411
d21= 1.6868 n
d11=1.74100 νd11=52.68 r2
2=-20.1265 d2
2 = (variable) r23 = -47.2575
d23=3.0383n
d12=1.84666 νd12=23.78 r2
4=-23.6858 d2
4 = 2.4178 r25 = -17.74
64 (aspherical surface) d25= 0.7957 nd
13=1.50137 νd13=56.40 r26
= −18.0796 d26
= 0.6371 nd14=1.77250
νd14=49.66 r27=74.51
22 Aspheric coefficient 25th surface P = 1 A4 = 0.19070×10-4A6 =
0.49353×10-7A8 =-0.1602
1×10-10 A10 = 0.58494×10-
12.

【0062】以上、第1実施例から第6実施例の全系の
屈折力φW 、レンズ成分LF の屈折力φLF、及び
、前記条件式(1)から(4)に対応するパラメータの
値を次の表−7に示す。
The refractive power φW of the entire system in the first to sixth embodiments, the refractive power φLF of the lens component LF, and the values of the parameters corresponding to the conditional expressions (1) to (4) above are as follows. It is shown in Table-7.

【0063】[0063]

【0064】[0064]

【発明の効果】以上説明したように、本発明の近距離収
差変動の少ない高変倍率ズームレンズによれば、従来の
本出願人提案による高変倍率ズームレンズのフォーカシ
ング群に、フォーカシイグ中固定のレンズ成分を配置す
ることによって、近距離まで極めて安定した性能を有す
る光学系を容易に実現することが可能である。これによ
り、近距離に弱いと言われる写真カメラ用ズームレンズ
の性能向上が達成でき、新しい市場の開拓も可能である
As explained above, according to the high variable magnification zoom lens of the present invention with little variation in near-field aberrations, the focusing group of the conventional high variable magnification zoom lens proposed by the present applicant has a fixed focus during focusing. By arranging the lens components, it is possible to easily realize an optical system that has extremely stable performance up to short distances. As a result, it is possible to improve the performance of zoom lenses for photo cameras, which are said to be weak at close range, and it is also possible to develop new markets.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の前提の基本フォーカシング方法を説明
するための3群ズームレンズのパワー配置を示すための
図である。
FIG. 1 is a diagram showing the power arrangement of a three-group zoom lens for explaining a basic focusing method based on the premise of the present invention.

【図2】本発明によるフォーカシング方法を3群ズーム
レンズに適用した場合のパワー配置を示すための図であ
る。
FIG. 2 is a diagram showing a power arrangement when the focusing method according to the present invention is applied to a three-group zoom lens.

【図3】3群ズームレンズに従来のフォーカシング方法
を適用した場合と本発明によるフォーカシング方法を提
供した場合の近距離時の収差図である。
FIG. 3 is an aberration diagram at close range when a conventional focusing method is applied to a three-group zoom lens and when a focusing method according to the present invention is provided.

【図4】本発明によるフォーカシング方法を採用した3
群ズームレンズの鏡筒構造の1例を示す断面図である。
[Figure 4] 3 using the focusing method according to the present invention
FIG. 2 is a cross-sectional view showing an example of a lens barrel structure of a group zoom lens.

【図5】本発明によるフォーカシング方法を第2レンズ
群が負の4群ズームレンズに適用した場合のパワー配置
を示すための図である。
FIG. 5 is a diagram showing a power arrangement when the focusing method according to the present invention is applied to a four-group zoom lens in which the second lens group is negative.

【図6】本発明によるフォーカシング方法を第2レンズ
群が正の4群ズームレンズに適用した場合のパワー配置
を示すための図である。
FIG. 6 is a diagram showing a power arrangement when the focusing method according to the present invention is applied to a four-group zoom lens in which the second lens group is positive.

【図7】4群ズームレンズに従来のフォーカシング方法
を適用した場合と本発明によるフォーカシング方法を提
供した場合の近距離時の収差図である。
FIG. 7 is an aberration diagram at close range when a conventional focusing method is applied to a four-group zoom lens and when a focusing method according to the present invention is provided.

【図8】第1実施例の広角端と望遠端のレンズ断面図で
ある。
FIG. 8 is a cross-sectional view of the lens at the wide-angle end and the telephoto end of the first embodiment.

【図9】第2実施例の広角端と望遠端のレンズ断面図で
ある。
FIG. 9 is a cross-sectional view of the lens at the wide-angle end and the telephoto end of the second embodiment.

【図10】第3実施例の広角端と望遠端のレンズ断面図
である。
FIG. 10 is a cross-sectional view of the lens at the wide-angle end and the telephoto end of the third embodiment.

【図11】第4実施例の広角端と望遠端のレンズ断面図
である。
FIG. 11 is a lens sectional view at the wide-angle end and the telephoto end of the fourth embodiment.

【図12】第5実施例の広角端と望遠端のレンズ断面図
である。
FIG. 12 is a sectional view of the lens at the wide-angle end and the telephoto end of the fifth embodiment.

【図13】第6実施例の広角端と望遠端のレンズ断面図
である。
FIG. 13 is a lens sectional view at the wide-angle end and the telephoto end of the sixth embodiment.

【図14】第1実施例の収差図である。FIG. 14 is an aberration diagram of the first example.

【図15】第2実施例の収差図である。FIG. 15 is an aberration diagram of the second example.

【図16】第3実施例の収差図である。FIG. 16 is an aberration diagram of the third example.

【図17】第4実施例の収差図である。FIG. 17 is an aberration diagram of the fourth example.

【図18】第5実施例の収差図である。FIG. 18 is an aberration diagram of the fifth example.

【図19】第6実施例の収差図である。FIG. 19 is an aberration diagram of the sixth embodiment.

【符号の説明】[Explanation of symbols]

LF …フォーカシング群中のフォーカシング中固定の
レンズ成分 I  …第1レンズ群 II  …第2レンズ群 III …第3レンズ群 IV  …第4レンズ群
LF...Lens component I in the focusing group that is fixed during focusing...First lens group II...Second lens group III...Third lens group IV...Fourth lens group

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  物体側より順に、正屈折力の第1レン
ズ群、正屈折力の第2レンズ群及び負屈折力の第3レン
ズ群で構成され、広角端より望遠端への変倍は、各レン
ズ群を物体側に移動することによって行い、第2レンズ
群をフォーカシングレンズ群として、この第2レンズ群
を構成する最も像側のレンズ成分を定位置に固定して、
第2レンズ群の残るレンズ成分を物体側に移動すること
によってフォーカシングするようにしたことを特徴とす
る近距離収差変動の少ない高変倍率ズームレンズ。
Claim 1: Consisting of, in order from the object side, a first lens group with positive refractive power, a second lens group with positive refractive power, and a third lens group with negative refractive power, and zooming from the wide-angle end to the telephoto end is , by moving each lens group toward the object side, using the second lens group as a focusing lens group, and fixing the lens component closest to the image side of the second lens group in a fixed position.
A high variable magnification zoom lens with little variation in short-range aberrations, characterized in that focusing is performed by moving the remaining lens component of the second lens group toward the object side.
【請求項2】  物体側より順に、正屈折力の第1レン
ズ群、正屈折力又は負屈折力の第2レンズ群、正屈折力
の第3レンズ群及び負屈折力の第4レンズ群で構成され
、広角端より望遠端への変倍は、各レンズ群を各々光軸
に沿って移動することによって行い、第2レンズ群及び
第3レンズ群をフォーカシングレンズ群として、第3レ
ンズ群を構成する最も像側のレンズ成分を定位置に固定
して、第2レンズ群と第3レンズ群の残るレンズ成分と
を物体側に移動することによってフォーカシングするよ
うにしたことを特徴とする近距離収差変動の少ない高変
倍率ズームレンズ。
2. In order from the object side, a first lens group with positive refractive power, a second lens group with positive refractive power or negative refractive power, a third lens group with positive refractive power, and a fourth lens group with negative refractive power. The zooming from the wide-angle end to the telephoto end is performed by moving each lens group along the optical axis, with the second and third lens groups serving as focusing lens groups, and the third lens group acting as a focusing lens group. A short-distance lens system characterized by focusing by fixing the constituent lens component closest to the image side in a fixed position and moving the remaining lens components of the second and third lens groups toward the object side. High magnification zoom lens with little variation in aberrations.
JP3016109A 1991-02-07 1991-02-07 High-magnification zoom lens with minimal short-range aberration fluctuation Expired - Fee Related JP3060118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016109A JP3060118B2 (en) 1991-02-07 1991-02-07 High-magnification zoom lens with minimal short-range aberration fluctuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016109A JP3060118B2 (en) 1991-02-07 1991-02-07 High-magnification zoom lens with minimal short-range aberration fluctuation

Publications (2)

Publication Number Publication Date
JPH04338910A true JPH04338910A (en) 1992-11-26
JP3060118B2 JP3060118B2 (en) 2000-07-10

Family

ID=11907352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016109A Expired - Fee Related JP3060118B2 (en) 1991-02-07 1991-02-07 High-magnification zoom lens with minimal short-range aberration fluctuation

Country Status (1)

Country Link
JP (1) JP3060118B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
JPH06250088A (en) * 1993-02-25 1994-09-09 Canon Inc Small zoom lens
US5499141A (en) * 1993-09-22 1996-03-12 Nikon Corporation Zoom lens
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US5537259A (en) * 1994-04-26 1996-07-16 Canon Kabushiki Kaisha Zoom lens
US5592334A (en) * 1993-03-26 1997-01-07 Olympus Optical Co., Ltd. Zoom lens system
US6002529A (en) * 1993-03-16 1999-12-14 Minolta Co., Ltd. Zoom lens system
US6940663B2 (en) 2003-04-18 2005-09-06 Canon Kabushiki Kaisha Zoom lens system
US8379309B2 (en) 2010-09-13 2013-02-19 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
WO2019220615A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
JPH06250088A (en) * 1993-02-25 1994-09-09 Canon Inc Small zoom lens
US6002529A (en) * 1993-03-16 1999-12-14 Minolta Co., Ltd. Zoom lens system
US5592334A (en) * 1993-03-26 1997-01-07 Olympus Optical Co., Ltd. Zoom lens system
US5499141A (en) * 1993-09-22 1996-03-12 Nikon Corporation Zoom lens
US5537259A (en) * 1994-04-26 1996-07-16 Canon Kabushiki Kaisha Zoom lens
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US6940663B2 (en) 2003-04-18 2005-09-06 Canon Kabushiki Kaisha Zoom lens system
US8379309B2 (en) 2010-09-13 2013-02-19 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
WO2019220615A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
JPWO2019220615A1 (en) * 2018-05-18 2021-04-22 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems

Also Published As

Publication number Publication date
JP3060118B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US5253113A (en) Wide-angle zoom lens having five lens units
JP3196283B2 (en) Zoom lens device
US5078481A (en) Magnification changing lens
US5299064A (en) Zoom lens of rear focus type
US5111338A (en) Zoom Lens
JP3304518B2 (en) Zoom lens
US5587840A (en) Zoom lens
US5059007A (en) Internally focusing zoom lens
JP2012181525A (en) Zoom lens
US5528427A (en) Zoom lens
US5321552A (en) Rear-focus-type zoom lens equipped with index-distribution-type lens
JP2012093548A (en) Variable power optical system, optical instrument with variable power optical system, and manufacturing method for variable power optical system
CN112105980A (en) Optical system, optical apparatus, and method of manufacturing optical system
US5537259A (en) Zoom lens
JPH04338910A (en) High variable power rate zoom lens with small short-distance aberration variation
JPH04307509A (en) Zoom lens
KR20010030068A (en) Variable focal length lens system
JPH06194572A (en) Variable power lens
JP3123747B2 (en) Zoom lens
JPH04223419A (en) Small-sized 3-group zoom lens
JPH04217219A (en) Zoom lens
US4632519A (en) Zoom lens including a wide angle of view
US6661584B2 (en) Zoom lens and camera having the zoom lens
US4712883A (en) Rear focus zoom lens
JPH05203875A (en) Variable power lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees