JPH06194572A - Variable power lens - Google Patents

Variable power lens

Info

Publication number
JPH06194572A
JPH06194572A JP34464092A JP34464092A JPH06194572A JP H06194572 A JPH06194572 A JP H06194572A JP 34464092 A JP34464092 A JP 34464092A JP 34464092 A JP34464092 A JP 34464092A JP H06194572 A JPH06194572 A JP H06194572A
Authority
JP
Japan
Prior art keywords
lens
lens component
component
power
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34464092A
Other languages
Japanese (ja)
Inventor
Manami Saka
真奈美 坂
Tomoko Nakagawa
朋子 中川
Shuji Ogino
修司 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP34464092A priority Critical patent/JPH06194572A/en
Publication of JPH06194572A publication Critical patent/JPH06194572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide the variable power lens which is of high variable powers and is bright and compact with a smaller number of constituting elements by adequately setting the refracting power of first and second lens components. CONSTITUTION:This variable power lens has, successively from an object side, the first lens component having the positive refracting power, the second lens component having the negative refracting power, the third lens component having the positive refracting power and the fourth lens component having the positive refracting power and satisfies equation 0.10<=fs.phi1<=0.25 and equation 0.45<fs¦phi2¦<1.25. In the equations, fs is the focal length of the entire system at a wide angle end; phi1 is the refracting power of the first lens component; phi2 is the refracting power of the second lens component. The second lens component of this variable power lens is movable forward and backward on the optical axis for the purpose of varying the power. The third lens component is likewise movable forward and backward on the optical axis in the opposite direction of the 2nd lens component for the purpose of varying the power. The fourth lens component is movable forward and backward by drawing a U-turn-shaped locus on the optical axis in order to maintain the specified position of the image plane at the time of varying the power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラ等の小型
カメラに適用される変倍比の大きい変倍レンズに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power lens having a large variable power ratio applied to a small camera such as a video camera.

【0002】[0002]

【従来の技術】近年、ビデオカメラ等のカメラ本体は電
子部品のパッケージ化や集積率の向上により、重量・体
積とも格段にコンパクト化が進んでいる。一方、カメラ
本体の価格面・コスト面においても低廉価が著しい。
2. Description of the Related Art In recent years, the body of a camera such as a video camera has been remarkably made compact both in weight and volume due to packaging of electronic parts and improvement in integration rate. On the other hand, the price and cost of the camera body are extremely low.

【0003】このような中において、レンズの重量・体
積・コストも、絶対値では少しずつ改善されている。し
かし、カメラ本体に対する相対値は年々上昇している状
況である。従って、レンズのコンパクト化・コストダウ
ンの要請はより強いものとなっている。
Under such circumstances, the weight, volume and cost of the lens are gradually improved in absolute value. However, the relative value to the camera body is increasing year by year. Therefore, there is a strong demand for compact lenses and cost reduction.

【0004】また、撮像素子の小型化による照度不足を
補うための大口径比化や、さらには高画素化・高解像度
化に対応するための高性能化というように、レンズに求
められる性能はより高くなってきている。
Further, the performance required of the lens is such that a large aperture ratio is provided to make up for the lack of illuminance due to the miniaturization of the image pickup device, and further high performance is provided to cope with higher pixel count and higher resolution. It is getting higher.

【0005】基本的に本発明では、変倍比として、現在
特にビデオカメラ分野で主流である12倍程度、Fナン
バーはF1.8程度の大口径比の変倍レンズを想定する。
Basically, in the present invention, a variable power lens having a large aperture ratio of about 12 times and an F number of about F1.8, which is the current mainstream in the field of video cameras, is assumed in the present invention.

【0006】このようなスペックを満足するものは4成
分または5成分よりなるズームレンズで、特開平1-1791
17号公報等これまで数多く提案されているが、その大半
は13〜15枚程度のレンズよりなる構成であり、コスト的
にも大きさ的にも現在の要求を満足できるものとはいえ
ない。
A zoom lens composed of four or five components satisfies such specifications.
Many proposals have been made so far, such as Japanese Patent No. 17, but most of them are composed of about 13 to 15 lenses, and it cannot be said that the present requirements can be satisfied in terms of cost and size.

【0007】また一眼レフカメラ用のレンズでは、特開
平2-66509号公報等で提案されているように、多成分を
移動させることにより各レンズ成分の移動量を減らしコ
ンパクト化を図ったものが多くみられる。この様なタイ
プでは、ズーミング時に第1レンズ成分も移動させてい
るが、ビデオカメラでは駆動部分のコンパクト化も重要
な目的のため、ズーミング時には重量の大きい第1レン
ズ成分を固定する方がはるかに有利である。
Further, in a lens for a single-lens reflex camera, as proposed in Japanese Unexamined Patent Publication (Kokai) No. 2-66509, by moving multiple components, the amount of movement of each lens component is reduced to achieve compactness. Many are seen. In such a type, the first lens component is also moved during zooming, but it is much better to fix the heavy first lens component during zooming because it is important to make the drive part compact in a video camera. It is advantageous.

【0008】そこで最近のビデオカメラでは、非球面を
用いることによって構成枚数を削減するといったような
動きが見られるようになってきた。例えば特開昭57-272
19号公報に示されたズームレンズは、正負正の3成分よ
りなる系で、第1レンズ成分を像点位置補正成分(コン
ペンセーター)、第2レンズ成分を変倍成分(バリエー
ター)として光軸上を移動させ、各レンズ成分に非球面
を1面ずつ使用することによってF1.6の3倍ズームレン
ズを12枚のレンズで実現している。しかし、これはズー
ム構成やレンズ形状・配置等が有効とはいえず、構成枚
数はそのスペックから考えて少なくない。
Therefore, in recent video cameras, a movement such as reducing the number of components by using an aspherical surface has been observed. For example, JP-A-57-272
The zoom lens disclosed in Japanese Patent Laid-Open No. 19 is a system composed of three components, positive and negative, and a first lens component as an image point position correction component (compensator) and a second lens component as a variable power component (variator) as an optical axis. By moving up and using one aspherical surface for each lens component, we have realized a 3x zoom lens of F1.6 with 12 lenses. However, it cannot be said that the zoom configuration, lens shape, arrangement, etc. are effective for this, and the number of components is not small considering the specifications.

【0009】また、このタイプのレンズをを6倍以上の
高変倍ズームにまで拡張することは不可能である。その
理由の一つは、上述したレンズ形状・配置等の不適性の
他に次のような欠点を持つからである。すなはち、変倍
時に第3レンズ成分を移動させていないため、必然的に
第1レンズ成分がコンペンセーターレンズ成分として移
動し、そのとき6倍以上の高変倍を達成するには、広角
端もしくはミドル域(中間焦点距離)での使用を考慮す
ると、4成分及び5成分よりなるズームレンズに対し、
第1レンズ成分(前玉)の径がかなり大きくなり、また
重量が相当重くなるからである。
Further, it is impossible to extend this type of lens to a high zoom ratio of 6 times or more. One of the reasons is that it has the following defects in addition to the inadequacy of the lens shape and arrangement described above. That is, since the third lens component is not moved during zooming, the first lens component inevitably moves as a compensator lens component, and at that time, in order to achieve a high zoom ratio of 6 times or more, Considering use at the edge or middle range (intermediate focal length), for a zoom lens composed of 4 and 5 components,
This is because the diameter of the first lens component (front lens) becomes considerably large and the weight becomes considerably heavy.

【0010】これに対し、4成分ズームレンズでレンズ
形状・配置と非球面の配置をかなり有効に行い、構成枚
数を大幅に削減したものとして、特開昭61-110112号公
報や特開昭60-107013号公報で提案されたものがある。
On the other hand, in a four-component zoom lens, the lens shape / arrangement and aspherical surface arrangement are considerably effective, and the number of constituent elements is greatly reduced, as disclosed in JP-A-61-110112 and JP-A-60. -107013 has been proposed.

【0011】特開昭61-110112号公報で提案されたレン
ズは正負負正の4成分系で、各レンズ成分を簡潔に構成
し、4面の非球面をうまく使用することにより、全系で
わずか8枚のレンズで6倍ズームレンズを達成してい
る。しかし、収差性能はかなり悪く、現在の要求性能を
満足することは困難である。
The lens proposed in Japanese Unexamined Patent Publication No. 61-110112 is a four-component system of positive, negative, negative, and positive, and each lens component is simply constructed and the aspherical surface of the four surfaces is used well to make the entire system. Achieving a 6x zoom lens with only 8 lenses. However, the aberration performance is rather poor, and it is difficult to satisfy the current required performance.

【0012】また、特開昭60-107013号公報は正負正正
の4成分系で8枚構成の模式図が図示されているが、数
値データ不在のため、その性能や大きさが判断できず、
またスペック的にもF2の4倍ズームであるので高変倍
ズームには応用できないと予想される。
Further, Japanese Patent Laid-Open No. 60-107013 discloses a schematic diagram of a structure of 8 sheets of positive, negative, positive, and positive four-component system, but because of the absence of numerical data, its performance and size cannot be judged. ,
Also, in terms of specifications, it is expected that it cannot be applied to high-magnification zooming because it is a 4x zoom of F2.

【0013】その他、低変倍比ではあるが、特開昭63-3
04218号公報や特開昭64-44907号公報、特開平1-223408
号公報等、第2レンズ成分を1枚、第1レンズ成分を1
〜2枚とした正負正の3成分系によって、非球面の力も
借りながら思い切って枚数削減を図ったものも提案され
ている。しかし、これらのレンズタイプは、変倍の主役
でかつ変倍に際し光軸上を大きく移動する第2レンズ成
分を負単レンズ1枚で構成していて、第2レンズ成分内
での色収差補正がなされていないために、変倍による色
収差の変動が大きく、高変倍に応用した時には性能保障
が出来ない。こと実これらの例は、変倍比が2〜3倍と
低く、FナンバーもF2〜4程度と暗いものしか実現出
来ていない。この色収差変動は非球面を多用しても改善
できるものではなく、このようなレンズタイプは現在の
要求性能(色収差含む)から考慮して、せいぜい3倍ど
まりの変倍比までしか達成できる見込みがなく、12倍
クラスに応用することは不可能である。
In addition, although it has a low zoom ratio, it is disclosed in JP-A-63-3.
JP 04218, JP 64-44907 A, JP 1-223408 A
No. 1, one lens for the second lens component and one lens component for the first lens
It has also been proposed that the positive and negative positive three-component system with ~ 2 sheets drastically reduce the number of sheets while also borrowing the power of the aspherical surface. However, in these lens types, the second lens component, which is the main component of zooming and moves greatly on the optical axis during zooming, is composed of one negative single lens, and correction of chromatic aberration in the second lens component is possible. Since it is not done, the variation of chromatic aberration due to zooming is large, and the performance cannot be guaranteed when applied to high zooming. In fact, in these examples, the zoom ratio is as low as 2 to 3 times, and the F number is only F2 to about 4 which is dark. This variation in chromatic aberration cannot be improved even if a lot of aspherical surfaces are used, and such a lens type is expected to achieve a zoom ratio of at most 3 times in consideration of the currently required performance (including chromatic aberration). Without, it is impossible to apply to the 12 times class.

【0014】さらに、特開昭64-91110号公報や特開平1-
185608号公報にも斬新なズームレンズが提案されてい
る。特開昭64-91110号公報は3成分ズームレンズとほぼ
同じようなレンズ形状でありながら、この第2レンズ成
分に相当する部分を2枚の負レンズよりなる負成分と1
枚の正レンズよりなる成分とに分離することにより、実
質的な構成を4成分系として、構成枚数を3成分並の8
〜11枚におさえ3倍ズームを実現している。変倍は上
述した負成分と正成分を各々独立に移動させることによ
り行なっている。しかし、この4成分ズームレンズの本
質的な弱点は、独立に移動する第2レンズ成分と第3レ
ンズ成分の各々のレンズ成分内での色補正が完結してい
ないために、高変倍ズームに応用した場合には、変倍に
よる色収差変動を充分に抑えきれないことである。この
例では3倍という低変倍比にとどめてズーム解を工夫す
ることによりなんとか色収差変動を抑えているが、これ
を6倍ズームに応用するのはかなり困難である。
Furthermore, Japanese Patent Laid-Open No. 64-91110 and Japanese Patent Laid-Open No.
The 185608 publication also proposes a novel zoom lens. Japanese Unexamined Patent Publication No. 64-91110 has a lens shape similar to that of a three-component zoom lens, but the portion corresponding to this second lens component is a negative component consisting of two negative lenses and
By separating into a component composed of one positive lens, the substantial constitution is made into a four-component system, and the number of constituent components is as high as three components.
It achieves 3x zoom even with ~ 11 images. The scaling is performed by independently moving the negative component and the positive component described above. However, the essential weakness of this four-component zoom lens is that the high-magnification zoom is achieved because color correction is not completed within each of the second lens component and the third lens component that move independently. When applied, the variation in chromatic aberration due to zooming cannot be sufficiently suppressed. In this example, the variation of the chromatic aberration is managed by controlling the zoom solution by keeping the zoom ratio as low as 3 ×, but it is quite difficult to apply this to the 6 × zoom.

【0015】特開平1-185608号公報は、非球面を多用す
ることによって、特開昭64-91110号公報で提案されたレ
ンズの構成枚数を減らしつつ6倍ズームにまで発展させ
たものである。これは特開昭64-91110号公報で提案され
たレンズの第2レンズ成分を負単レンズ1枚、第3レン
ズ成分を正単レンズ1枚にしてあり、第4レンズ成分も
簡略化してある。しかし、これにおいても上述した色収
差変動が大きいため、ズーム解の工夫をかなり施してあ
るもののまだ残存色収差が大きく、現状の要求性能を満
たすことは難しい。さらに色収差補正にかなりのウェー
トを置いたズーム解になっているため、移動レンズ成分
である第2レンズ成分と第3レンズ成分の移動量がかな
り大きく、全長が長くなっているということと、特に重
量に大きな影響を与える前玉の外径が、既存の同スペッ
クの一般的なものに比べかなり大きくなっているため、
コンパクト性という観点にたてば、ここで提案されてい
るものは悪化しているといわざるを得ない。このように
特開平1-185608号公報で提案されたズームレンズは枚数
削減という目的は達成しているものの、コンパクト性・
色収差性能は現状のニーズを満足できるものではないと
いう結論になる。
Japanese Unexamined Patent Publication (Kokai) No. 1-185608 is developed to a 6 × zoom while reducing the number of constituent lenses proposed in Japanese Unexamined Patent Publication (Kokai) No. 64-91110 by using a lot of aspherical surfaces. . This is a lens proposed in Japanese Patent Laid-Open No. 64-91110, in which the second lens component is one negative single lens, the third lens component is one positive single lens, and the fourth lens component is also simplified. . However, even in this case, since the above-mentioned variation in chromatic aberration is large, although the zoom solution is considerably devised, the residual chromatic aberration is still large and it is difficult to satisfy the current required performance. In addition, since the zoom solution puts a considerable weight on chromatic aberration correction, the amount of movement of the second lens component and the third lens component, which are moving lens components, is considerably large, and the total length is particularly long. Since the outer diameter of the front lens, which has a large effect on weight, is considerably larger than the existing standard one with the same specifications,
From the point of view of compactness, it must be said that the proposal here is getting worse. In this way, the zoom lens proposed in Japanese Patent Laid-Open No. 1-185608 has achieved the purpose of reducing the number of lenses, but it is compact and
It is concluded that chromatic aberration performance does not meet the current needs.

【0016】さらに、特開平1-185608号公報と同じく正
負正正の4成分の構成で色収差変動も抑えることが出来
るものとして、特開平2-39011号公報に開示されたもの
がある。これは、非球面を3面使用し、F1.4の6倍ズ
ームを8枚のレンズで達成しているものであり、上述の
各例よりコスト面・性能面・大きさ面より、実現可能性
が高いものと思われる。しかし残存する問題点として
は、前玉の径が小さいとはいえず重量的には既存のもの
に対しさしたる優位性がないということと、収差図には
現われにくいサジタル方向のコマ収差(リンネンフェラ
ー)が非常に大きく軸外の性能劣化が大きいということ
が挙げられる。4成分系ズームレンズは、この延長線上
で徐々にこれら問題点を改良してゆくことが期待され
る。
Further, as in Japanese Patent Laid-Open No. 1-185608, there is one disclosed in Japanese Patent Laid-Open No. 2-39011 that can suppress variation in chromatic aberration with a configuration of four components of positive, negative, positive and positive. This is achieved by using 3 aspherical surfaces and a 6x zoom of F1.4 with 8 lenses, which can be realized from the cost, performance and size aspects of the above examples. It seems to be highly effective. However, the remaining problems are that the diameter of the front lens is not small and there is no significant advantage in weight compared to the existing ones, and that the coma aberration in the sagittal direction (linen Ferrer) is very large and off-axis performance degradation is significant. The four-component zoom lens is expected to gradually improve these problems on this extension line.

【0017】また、正負正の3成分系で各レンズ成分を
移動させることにより枚数を削減し高変倍化を図ったも
ので、一眼レフ用やコンパクトカメラ用として提案され
たものとしては、特開昭54-30855号公報、特開昭54-801
43号公報に開示されたものや特開平2-39116号公報に開
示されたものがある。各々順に変倍比と構成レンズ枚数
は、2.4倍/10枚、3倍/11枚、3倍/12枚であ
り、変倍比が不十分でかつ特に第2レンズ成分や第3レ
ンズ成分の簡略化が充分達成されておらず、コスト的に
も充分ではない。
In addition, the number of lenses is reduced by moving each lens component in a positive / negative positive three-component system to achieve a high zoom ratio. As a proposal for a single-lens reflex camera or a compact camera, JP-A-54-30855, JP-A-54-801
Some are disclosed in Japanese Patent Laid-Open No. 43-43116 and one disclosed in Japanese Patent Laid-Open No. 2-39116. The zoom ratio and the number of constituent lenses are 2.4 × / 10, 3/11, and 3/12, respectively, and the zoom ratio is insufficient and especially the second lens component and the third lens component The simplification is not sufficiently achieved, and the cost is not sufficient.

【0018】[0018]

【発明が解決しようとする課題】本発明は、変倍比が1
2倍程度でFナンバーが1.8程度という高変倍でかつ明
るい変倍レンズを、コンパクトかつ少ない構成枚数で実
現し、しかも性能面でも充分満足できるものを提供する
ことを目的とする。
The present invention has a variable power ratio of 1
It is an object of the present invention to provide a highly variable and bright variable power lens having an F number of approximately 1.8 and a high power of 1.8, which is compact and has a small number of components, and which is sufficiently satisfactory in terms of performance.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に本発明では、物体側より順に、正の屈折力の第1レン
ズ成分、負の屈折力の第2レンズ成分、正の屈折力の第
3レンズ成分、正の屈折力の第4レンズ成分を有する変
倍レンズにおいて、第1レンズ成分及び第2レンズ成分
の屈折力を適切に規定した。
In order to achieve the above object, in the present invention, in order from the object side, a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a second lens component having a positive refractive power are arranged. In the variable power lens having the third lens component and the fourth lens component having a positive refractive power, the refractive powers of the first lens component and the second lens component are appropriately defined.

【0020】さらに、変倍時における第2、第3、第4
レンズ成分それぞれの動きを適切に規定した。
Further, the second, third, and fourth positions during zooming
The movement of each lens component was properly specified.

【0021】[0021]

【作用】上記構成を有することにより、本発明はコンパ
クトでしかも構成枚数が少ないにもかかわらず、変倍比
が12倍程度でFナンバーも1.8程度という高変倍でか
つ明るい変倍レンズが実現できる。
With the above structure, the present invention realizes a high-magnification and bright variable-magnification lens with a variable power ratio of about 12 and an F-number of about 1.8, although the present invention is compact and has a small number of components. it can.

【0022】[0022]

【実施例】以下、本発明の実施例について詳述する。本
発明の変倍レンズは、物体側より順に、正の屈折力の第
1レンズ成分、負の屈折力の第2レンズ成分、正の屈折
力の第3レンズ成分、正の屈折力の第4レンズ成分とを
有し、以下の条件式(1)、(2)を満足することを特
徴とする。
EXAMPLES Examples of the present invention will be described in detail below. The variable power lens of the present invention comprises, in order from the object side, a first lens component having a positive refractive power, a second lens component having a negative refractive power, a third lens component having a positive refractive power, and a fourth lens component having a positive refractive power. It has a lens component and satisfies the following conditional expressions (1) and (2).

【0023】 0.10 ≦ fs・φ1 ≦ 0.25 (1) 0.45 < fs・|φ2| < 1.25 (2) 但し、fsは広角端における全系の焦点距離、φ1は第1
レンズ成分の屈折力、φ2は第2レンズ成分の屈折力で
ある。
0.10 ≦ fs · φ1 ≦ 0.25 (1) 0.45 <fs · | φ2 | <1.25 (2) where fs is the focal length of the entire system at the wide-angle end, and φ1 is the first
The refracting power of the lens component and φ2 is the refracting power of the second lens component.

【0024】条件式(1)は、第1レンズ成分の屈折力
の適正な範囲を規定するものである。4成分のレンズ系
においては、各レンズ成分で発生する収差を適正に抑え
なければ、全焦点距離範囲にわたって良好な収差性能を
有する高変倍のズームレンズを実現することが不可能と
なる。条件式(1)の上限を越えて第1レンズ成分の屈
折力が強くなると、第1レンズ成分内で発生する収差の
量が大きくなるためズーミングによる全系の収差変動も
大きくなり、例えばミドル付近で要求性能を満たさなく
なってしまう。ミドル付近は望遠端あるいは広角端と比
べると使用頻度が少ないが、極端に悪い性能であれば、
ますます高性能・高スペック化が求められる最近のレン
ズではまったく許容できない。
Conditional expression (1) defines an appropriate range of the refractive power of the first lens component. In a four-component lens system, it is impossible to realize a zoom lens with a high zoom ratio, which has good aberration performance over the entire focal length range, unless the aberrations generated in each lens component are properly suppressed. When the upper limit of conditional expression (1) is exceeded and the refracting power of the first lens component becomes strong, the amount of aberration generated in the first lens component becomes large, so that the aberration variation of the entire system due to zooming also becomes large. Therefore, the required performance cannot be met. Compared to the telephoto end or wide-angle end, it is used less frequently near the middle, but if the performance is extremely poor,
It is unacceptable for modern lenses, which are required to have higher performance and specifications.

【0025】条件式(1)の下限を越えて第1レンズ成
分の屈折力が弱くなると、ズーミングのために取らなく
てはならない第1レンズ成分と第2レンズ成分との間隔
が極端に長くなり、従ってレンズ全長も著しく長くなっ
てしまう。ビデオカメラ自体が小型化してきているた
め、最近のレンズ系はスペックや性能と共により一層の
コンパクト化が要求されるようになってきている。この
ためいくら性能やスペックが高くても、著しく全長の長
いレンズ系ではカメラとの間で全くバランスが取れな
い。
When the lower limit of conditional expression (1) is exceeded and the refractive power of the first lens component becomes weak, the distance between the first lens component and the second lens component, which must be taken for zooming, becomes extremely long. Therefore, the total length of the lens also becomes extremely long. Since the video camera itself has been downsized, recent lens systems are required to be more compact along with specifications and performance. For this reason, no matter how high the performance or specifications are, a lens system with a remarkably long overall length cannot be perfectly balanced with the camera.

【0026】条件式(2)は第2レンズ成分の屈折力の
適正な範囲を規定するものである。第1レンズ成分の場
合と同じように、第2レンズ成分で発生する収差も全焦
点距離範囲の収差変動に大きく関与している。条件式
(2)の上限を越えて第2レンズ成分の屈折力が強くな
ると、第2レンズ成分で発生する収差が大きくなり、ズ
ーミングによる全系の収差変動が著しく大きくなってし
まう。また、第2レンズ成分は変倍を主に行っているた
め特に屈折力が強く、第3レンズ成分や第4レンズ成分
の収差補正にも大きな影響を及ぼし、明るいレンズ系の
実現が困難となる。
Conditional expression (2) defines an appropriate range of the refractive power of the second lens component. Similar to the case of the first lens component, the aberration generated in the second lens component also greatly contributes to the aberration variation in the entire focal length range. When the upper limit of conditional expression (2) is exceeded and the refracting power of the second lens component becomes strong, the aberration generated in the second lens component becomes large, and the aberration fluctuation of the entire system due to zooming becomes significantly large. In addition, since the second lens component mainly performs zooming, it has a particularly strong refractive power, which greatly affects the aberration correction of the third lens component and the fourth lens component, making it difficult to realize a bright lens system. .

【0027】条件式(2)の下限を越えて第2レンズ成
分の屈折力が弱くなると、ズーミングのために第2レン
ズ成分が移動する量が大きくなりレンズ全長が著しく長
くなってしまう。第2レンズ成分は主として変倍のため
に移動しているので、全長に及ぼす寄与は著しい。
When the lower limit of conditional expression (2) is exceeded and the refracting power of the second lens component becomes weak, the amount of movement of the second lens component due to zooming becomes large and the total lens length becomes extremely long. Since the second lens component moves mainly for zooming, its contribution to the total length is significant.

【0028】また、本発明の変倍レンズでは、第2レン
ズ成分は変倍のために光軸上を前後に可動であり、第3
レンズ成分は同じく変倍のために第2レンズ成分とは反
対方向に光軸上を前後に可動であり、前期第4レンズ成
分は変倍時の像面の位置を一定にするために光軸上をU
ターン状の軌跡を描いて前後に可動であることを特徴と
する。
Also, in the variable power lens of the present invention, the second lens component is movable back and forth on the optical axis for variable power, and
The lens component is also movable back and forth on the optical axis in the opposite direction to the second lens component for zooming, and the fourth lens component is the optical axis for keeping the image plane position constant during zooming. U on top
It is characterized by being able to move back and forth while drawing a turn-shaped trajectory.

【0029】上記のように、変倍時に各レンズ成分が移
動することにより、第3成分にも変倍効果を分担させる
ことができ、しかも第3レンズ成分の移動による全長の
大型化が防止される。
As described above, by moving each lens component during zooming, it is possible to share the zooming effect with the third component as well, and it is possible to prevent the total length from increasing due to the movement of the third lens component. It

【0030】さらに、第2レンズ成分及び第3レンズ成
分はともに線型に移動するのが望ましい。一般にズーム
レンズでは、移動するレンズ成分の数が少ない方が機構
も簡単でコンパクトになる。しかしながら複数のレンズ
成分を一つの機構を使って移動させることが可能であれ
ば、移動レンズ成分が比較的多くても簡単な機構とする
ことが可能である。上述のように第2レンズ成分及び第
3レンズ成分を線型に移動させることによって、ギア・
リード等を介して二つの移動レンズ成分を一つの機構で
比較的簡単に移動させることができる。
Furthermore, it is desirable that both the second lens component and the third lens component move linearly. Generally, in a zoom lens, the smaller the number of moving lens components, the simpler the mechanism and the more compact. However, if a plurality of lens components can be moved using one mechanism, a simple mechanism can be achieved even if the number of moving lens components is relatively large. By linearly moving the second lens component and the third lens component as described above,
The two moving lens components can be relatively easily moved by one mechanism via the lead or the like.

【0031】さらに、本発明の変倍レンズは、以下の条
件式(3)を満足することが望ましい。
Further, it is desirable that the variable power lens of the present invention satisfies the following conditional expression (3).

【0032】 0.10 < φ1/|φ2| < 0.35 (3) 条件式(3)は、第1レンズ成分と第2レンズ成分の屈
折力配分の適正なバランスを規定するものである。全系
のレンズ枚数は、第1レンズ成分と第2レンズ成分との
屈折力のバランスに大きく左右される。
0.10 <φ1 / | φ2 | <0.35 (3) Conditional expression (3) defines an appropriate balance of the refractive power distributions of the first lens component and the second lens component. The number of lenses in the entire system largely depends on the balance of the refractive powers of the first lens component and the second lens component.

【0033】条件式(3)の上限を越えて第1レンズ成
分の屈折力が強くなると、像面位置を補正する第4レン
ズ成分の軌跡が望遠端よりも広角端で物体側に寄り、最
も物体側となる位置がより第3レンズ成分に近くなる。
第3レンズ成分と第4レンズ成分との間隔が小さくなる
と第4レンズ成分に入射する光束幅が大きくなり、第4
レンズ成分で補正しなければならない収差量が大きくな
って第3レンズ成分や第4レンズ成分のレンズ枚数が増
加してしまう。
When the upper limit of conditional expression (3) is exceeded and the refracting power of the first lens component becomes strong, the locus of the fourth lens component for correcting the image plane position is closer to the object side at the wide-angle end than at the telephoto end, and The position on the object side becomes closer to the third lens component.
When the distance between the third lens component and the fourth lens component decreases, the width of the light beam incident on the fourth lens component increases,
The amount of aberration that must be corrected by the lens component increases, and the number of lenses of the third lens component and the fourth lens component increases.

【0034】条件式(3)の下限を越えて第2レンズ成
分の屈折力が強くなると、第4レンズ成分の軌跡が望遠
端よりも広角端で像面側に寄り、レンズバックが短くな
ったりレンズ全長が長くなったりする。ビデオレンズで
は一眼レフと比較して長いレンズバックを必要としてい
る。これはレンズの像面側にローパスフィルターやフェ
イスプレート等の厚い平板を挿入するためである。最近
では画面サイズ(CCDサイズ)が小さくなる傾向にあ
るが、CCDをカバーするフェイスプレートの厚みはほ
とんど変わっていないため、レンズの全長に対するレン
ズバックの比はますます大きくなっている。つまり、レ
ンズバックが極端に短くなるとレンズ系自体が実現でき
なくなってしまう可能性がある。もちろんレンズの構成
枚数を変えることでレンズバックを長くすることはある
程度可能ではあるが、そのためにはレンズ枚数を著しく
多くしなくてはならない。
When the lower limit of conditional expression (3) is exceeded and the refractive power of the second lens component becomes strong, the locus of the fourth lens component shifts toward the image side at the wide-angle end rather than at the telephoto end, and the lens back becomes shorter. The total lens length may become longer. Video lenses require longer lens backs than single-lens reflex cameras. This is because a thick flat plate such as a low-pass filter or a face plate is inserted on the image side of the lens. Recently, the screen size (CCD size) has tended to become smaller, but the thickness of the face plate covering the CCD has hardly changed, so the ratio of the lens back to the total length of the lens is becoming larger and larger. That is, if the lens back becomes extremely short, the lens system itself may not be realized. Of course, it is possible to lengthen the lens back to some extent by changing the number of lens components, but for that purpose, the number of lenses must be significantly increased.

【0035】さらに、第1レンズ成分は高分散材料の負
レンズを少なくとも1枚含む2枚以上のレンズで構成さ
れ、第2レンズ成分は高分散材料の正レンズを少なくと
も1枚含む2枚以上のレンズで構成され、第4レンズ成
分は高分散材料の負レンズを少なくとも1枚含む2枚以
上のレンズで構成されていることが望ましい。
Further, the first lens component is composed of two or more lenses including at least one negative lens of high dispersion material, and the second lens component is composed of two or more lenses including at least one positive lens of high dispersion material. It is preferable that the fourth lens component is composed of two or more lenses including at least one negative lens made of a high dispersion material.

【0036】さらに、本発明の変倍レンズは、以下の条
件式(4)〜(6)を満足することが望ましい。
Further, it is desirable that the variable power lens of the present invention satisfy the following conditional expressions (4) to (6).

【0037】 ν1N < 30 (4) ν2P < 30 (5) ν3N < 30 (6) 但し、ν1Nは第1レンズ成分中の負の高分散レンズのア
ッべ数、ν2Pは第2レンズ成分中の正の高分散レンズの
アッべ数、ν3Nは第3レンズ成分中の負の高分散レンズ
のアッべ数である。
Ν1N <30 (4) ν2P <30 (5) ν3N <30 (6) where ν1N is the Abbe number of the negative high-dispersion lens in the first lens component, and ν2P is positive in the second lens component. Is the Abbe number of the high-dispersion lens, and ν3N is the Abbe number of the negative high-dispersion lens in the third lens component.

【0038】条件式(4)〜(6)は各レンズ成分の色
収差補正に関するものである。ズームレンズにおいては
どのようなレンズタイプであるかに関わらず、各レンズ
成分内で色収差が補正されていることが必要である。こ
れは、各レンズ成分の相対位置が変倍にともなって大き
く変化しているためで、もし各レンズ成分内での色収差
補正がされていなかったり不十分であると、変倍によっ
て色収差が大きく変動してしまい要求性能を満たすこと
が出来ない。この傾向は、変倍比が大きくなるほど顕著
で8倍ズーム以上になると色収差補正は必ず適正にされ
ていなければならない。条件式(4)〜(6)の上限を
越えてアッベ数が大きくなると、各レンズ成分内の色収
差補正の能力が不十分となり、変倍による色収差変動が
許容量を越えてしまう。
Conditional expressions (4) to (6) relate to correction of chromatic aberration of each lens component. In a zoom lens, chromatic aberration must be corrected within each lens component regardless of the lens type. This is because the relative position of each lens component changes greatly with zooming.If chromatic aberration in each lens component is not corrected or is insufficient, chromatic aberration varies greatly due to zooming. As a result, the required performance cannot be met. This tendency becomes more remarkable as the zoom ratio increases, and chromatic aberration correction must be properly performed when the zoom becomes 8 times or more. If the Abbe's number exceeds the upper limits of conditional expressions (4) to (6), the ability to correct chromatic aberration in each lens component becomes insufficient, and variation in chromatic aberration due to zooming exceeds an allowable amount.

【0039】また、前記第1レンズ成分は、物体側より
順に負メニスカスレンズおよび正レンズの合計2枚のレ
ンズで構成されるのが望ましい。第1レンズ成分を最も
少ないレンズ枚数で構成するときには、前述のように各
レンズ成分内での色収差を補正する必要から、少なくと
も2枚のレンズが必要である。しかしながら、レンズの
形状や並びが適切でなければ、少ない枚数で色収差以外
の収差を補正することが困難となる。従って最も適切な
レンズ構成としては上述のようになる。より詳細には、
負メニスカスレンズは像面側に強い曲率の面を向け、正
レンズは物体側に強い曲率の面を向けるのが望ましい。
It is desirable that the first lens component is composed of a total of two lenses, a negative meniscus lens and a positive lens, in order from the object side. When the first lens component is composed of the smallest number of lenses, at least two lenses are necessary because it is necessary to correct the chromatic aberration within each lens component as described above. However, if the shape and arrangement of the lenses are not appropriate, it will be difficult to correct aberrations other than chromatic aberration with a small number of lenses. Therefore, the most suitable lens configuration is as described above. More specifically,
It is desirable that the negative meniscus lens has a surface having a strong curvature toward the image plane side, and the positive lens has a surface having a strong curvature toward the object side.

【0040】前記第2レンズ成分は、物体側より順に負
レンズおよび正レンズの合計2枚のレンズで構成される
のが望ましい。第2レンズ成分を最も少ないレンズ枚数
で構成するには、やはり色収差補正を考慮にいれて、少
なくとも2枚のレンズ構成にしなくてはならない。この
時、第2レンズ成分で発生する収差をできるだけ補正す
るには上述のような構成にする必要がある。より詳細に
は、負レンズは像面側に強い屈折力の面を向け、正レン
ズは物体側に強い屈折力の面を向けるのが望ましい。
The second lens component is preferably composed of a total of two lenses, a negative lens and a positive lens, in order from the object side. In order to configure the second lens component with the smallest number of lenses, it is necessary to take the chromatic aberration correction into consideration and make the lens configuration of at least two lenses. At this time, in order to correct the aberration generated in the second lens component as much as possible, it is necessary to have the above-mentioned configuration. More specifically, it is desirable that the negative lens has a surface having a strong refractive power toward the image plane side and the positive lens has a surface having a strong refractive power toward the object side.

【0041】あるいは、前記第1レンズ成分は、物体側
より順に負メニスカスレンズ、正レンズおよび正メニス
カスレンズの合計3枚のレンズで構成されるのが望まし
い。高性能で高変倍のズームレンズになると、各レンズ
成分での収差補正をより厳格に行う必要がある。これは
各レンズ成分で発生する収差を補正しなければズーミン
グにおける収差の変動が大きくなってしまい、全ての焦
点距離範囲で必要な性能を得ることができないためであ
る。各レンズ成分の収差をできるだけ小さく抑えるに
は、一つの方法として各レンズ成分の屈折力を弱くする
ことが考えられる。しかしながら、この方法では当然ズ
ーミング時の各レンズ成分の移動量が大きくなってレン
ズ系も大きくなってしまう。もう一つの方法は各レンズ
成分のレンズ枚数を増やすものである。この方法を採用
すると、レンズ系をコンパクトにできレンズ外径も小さ
くできるため、レンズ枚数が少ないものよりもかえって
コストが安くなるというメリットもある。具体的には、
上述のような3枚構成にするのが最も良い。この様な3
枚構成はかなり収差を補正する効果があり、12倍程度
のズームレンズにも十分応用可能である。
Alternatively, it is desirable that the first lens component is composed of a total of three lenses including a negative meniscus lens, a positive lens and a positive meniscus lens in order from the object side. In a high-performance zoom lens with a high zoom ratio, it is necessary to more strictly perform aberration correction on each lens component. This is because if the aberration generated in each lens component is not corrected, the fluctuation of the aberration during zooming becomes large, and the required performance cannot be obtained in the entire focal length range. One way to keep the aberration of each lens component as small as possible is to weaken the refractive power of each lens component. However, in this method, the amount of movement of each lens component during zooming naturally increases and the lens system also increases. The other method is to increase the number of lenses for each lens component. If this method is adopted, the lens system can be made compact and the outer diameter of the lens can be made small, so that there is also an advantage that the cost is reduced rather than the one having a small number of lenses. In particular,
It is best to have a three-sheet structure as described above. 3 like this
The single-lens configuration has a considerable effect of correcting aberrations, and is sufficiently applicable to a 12 × zoom lens.

【0042】また、前記第2レンズ成分は、物体側より
順に負レンズ、両凹レンズおよび正レンズの合計3枚の
レンズで構成されるのが望ましい。高変倍比のズームレ
ンズでは第2レンズ成分も上述のような3枚構成にする
ことでズーミングによる収差変動をかなり小さくするこ
とができる。
It is desirable that the second lens component is composed of a total of three lenses including a negative lens, a biconcave lens and a positive lens in order from the object side. In a zoom lens having a high zoom ratio, the aberration variation due to zooming can be considerably reduced by making the second lens component also have the above-described three-lens configuration.

【0043】さらに、本発明の変倍レンズは、以下の条
件式(7)を満足することが望ましい。
Further, it is desirable that the variable power lens of the present invention satisfies the following conditional expression (7).

【0044】 0.01 < |t2|/|t3| < 0.35 (7) 但し、t2は第2レンズ成分の全移動量、t3は第3レン
ズ成分の全移動量である。
0.01 <| t2 | / | t3 | <0.35 (7) where t2 is the total movement amount of the second lens component and t3 is the total movement amount of the third lens component.

【0045】条件式(7)は第2レンズ成分と第3レン
ズ成分との移動量の比を規定するものである。主として
変倍を行うのは第2レンズ成分であり、第3レンズ成分
は補助的な変倍を行うことで、第2レンズ成分の移動量
を減らしてレンズ全長の短縮化を助けている。条件式
(7)の上限を越えて第2レンズ成分の移動量が第3レ
ンズ成分の移動量と比べて大きくなると、第3レンズ成
分で変倍を助ける量がわずかとなり実質的にほとんど効
果が無い。つまり、多くのレンズ成分を移動させなくて
はならないデメリットだけが残る。
Conditional expression (7) defines the ratio of the moving amounts of the second lens component and the third lens component. It is the second lens component that mainly performs zooming, and the third lens component performs auxiliary zooming, which reduces the amount of movement of the second lens component and helps shorten the overall lens length. When the amount of movement of the second lens component exceeds the amount of movement of the third lens component beyond the upper limit of the conditional expression (7), the amount of the third lens component that assists zooming becomes small and practically almost no effect is obtained. There is no. In other words, the only disadvantage remains that many lens components must be moved.

【0046】条件式(7)の下限を越えて第3レンズ成
分の移動量が大きくなると、ミドル付近から広角端で第
3レンズ成分と第4レンズ成分とが極端に接近し、第4
レンズ成分に入射する光束幅が大きくなる。このため第
4レンズ成分での収差補正が困難となり、明るいレンズ
を実現することが困難となる。
When the amount of movement of the third lens component is increased beyond the lower limit of the conditional expression (7), the third lens component and the fourth lens component are extremely close to each other at the wide-angle end from near the middle, and the fourth lens component
The width of the light beam incident on the lens component becomes large. Therefore, it becomes difficult to correct aberrations in the fourth lens component, and it becomes difficult to realize a bright lens.

【0047】また、フォーカシングは第4レンズ成分で
行うのがよい。従来のように前玉でフォーカシングを行
うと前玉径が大変大きくなってしまう。これを防ぐため
に、最近では前玉以外でフォーカシングするインナーフ
ォーカスやリアフォーカスが主流となってきている。本
発明のレンズタイプでは第4レンズ成分でフォーカシン
グを行うのが最も良い。前玉以外でフォーカシングを行
う利点は前玉径が大きくならないということのほかに、
広角端ではほとんどレンズ先端までフォーカシングが可
能であることが挙げられる。インナーフォーカスやリア
フォーカスでは、同じ距離の物体に対するフォーカシン
グレンズ成分の繰り出し量が焦点距離によって異なって
しまうという不便さはあるが、メリットの方がはるかに
多い。
Focusing is preferably performed by the fourth lens component. When focusing with the front lens as in the past, the diameter of the front lens becomes very large. In order to prevent this, recently, the inner focus and rear focus, which focus on other than the front lens, have become the mainstream. In the lens type of the present invention, focusing is best performed by the fourth lens component. In addition to the fact that the diameter of the front lens does not increase, the advantage of focusing other than the front lens is
At the wide-angle end, it is possible to focus almost to the lens tip. The inner focus and the rear focus have the inconvenience that the amount of extension of the focusing lens component with respect to an object at the same distance varies depending on the focal length, but the merit is far greater.

【0048】以下に本発明にかかわる変倍レンズの具体
的な数値実施例を示す。ここで、各実施例において、r
i(i=1、2、3、...)は物体側から数えて第i番目の面の
曲率半径、di(i=1、2、3、...)は物体側から数えて第
i番目の軸上面間隔、ni(i=1、2、3、...)、νi(i=
1、2、3、...)はそれぞれ物体側から数えて第i番目の
レンズのd線(λ=587.6nm)に対する屈折率及びアッベ
数を示す。また、fは全系の焦点距離を示す。
Specific numerical examples of the variable power lens according to the present invention will be shown below. Here, in each embodiment, r
i (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3, ...) is the radius counted from the object side. i-th axial upper surface spacing, ni (i = 1, 2, 3, ...), νi (i =
1, 2, 3 ... Shows the refractive index and the Abbe number for the d-line (λ = 587.6 nm) of the i-th lens counted from the object side. Further, f indicates the focal length of the entire system.

【0049】実施例中、曲率半径に*印を付した面は非
球面で構成された面であることを示し、以下の非球面の
面形状を表す式で定義するものとする。
In the examples, the surface with a radius of curvature marked with * indicates that it is a surface formed of an aspherical surface, and is defined by the following expression representing the surface shape of the aspherical surface.

【0050】[0050]

【数1】 [Equation 1]

【0051】 ここで、X:光軸方向の基準面からの偏移量 r:近軸曲率半径 h:光軸と垂直な方向の高さ An:n次の非球面係数 ε:2次曲面パラメータである。Here, X: amount of deviation from the reference surface in the optical axis direction, r: paraxial radius of curvature, h: height in the direction perpendicular to the optical axis, An: aspherical coefficient of order n ε: quadric surface parameter Is.

【0052】尚、下記の実施例は全て4成分構成である
が、そのレンズ成分間や全系の像側あるいは物体側に、
簡単な構成で比較的屈折力の弱い固定若しくは可動のレ
ンズ成分を配置することは容易であり、本発明の主旨に
含まれるものである。
The following examples all have a four-component construction, but between the lens components or on the image side or object side of the entire system,
It is easy to dispose a fixed or movable lens component having a relatively weak refractive power with a simple structure, and this is included in the gist of the present invention.

【0053】<実施例1> f=65.0〜10.0〜5.8 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 45.676 d1 1.300 N1 1.83350 ν1 21.00 r2 27.898 d2 4.900 N2 1.69680 ν2 56.47 r3 -1209.614 d3 0.150 r4 23.117 d4 2.400 N3 1.69680 ν3 56.47 r5 34.926 d5 24.467〜8.443〜1.000 r6 75.390 d6 0.800 N4 1.77250 ν4 49.77 r7 6.939 d7 3.700 r8 -28.920 d8 0.700 N5 1.75450 ν5 51.57 r9 20.942 d9 0.300 r10 13.634 d10 2.200 N6 1.83350 ν6 21.00 r11 61.279 d11 2.000〜18.023〜25.467 r12 ∞ d12 2.500〜3.795〜4.393 r13* 14.918 d13 3.200 N7 1.58913 ν7 61.11 r14 142.908 d14 7.500〜2.910〜3.958 r15 96.674 d15 0.900 N8 1.84666 ν8 23.82 r16 15.069 d16 3.100 N9 1.60311 ν9 60.74 r17 -82.162 d17 0.100 r18 48.748 d18 2.800 N10 1.58913 ν10 61.11 r19* -19.386 d19 3.000〜6.294〜4.649 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [非球面係数] r13 ε=1.0 A4=-0.72177×10-4 A6=-0.72868×10-7 r19 ε=1.0 A4= 0.45621×10-4 A6= 0.65836×10-6 A8=-0.11464×10-7<Example 1> f = 65.0 to 10.0 to 5.8 Curvature radius Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 45.676 d1 1.300 N1 1.83350 ν1 21.00 r2 27.898 d2 4.900 N2 1.69680 ν2 56.47 r3 -1209.614 d3 0.150 r4 23.117 d4 2.400 N3 1.69680 ν3 56.47 r5 34.926 d5 24.467 ~ 8.443 ~ 1.000 r6 75.390 d6 0.800 N4 1.77250 ν4 49.77 r7 6.939 d7 3.700 r8 -2810 9.5 2 r11 61.279 d11 2.000 ~ 18.023 ~ 25.467 r12 ∞ d12 2.500 ~ 3.795 ~ 4.393 r13 * 14.918 d13 3.200 N7 1.58913 ν7 61.11 r14 142.908 d14 7.500 ~ 2.910 ~ 3.958 r15 96.674 1.967 N9 1.82666916. -82.162 d17 0.100 r18 48.748 d18 2.800 N10 1.58913 ν10 61.11 r19 * -19.386 d19 3.000 to 6.294 to 4.649 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [aspherical coefficient] r13 ε = 1.0 A4 = -0.72177 x 10 -4 A6 = -0.72868 x 10 -7 r19 ε = 1.0 A4 = 0.45621 x 10 -4 A6 = 0.65836 x 10 -6 A8 = -0.11464 x 10 -7 .

【0054】<実施例2> f=65.0〜10.0〜5.8 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 44.403 d1 1.300 N1 1.84666 ν1 23.82 r2 25.645 d2 5.900 N2 1.67000 ν2 57.07 r3 -787.042 d3 0.150 r4 21.452 d4 2.100 N3 1.67000 ν3 57.07 r5 32.063 d5 25.341〜8.775〜1.000 r6 37.766 d6 0.800 N4 1.77250 ν4 49.77 r7 6.585 d7 3.900 r8 -28.742 d8 0.700 N5 1.75450 ν5 51.57 r9 19.849 d9 0.300 r10 13.219 d10 2.200 N6 1.83350 ν6 21.00 r11 60.533 d11 2.000〜18.566〜26.341 r12 ∞ d12 2.500〜3.795〜4.393 r13* 22.823 d13 3.200 N7 1.58913 ν7 61.11 r14 -53.028 d14 7.500〜2.931〜3.940 r15 78.836 d15 0.900 N8 1.84666 ν8 23.82 r16 14.964 d16 4.000 N9 1.58913 ν9 61.11 r17 -27.783 d17 1.000 r18 82.700 d18 2.400 N10 1.51680 ν10 64.20 r19 -25.998 d19 3.000〜6.274〜4.667 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [非球面係数] r13 ε=1.0 A4=-0.68914×10-4 A6=-0.39999×10-7<Example 2> f = 65.0 to 10.0 to 5.8 Curvature radius Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 44.403 d1 1.300 N1 1.84666 ν1 23.82 r2 25.645 d2 5.900 N2 1.67000 ν2 57.07 r3 -787.042 d3 0.150 r4 21.452 d4 2.100 N3 1.67000 ν3 57.07 r5 32.063 d5 25.341 ~ 8.775 ~ 1.000 r6 37.766 d6 0.800 N4 1.77250 ν4 49.77 r7 6.585 d7 3.900 r8 -283 200.962 r11 60.533 d11 2.000〜18.566〜26.341 r12 ∞ d12 2.500〜3.795〜4.393 r13 * 22.823 d13 3.200 N7 1.58913 ν7 61.11 r14 -53.028 d14 7.500〜2.931〜3.940 r15 79.836 d15 0.900 N8 1.9161616 8.23 r17 -27.783 d17 1.000 r18 82.700 d18 2.400 N10 1.51680 ν10 64.20 r19 -25.998 d19 3.000 ~ 6.274 ~ 4.667 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [aspheric coefficient] r13 ε = 1.0 A4 = -0 .68914 × 10 -4 A6 = -0.39999 × 10 -7 .

【0055】<実施例3> f=65.0〜10.0〜5.8 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 37.983 d1 1.300 N1 1.83350 ν1 21.00 r2 24.242 d2 5.500 N2 1.67000 ν2 57.07 r3 -2615.405 d3 0.150 r4 23.712 d4 2.200 N3 1.60311 ν3 60.74 r5 42.796 d5 22.250〜7.696〜1.000 r6 106.934 d6 0.800 N4 1.71300 ν4 53.93 r7 6.755 d7 3.700 r8 -24.054 d8 0.700 N5 1.67000 ν5 57.07 r9 14.255 d9 0.300 r10 11.986 d10 2.200 N6 1.83350 ν6 21.00 r11 46.901 d11 2.000〜16.554〜23.250 r12 ∞ d12 2.500〜3.795〜4.393 r13* 14.744 d13 3.200 N7 1.64000 ν7 58.61 r14 280.502 d14 1.000 r15 -20.215 d15 0.900 N8 1.80518 ν8 25.43 r16 -29.341 d16 7.500〜2.290〜3.266 r17 41.796 d17 0.900 N9 1.84666 ν9 23.82 r18 14.176 d18 3.100 N10 1.69680 ν10 56.47 r19 -242.844 d19 0.100 r20 86.229 d20 2.800 N11 1.58913 ν11 61.11 r21* -18.417 d21 3.000〜6.915〜5.341 r22 ∞ d22 4.840 N12 1.51680 ν12 64.20 r23 ∞ [非球面係数] r13 ε=1.0 A4=-0.49003×10-4 A6= 0.21064×10-6 r21 ε=1.0 A4= 0.79885×10-4 A6= 0.11328×10-5 A8=-0.15926×10-7Example 3 f = 65.0 to 10.0 to 5.8 Curvature radius Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 37.983 d1 1.300 N1 1.83350 ν1 21.00 r2 24.242 d2 5.500 N2 1.67000 ν2 57.07 r3 -2615.405 d3 0.150 r4 23.712 d4 2.200 N3 1.60311 ν3 60.74 r5 42.796 d5 22.250 to 7.696 to 1.000 r6 106.934 d6 0.800 N4 1.71300 ν4 53.93 r7 6.755 d7 3.700 r8 -26.06 r11 46.901 d11 2.000 ~ 16.554 ~ 23.250 r12 ∞ d12 2.500 ~ 3.795 ~ 4.393 r13 * 14.744 d13 3.200 N7 1.64000 ν7 58.61 r14 280.502 d14 1.000 r15 -20.215 d15 0.917 N8 1.80518 ν8 25.341 r16 * 14.2918. 0.900 N9 1.84666 ν9 23.82 r18 14.176 d18 3.100 N10 1.69680 ν10 56.47 r19 -242.844 d19 0.100 r20 86.229 d20 2.800 N11 1.58913 ν11 61.11 r21 * -18.417 d21 3.000〜6.915〜5.322 r22 ∞d 0 N12 1.51680 ν12 64.20 r23 ∞ [aspherical coefficient] r13 ε = 1.0 A4 = -0.49003 × 10 -4 A6 = 0.21064 × 10 -6 r21 ε = 1.0 A4 = 0.79885 × 10 -4 A6 = 0.11328 × 10 -5 A8 = -0.15926 × 10 -7 .

【0056】<実施例4> f=65.0〜10.0〜5.8 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 37.983 d1 1.300 N1 1.83350 ν1 21.00 r2 24.242 d2 5.500 N2 1.67000 ν2 57.07 r3 -2957.967 d3 0.150 r4 23.706 d4 2.200 N3 1.60311 ν3 60.74 r5 42.873 d5 22.222〜7.693〜1.000 r6 107.044 d6 0.800 N4 1.71300 ν4 53.93 r7 6.755 d7 3.700 r8 -24.073 d8 0.700 N5 1.67000 ν5 57.07 r9 14.257 d9 0.300 r10 11.990 d10 2.200 N6 1.83350 ν6 21.00 r11 46.912 d11 2.000〜16.529〜23.222 r12 ∞ d12 2.500〜3.795〜4.393 r13* 14.676 d13 3.200 N7 1.62041 ν7 60.29 r14 353.499 d14 1.000 r15 28.077 d15 0.900 N8 1.83350 ν8 21.00 r16 20.619 d16 7.500〜2.308〜3.290 r17 40.575 d17 0.900 N9 1.84666 ν9 23.82 r18 14.186 d18 3.100 N10 1.69680 ν10 56.47 r19 -236.624 d19 0.100 r20 86.147 d20 2.800 N11 1.58913 ν11 61.11 r21* -18.476 d21 3.000〜6.897〜5.317 r22 ∞ d22 4.840 N12 1.51680 ν12 64.20 r23 ∞ [非球面係数] r13 ε=1.0 A4=-0.70889×10-4 A6=-0.50264×10-7 r21 ε=1.0 A4= 0.62913×10-4 A6= 0.88209×10-6 A8=-0.15916×10-7<Example 4> f = 65.0 to 10.0 to 5.8 Radius of curvature Axial upper surface distance Refractive index (Nd) Abbe number (νd) r1 37.983 d1 1.300 N1 1.83350 ν1 21.00 r2 24.242 d2 5.500 N2 1.67000 ν2 57.07 r3 -2957.967 d3 0.150 r4 23.706 d4 2.200 N3 1.60311 ν3 60.74 r5 42.873 d5 22.222 to 7.693 to 1.000 r6 107.044 d6 0.800 N4 1.71300 ν4 53.93 r7 6.755 d7 3.700 r8 -2 370 r11 46.912 d11 2.000 ~ 16.529 ~ 23.222 r12 ∞ d12 2.500 ~ 3.795 ~ 4.393 r13 * 14.676 d13 3.200 N7 1.62041 ν7 60.29 r14 353.499 d14 1.000 r15 28.077 d15 0.917 1.989017. 1.84666 ν9 23.82 r18 14.186 d18 3.100 N10 1.69680 ν10 56.47 r19 -236.624 d19 0.100 r20 86.147 d20 2.800 N11 1.58913 ν11 61.11 r21 * -18.476 d21 3.000 ~ 6.897 ~ 5.317 r22 ∞ d22 4.840 12 1.51680 ν12 64.20 r23 ∞ [aspherical coefficients] r13 ε = 1.0 A4 = -0.70889 × 10 -4 A6 = -0.50264 × 10 -7 r21 ε = 1.0 A4 = 0.62913 × 10 -4 A6 = 0.88209 × 10 -6 A8 = -0.15916 x 10 -7 .

【0057】<実施例5> f=37.9〜18.0〜6.7 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 20.340 d1 1.100 N1 1.83350 ν1 21.00 r2 15.420 d2 1.200 r3 17.018 d3 4.650 N2 1.69680 ν2 56.47 r4 500.706 d4 19.417〜12.776〜1.150 r5 -40.819 d5 0.600 N3 1.75450 ν3 51.57 r6 7.006 d6 2.400 r7* 19.466 d7 2.300 N4 1.84506 ν4 23.66 r8 39.586 d8 1.650〜8.291〜19.917 r9 ∞ d9 6.100〜6.682〜7.700 r10* 13.674 d10 2.700 N5 1.76683 r11 32.597 d11 4.500〜1.803〜2.349 r12 44.528 d12 1.300 N6 1.80518 ν5 25.43 r13 8.405 d13 3.600 N7 1.76683 r14* -22.463 d14 2.211〜4.327〜2.762 r15 ∞ d15 4.840 N8 1.51680 ν6 64.20 r16 ∞ [非球面係数] r7 ε=1.0 A4 = 0.20592×10-3 A6 =-0.48934×10-6 A8 = 0.21295×10-6 A10=-0.44687×10-8 r10 ε=1.0 A4 =-0.44636×10-4 A6 =-0.80443×10-6 A8 = 0.40863×10-7 A10=-0.72788×10-9 r14 ε=1.0 A4 = 0.11166×10-3 A6 =-0.45960×10-5 A8 = 0.25463×10-6 A10=-0.51255×10-8<Example 5> f = 37.9 to 18.0 to 6.7 Curvature radius Axial upper surface distance Refractive index (Nd) Abbe number (νd) r1 20.340 d1 1.100 N1 1.83350 ν1 21.00 r2 15.420 d2 1.200 r3 17.018 d3 4.650 N2 1.69680 ν2 56.47 r4 500.706 d4 19.417-12.776-1.150 r5 -40.819 d5 0.600 N3 1.75450 ν3 51.57 r6 7.006 d6 2.400 r7 * 19.466 d7 2.300 N4 1.84506 ν4 23.66 r8 39.586 d8 1.650 〜8.291 〜19.917 9.79 r9 39100586 ∞ 2.700 N5 1.76683 r11 32.597 d11 4.500 to 1.803 to 2.349 r12 44.528 d12 1.300 N6 1.80518 ν5 25.43 r13 8.405 d13 3.600 N7 1.76683 r14 * -22.463 d14 2.211 to 4.327 to 2.762 r15 ∞ d15 4.840 ν6 1.520 840 N6 1.58 r7 ε = 1.0 A4 = 0.20592 × 10 -3 A6 = -0.48934 × 10 -6 A8 = 0.21295 × 10 -6 A10 = -0.44687 × 10 -8 r10 ε = 1.0 A4 = -0.44636 × 10 -4 A6 = -0.80443 × 10 -6 A8 = 0.40863 × 10 -7 A10 = -0.72788 × 10 -9 r14 ε = 1.0 A4 = 0.11166 x 10 -3 A6 = -0.45960 x 10 -5 A8 = 0.25463 x 10 -6 A10 = -0.51255 x 10 -8 .

【0058】<実施例6> f=70.0〜36.0〜6.2 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 30.682 d1 1.100 N1 1.83350 ν1 21.00 r2 20.799 d2 4.200 N2 1.58913 ν2 61.11 r3 343.739 d3 0.100 r4 20.902 d4 2.700 N3 1.58913 ν3 61.11 r5 46.220 d5 19.776〜16.288〜1.100 r6 44.854 d6 1.100 N4 1.69680 ν4 56.47 r7 5.850 d7 3.000 r8 -23.754 d8 0.700 N5 1.69680 ν5 56.47 r9 33.701 d9 0.100 r10 10.582 d10 1.700 N6 1.83350 ν6 21.00 r11 20.456 d11 2.000〜5.488〜20.676 r12 ∞ d12 1.700〜2.746〜7.303 r13 16.429 d13 3.000 N7 1.58913 ν7 61.11 r14* 52.853 d14 13.000〜4.503〜0.782 r15 29.905 d15 0.750 N8 1.83350 ν8 21.00 r16 12.665 d16 0.400 r17 10.646 d17 4.600 N9 1.58913 ν9 61.11 r18* -14.972 d18 1.500〜8.950〜8.116 r19 ∞ d19 4.840 N10 1.51680 ν10 64.20 r20 ∞ [非球面係数] r14 ε=0.66708×10 A4 =-0.14598×10-3 A6 = 0.22461×10-5 A8 = 0.34191×10-7 A10=-0.47697×10-9 r18 ε=-0.30872 A4 = 0.47860×10-4 A6 = 0.14001×10-5 A8 = 0.56602×10-7 A10=-0.13320×10-8<Example 6> f = 70.0 to 36.0 to 6.2 Radius of curvature Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 30.682 d1 1.100 N1 1.83350 ν1 21.00 r2 20.799 d2 4.200 N2 1.58913 ν2 61.11 r3 343.739 d3 0.100 r4 20.902 d4 2.700 N3 1.58913 ν3 61.11 r5 46.220 d5 19.776 to 16.288 to 1.100 r6 44.854 d6 1.100 N4 1.69680 ν4 56.47 r7 5.850 d7 3.000 yr 8 20.456 d11 2.000 ~ 5.488 ~ 20.676 r12 ∞ d12 1.700 ~ 2.746 ~ 7.303 r13 16.429 d13 3.000 N7 1.58913 ν7 61.11 r14 * 52.853 d14 13.000 ~ 4.503 ~ 0.782 r15 29.905 d15 16.17 d17 4.617 d17 4.171617 16.665 d16 4.617 rd16 4.617 rd16 4.17 ν9 61.11 r18 * -14.972 d18 1.500〜8.950〜8.116 r19 ∞ d19 4.840 N10 1.51680 ν10 64.20 r20 ∞ [aspherical coefficient] r14 ε = 0.66708 × 10 A4 = -0.14598 × 10 -3 A6 = 0.22461 × 10 -5 A8 = 0.34191 × 10 -7 A10 = -0.47697 × 10 -9 r18 ε = -0.30872 A4 = 0.47860 × 10 -4 A6 = 0.14001 × 10 -5 A8 = 0.56602 × 10 -7 A10 = -0.13320 × 10 -8 .

【0059】<実施例7> f=70.0〜36.0〜6.2 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 35.679 d1 1.100 N1 1.83350 ν1 21.00 r2 23.809 d2 4.200 N2 1.58913 ν2 61.11 r3 -291.279 d3 0.100 r4 22.567 d4 2.700 N3 1.58913 ν3 61.11 r5 49.220 d5 20.393〜16.605〜1.100 r6 97.975 d6 0.800 N4 1.69680 ν4 56.47 r7 5.961 d7 3.000 r8 -26.786 d8 0.700 N5 1.69680 ν5 56.47 r9 32.854 d9 0.300 r10 11.024 d10 1.400 N6 1.83350 ν6 21.00 r11 21.368 d11 2.000〜5.788〜21.293 r12 ∞ d12 1.700〜2.647〜6.523 r13 14.036 d13 2.400 N7 1.58913 ν7 61.11 r14 -47.783 d14 0.800 r15 -30.522 d15 0.600 N8 1.80518 ν8 25.43 r16* 237.731 d16 13.000〜4.385〜2.450 r17 23.104 d17 0.750 N9 1.83350 ν9 21.00 r18 17.108 d18 0.400 r19 12.830 d19 4.600 N10 1.58913 ν10 61.11 r20* -27.086 d20 1.500〜9.168〜7.227 r21 ∞ d21 4.840 N11 1.51680 ν11 64.20 r22 ∞ [非球面係数] r16 ε=1.0 r20 ε=-0.91873×10 A4 = 0.11455×10-3 A6 = 0.11126×10-5 A8 = 0.12889×10-7 A10=-0.67695×10-9<Example 7> f = 70.0 to 36.0 to 6.2 Radius of curvature Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 35.679 d1 1.100 N1 1.83350 ν1 21.00 r2 23.809 d2 4.200 N2 1.58913 ν2 61.11 r3 -291.279 d3 0.100 r4 22.567 d4 2.700 N3 1.58913 ν3 61.11 r5 49.220 d5 20.393 to 16.605 to 1.100 r6 97.975 d6 0.800 N4 1.69680 ν4 56.47 r7 5.961 rd 400.000 r9 0.38 r6 0.300 r6 0.300 r5 .47 r11 21.368 d11 2.000 ~ 5.788 ~ 21.293 r12 ∞ d12 1.700 ~ 2.647 ~ 6.523 r13 14.036 d13 2.400 N7 1.58913 ν7 61.11 r14 -47.783 d14 0.800 r15 -30.522 d15 0.617 rd17 23.17 rd17 23.50 rd17. 0.750 N9 1.83350 ν9 21.00 r18 17.108 d18 0.400 r19 12.830 d19 4.600 N10 1.58913 ν10 61.11 r20 * -27.086 d20 1.500 to 9.168 to 7.227 r21 ∞ d21 4.840 N11 1.51680 ν11 64.20 r22 ∞ [aspherical coefficient] ] R16 ε = 1.0 r20 ε = −0.91873 × 10 A4 = 0.11455 × 10 −3 A6 = 0.11126 × 10 −5 A8 = 0.12889 × 10 −7 A10 = −0.67695 × 10 −9 .

【0060】<実施例8> f=66.0〜35.0〜5.7 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 41.873 d1 1.100 N1 1.84666 ν1 23.82 r2 23.085 d2 5.700 N2 1.51680 ν2 64.20 r3 -86.708 d3 0.100 r4 19.106 d4 2.700 N3 1.51680 ν3 64.20 r5 78.181 d5 18.458〜14.850〜0.570 r6 -217.994 d6 0.650 N4 1.77250 ν4 49.77 r7 8.760 d7 3.300 r8 -10.233 d8 0.550 N5 1.75450 ν5 51.57 r9 8.008 d9 1.900 N6 1.84666 ν6 23.82 r10 -392.682 d10 2.000〜5.608〜19.888 r11 ∞ d11 1.500〜1.861〜3.289 r12 13.840 d12 2.800 N7 1.59844 r13* -346.342 d13 9.453〜3.853〜10.186 r14 18.017 d14 0.650 N8 1.84666 ν7 23.82 r15 8.630 d15 3.800 N9 1.59844 r16* -26.722 d16 4.000〜9.239〜1.478 r17 ∞ d17 4.840 N10 1.51680 ν8 64.20 r18 ∞ [非球面係数] r13 ε=1.0 A4= 0.82831×10-4 A6=-0.49893×10-7 A8= 0.11039×10-8 r16 ε=1.0 A4= 0.54030×10-4 A6= 0.16398×10-6 A8=-0.31394×10-8<Example 8> f = 66.0 to 35.0 to 5.7 Radius of curvature Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 41.873 d1 1.100 N1 1.84666 ν1 23.82 r2 23.085 d2 5.700 N2 1.51680 ν2 64.20 r3 -86.708 d3 0.100 r4 19.106 d4 2.700 N3 1.51680 ν3 64.20 r5 78.181 d5 18.458〜14.850〜0.570 r6 -217.994 d6 0.650 N4 1.77250 ν4 49.77 r7 8.760 d7 3.300 r8 -10.58 d10 2.000 ~ 5.608 ~ 19.888 r11 ∞ d11 1.500 ~ 1.861 ~ 3.289 r12 13.840 d12 2.800 N7 1.59844 r13 * -346.342 d13 9.453 ~ 3.853 ~ 10.186 r14 18.017 d14 0.650 N8 1.84666 ν7 23.82 r15 8.630 d16 -26.44 1.54 ~ 9.239 ~ 1.478 r17 ∞ d17 4.840 N10 1.51680 ν8 64.20 r18 ∞ [aspheric coefficient] r13 ε = 1.0 A4 = 0.82831 × 10 -4 A6 = -0.49893 × 10 -7 A8 = 0.11039 × 10 -8 r16 ε = 1.0 A4 = 0.54030 x 10 -4 A6 = 0.16398 x 10 -6 A8 = -0.31394 x 10 -8 .

【0061】<実施例9> f=66.0〜15.0〜5.7 曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r1 36.192 d1 1.100 N1 1.84666 ν1 23.82 r2 22.258 d2 6.000 N2 1.51680 ν2 64.20 r3 -80.549 d3 0.100 r4 19.560 d4 2.500 N3 1.51680 ν3 64.20 r5 47.684 d5 18.800〜9.673〜0.572 r6 24.332 d6 0.700 N4 1.77250 ν4 49.77 r7 8.591 d7 3.200 r8 -11.153 d8 0.600 N5 1.75450 ν5 51.57 r9 7.775 d9 2.000 N6 1.84666 ν6 23.82 r10 40.449 d10 1.700〜10.827〜19.928 r11 ∞ d11 2.000〜2.913〜3.823 r12 11.558 d12 3.300 N7 1.58913 ν7 61.11 r13 -20.417 d13 1.200 r14 -11.008 d14 0.800 N8 1.58913 ν8 61.11 r15* -68.185 d15 8.500〜1.919〜3.919 r16 18.723 d16 0.650 N9 1.83350 ν9 21.00 r17 9.750 d17 0.500 r18 10.996 d18 3.800 N10 1.58913 ν10 61.11 r19* -13.722 d19 1.000〜6.669〜3.759 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [非球面係数] r15 ε=0.26051 A4 =-0.10940×10-4 A6 = 0.32705×10-5 A8 =-0.19181×10-6 A10= 0.19709×10-8 r19 ε=-0.35363×10 A4 =-0.37759×10-4 A6 =-0.19674×10-5 A8 = 0.11961×10-6 A10=-0.12711×10-8<Example 9> f = 66.0 to 15.0 to 5.7 Radius of curvature Axial upper surface spacing Refractive index (Nd) Abbe number (νd) r1 36.192 d1 1.100 N1 1.84666 ν1 23.82 r2 22.258 d2 6.000 N2 1.51680 ν2 64.20 r3 -80.549 d3 0.100 r4 19.560 d4 2.500 N3 1.51680 ν3 64.20 r5 47.684 d5 18.800 ~ 9.673 ~ 0.572 r6 24.332 d6 0.700 N4 1.77250 ν4 49.77 r7 8.591 d7 3.200 r8 -11.40 740.6450.9450.974506. 〜 10.827〜19.928 r11 ∞ d11 2.000〜2.913〜3.823 r12 11.558 d12 3.300 N7 1.58913 ν7 61.11 r13 -20.417 d13 1.200 r14 -11.008 d14 0.800 N8 1.58913 ν8 61.11 r15 * -68.19 9.8193.923 ν9 21.00 r17 9.750 d17 0.500 r18 10.996 d18 3.800 N10 1.58913 ν10 61.11 r19 * -13.722 d19 1.000 ~ 6.669 ~ 3.759 r20 ∞ d20 4.840 N11 1.51680 ν11 64.20 r21 ∞ [aspherical coefficient] r15 A = 0.26051 -0.10940 × 10 -4 A6 = 0.32705 × 10 -5 A8 = -0.19181 × 10 -6 A10 = 0.19709 × 10 -8 r19 ε = -0.35363 × 10 A4 = -0.37759 × 10 -4 A6 = -0.19674 × 10 - 5 A8 = 0.11961 x 10 -6 A10 = -0.12711 x 10 -8 .

【0062】尚、各実施例における各条件式の値は以下
のとおりである。
The value of each conditional expression in each example is as follows.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
変倍比が12倍程度でFナンバーが1.8程度という高変
倍でかつ明るい変倍レンズを、コンパクトかつ少ない構
成枚数で実現し、しかも性能面でも充分満足できるもの
を提供することができる。
As described above, according to the present invention,
It is possible to provide a highly variable and bright variable power lens having a variable power ratio of about 12 times and an F number of about 1.8, which is compact and has a small number of constituent elements, and which is sufficiently satisfactory in terms of performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に対応するレンズの構成図で
ある。
FIG. 1 is a configuration diagram of a lens corresponding to Example 1 of the present invention.

【図2】本発明の実施例2に対応するレンズの構成図で
ある。
FIG. 2 is a configuration diagram of a lens corresponding to Example 2 of the present invention.

【図3】本発明の実施例3に対応するレンズの構成図で
ある。
FIG. 3 is a configuration diagram of a lens corresponding to Example 3 of the present invention.

【図4】本発明の実施例4に対応するレンズの構成図で
ある。
FIG. 4 is a configuration diagram of a lens corresponding to Example 4 of the present invention.

【図5】本発明の実施例5に対応するレンズの構成図で
ある。
FIG. 5 is a configuration diagram of a lens corresponding to Example 5 of the present invention.

【図6】本発明の実施例6に対応するレンズの構成図で
ある。
FIG. 6 is a configuration diagram of a lens corresponding to Example 6 of the present invention.

【図7】本発明の実施例7に対応するレンズの構成図で
ある。
FIG. 7 is a configuration diagram of a lens corresponding to Example 7 of the present invention.

【図8】本発明の実施例8に対応するレンズの構成図で
ある。
FIG. 8 is a configuration diagram of a lens corresponding to Example 8 of the present invention.

【図9】本発明の実施例9に対応するレンズの構成図で
ある。
FIG. 9 is a configuration diagram of a lens corresponding to Example 9 of the present invention.

【図10】本発明の実施例1に対応するレンズの収差図
である。
FIG. 10 is an aberration diagram of a lens corresponding to Example 1 of the present invention.

【図11】本発明の実施例2に対応するレンズの収差図
である。
FIG. 11 is an aberration diagram of a lens corresponding to Example 2 of the present invention.

【図12】本発明の実施例3に対応するレンズの収差図
である。
FIG. 12 is an aberration diagram of a lens corresponding to Example 3 of the present invention.

【図13】本発明の実施例4に対応するレンズの収差図
である。
FIG. 13 is an aberration diagram of a lens corresponding to Example 4 of the present invention.

【図14】本発明の実施例5に対応するレンズの収差図
である。
FIG. 14 is an aberration diagram of a lens corresponding to Example 5 of the present invention.

【図15】本発明の実施例6に対応するレンズの収差図
である。
FIG. 15 is an aberration diagram of a lens corresponding to Example 6 of the present invention.

【図16】本発明の実施例7に対応するレンズの収差図
である。
FIG. 16 is an aberration diagram of a lens corresponding to Example 7 of the present invention.

【図17】本発明の実施例8に対応するレンズの収差図
である。
FIG. 17 is an aberration diagram of a lens corresponding to Example 8 of the present invention.

【図18】本発明の実施例9に対応するレンズの収差図
である。
FIG. 18 is an aberration diagram of a lens corresponding to Example 9 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1レンズ
成分、負の屈折力の第2レンズ成分、正の屈折力の第3
レンズ成分、正の屈折力の第4レンズ成分とを有し、以
下の条件式を満足することを特徴とする変倍レンズ 0.10 ≦ fs・φ1 ≦ 0.25 0.45 < fs・|φ2| < 1.25 但し、fsは広角端における全系の焦点距離、 φ1は第1レンズ成分の屈折力、 φ2は第2レンズ成分の屈折力である。
1. A first lens component having a positive refractive power, a second lens component having a negative refractive power, and a third lens component having a positive refractive power in order from the object side.
A variable power lens having a lens component and a fourth lens component having a positive refractive power and satisfying the following conditional expression: 0.10 ≤ fs ・ φ1 ≤ 0.25 0.45 <fs ・ | φ2 | <1.25 where fs is the focal length of the entire system at the wide-angle end, φ1 is the refractive power of the first lens component, and φ2 is the refractive power of the second lens component.
【請求項2】前記第2レンズ成分は変倍のために光軸上
を前後に可動であり、前記第3レンズ成分は同じく変倍
のために第2レンズ成分とは反対方向に光軸上を前後に
可動であり、前期第4レンズ成分は変倍時の像面の位置
を一定にするために光軸上をUターン状の軌跡を描いて
前後に可動であることを特徴とする請求項1に記載の変
倍レンズ。
2. The second lens component is movable back and forth on the optical axis for zooming, and the third lens component is also on the optical axis in the opposite direction to the second lens component for zooming. Is movable back and forth, and the fourth lens component is movable back and forth in a U-turn-shaped locus along the optical axis in order to make the position of the image plane constant during zooming. The variable power lens according to item 1.
JP34464092A 1992-12-24 1992-12-24 Variable power lens Pending JPH06194572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34464092A JPH06194572A (en) 1992-12-24 1992-12-24 Variable power lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34464092A JPH06194572A (en) 1992-12-24 1992-12-24 Variable power lens

Publications (1)

Publication Number Publication Date
JPH06194572A true JPH06194572A (en) 1994-07-15

Family

ID=18370832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34464092A Pending JPH06194572A (en) 1992-12-24 1992-12-24 Variable power lens

Country Status (1)

Country Link
JP (1) JPH06194572A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016228A (en) * 1996-08-23 2000-01-18 Olympus Optical Co. Ltd. Zoom lens system
US6185048B1 (en) 1997-10-14 2001-02-06 Olympus Optical Co., Ltd. Zoom lens system
US6331917B1 (en) 1997-10-14 2001-12-18 Olympus Optical Co., Ltd. Zoom lens system
JP2002006216A (en) * 2000-06-22 2002-01-09 Olympus Optical Co Ltd Zoom lens
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
US6535339B1 (en) 1999-11-08 2003-03-18 Olympus Optical Co., Ltd. Image pickup system
US6721105B2 (en) 2001-12-12 2004-04-13 Nikon Corporation Zoom lens system
JP2005024844A (en) * 2003-07-01 2005-01-27 Canon Inc Zoom lens and imaging apparatus provided with the same
JP2006178193A (en) * 2004-12-22 2006-07-06 Canon Inc Zoom lens and imaging apparatus having the same
USRE39899E1 (en) 1999-11-08 2007-10-30 Olympus Corporation Image pickup system
JP2008158160A (en) * 2006-12-22 2008-07-10 Canon Inc Zoom lens and imaging apparatus having the same
GB2450630A (en) * 2007-06-29 2008-12-31 Elmo Co Ltd Zoom lens
JP2011227240A (en) * 2010-04-19 2011-11-10 Canon Inc Zoom lens and optical device mounted with the same
JP2012194280A (en) * 2011-03-15 2012-10-11 Sony Corp Zoom lens and imaging apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016228A (en) * 1996-08-23 2000-01-18 Olympus Optical Co. Ltd. Zoom lens system
US6744571B2 (en) 1997-10-14 2004-06-01 Olympus Optical Co., Ltd. Zoom lens system
US6185048B1 (en) 1997-10-14 2001-02-06 Olympus Optical Co., Ltd. Zoom lens system
US6331917B1 (en) 1997-10-14 2001-12-18 Olympus Optical Co., Ltd. Zoom lens system
USRE40582E1 (en) * 1997-10-14 2008-11-25 Olympus Corporation Zoom lens system
US6937402B2 (en) 1999-11-08 2005-08-30 Olympus Corporation Zoom lens system, and image pick-up system using the same
USRE39899E1 (en) 1999-11-08 2007-10-30 Olympus Corporation Image pickup system
US6714355B2 (en) 1999-11-08 2004-03-30 Olympus Optical Co., Ltd. Zoom lens system, and image pickup system using the same
US6535339B1 (en) 1999-11-08 2003-03-18 Olympus Optical Co., Ltd. Image pickup system
JP4580510B2 (en) * 2000-06-22 2010-11-17 オリンパス株式会社 Zoom lens
JP2002006216A (en) * 2000-06-22 2002-01-09 Olympus Optical Co Ltd Zoom lens
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
US6721105B2 (en) 2001-12-12 2004-04-13 Nikon Corporation Zoom lens system
JP2005024844A (en) * 2003-07-01 2005-01-27 Canon Inc Zoom lens and imaging apparatus provided with the same
JP4497851B2 (en) * 2003-07-01 2010-07-07 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2006178193A (en) * 2004-12-22 2006-07-06 Canon Inc Zoom lens and imaging apparatus having the same
JP2008158160A (en) * 2006-12-22 2008-07-10 Canon Inc Zoom lens and imaging apparatus having the same
GB2450630A (en) * 2007-06-29 2008-12-31 Elmo Co Ltd Zoom lens
GB2450630B (en) * 2007-06-29 2010-07-21 Elmo Co Ltd Zoom lens
US7933073B2 (en) 2007-06-29 2011-04-26 Elmo Company, Limited Zoom lens
JP2011227240A (en) * 2010-04-19 2011-11-10 Canon Inc Zoom lens and optical device mounted with the same
JP2012194280A (en) * 2011-03-15 2012-10-11 Sony Corp Zoom lens and imaging apparatus

Similar Documents

Publication Publication Date Title
US7088522B2 (en) Zoom lens system
US7196852B2 (en) Zoom lens system and image pickup device having zoom lens system
US7471460B2 (en) Zoom lens system and camera having same
US5253113A (en) Wide-angle zoom lens having five lens units
JP3196283B2 (en) Zoom lens device
US7428107B2 (en) Zoom lens and image pickup apparatus having the same
US7319562B2 (en) Zoom lens system and image pickup apparatus including the zoom lens system
US7193790B2 (en) Zoom lens system and image pickup apparatus including the same
US7268811B2 (en) Zoom lens system
US7545580B2 (en) Zoom lens and image pickup apparatus including the same
US7817346B2 (en) Zoom lens and image capture apparatus
US7486448B2 (en) Zoom lens and image pickup apparatus
US7609457B2 (en) Zoom lens and image pickup apparatus including the same
US7835084B2 (en) Zoom lens system and camera equipped with the same
US6038084A (en) Zoom lens system
JP2002277740A (en) Zoom lens system
US7365913B2 (en) Zoom lens system and camera incorporating the same
US7443606B2 (en) Zoom lens system and image pickup apparatus having the same
JPH0667093A (en) High-power zoom lens
JPH06194572A (en) Variable power lens
US6633437B1 (en) Zoom lens and photographing apparatus having it
US7593171B2 (en) Zoom lens and image pickup apparatus including the same
US6661584B2 (en) Zoom lens and camera having the zoom lens
JPH05203875A (en) Variable power lens
JP3473351B2 (en) Zoom lens device