JPWO2019203324A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
JPWO2019203324A1
JPWO2019203324A1 JP2020514448A JP2020514448A JPWO2019203324A1 JP WO2019203324 A1 JPWO2019203324 A1 JP WO2019203324A1 JP 2020514448 A JP2020514448 A JP 2020514448A JP 2020514448 A JP2020514448 A JP 2020514448A JP WO2019203324 A1 JPWO2019203324 A1 JP WO2019203324A1
Authority
JP
Japan
Prior art keywords
carriers
carrier
signal
smtc
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020514448A
Other languages
English (en)
Other versions
JPWO2019203324A5 (ja
JP7348169B2 (ja
Inventor
浩樹 原田
浩樹 原田
直紀 藤村
直紀 藤村
卓馬 高田
卓馬 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2019203324A1 publication Critical patent/JPWO2019203324A1/ja
Publication of JPWO2019203324A5 publication Critical patent/JPWO2019203324A5/ja
Application granted granted Critical
Publication of JP7348169B2 publication Critical patent/JP7348169B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

ユーザ端末は、複数のキャリアのそれぞれに対応するスケーリングファクタによって、同期信号ブロックに基づく同周波測定の遅延要件を調整する制御部と、前記複数のキャリアのそれぞれにおいて前記同期信号ブロックを受信する受信部と、を有し、前記複数のキャリアの中の特定キャリアは、所定条件を満たす1つのキャリアであり、前記複数のキャリアの中の非特定キャリアのための第1スケーリングファクタは、前記複数のキャリアの数に基づき、前記特定キャリアのための第2スケーリングファクタは、前記キャリアの前記数に基づかない。本開示の一態様によれば、複数のキャリアのそれぞれにおける同周波測定を適切に行うことができる。

Description

本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE−A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
既存のLTEシステム(例えば、LTE Rel.8−13)において、ユーザ端末(UE:User Equipment)は、同期信号(SS:Synchronization Signal)を検出し、ネットワーク(例えば、基地局(eNB:eNode B))との同期をとるとともに、接続するセルを識別する(例えば、セルID(Identifier)によって識別する)。このような処理はセルサーチとも呼ばれる。同期信号は、例えば、PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal)を含む。
また、UEは、ブロードキャスト情報(例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)を受信して、ネットワークとの通信のための設定情報(システム情報などと呼ばれてもよい)を取得する。
MIBは、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)で送信されてもよいし、SIBは、下りリンク(DL)共有チャネル(PDSCH:Physical Downlink Shared Channel)で送信されてもよい。
将来の無線通信システム(以下、単にNRとも表記する)では、同期信号ブロック(SSB:Synchronization Signal Block)を用いた測定が利用される。SSBを用いた測定に関するタイミング設定(SMTC:SSB-based Measurement Timing Configuration)が、UEに通知される。UEは、設定されたSMTCウィンドウ内において、測定対象のSSBに基づく測定を実施する。
また、複数のキャリアのそれぞれにおいて同周波測定を行う場合、複数のキャリアの間でSMTCウィンドウが重複することが考えられる。この場合、同周波測定が適切に行われなければ、通信スループット、周波数利用効率などの劣化が生じるおそれがある。
そこで、本開示は、複数のキャリアのそれぞれにおける同周波測定を適切に行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
本開示の一態様に係るユーザ端末は、複数のキャリアのそれぞれに対応するスケーリングファクタによって、同期信号ブロックに基づく同周波測定の遅延要件を調整する制御部と、前記複数のキャリアのそれぞれにおいて前記同期信号ブロックを受信する受信部と、を有し、前記複数のキャリアの中の特定キャリアは、所定条件を満たす1つのキャリアであり、前記複数のキャリアの中の非特定キャリアのための第1スケーリングファクタは、前記複数のキャリアの数に基づき、前記特定キャリアのための第2スケーリングファクタは、前記キャリアの前記数に基づかない。
本開示の一態様によれば、複数のキャリアのそれぞれにおける同周波測定を適切に行うことができる。
図1は、セルサーチャの動作の一例を示す図である。 図2は、複数のキャリアのそれぞれにおける同周波測定の一例を示す図である。 図3は、複数のキャリアのそれぞれにおける同周波測定の別の一例を示す図である。 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図5は、一実施形態に係る無線基地局の全体構成の一例を示す図である。 図6は、一実施形態に係る無線基地局の機能構成の一例を示す図である。 図7は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図8は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図9は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
既存のLTEシステムにおいて、UEは、接続中のサービングキャリアとは異なる非サービングキャリアにおいて測定を行う異周波測定(inter-frequency measurement)をサポートする。
UEは、メジャメントギャップ(MG:Measurement Gap)において、使用周波数(RF:Radio Frequency)をサービングキャリアから非サービングキャリアに切り替え(リチューニングし)、参照信号などを用いて測定した後、使用周波数を非サービングキャリアからサービングキャリアに切り替える。
ここで、MGとは、異周波測定を行うための期間であり、UEは、当該期間において、通信中のキャリアでの送受信を停止して別の周波数のキャリアでの測定を行う。
LTEにおいて、MGを使って異周波キャリアを測定している間は、RFを切り替えているためサービングセルでの送受信ができない。一方で、それ以外のケース(例えば、同周波測定)ではメジャメントに関連して送受信の制約は生じない。
NRにおいては、以下のメジャメントが検討されている:
(1)MG不要の周波数内メジャメント(Intra-frequency measurement without MG)、
(2)MG要の周波数内メジャメント(Intra-frequency measurement with MG)、
(3)周波数間メジャメント(Inter-frequency measurement)。
上記(1)のMG不要の周波数内メジャメントは、RFリチューニングを必要としない同周波測定とも呼ばれる。上記(2)のMG要の周波数内メジャメントは、RFリチューニングを必要とする同周波測定とも呼ばれる。例えば、アクティブBWP(BandWidth Part)の帯域内に測定対象信号が含まれない場合、同周波測定でもRFリチューニングが必要なので、上記(2)の測定となる。
ここで、BWPは、NRにおいて設定されるコンポーネントキャリア(CC:Component Carrier)内の、1つ以上の部分的な周波数帯域に該当する。BWPは、部分周波数帯域、部分帯域などと呼ばれてもよい。
上記(3)の周波数間メジャメントは、異周波測定とも呼ばれる。当該異周波測定は、MGを使うことを想定する。しかしながら、UEがギャップなし測定(gap less measurement)のUE能力(UE capability)を基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)などと呼ばれてもよい)に報告する場合には、MGなしの異周波測定が可能である。
NRにおいて、MGを使って同周波キャリア又は異周波キャリアを測定している間は、RFを切り替えているためサービングセルでの送受信ができない。
LTE、NRなどにおいて、同周波測定及び/又は異周波測定に関して、非サービングキャリアの参照信号受信電力(RSRP:Reference Signal Received Power)、受信信号強度(RSSI:Received Signal Strength Indicator)及び参照信号受信品質(RSRQ:Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、の少なくとも1つが測定されてもよい。
ここで、RSRPは、所望信号の受信電力であり、例えば、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI−RS:Channel State Information-Reference Signal)などの少なくとも1つを用いて測定される。RSSIは、所望信号の受信電力と、干渉及び雑音電力とを含む合計の受信電力である。RSRQは、RSSIに対するRSRPの比である。
当該所望信号は、同期信号ブロック(SSB:Synchronization Signal Block)に含まれる信号であってもよい。SSBは、同期信号(SS:Synchronization Signal)及びブロードキャストチャネル(ブロードキャスト信号、PBCH、NR−PBCHなどともいう)を含む信号ブロックであり、SS/PBCHブロックなどと呼ばれてもよい。
SSは、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、NR−PSS、NR−SSSなどを含んでもよい。SSBは、1以上のシンボル(例えば、OFDMシンボル)によって構成される。SSB内では、PSS、SSS及びPBCHがそれぞれ異なる1以上のシンボルに配置されてもよい。例えば、SSBは、1シンボルのPSS、1シンボルのSSS、及び2又は3シンボルのPBCHを含む、計4又は5シンボルによって構成されてもよい。
なお、SS(又はSSB)を用いて行われる測定はSS(又はSSB)測定と呼ばれてもよい。SS(又はSSB)測定としては、例えばSS−RSRP、SS−RSRQ、SS−SINR測定などが行われてもよい。
UEは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つの周波数帯(キャリア周波数)を用いて通信(信号の送受信、測定など)を行ってもよい。
例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。FR1は、サブキャリア間隔(SCS:Sub-Carrier Spacing)として15、30及び60kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよいし、FR2は、SCSとして60及び120kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯であってもよい。
FR2は、時分割複信(TDD:Time Division Duplex)バンドのみに用いられてもよい。FR2は、複数の基地局間において同期運用されることが好ましい。FR2に複数のキャリアが含まれる場合、これらのキャリアは同期運用されることが好ましい。
UEは、同周波測定及び/又は異周波測定に関する情報を、例えば上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて基地局から通知(設定)されてもよい。
ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
同周波測定及び/又は異周波測定に関する情報は、例えば、測定対象の周波数帯(キャリア)、測定対象のキャリアの同期の有無、測定対象の信号のリソース位置(スロット番号、シンボル番号、RBインデックスなど)、SSBメジャメントのタイミング設定(SMTC:SSB-based Measurement Timing Configuration)、測定対象のSSBのインデックスなどを含んでもよい。SSBインデックスは、SSBのリソース位置に関連付けられてもよい。
なお、測定対象のキャリアの同期の有無は、例えば、測定対象キャリアがサービングセルと同期しているか(隣接セルによって送信されるSSBインデックスをサービングセルのタイミングに基づいて導出できるか)に関する情報(パラメータ「useServingCellTimingForSync」と呼ばれてもよい)を用いてRRCシグナリングによってUEに設定されてもよい。
測定対象のSSBのインデックスは、ビットマップ(パラメータ「ssb-ToMeasure」と呼ばれてもよい)によって通知されてもよい。当該ビットマップは、測定対象の周波数帯に関連付けられてもよい。例えば、測定対象の周波数帯が高い周波数帯であるほどより長いビットマップを用いて当該SSBインデックスが通知されてもよい。
SMTCは、SSB測定期間(SMTCウィンドウ、測定タイミングなどと呼ばれてもよい)の長さ、周期、タイミングオフセットなどを含んでもよい。UEは、設定されたSMTCウィンドウ内において、測定対象のSSBに基づく測定を実施する。
異周波測定用MGを設定するためのUE能力(UE capability)シグナリングがサポートされてもよい。当該UE能力シグナリングとしては、例えばFR1及びFR2のそれぞれの異周波測定用MGを別々に設定できる。
例えば、UEは、FR1個別、FR2個別及びUE個別の少なくとも1つに該当するギャップのためのMG長(length又はduration)、MG繰り返し周期などを含む能力シグナリングを通知してもよい。
ところで、LTEにおいては、同周波測定(Intra-frequency measurement)の遅延要件(delay requirement)について、CA(Carrier Aggregation)及びDC(Dual Connectivity)の少なくとも1つの有無、セカンダリセル(SCell)として設定されたキャリア数を特に考慮していない。
LTEの同周波測定は、任意のタイミングで行うことができるため、UEが1つ又は少数のセルサーチャ(cell searcher、セルサーチ機能)しか持っていない(実装されていない)場合であっても、異なるタイミングに異なるCC(Component Carrier)を測定するようにセルサーチャを使いまわす(共有する、再利用する)ことができる。
NRにおいては、同周波測定を行うタイミング、周期、期間(時間長)の少なくとも1つを示すSMTCがキャリア(CC)毎に設定される。
UEの実装コスト等を考えると、LTE同様に1つ又は少数のセルサーチャのみを実装し、複数のCCに対する測定にセルサーチャを使いまわすことが好ましい。
しかし、複数のCCの間においてSMTCウィンドウが重複するタイミングに設定された場合、1つのセルサーチャを用いて同時に複数のCCを測定することができない。したがって、SMTCウィンドウが重複した場合の同周波測定の遅延要件が定められることが好ましい。
重複したSMTCウィンドウを設定された測定対象のCC数に応じて、遅延要件をスケーリングすることが検討されている。例えば、2CCのCA中に周期40msのSMTCウィンドウが完全に重複している場合、UEは、各CCの測定の周期が40msではなく80msと想定する。
このようにUE及び基地局は、SMTC周期を増加させることによって、遅延要件を緩和することができる。例えば、遅延要件としての遅延時間は、周期×サンプル数で表される。
CA又はDCを行う場合、PCell(プライマリセル)、PSCell(プライマリセカンダリセル)、SCell(セカンダリセル)に対し、PCell及びPSCellの同周波測定がSCellの同周波測定よりも優先されることが好ましい。そのため、前述のCC数に応じたスケーリングが、PCell及びPSCellの少なくとも1つに適用されないことが検討されている。
もし、PCell及びPSCellの少なくとも1つにスケーリングを適用しないとすると、UEの実装において、図1に示すように、PCell及びPSCellの少なくとも1つに専用のセルサーチャを実装する必要がある。例えば、1つのPCell、1つのPSCell、1つのSCellが設定される場合、3個のセルサーチャが設定される。
この実装によれば、PCell及びPSCellの少なくとも1つのSMTCウィンドウが他のCCのSMTCウィンドウと重複したとしても、PCell及びPSCellの少なくとも1つにおいては、SMTCによって設定された周期及びタイミングにおいて必ず測定を行うことができる。しかしながら、実装コストが高くなるという問題がある。
そこで、本発明者らは、UEに実装するセルサーチャ数の増加を抑えつつ、モビリティ観点で優先すべきキャリアに対する同周波測定を適切に行うための、UE動作を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
一実施形態においては、UE及び/又は基地局は、CA及びDCの少なくとも1つを行う場合の同周波測定の遅延要件として、重複するSMTCウィンドウを持つキャリア数に基づいてスケーリングを行ってもよい。スケーリングにおいて、特定のキャリア(条件を満たすキャリア)は、その他のキャリアと異なる扱いを行うことによって、各キャリアの遅延要件を定義してもよい。
UE及び無線基地局は、スケーリングのために、各キャリアの設定に基づいてスケーリングファクタ(係数、乗数)を決定してもよい。
UE及び無線基地局は、特定キャリア(所定条件を満たすキャリア)は、他キャリア(非特定キャリア)と異なる扱いを行い、スケーリングを行う。
特定キャリアは、次のキャリア1〜3の少なくとも1つであってもよい。
・キャリア1:PCellとして設定されたキャリア
・キャリア2:PSCellとして設定されたキャリア
・キャリア3:NW(ネットワーク、基地局、gNB、eNBなど)からスケーリングのために指定されたキャリア
特定キャリアは、SpCell(Special Cell)であってもよい。SpCellは、DCにおいてMCG(Master Cell Group)におけるPCell又はSCG(Secondary Cell Group)におけるPSCellであってもよいし、他の場合のPCellであってもよい。
特定キャリアの扱いは、次の算出方法1、2の少なくとも1つであってもよい。
算出方法1:スケーリングに用いられるキャリア数のカウントとして、特定キャリアのカウント方法と他キャリアのカウント方法とが異なる。例えば、次のカウント方法1、2の少なくとも1つが用いられてもよい。
カウント方法1:他キャリアのスケーリングにおいて、1つの特定キャリアを1よりも大きい値を用いてカウントする。
カウント方法2:特定キャリアのスケーリングにおいて、1つの特定キャリアを1よりも大きい値を用いてカウントする。
この算出方法1によれば、各キャリアに優先度を与えることができる。
算出方法2:キャリア数を用いるスケーリングファクタではない別のスケーリング変数(スケーリングファクタ)を定義し、適用する。例えば、次のスケーリング変数1、2の少なくとも1つが用いられてもよい。
スケーリング変数1:特定のキャリアのみ、または他キャリアのみにスケーリング変数を適用する。
スケーリング変数2:特定のキャリア及び他キャリアの間においてスケーリング変数の異なる値を適用する。
特定のキャリア及び他キャリアの少なくとも1つに対するスケーリング変数は、上位レイヤシグナリング等によってNWから通知されてもよい。この通知によって、NWは、柔軟にスケーリングを設定でき、各キャリアの優先度を設定できる。
周期SMTC_Xを有する1つのキャリアに対するスケーリングファクタKSMTC_Xは、次の式(1)によって導かれてもよい。
Figure 2019203324
ここで、SMTC_Xは、計算すべきSMTC周期である。SMTC_Yは、測定されるキャリアに設定されるSMTC周期のうち、SMTC_Xよりも長いSMTC周期である。max{SMTC}は、測定されるキャリアの全てのうち、最大のSMTC周期である。
αは、最大SMTC周期を有するSMTCウィンドウと重複するSMTCウィンドウが、を有するキャリアのうち、最大SMTC周期によって設定されるキャリアを除くキャリアの数である。
βは、SMTC_Yよりも小さいSMTC周期を有し、SMTC_Yを有するSMTCウィンドウと重複するSMTCウィンドウを有するキャリアのうち、SMTC_Yによって設定されるキャリアを除くキャリアの数である。
γは、SMTC_Xよりも小さいSMTC周期を有し、SMTC_Xを有するSMTCウィンドウと重複するSMTCウィンドウを有するキャリアのうち、SMTC_Xによって設定されるキャリアを除くキャリアの数である。
SMTC_YはSMTC_Yに対するスケーリングファクタである。
もし複数のキャリア(Nfreq_SMTC_X個のキャリア)がSMTC_X及びオフセットを設定された場合、各キャリアに対するKSMTC_XはNfreq_SMTC_X倍にスケールされてもよい。
SMTC_Xに基づき、SMTC_Xを設定されたキャリアに対する同周波測定の周期及び遅延要件のそれぞれは、KSMTC_X倍にスケールされる。
<特定キャリアがない場合>
図2に示すように、CC#0、#1、#2が設定され、CC#0にSMTC_A=20msが設定され、CC#1にSMTC_B=40msが設定され、CC#2にSMTC_C=80msが設定される場合について説明する。
SMTC_XとしてCC#2のKSMTC_Cを決定する場合、各パラメータは次のようになる。
α=γ=2、β=0
max{SMTC}=80
freq_SMTC_C=1
この場合、式(1)は次の式(2)になる。
Figure 2019203324
UEは、KSMTC_C=3に基づき、3回のSMTCウィンドウに1回の割合で、CC#2を測定してもよい。
SMTC_XとしてCC#1のKSMTC_Bを決定する場合、各パラメータは次のようになる。
α=2、γ=1、β=2
max{SMTC}=80
freq_SMTC_B=1
この場合、式(1)は次の式(3)になる。
Figure 2019203324
UEは、KSMTC_B=3に基づき、3回のSMTCウィンドウに1回の割合で、CC#1を測定してもよい。
SMTC_XとしてCC#0のKSMTC_Aを決定する場合、各パラメータは次のようになる。
α=2、γ=1
β=2(SMTC_Cに設定されたキャリアに対するβ)
β=1(SMTC_Bに設定されたキャリアに対するβ)
max{SMTC}=80
freq_SMTC_A=1
この場合、式(1)は次の式(4)になる。
Figure 2019203324
UEは、KSMTC_A=4/3に基づき、4回のSMTCウィンドウに3回の割合で、CC#0を測定してもよい。
<特定キャリアがある場合>
他キャリアのスケーリングファクタのためのα、β、γの導出において、1つの特定キャリア(例えば、PCell)に対して1よりも大きい重み(所定数、係数、増分、ステップ、例えば、2)をカウントしてもよい。
特定キャリアのスケーリングファクタの導出において、α、β、γの導出においては1つの他キャリアに対して1をカウントし、得られたスケーリングファクタを上記の所定数で割ってもよい。
PCellの重み及びPSCellの重みは同じであってもよい。PCellの重みは、PSCellの重みよりも大きくてもよい。
特定キャリアの重みが、上位レイヤシグナリング等によってNWから指示されてもよい。
図3に示すように、CC#0、#1、#2、#3が設定され、CC#0、#3にSMTC_A=20msが設定され、CC#1にSMTC_B=40msが設定され、CC#2、#3にSMTC_C=80msが設定され、CC#2、#3にSMTCの異なるオフセットが設定される場合について説明する。ここで、CC#0が特定キャリアに設定されるとする。
SMTC_XとしてCC#2(他キャリア)のKSMTC_Cを決定する場合、各パラメータは次のようになる。
α=γ=3、β=0
max{SMTC}=80
freq_SMTC_C=1
この場合、式(1)は次の式(5)になる。
Figure 2019203324
UEは、KSMTC_C=3に基づき、4回のSMTCウィンドウに1回の割合で、CC#2を測定してもよい。
SMTC_XとしてCC#1のKSMTC_Bを決定する場合、各パラメータは次のようになる。
α=3、γ=2、β=3
max{SMTC}=80
freq_SMTC_B=1
この場合、式(1)は次の式(6)になる。
Figure 2019203324
UEは、KSMTC_B=4に基づき、4回のSMTCウィンドウに1回の割合で、CC#1を測定してもよい。
SMTC_XとしてCC#0、#3のKSMTC_Aを決定する場合、各パラメータは次のようになる。
α=3、γ=0
β=3(SMTC_Cに設定されたキャリアに対するβ)
β=2(SMTC_Bに設定されたキャリアに対するβ)
max{SMTC}=80
freq_SMTC_A=2
この場合、式(1)は次の式(7)になる。
Figure 2019203324
更に、Nfreq_SMTC_A>1であるため、KSMTC_AがNfreq_SMTC_A倍にスケールされてもよい。更に、CC#0が特定キャリアであるため、KSMTC_Aが1/Nfreq_SMTC_A倍にスケールされてもよい。この場合、KSMTC_Aは、次の式(8)によって表される。
Figure 2019203324
UEは、KSMTC_C=16/13に基づき、16回のSMTCウィンドウに13回の割合で、CC#1を測定してもよい。
このように遅延要件が決定されることにより、特定キャリアを優先して同周波測定を行うことができる。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a−12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア−周波数分割多元接続(SC−FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ−ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI−RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図5は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
送受信部103は、SMTCが設定されるキャリアに含まれるセルにおいて、データを送信及び/又は受信する。送受信部103は、同周波測定及び/又は異周波測定に関する情報などを、ユーザ端末20に対して送信してもよい。
図6は、本開示の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI−RS、DMRS)などのスケジューリングの制御を行う。
制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
また、制御部301は、複数のキャリアのそれぞれの同周波測定を設定してもよい。制御部301は、各同周波測定に対して測定タイミングの周期を設定し、前記複数のキャリアのそれぞれに対する設定に基づいて前記周期のスケーリングを行ってもよい。前記スケーリングにおいて前記複数のキャリアのうち特定キャリアに対する処理が非特定キャリアに対する処理と異なってもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ−ACKを含むPUCCHを受信した場合、HARQ−ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
図7は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
送受信部203は、SMTCが設定されるキャリアに含まれるセルにおいて、データを送信及び/又は受信する。送受信部203は、同周波測定及び/又は異周波測定に関する情報などを、無線基地局10から受信してもよい。
図8は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
また、制御部401は、複数のキャリア(例えば、CC)のそれぞれの同周波測定を制御してもよい。各同周波測定に対して測定タイミング(例えば、SMTCウィンドウ)の周期が設定されてもよい。制御部401は、前記複数のキャリアのそれぞれに対する設定に基づいて前記周期のスケーリングを行ってもよい。前記スケーリングにおいて前記複数のキャリアのうち特定キャリアに対する処理が非特定キャリアに対する処理と異なってもよい。
また、制御部401は、測定タイミングが重複するキャリア数(例えば、α、β、γの少なくとも1つ)に基づいて前記周期のスケーリングの係数を決定してもよい。
また、制御部401は、前記非特定キャリアの係数の決定のためのキャリア数のカウントにおいて、前記特定キャリアを1よりも大きい数によってカウントすることと、前記特定キャリアの係数の決定のためのキャリア数のカウントにおいて、前記非特定キャリアを1よりも小さい数によってカウントすることと、の少なくとも1つを行ってもよい。
また、前記特定キャリア及び前記非特定キャリアの少なくとも1つのキャリアのための変数が設定され、制御部401は、前記変数に基づいて前記周期のスケーリングを行ってもよい。
特定キャリアは、プライマリセル、プライマリセカンダリセル、無線基地局10から設定されたセル、の少なくとも1つであってもよい。
また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、SSBを用いた同周波測定及び/又は異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD−ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu−ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーとは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC−FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルで構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1−13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8−12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「帯域幅部分(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。
また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S−GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi−Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE−Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
本出願は、2018年4月18日出願の特願2018−090964に基づく。この内容は、全てここに含めておく。

Claims (6)

  1. 複数のキャリアのそれぞれに対応するスケーリングファクタによって、同期信号ブロックに基づく同周波測定の遅延要件を調整する制御部と、
    前記複数のキャリアのそれぞれにおいて前記同期信号ブロックを受信する受信部と、を有し、
    前記複数のキャリアの中の特定キャリアは、所定条件を満たす1つのキャリアであり、
    前記複数のキャリアの中の非特定キャリアのための第1スケーリングファクタは、前記複数のキャリアの数に基づき、
    前記特定キャリアのための第2スケーリングファクタは、前記キャリアの前記数に基づかないことを特徴とするユーザ端末。
  2. 前記制御部は、メジャメントギャップを用いずに前記同周波測定を行う、請求項1に記載のユーザ端末。
  3. 前記制御部は、前記複数のキャリアのそれぞれに対し、前記同期信号ブロックの測定の周期を示すパラメータを設定され、前記パラメータに基づく値に前記スケーリングファクタを乗ずることによって、前記同周波測定のための測定周期を求めることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4. 前記制御部は、前記スケーリングファクタによって、前記遅延要件を増加させることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5. 前記特定キャリアは、ネットワークによって指定されたキャリアであることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6. 複数のキャリアのそれぞれに対応するスケーリングファクタによって、同期信号ブロックに基づく同周波測定の遅延要件を調整するステップと、
    前記複数のキャリアのそれぞれにおいて前記同期信号ブロックを受信するステップと、を有し、
    前記複数のキャリアの中の特定キャリアは、所定条件を満たす1つのキャリアであり、
    前記複数のキャリアの中の非特定キャリアのための第1スケーリングファクタは、前記複数のキャリアの数に基づき、
    前記特定キャリアのための第2スケーリングファクタは、前記キャリアの前記数に基づかないことを特徴とするユーザ端末の無線通信方法。
JP2020514448A 2018-04-18 2019-04-18 端末、無線通信方法、基地局及びシステム Active JP7348169B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018090964 2018-04-18
JP2018090964 2018-04-18
PCT/JP2019/016699 WO2019203324A1 (ja) 2018-04-18 2019-04-18 ユーザ端末及び無線通信方法

Publications (3)

Publication Number Publication Date
JPWO2019203324A1 true JPWO2019203324A1 (ja) 2021-04-22
JPWO2019203324A5 JPWO2019203324A5 (ja) 2022-04-20
JP7348169B2 JP7348169B2 (ja) 2023-09-20

Family

ID=68239585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514448A Active JP7348169B2 (ja) 2018-04-18 2019-04-18 端末、無線通信方法、基地局及びシステム

Country Status (8)

Country Link
US (1) US11546871B2 (ja)
EP (1) EP3783946A4 (ja)
JP (1) JP7348169B2 (ja)
KR (1) KR20210003116A (ja)
CN (1) CN112005575B (ja)
BR (1) BR112020021168A2 (ja)
PH (1) PH12020551694A1 (ja)
WO (1) WO2019203324A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030843A1 (ko) * 2016-08-12 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 하향링크 신호 송수신 방법 및 이를 지원하는 장치
PE20212010A1 (es) * 2018-01-11 2021-10-18 Ntt Docomo Inc Terminal de usuario y metodo de comunicacion por radio
WO2021184377A1 (zh) * 2020-03-20 2021-09-23 华为技术有限公司 一种确定小区的质量信息的方法及装置
WO2021190742A1 (en) * 2020-03-25 2021-09-30 Nokia Technologies Oy Balancing of rrm measurements
US11895546B2 (en) * 2020-08-07 2024-02-06 FG Innovation Company Limited Performing measurements for a handover procedure in a non-terrestrial network
US20230224734A1 (en) * 2021-01-13 2023-07-13 Apple Inc. RRM Measurement in 5G New Radio FR1 Dual Connectivity
WO2024035915A1 (en) * 2022-08-11 2024-02-15 Apple Inc. Optimization of a value of one or more carrier-specific scaling factors for a reference synchronization signal / physical broadcast channel block (ssb)-based measurement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117426C (zh) * 1998-09-23 2003-08-06 诺基亚网络有限公司 多载波发射装置与方法
US8442132B2 (en) * 2009-02-24 2013-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating processing delays in multi-carrier systems
US8861623B2 (en) * 2009-05-27 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for allocating processing delays in multi-carrier systems
JP5898087B2 (ja) * 2010-11-05 2016-04-06 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 無線通信端末装置及び電力割当方法
CA2862197A1 (en) * 2012-01-29 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) User equipment, network node and method for applying power scaling to uplink transmissions
JP6243115B2 (ja) * 2012-12-10 2017-12-06 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2014184602A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
JP6359815B2 (ja) * 2013-09-26 2018-07-18 株式会社Nttドコモ ユーザ端末、無線基地局及び異周波測定方法
CN104125615B (zh) * 2014-08-07 2017-12-15 华为技术有限公司 双频自适应并发的处理方法和装置
WO2016072221A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US9635574B2 (en) * 2014-11-19 2017-04-25 Intel IP Corporation Systems and methods for signaling in an increased carrier monitoring wireless communication environment
CN106304128A (zh) * 2015-05-18 2017-01-04 中兴通讯股份有限公司 一种多载波异频测量间隙配置方法、系统、基站和终端
JP6762860B2 (ja) 2016-11-30 2020-09-30 立川ブラインド工業株式会社 遮蔽装置
EP3777299A1 (en) * 2018-04-05 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Configurable sharing between intra- and inter-frequency measurements
CN114270917B (zh) * 2019-10-30 2023-10-03 Oppo广东移动通信有限公司 一种drx配置方法及装置、终端设备、网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Intra-frequency measurement requirements with multiple SCells", 3GPP TSG-RAN WG4 MEETING #86BIS R4-1803786[ONLINE], JPN6019019436, 6 April 2018 (2018-04-06), pages 全文, ISSN: 0005038694 *
MEDIATEK INC.: "Discussion on intra-frequency measurements requirement for NR", 3GPP TSG-RAN WG4 MEETING #86 R4-1801498[ONLINE], JPN6019019435, 2 March 2018 (2018-03-02), pages 全文, ISSN: 0005038693 *

Also Published As

Publication number Publication date
US20210168745A1 (en) 2021-06-03
EP3783946A4 (en) 2022-01-05
PH12020551694A1 (en) 2021-07-19
WO2019203324A1 (ja) 2019-10-24
US11546871B2 (en) 2023-01-03
CN112005575A (zh) 2020-11-27
JP7348169B2 (ja) 2023-09-20
EP3783946A1 (en) 2021-02-24
BR112020021168A2 (pt) 2021-01-19
KR20210003116A (ko) 2021-01-11
CN112005575B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7078646B2 (ja) 端末、無線通信方法、基地局及びシステム
CN112385293B (zh) 终端、基站、系统以及无线通信方法
JP7348169B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2020054036A1 (ja) 端末、無線通信方法及びシステム
JPWO2019049350A1 (ja) 端末、無線通信方法及び基地局
JPWO2019215900A1 (ja) ユーザ端末
JPWO2019111862A1 (ja) ユーザ端末及び無線通信方法
JPWO2020053941A1 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019215899A1 (ja) ユーザ端末
JPWO2020053942A1 (ja) 端末、無線通信方法、基地局及びシステム
EP3644641A1 (en) User equipment and wireless communication method
JPWO2020031387A1 (ja) ユーザ端末及び無線通信方法
EP3962198A1 (en) User terminal and wireless communication method
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
JPWO2020016938A1 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019215901A1 (ja) ユーザ端末
JPWO2019138555A1 (ja) ユーザ端末及び無線通信方法
JP7324004B2 (ja) 端末、無線通信方法、基地局及びシステム
JP2023159218A (ja) 端末、基地局、無線通信方法及びシステム
WO2019187092A1 (ja) ユーザ端末及び無線基地局
JPWO2020035949A1 (ja) ユーザ端末及び無線通信方法
JPWO2019187145A1 (ja) 端末、無線通信方法及びシステム
WO2020031324A1 (ja) ユーザ端末及び無線通信方法
JPWO2019193769A1 (ja) ユーザ端末
JPWO2019215935A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7348169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150