JP5898087B2 - 無線通信端末装置及び電力割当方法 - Google Patents

無線通信端末装置及び電力割当方法 Download PDF

Info

Publication number
JP5898087B2
JP5898087B2 JP2012541727A JP2012541727A JP5898087B2 JP 5898087 B2 JP5898087 B2 JP 5898087B2 JP 2012541727 A JP2012541727 A JP 2012541727A JP 2012541727 A JP2012541727 A JP 2012541727A JP 5898087 B2 JP5898087 B2 JP 5898087B2
Authority
JP
Japan
Prior art keywords
power
transmission power
srs
transmission
power scaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012541727A
Other languages
English (en)
Other versions
JPWO2012060067A1 (ja
Inventor
辰輔 高岡
辰輔 高岡
鈴木 秀俊
秀俊 鈴木
西尾 昭彦
昭彦 西尾
岩井 敬
敬 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority to JP2012541727A priority Critical patent/JP5898087B2/ja
Publication of JPWO2012060067A1 publication Critical patent/JPWO2012060067A1/ja
Application granted granted Critical
Publication of JP5898087B2 publication Critical patent/JP5898087B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Description

本発明は、無線通信端末装置及び電力割当方法に関する。
3GPP (3rd Generation Partnership Project)において、LTE-advanced(以下、「LTE−A」と省略する)の検討が進められている。LTE−Aでは、キャリアアグリゲーション(CA:Carrier Aggregation)という帯域拡張技術の導入の検討がなされている。LTE−AのCAでは、20MHz等から構成される1つの単位キャリア(CC:Component Carrier)を複数束ねることにより複数のキャリアをアグリゲーションし、高速伝送の実現を図るアプローチがダウンリンンク(DL:Downlink)及びアップリンク(UL:Uplink)チャネルで取られる。LTE−Aでは、5個のCCの導入、つまり、100MHzまでの帯域拡張を視野に検討がなされている。
そこで、UL CAを対象とした送信電力制御方法の検討も同時になされている。LTE−AのUL送信電力制御の検討において、以下の事項(A)〜(C)が合意されている。(A)CC個別(CC-specific)に送信電力の制御が行われる。(B)CC個別の(各ULチャネルに対する)最大送信電力Pcmax,c、及び、UE(User Equipment)固有の(UE-specific)最大総送信電力Pcmax(複数CCでの合計最大送信電力上限値)を設けている。そして、1CC内で送信される各ULチャネルの送信電力が、CC個別の(各ULチャネルに対する)最大送信電力を超えた場合、また、複数ULチャネルの同時送信時に、複数(全)CCで送信されるULチャネル送信電力合計値がUE固有の最大送信電力を超えた場合には、ULチャネルの送信電力を低減する電力スケーリングという制御が行われる。(C)UL CAにおいて、複数ULチャネルの同時送信時に電力スケーリングが発生した場合における、複数ULチャネルに対する電力割当優先度ルールは以下のように合意されている。
PUCCH>PUSCH with UCI>PUSCH without UCI
ここで、PUCCHはPhysical Uplink Control CHannel、PUSCHはPhysical Uplink Shared CHannelである。UCIはUplink Control Informationの略語であり、具体的には以下の制御情報等がある。ACK/NACK(Acknowledgment/Non Acknowledgment)、RI(Rank Indicator)、CQI(Channel Quality Information)、PMI(Pre-coding Matrix Indicator)、CSI(Channel State Information)等があり、CSI、CQI等の情報の送信には、ピリオディック(periodic)とアペリオディック(aperiodic)な送信方法がある。
また、PUSCH with UCIは、UCIを多重するPUSCHのことを示し、PUSCH without UCIは、UCIを多重しないPUSCHのことを示す。従って、複数ULチャネルの同時送信時に電力スケーリングが発生した場合には、第1にPUCCHの送信電力、第2にUCIを多重するPUSCHの送信電力、第3にUCIを多重しないPUSCHの送信電力に順番に送信電力を割り当てる。このルールは、これらの各チャネルが同一CC内に存在するか、または異なるCCに存在するかにかかわらず適用される。
一方で、CQI等の伝搬路の品質を測定する(sounding)ために用いられる、ピリオディックSRS又はアペリオディックSRS(Sounding Reference Symbol)に関連する電力スケーリング発生時の電力割当ルールも検討されている。例えば、以下の3つの場合(A)〜(C)に分類することができる。
(A)(ピリオディック/アペリオディック)SRSと他ULチャネル(PUCCH、PUSCH等)間の優先度。すなわち、非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
PUCCH>SRS>PUSCH
従って、電力スケーリングが発生した場合には、第1にPUCCH、第2にSRS、第3にPUSCHの順番に端末の送信電力の割り当てを優先する。
(B)ピリオディックSRSとアペリオディックSRS間の優先度。すなわち、非文献文献2において、以下に示すような電力スケーリング発生時の優先度が記載されている。
アペリオディックSRS>ピリオディックSRS
従って、ピリオディックSRSとアペリオディックSRSの同時送信時に電力スケーリングが発生した場合には、第1にアペリオディックSRSの送信電力、第2にピリオディックSRSの送信電力の割り当てを優先する。
(C)複数(ピリオディック又はアペリオディック)SRS間の優先度。
非特許文献1において、複数ピリオディックSRSを複数CC間で同時送信する場合における、電力割当優先度ルールが記載されている。具体的には、図1に示すように、UL CC ID番号に応じて、ピリオディックSRSの送信電力の優先度を決定する方法が開示されている。図1では、3個のCCでピリオディックSRSを同時に送信する場合に電力スケーリングが発生する場合おいて、UL CC ID番号が大きい順に大きな送信電力を割り当てる概念図を示している。これにより、複数CCでのピリオディックSRS同時送信時に電力スケーリングが発生した場合においても、このルールに従い、端末は各CCのピリオディックSRSの送信電力を適切に決定することができる。
R1-105376, Discussion on multiplexing SRSand PUSCH in an SC-FDMA symbol in carrier-aggregated system, 3GPP TSG RAN WG1 #62bs, Xi’an, China, October 11 - 15, 2010 R1-105508, Power control for SRStransmission in CA, 3GPP TSG RAN WG1 #62bs, Xi’an, China, October 11 - 15, 2010 3GPP TS 36.213 V8.8.0 (2009-09)
しかしながら、上記非特許文献1に開示の技術では、以下に示す課題がある。すなわち、複数ピリオディックSRSを複数CCで同時送信する際に、電力スケーリングが発生した場合の電力割当優先度に、再送が適用されない重要なUCIを多重するCC選択方法の影響が考慮されていない。UCIは、低遅延で端末からeNBに通知する必要があるため、1回の送信での伝送だけがサポートされる。
従って、上記非特許文献1に開示の技術に基づいて設定された電力割当優先度の低いCC(eNBでの、CQI測定誤差が大きくなる可能性の高いCC)がUCIを多重するCCに該当する場合、該当CCでは、電力スケーリング(送信電力が低減)されたSRSを用いて導出された通信品質(例えば、SINR:Signal-to-Interference plus Noise power Ratio)測定誤差が大きいため、eNBは後続のサブフレームで伝送するUCIに対して適切な送信電力(または、MCS:Modulation and channel Coding Scheme)値を通知できない。なお、電力スケーリングは、eNBが知ることができないUE固有のPA(Power Amplifier)に関連した送信電力制御情報、例えば、UE毎、又は、UEのCC毎の最大送信電力を決定するパラメータ(MPR:Maximum Power Reduction等)によって生じるため、基本的にeNBは電力スケーリングの発生が分からない。
例えば、複数SRSの複数CCでの同時送信時にUE固有の最大送信電力を超えたため、そのUEが、上記非特許文献1に開示の技術に基づいて、あるUL CC ID番号の小さいCCのSRSに対して電力スケーリング(送信電力の低減)を行った場合、eNBは、受信レベルが低下した受信SRSを用いて該当CCの通信品質の測定を行う。しかしながら、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせないため、SRSの受信レベル低下理由を、端末での電力スケーリングの発生ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する。そして、後続の(UCIが多重された)PUSCH等のULチャネルの伝送において、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。
本発明の目的は、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示できる無線通信端末装置及び電力割当方法を提供することである。
本発明の無線通信端末装置は、キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、を具備する構成を採る。
本発明の電力割当方法は、キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算工程と、計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出工程と、電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御工程と、を具備するようにした。
本発明によれば、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示できる。
非特許文献1に開示の送信電力の優先度を決定する方法を示す図 本発明の実施の形態1及び2に係る無線通信端末装置の構成を示すブロック図 1サブフレームの後端にSRSを多重する構成を示す図 電力スケーリング方法1の概要を示す図 電力スケーリング方法2の概要を示す図 電力スケーリング方法3の概要を示す図 2つのSRSをドロップする様子を示す図 ピリオディックSRSをドロップする様子を示す図 電力スケーリング方法4の概要を示す図 電力スケーリング方法5の概要を示す図 電力スケーリング方法6の概要を示す図 電力スケーリング方法7の概要を示す図 電力スケーリング方法8の概要を示す図 電力スケーリング方法11の概要を示す図 電力スケーリング方法12の概要を示す図 1サブフレーム内でPUCCHとピリオディックSRSを多重する構成を示す図 電力スケーリング方法13の概要を示す図 本発明の実施の形態1に係る無線通信端末装置の構成を示すブロック図 1サブフレーム内でPUSCHとピリオディックSRSを多重する構成を示す図 電力スケーリング方法14の概要を示す図 電力スケーリング方法15の概要を示す図
本発明者は、以下の点に着眼して本発明をなすに到った。すなわち、LTE−Aでは、Pcell(Primary Cell)、又は、PCC(Primary Component Carrier)にPUSCHがスケジューリングされる(送信される、送信割当(UL grant)ありの)場合、Pcell(PCC)のPUSCHにUCIを多重することが、UCIを多重するCC(PUSCH)の選択方法として用いられる。また、(UCIだけを多重する)PUCCHを送信するCCはPcell(PCC)だけに限定される。従って、Scell(Secondary cell)、または、SCC(Secondary Component Carrier)と比較すると、Pcell(PCC)で再送が適用されない重要度の高いUCIが送信される確率が高い。
また、システムをオペレーションする場合においてトラフィックが少ない場合には、一般にPcellのみを優先して使う(長時間で見て通信しやすいセルとしてPcellを選択する)ことにより、システム帯域幅(CC間全体)での利用効率を向上させる。また、Pcellを使用する場合には、PUCCHがLTE Rel.8と後方互換性(compatible)を有する送信のため、UCIだけが送信されるPUCCH上においても効率が良い伝送が可能となる(なお、LTE−AはRel.10とリリースされる予定である)。
また、Pcell(PCC)、及び、Scell(SCC)は、eNBにより、UE個別(UE-specific)に設定(configure)され、eNBから端末に(例えば、伝送誤り確率の極めて低い上位レイヤのシグナリングを用いて)通知するため、eNB及び各UE間で、Pcell(PCC)、及び、Scell(SCC)の設定(configuration)を事前に認識できる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態1)
図2は、本発明の実施の形態1に係る無線通信端末装置(以下、「端末」という)100の構成を示すブロック図である。以下、図2を用いて端末100の構成について説明する。
無線受信処理部102は、基地局(eNB)から送信されたOFDM信号をアンテナ101から受信し、受信したOFDM信号にダウンコンバート、A/D変換等の所定のRF処理を施してOFDM復調部103に出力する。
OFDM復調部103は、無線受信処理部102から出力されたOFDM信号のガードインターバル(GI)を除去し、GIを除去したOFDM信号に対して離散フーリエ変換(DFT:Discrete Fourier Transform)を施して周波数領域信号に変換する。次に、OFDM復調部103は、周波数領域の各成分に対して、周波数領域等化(FDE:Frequency-domain Equalization)を施し、信号の歪を取り除き、復調部104に出力する。
復調部104は、OFDM復調部103から出力された信号に対して、QPSK、16QAM(Quadrature Amplitude Modulation)等の変調方式に対する所定の復調処理を施してチャネル復号部105に出力する。
チャネル復号部105は、復調部104から出力された信号に、ターボ符号化、畳み込み符号化等の誤り訂正符号化に対する復号処理(繰り返しMAP復号、ビタビ復号)を施して制御情報抽出部106に出力する。
制御情報抽出部106は、チャネル復号部105から出力された信号から、ULグラント(UL grant)情報(割当帯域幅、MCSセット、PUSCHやSRSやPUCCH等の送信電力情報(TPC command、MCS等の送信フォーマット既存値ΔTF等、SRS用のオフセット値PSRS_offset)、アペリオディックSRSトリガー情報など)、DLグラント(DL grant)情報(PUCCH等の送信電力情報、アペリオディックSRSトリガー情報など)、UCI要求(トリガー)情報、Pcell/Scell、PCC/SCCなどのCC/cell情報等、制御情報を抽出して送信電力計算部107に出力する。
送信電力計算部107は、制御情報抽出部106から出力された制御情報、CC個別(各ULチャネル)最大送信電力(PAのパワクラス、MPR等)、パスロス(推定値)情報、上位層での送信電力関連通知情報(パスロス補償係数、P_o(ターゲット受信レベル値)等)などを用いて、複数ULチャネル(CC毎)の送信電力を計算する。具体的な計算方法は、非特許文献3に記載のPUSCH、PUCCH及びSRSの送信電力計算式などを用いる。送信電力計算部107は、複数ULチャネル(CC毎)の送信電力値を電力スケーリング検出部108及び電力スケーリング制御部109に出力する。
電力スケーリング検出部108は、送信電力計算部107から出力された複数ULチャネルの送信電力値から複数CC(全ULチャネル)の総送信電力を計算し、計算した総送信電力と、入力されるUE固有の最大送信電力(Pcmax)との比較を行う。総送信電力がUE固有の最大送信電力より小さければ、「電力スケーリングの必要なし」という制御情報を電力スケーリング制御部109に出力する。逆に、総送信電力がUE固有の最大送信電力より大きければ、「電力スケーリングの必要あり」という制御情報を電力スケーリング制御部109に出力する。
電力スケーリング制御部109では、電力スケーリング検出部108から出力された電力スケーリング発生の有無情報「電力スケーリングの必要なし、または、あり」に従って、「電力スケーリングの必要あり」の場合は各ULチャネル(SRS、PUSCH、PUCCHなど)に対して送信電力のスケーリングを行い、複数ULチャネル(CC)毎の送信電力を決定する。電力スケーリング後の送信電力情報を送信電力設定部112−1〜112−Nに出力する。なお、SRSの電力スケーリング方法の詳細は後述する。
符号化及び変調部110−1〜110−Nは、入力されるCC毎のトランスポートブロック(TB:Transport Block)に対して、ターボ符号化等の誤り訂正符号化及びQPSKや16QAM等の所定の変調処理を施して多重部111−1〜111−Nに出力する。
多重部111−1〜111−Nは、入力されるピリオディックSRS(上位層の制御情報によってトリガーされた場合)、または、アペリオディックSRS(物理層の制御チャネルのPDCCHによってトリガーされた場合)を変調シンボル系列に多重して送信電力設定部112−1〜112−Nに出力する。LTE(LTE−A)では、図3(PUSCHにSRSを時間多重する場合)に示すように、14SC−FDMAシンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのような時間軸多重が行えるようにSRSを変調シンボルの後端に多重する。なお、図3では、1サブフレームの中心部分に3シンボル程復調用参照信号(DMRS:DeModulation Reference Symbol)が多重されている場合を示している。
送信電力設定部112−1〜112−Nは、電力スケーリング制御部109から出力された複数ULチャネル(CC)毎の送信電力情報を用いて、各ULチャネル(SRS、PUSCH、PUCCHなど)の送信電力を設定してSC−FDMA変調部113−1〜113−Nに出力する。
SC−FDMA変調部113−1〜113−Nは、送信電力設定部112−1〜112−Nから出力された送信電力設定後のシンボル系列に対して、DFTを施すことにより、プレコーディングを行う。そして、eNBから指示された所定の周波数リソースにDFTプレコーディング信号をマッピングした後、IDFTで時間領域信号に変換する。最後に、ガードインターバルを付加して合成部114に出力する。
合成部114は、SC−FDMA変調部113−1〜113−Nから出力された複数のSC−FDMA信号を合成し、無線送信処理部115に出力する。
無線送信処理部115は、合成部114から出力された信号にD/A変換、増幅処理、アップコンバート等の所定のRF処理を施し、アンテナ101より送信する。
次に、複数SRS同時送信時のSRSに対する電力スケーリング方法1〜12について説明する。
電力スケーリング方法1
電力スケーリング方法1では、まず、送信電力計算部107において、複数CCの複数ULチャネルの送信電力を計算する。
次に、電力スケーリング検出部108において、複数CCで送信されるULチャネルの送信電力合計値がUE固有の最大送信電力を超えるか否か(電力スケーリングが発生するか否か)を検出する。
次に、電力スケーリング制御部109において、Pcell(PCC)及びScell(SCC)を用いて、複数(ピリオディック又はアペリオディック)SRSを同時送信する場合において、電力スケーリングが発生した場合には、同時に送信する複数(ピリオディック又はアペリオディック)SRSの中で、ScellのSRSより、PcellのSRSの送信電力を優先して電力割当を行う。
図4に、電力スケーリング方法1の概要を示す。図4では、3CC(CC#0〜CC#2)において、SRSを同時に送信している。例えば、1サブフレームの最終シンボル位置(図3)において、3CCでSRSだけ送信している。そして、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2より、Pcellに設定されているCC#1のSRSに対して送信電力を優先的に割り当てる動作を示している。
これにより、電力割当優先度の低いSRSのCC(CQI測定誤差が大きくなる確率の高いCC)が、UCIを多重するCCと同一のCCとなる確率を低減できる。例えば、図4に示すように、電力割当優先度の低いScellのCC#0とCC#2が、UCIが多重されるCCと同一のCCとなる可能性を低減できる。従って、UCIが多重される確率の高いPcellの伝搬チャネル品質情報(CQI:Channel Quality Indicator)を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネル(例えば、データとUCI多重ありのPUSCH、UCIを多重するPUCCHなど)に対して適切な送信電力(MCS)を指示できる。すなわち、UCIを送信するULチャネルに用いる送信フォーマットを過剰品質にすることなく送信することができる。また、他セルへの同一チャネル干渉、端末の消費電力を不必要に増加させずに伝送することができる。
電力スケーリング方法2
電力スケーリング方法2では、電力スケーリング制御部109において、PcellのSRSの送信電力を、CC個別の(各ULチャネルに対する)最大送信電力以下に設定し(CC個別な最大送信電力の条件は満たしつつ)、PcellのSRSの送信電力は保持し(変化させず)、Scellの送信電力を低減することにより、電力スケーリングを行う。
図5に、電力スケーリング方法2の概要を示す。図5では、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#0及びCC#2のSRSの送信電力を低減させることにより、電力スケーリングを行う動作を示している。
これにより、PcellのSRSの送信電力を、CC毎(各ULチャネル)の最大送信電力以下にするという条件を満たすことにより、CC毎の他セルへの同一チャネル干渉をある所定値以下に維持でき、各eNBでCC毎のスケジューリングやクロスキャリアスケジューリングを行いやすくできる。また、PcellのSRSの送信電力レベルは確実に保持する(変化させない)ことにより、電力スケーリング方法1の場合と比較して、Pcellの(ピリオディック又はアペリオディック)SRSの伝搬チャネル品質測定を更に高精度に行うことができる。
つまり、Pcellの受信SRSから求めたPcellの通信品質情報を、端末での電力スケーリングの影響を受けていない情報にすることができる(eNBとUE間で、UEの送信電力に関する誤認識を生じさせない)ため、eNBは、UCIが送信される可能性の高いPcellにおいて、後続するスケジューリング(リソース割当)、送信電力(AMC:Adaptive Modulation channel Coding)制御において、更に適切に動作させることができる。よって、送信電力(AMC)制御などにおいて大きなマージンを取るような消極的な制御を行わなくてもよいという効果が得られる。
電力スケーリング方法3
電力スケーリング方法3では、電力スケーリング制御部109において、PcellのSRSの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
図6に、電力スケーリング方法3の概要を示す。図6では、図4及び図5と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
これにより、ScellのSRSをドロップすることにより、電力スケーリング方法1の効果に加えて、CC間での複雑な電力割当制御を簡単化できる。また、LTE−Aでは、SRSを送信する場合は、14シンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのシンボルだけをドロップしても、spectrum efficiencyに与える影響は小さい。例えば、1CCだけでSRSを送信する場合においては1/14=7%のインパクトで済む。更に、SRSが送信される頻度(周期)は、例えば、ピリオディックSRSの場合は10msに1回程度であり、データが送信される頻度に比べて大幅に小さいため、spectrum efficiencyに与える影響は更に小さくなる(データの場合、最小1msに1回の伝送が可能である)。
また、SRSをドロップすることにより、eNBでのSRS受信電力のブラインド検出処理において、端末での電力スケーリング発生を検出しやすくすることができる。これは、複数SRS同時送信時に電力スケーリングが発生した場合に、Scell(SCC)のSRSの送信電力をゼロに設定する(送信しない)ことにより、例えば、eNBは、SRSを受信する区間において雑音レベルと同等の受信SRSレベルしか測定できない場合には、容易に、電力スケーリングが発生したと判断することができるためである。これにより、後続サブフレームの端末への送信電力(MCS)の誤った指示(過剰品質となる指示など)を回避できる。例えば、eNBがSRS受信レベルの大幅な低下(雑音レベルと同等の値)を検出した場合、eNBは、端末に対して、SRSに対する適切な送信電力値を新たに指示すると共に、SRSの再送信(トリガー)を指示することが可能となる。
なお、本実施の形態においては、複数CCでの複数SRSの同時送信、かつ、電力スケーリングが発生した場合に電力スケーリング方法3を適用することを述べたが、電力スケーリングが発生せずとも、PcellとScellでのSRS同時送信が発生した場合において、ScellのSRSをドロップしてもよい。更に、一律に、複数Scellの全SRSをドロップしてもよい。図7では、CC#0〜CC#2で同時にSRSを送信する場合において、ScellのCC#0とCC#2の2つのSRSをドロップする場合を示している。これにより、CC間での電力割当処理に必要な演算を省略でき、上記と同様の効果を得つつ、LTE−Aの商用化において不可欠な、電力スケーリングに関する端末(又はeNB)のテスト工数を大幅に削減できる。
また、ScellでピリオディックSRSとアペリオディックSRSが送信される場合には、アペリオディックSRSよりピリオディックSRSを優先的にドロップしてもよい。また、この方法を、(A)複数CCでの複数SRSの同時送信、かつ、電力スケーリングが発生した場合、また、(B)電力スケーリングが発生せず、かつ、PcellとScellでのSRS同時送信が発生した場合、どちらの場合に適用してもよい。
アペリオディックSRSは、LTE−Aで新たに導入されるSRSであり、eNBが新しい品質情報を低遅延で測定するために、物理層のダウンリンク制御チャネルであるPDCCHによってトリガーされる。一方、ピリオディックSRS(の送信周期、トリガー、タイマー等)は、上位層のシグナリングでconfigurationされるため、低速な制御しか行うことができない。従って、このアペリオディックSRSの特長(SRSを用いたCQI測定に関するeNBの直近の判断)を電力スケーリング処理に反映しつつ、上記と同様の効果が得られる。また、上記(B)の場合においては、電力スケーリングに関する端末(又はeNB)のテスト工数を削減できるという効果が得られる。
図8は、同一サブフレームの同一シンボル位置(例えば、サブフレームの最終シンボル位置)において、ScellのCC#0にアペリオディックSRSがトリガーされ、ScellのCC#2にピリオディックSRSがトリガーされ、PcellのCC#1では何も送信されない場合において、ScellのCC#2におけるピリオディックSRSがドロップされる様子を示している。
電力スケーリング方法4
電力スケーリング方法4では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))送信電力が小さい(又は最小の)ScellのSRS送信電力から順番に、送信電力を低減(ドロップ、送信電力=0設定(送信しない))する。
図9に、電力スケーリング方法4の概要を示す。図9では、図4及び図5と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。また、電力スケーリング前のScellのSRSの送信電力は、CC#0のSRSよりCC#2のSRSの方が大きい。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、送信電力が小さい(又は最小の)Scellに設定されている送信CC#0のSRSを優先的にドロップすることにより、電力スケーリングを行う。
これにより、送信電力が小さいSRSほど、eNBにおいて受信可能なSRS検出レベル(例えば、eNBでの雑音レベル)を下回る可能性が高いため、Scellの送信電力が小さいSRSの送信電力を優先的に低減することで、Pcellでの高精度品質測定を維持しつつ、送信電力を低減しないScellのSRSを用いた測定精度を維持できる。
電力スケーリング方法5
電力スケーリング方法5では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))Scellの複数SRS送信電力を一様に低減(同一の送信電力値の低減、同一のスケーリング(ウェイト)を適用)する。
図10に、電力スケーリング方法5の概要を示す。図10では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2の送信電力を一様に低減している様子を示している。一様に送信電力を低減する方法としては、同一の送信電力値(真値、デシベル値)の低減、同一の(LTE−Aで適用される)スケーリング(ウェイト)を適用する方法などを用いてもよい。なお、SRSの送信電力低減に用いるスケーリングウェイトとして、SRS用のスケーリングウェイトを用いてもよいし、他のULチャネル(例えば、PUSCH)と同一のスケーリングウェイトをSRSに用いてもよい。なお、スケーリングウェイトは、eNBから端末へ事前に通知するパラメータである。
これにより、Pcellでの高精度品質測定を維持しつつ、CC間での複雑な電力割当制御を簡単化できる。
電力スケーリング方法6
電力スケーリング方法6では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、Scellの全SRS(ScellのSRSを一律に)ドロップする(送信しない、または送信電力=0に設定)。
図11に、電力スケーリング方法6の概要を示す。図11では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Scellに設定されているCC#0及びCC#2のSRSを一律にドロップする様子を示している。
これにより、上記電力スケーリング方法3と同様の効果を得つつ、CC間での複雑な電力割当制御を簡単化できる。また、LTE−Aの商用化において、不可欠な端末(又はeNB)のテスト工数を大幅に削減できる。例えば、複数ScellのSRSの全ての送信組合せに対してテストを行うための仕様などを決定しなければならないが、そのテスト自体、テスト仕様の策定の工数自体を削減することができる。
なお、Scellに複数SRSがある場合に、一律に全てのSRSをドロップせずに、CC(cell)番号の順(昇順/降順)にドロップしてもよい。
電力スケーリング方法7
電力スケーリング方法7では、電力スケーリング制御部109は、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
図12に、電力スケーリング方法7の概要を示す。図12では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、複数SRSの中で最大送信電力を有するSRSの送信電力と、ScellのSRS送信電力との差が所定の閾値以上の場合に、ScellのSRSをドロップする様子を示している。図12では、ScellのCC#2のSRSが、PcellのCC#1のSRSの最大送信電力から所定値以上の場合に該当している。
CC間でのSRSの送信電力差が大きい場合、送信電力の大きいCCのSRSの相互変調歪が、異なるCCのSRSの送信電力より大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。従って、SRSの最大送信電力からScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップすることにより、上記課題を回避することができる。
なお、閾値の設定方法として、パスロス(測定)値等に応じて適応的にその値を変化させてもよい。
また、基準値として、複数SRSの最大送信電力を有するSRSの送信電力ではなく、同時送信ULチャネル中で最大送信電力を有するチャネルの送信電力としてもよい。これにより、同様の効果が得られる。
電力スケーリング方法8
電力スケーリング方法8では、電力スケーリング制御部109は、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
図13に、電力スケーリング方法8の概要を示す。図13では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される3CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、複数SRSの中で、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSをドロップする様子を示している。
CCのSRSの送信電力が小さすぎる場合には、端末(送信側)のD/A(Digital/Analog)変換器の解像度において、送信信号を正しく表現することができなくなる。しかしながら、閾値を導入し、閾値以下の送信電力を有するSRSをドロップすることにより、無駄な送信処理(低い送信電力値まで考慮(カバー)したD/Aの複雑な設計)を回避することができる(無駄な送信電力の消費を回避することができる)。
電力スケーリング方法9
電力スケーリング方法9では、電力スケーリング制御部109は、ピリオディックSRSの送信周期の長さに応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、送信周期が長いピリオディックSRSを優先的にドロップするCCのSRSとして選択するか、または、送信周期が短いピリオディックSRSを優先的にドロップするCCのSRSとして選択する。
送信周期が長いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3と同様の効果を維持しつつ、短区間チャネル変動に優先的に追随し、短区間フェージング変動に応じた適応変復調(AMC:Adaptive Modulation and channel Coding)、時間−周波数領域スケジューリングを高精度に制御することが可能となり、UE個別のスループット、マルチユーザダイバーシチによるシステムスループットを改善することができる。
また、送信周期が短いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3と同様の効果を維持しつつ、長区間のチャネル測定精度を高精度化することが可能となり、データ及び制御情報を送信するのに用いるCCの選択を適応的に行う、クロスキャリアスケジューリング制御を高精度に行うことが可能となる。
電力スケーリング方法10
電力スケーリング方法10では、電力スケーリング制御部109は、SRSの帯域幅に応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップするか、または、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする。
狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。LTE−A(LTE)のULチャネル(PUSCH及びSRS等)の送信電力は、送信帯域幅と電力スペクトラム密度(PSD:Power Spectrum Density)によって決定される。従って、総送信電力の大きさへ与える影響が大きい帯域幅の広いSRSの送信電力割当優先度を低くすることにより、できるだけ少ないドロップSRS数を可能とする。例えば、複数CCでのSRS総帯域幅がBという条件下で、1CCのSRSの帯域幅がBの場合と、2CCで各CCのSRS帯域幅がB/2の場合を比較した場合、1CCのSRSの帯域幅がBを優先的にドロップするほうが、ドロップするCC数を削減できる。これは、データや制御情報などを伝送するCCを選択するために、SRSを用いてできるだけ多くのCCのサウンディング(sounding)を行う場合に、非常に有用である。また、帯域幅が広いほど相互変調歪の広がりも大きくなるため、帯域幅が広いSRSの電力割当優先度を低くすることにより、他CCへの広範囲にわたる帯域外漏洩電力(相互変調歪)の影響を軽減できる。
なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が大きいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
一方、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。1CC内だけの広い帯域幅にわたって伝搬チャネルの測定を行い、品質のよい周波数リソースに割り当てを行う場合において、広範囲の周波数帯の測定を一度に実施することができる。
なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が小さいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
電力スケーリング方法11
電力スケーリング方法11では、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、複数ScellのSRSの中で、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。例えば、アペリオディックCSI等のUCIがトリガーされた、CCのSRS電力割当優先度を高くする。反対に、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCIがトリガーされない(されていない)CCのSRS電力割当優先度を低くする(優先的にドロップする、送信電力を低減する、送信停止、または送信電力をゼロに設定する)。例えば、ULグラントでアペリオディックCSI等のUCIがトリガーされない(されていない)CCのSRS電力割当優先度を低くする。
図14に、電力スケーリング方法11の概要を示す。図14では、Scellの2CC(CC#0、CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信される2CCのSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、2Scellの2SRSの中で、ULグラントでアペリオディックCSI等のUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。図14では、ScellのCC#2において、過去のサブフレームにおいて、UCIがトリガーされており、CC#0はUCIがトリガーされていない場合を示している。
これにより、電力スケーリング方法1及び電力スケーリング方法3と同様の効果を、複数Scell(SCC)の中で得ることができる。
なお、トリガーされたScellはある所定の期間、その優先度を保持してもよい。また、新たに別CCでUCIがトリガーされるまでその優先度を維持してもよい。また、UCIがトリガーされたScellが複数ある場合は、直近のトリガー情報に従って、SRSの電力スケーリングを行ってもよい。また、UCIがトリガーされたScellが複数あり、同一時点でそれらがトリガーされた場合は、UL CC ID番号(昇順・降順)に応じて電力スケーリング優先度を決定してもよい。
電力スケーリング方法12
電力スケーリング方法12では、電力スケーリング制御部109は、高いPSDを有するSRSより、低いPSDのSRSを優先的にドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)。
CC間でのSRSのPSDの差が大きい場合、PSDの大きいCCのSRSの相互変調歪が、異なるCCのSRSのPSDより大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。この課題に対して、相互変調歪みの影響を受けにくい高いPSDを持つSRSだけを送信することにより、該当CCを精度よく測定できる。
図15に、電力スケーリング方法12の概要を示す。図15では、Scellの2CC(CC#0、CC#1)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はScellに設定されている。図15では、高調波歪(相互変調歪み)を点線で示している。このような状況下において、相互変調歪みの影響を受けやすい低いPSDを持つSRSをドロップする。
なお、PSDの値を計算するのに関連する(PUSCH、SRS)送信電力制御パラメータに基づいてもよい。例えば、TPCコマンド累積値、トランスポートブロックサイズ、MCSレベルに関連するオフセットパラメータ(TF)、PUSCHの送信電力に対するSRSオフセット値、1RE当たりのビット数(TBサイズ/割当RE数)など、これらの値が大きいほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。また、割当RE(Resource Element)数、または、割当サブキャリア数が少ないほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。
また、PSDや、上記各パラメータに対して、閾値を導入し、それらの値が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
このように、実施の形態1によれば、Pcell及びScellを用いて複数SRSを同時送信する際、電力スケーリングが発生した場合、ScellのSRSよりPcellのSRSを優先して送信電力割当を行うことにより、電力割当優先度の低いSRSのCCが、UCIを多重するCCと同一のCCとなる確率を低減することができる。よって、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定することができ、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示することができる。
なお、上記では、CC間の場合について説明したが、CC内の複数SRSに上記方法を適用してもよい。
また、上記各電力スケーリング方法を組み合わせて使用してもよい。
また、上記複数Scellの複数SRSへの適用を前提に述べた方法を、Pcellに複数SRS、複数Pcellに複数SRSが存在する場合には、同様に適用することができる。
また、上記した、電力割当優先度の低いSRSの送信電力を低減する方法として、eNBから端末へ(上位レイヤのシグナリングで)通知されるSRS用のスケーリングウェイトを用いて、送信電力を低減してもよい。w_Pcell_SRSをPcellのSRSに適用するスケーリングウェイト、w_Scell_SRSをScellのSRSに適用するスケーリングウェイトとした場合、w_Pcell_SRS>w_Scell_SRSと設定(定義)すればよい。また、w_Pcell_SRS=1、w_Scell_SRS<1と定義してもよい。
また、上記では、電力スケーリング発生時の、複数(ピリオディック又はアペリオディック)SRS間の優先度に関して述べたが、(ピリオディック/アペリオディック)SRSと他ULチャネル(PUCCH、PUSCH等)間の電力優先度に関しては、以下に述べる方法を用いればよい。
電力スケーリング方法13
電力スケーリング方法13では、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合、Rel.8 LTEにおいて、20MHz等の帯域を有する1CCだけでの運用である。1CC内でのSRSとPUCCHの同時送信時には、送信信号のPAPR(Peak-to-Average Power Ratio)の増加(マルチキャリア送信)を避けるため、PUCCHに対しては、レートマッチングにより1サブフレームの最終SC−FDMAシンボルを送信しないshorten formatのPUCCHが用いられ、1サブフレームの最終SC−FDMAシンボルでは、ピリオディックSRSだけが送信される(図16参照)。
一方、複数CCを用いるLTE−Aでは、PUCCHを送信するCCとSRSを送信するCCの複数CCでの同時送信の導入の検討が行われている。従って、1サブフレームの最終SC−FDMAシンボルでのCC間でのPUCCHとSRSの同時送信時に、UE個別の最大送信電力を超えた場合においては、電力スケーリングを行う必要がある。すなわち、PUCCHとSRSの電力割当優先度を決める必要がある。
非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
PUCCH>SRS>PUSCH
しかしながら、非文献文献1には、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合において、以下に示す課題がある。すなわち、PUCCHの送信電力よりSRSの送信電力の電力割当優先度を低くするというルールに基づき、UE個別の最大送信電力を満たすように、SRSの送信電力を(中途半端に)低減した場合、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせない。このため、SRSの受信レベル低下理由を、端末での電力スケーリングの発生ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する。そして、後続の(UCIが多重された)PUSCH等のULチャネルの伝送において、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。
そこで、(ピリオディック/アペリオディック)SRSとPUCCHを同時送信する場合の電力スケーリング方法では、電力スケーリング制御部109において、PcellのPUCCHの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
図17に、電力スケーリング方法13の概要を示す。図17では、CC#0では送信なし、CC#1ではPUCCH、CC#2ではSRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUCCHとSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、Pcellに設定されているCC#1のPUCCH電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
図18に、PUCCHとSRSを異なるCC間で同時送信する場合の送信機構成を示す。図18では、符号化及び変調部110−1にPUCCH上で送信する制御情報(ACK/NACK、CQI等)が入力され、上記実施例と同様に処理が行われ、送信電力設定部112−1において、電力スケーリング制御部109から入力された情報に基づいてPUCCHの送信電力が設定される。以降の処理(図2の場合)は上記と同じため省略する。また、SRSが送信されるCCでは、送信電力設定部112−NにSRSが入力され、電力スケーリング制御部109から入力された情報に基づいてSRSの送信電力が設定される。
これにより、ScellのSRSをドロップすることにより、電力スケーリング方法3と同様の効果が得られるのに加えて、CC間での複雑な電力割当制御を簡単化できる。また、上記と同様にテスト工数を削減することもできる。
また、LTE−Aで新たに導入される、物理層の制御チャネルPDCCHで通知されるアペリオディックSRSのトリガー情報をUEがmiss detectionした場合には、UEはSRSを送信しない(該当CC(リソース)での送信電力=0)。すなわち、電力スケーリング発生した場合とUEのmiss detectionが発生した場合とを、等価的に同じUE動作にすることができる(簡略化できる)。従って、電力スケーリングが発生した場合及びUEのmiss detectionが発生した場合の両方の場合に対して、eNBでのSRS受信電力のブラインド検出処理において、例えば、eNBは、SRSを受信する区間において雑音レベルと同等の受信SRSレベルしか測定できない場合には、eNBは、端末に対して、SRSに対する適切な送信電力値を新たに指示すると共に、SRSを再送信(トリガー)する指示を行うという1つの動作で対応することが可能となる。
なお、複数Scellに複数SRSがある場合においては、Scellの全てのSRSをドロップしてもよい。また、上記の複数Scellに複数SRSがある場合の電力スケーリング方法を、適用してもよい。
なお、上記では、SRSとPUCCHを同時送信する場合において、電力スケーリングが発生する場合に関して述べたが、発生しない場合においては、SRSとPUCCHを複数CC間で同時送信すればよい。
電力スケーリング方法14
電力スケーリング方法14では、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合、Rel.8 LTEにおいて、20MHz等の帯域を有する1CCだけでの運用であるため、1CC内でのSRSとPUSCHの同時送信時には、送信信号のPAPR(Peak-to-Average Power Ratio)の増加(マルチキャリア送信)を避けるため、PUSCHに対しては、レートマッチング(パンクチャリング)により1サブフレームの最終SC−FDMAシンボルを送信しないPUSCHが用いられ、1サブフレームの最終SC−FDMAシンボルでは、ピリオディックSRSだけが送信される(図19参照)。
一方、複数CCを用いるLTE−Aでは、PUSCHを送信するCCとSRSを送信するCCの複数CCでの同時送信の導入が検討されている。従って、1サブフレームの最終SC−FDMAシンボルでのCC間でのPUSCHとSRSの同時送信時に、UE個別の最大送信電力を超えた場合においては、電力スケーリングを行う必要がある。すなわち、PUSCHとSRSの電力割当優先度を決める必要がある。
上記したように、非文献文献1において、以下に示すような電力スケーリング発生時の優先度が記載されている。
PUCCH>SRS>PUSCH
しかしながら、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合おいて、非文献文献1には以下に示す課題がある。すなわち、SRSの送信電力よりPUSCHの送信電力の電力割当優先度を低くするというルールに基づき、UE個別の最大送信電力を満たすようにPUSCHの送信電力を(中途半端に)低減した場合、PUSCHで送信するデータ(又は、制御情報)に16QAMや64QAM等の多値振幅変調を用いる場合においては、eNBは電力スケーリングされた多値振幅変調を正しく受信できない確率が増加する。例えば、電力スケーリングにより、送信時点においてすでに、電力スケーリングされた多値変調信号の変調精度、EVM(Error Vector Magnitude)が所定条件を満たしていなくなる確率が増加する。また、例えば、16QAM等の多値振幅変調は振幅(電力の平方根)に情報を載せているが、上記したように、eNBは端末の電力スケーリングがいつ発生したか等の情報を基本的には持ち合わせないため、eNBは、PUSCHが電力スケーリングされていないものと仮定して復調及び復号するため、正しく受信できなくなる確率も増加する。
そこで、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合の電力スケーリング方法14では、電力スケーリング制御部109において、PUSCHの送信電力は保持し(変化させず)、(Scellの)SRSの送信電力をドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行う。
これにより、SRSをドロップすることにより、電力スケーリング方法3と同様の効果が得られるのに加えて、CC間での複雑な電力割当制御を簡単化できる。また、上記と同様にテスト工数を削減することもできる。また、PUSCHの上記問題が発生することを回避でき、16QAM等の多値振幅変調も正しく送信できる確率が増加する。
図20に、電力スケーリング方法14の概要を示す。図20では、CC#0では送信なし、CC#1ではPUSCH(with UCI)、CC#2ではSRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUSCH(with UCI)とSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、CC#1のPUSCH(with UCI)電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
上記電力スケーリング方法14は、PUSCHにUCIを多重する場合、すなわち、UCI多重ありのPUSCHと(ピリオディック/アペリオディック)SRSを同時送信する場合の電力スケーリング方法として用いるのが望ましい。これにより、再送に適用されない重要度の高いUCIを正しくeNBに伝送できる確率を高めることができる。
電力スケーリング方法15
PUSCHにUCIを多重しない場合においては、電力スケーリング方法14とは反対に、(ピリオディック/アペリオディック)SRSとPUSCHを同時送信する場合の電力スケーリング方法15として、電力スケーリング制御部109において、SRSの送信電力は保持し(変化させず)、PUSCHの送信電力をドロップする(送信しない、または送信電力=0に設定する)ことにより、電力スケーリングを行ってもよい。UCI多重なしのPUSCH、つまり、再送が適用されるUCI多重なしのPUSCHに対しては、SRSの優先度を高めてもよい。これにより、シンプルなCC間での電力割当処理を行いつつ、上記方法3と同様にSRSの測定精度を高められる。
図21に、電力スケーリング方法15の概要を示す。図21では、CC#0では送信なし、CC#1ではSRS、CC#2ではPUSCH(without UCI)を同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるPUSCH(without UCI)とSRSチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合、CC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のPUSCH(without UCI)をドロップすることにより、電力スケーリングを行う動作を示している。
なお、(ピリオディック/アペリオディック)SRSとUCI多重ありPUSCHを同時送信する場合には、電力スケーリング方法14を、(ピリオディック/アペリオディック)SRSとUCI多重なしPUSCHを同時送信する場合には、電力スケーリング方法15を、切り替えて使用してもよい。換言すると、図20に示すように、PcellでPUSCH with UCIを送信し、ScellでSRSを送信する場合には電力スケーリング方法14を用い、図21に示すように、PcellでSRSを送信し、ScellでPUSCH without UCIを送信する場合には電力スケーリング方法15を用いればよい。これにより、UCIの高品質な伝送を維持しつつ、上記電力スケーリング方法3と同様にSRSの測定精度を高めることができる。
なお、上記では、SRSとPUSCHを同時送信する場合において、電力スケーリングが発生する場合に関して述べたが、発生しない場合においては、SRSとPUSCHを複数CC間で同時送信すればよい。
また、上記各電力スケーリング方法を組み合わせて使用してもよい。
(実施の形態2)
実施の形態1では、複数アップリンクチャネル(SRS、PUSCH、PUCCH等)を同時送信する場合において、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えた場合の電力スケーリング方法を述べた。しかしながら、実施の形態1に記載の全ての電力スケーリング方法は、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合、かつ、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)での複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合にも用いることができる。
実施の形態2では、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)で複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合における、実施の形態1に記載の電力スケーリング方法に関して改めて詳述する。
まず、実施の形態2の背景を簡単に述べる。
端末からの複数ULチャネルの送信信号の増幅のために、各ULチャネルに対して1つの増幅器(PA:Power Amplifier)を用い、複数のPAを端末に搭載すると、端末のコストを増加させ、また、端末の小型化を妨げる(端末サイズを増加させる)要因となるため、複数ULチャネル(CC、Cell、搬送波、周波数帯域など)を1つのPAでカバー、即ち、複数のULチャネルの送信信号を1つのPAで増幅するという端末の実装方法も用いられる。この場合、複数のULチャネルの同時送信(マルチキャリア送信)信号の大きなPAPR(Peak-to-Average Power Ratio)が、電力(電圧)の入出力特性に非線形性を有するPAに大きな影響を与える。例えば、PAの電力効率を劣化させる。または、増幅後の信号に大きな非線形歪を発生させる。特に、大きな送信電力を必要とする、送信電力に余力のない(PHR(Power Head Room)の値が小さい)セルエッジ端末などへの影響が大きい。
従って、複数ULチャネルの同時送信時に、複数ULチャネルの送信信号がPAへ与える影響を和らげる(送信信号のPAPRの増加を避ける)ため、複数ULチャネルの中で、あるULチャネルの送信電力を低減する方法、送信しないULチャネルを設定する方法が用いられる。即ち、複数cell(例えば、Pcell及び複数Scell)、又は、複数CC(例えば、PCC及び複数SCC)での複数アップリンクチャネル同時送信(SRSの同時送信、SRSとPUSCHの同時送信、SRSとPUCCHの同時送信など)が発生した場合に、複数ULチャネルに対して電力スケーリングを適用する。
従って、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合においても、複数cell、又は、複数CCでの複数アップリンクチャネル同時送信が発生した場合には、上記した実施の形態1と同様の課題が発生する。つまり、上記非特許文献1に開示の技術では、以下に示す課題がある。すなわち、複数ピリオディックSRSを複数CCで同時送信する際に、電力スケーリングを適用する場合の電力割当優先度に、再送が適用されない、重要度の高いUCIを多重するCC選択方法の影響が考慮されていない。UCIは、低遅延で端末からeNBに通知する必要があるため、1回の送信での伝送だけがサポートされる。
従って、上記非特許文献1に開示の技術に基づいて設定された電力割当優先度の低いCC(eNBでの、CQI測定誤差が大きくなる(測定精度が悪くなる)可能性の高いCC)がUCIを多重するCCに該当する場合、該当CCでは、電力スケーリング(送信電力が低減)されたSRSを用いて導出された通信品質(例えば、SINR:Signal-to-Interference plus Noise power Ratio)測定誤差が大きい(測定精度が悪い)ため、eNBは後続のサブフレームで伝送するUCIに対して適切な送信電力(または、MCS:Modulation and channel Coding Scheme)値を通知できない。
例えば、複数SRSの複数CCでの同時送信時に、UEが、上記非特許文献1に開示の技術に基づいて、あるUL CC ID番号の小さいCCのSRSに対して電力スケーリング(送信電力の低減)を行った場合、eNBは、受信レベルが低下した受信SRSを用いて該当CCの通信品質を測定する。
しかしながら、eNBはSRSの受信レベル低下理由を、端末での電力スケーリングの影響ではなく、時間的に変動しやすい移動通信の伝搬チャネルの品質が劣悪になったと誤認識する可能性がある。また、各ULチャネル用の送信電力制御によって、受信品質測定のために必要な所定の要求条件値を満たすように、正しく送信電力が制御されているSRSに対して、電力スケーリング(送信電力の低減)を行った場合、その要求条件を満たさなくなる。
従って、eNBは、誤認識した、または、所定の要求値を満たしていない受信SRSから得られた通信品質測定値を用いて、後続の、PUSCH等のULチャネルの伝送に対して、所定受信品質を満たすのに必要な値以上の大きな送信電力値(低いMCS値)を用いるように端末に通知してしまう。つまり、この場合、後続のPUSCH等のULチャネルにおいて、過剰な品質のULチャネルの伝送が行われてしまう(送信電力を大きくするように指示した場合は、他セルへの同一チャネル干渉を増加させてしまう。また、端末の消費電力を不必要に増加させてしまう等の新たな課題を引き起こす)。特に、eNBが所定の要求値を満たしていない受信SRSから得られた通信品質測定値を用いて、重要度の高いUCIが多重されたPUSCHやPUCCHに対して適切ではない送信電力値(MCS値)を通知した場合には、UCIには再送が適用されないため、システムの制御に大きな影響を与える。
つまり、実施の形態1と同様の課題が発生する。従って、実施の形態2でも、上記した着眼点に基づいて、実施の形態1と同様の電力スケーリング方法の発明をなすに到った。
以下、図2を用いて、実施の形態2の端末100の構成および処理について説明する。ただし、実施の形態1と実施の形態2の相違する点に焦点を当てて説明する。
制御情報抽出部106までの一連の処理は、実施の形態1と同様の処理が行われ、制御情報抽出部106は、チャネル復号部105から出力された信号から、ULグラント(UL grant)情報(割当帯域幅、MCSセット、PUSCHやSRSやPUCCH等の送信電力情報(TPC command、MCS等の送信フォーマット依存値ΔTF、SRS用のオフセット値PSRS_offset等)、アペリオディックSRSトリガー情報など)、DLグラント(DL grant)情報(PUCCH等の送信電力情報、アペリオディックSRSトリガー情報など)、UCI要求(トリガー)情報、Pcell/Scell、PCC/SCCなどのCC/cell情報等、制御情報を抽出して送信電力計算部107に出力する。
送信電力計算部107は、制御情報抽出部106から出力された制御情報、CC個別(各ULチャネル)最大送信電力(PAのパワクラス、MPR等)、パスロス(推定値)情報、上位層での送信電力関連通知情報(パスロス補償係数、P_o(ターゲット受信レベル値)等)などを用いて、複数ULチャネル(CC毎)の送信電力を計算する。具体的な計算方法は、非特許文献3に記載のPUSCH、PUCCH及びSRSの送信電力計算式などを用いる。送信電力計算部107は、複数ULチャネル(CC毎)の送信電力値を電力スケーリング検出部108及び電力スケーリング制御部109に出力する。
電力スケーリング検出部108は、送信電力計算部107から出力されたULチャネルの送信電力値が複数あるか否かの検出を行う(複数ULチャネルの同時送信が発生するか否かを検出する)。ULチャネルの送信電力値が複数ない(単数の)場合は、「電力スケーリングの必要なし」という制御情報を電力スケーリング制御部109に出力する。逆に、ULチャネルの送信電力値が複数ある場合は、「電力スケーリングの必要あり」という制御情報を電力スケーリング制御部109に出力する。
電力スケーリング制御部109では、電力スケーリング検出部108から出力された電力スケーリング発生の有無情報「電力スケーリングの必要なし、または、あり」に従って、「電力スケーリングの必要あり」の場合は各ULチャネル(SRS、PUSCH、PUCCHなど)に対して送信電力のスケーリングを行い、複数ULチャネル(CC)毎の送信電力を決定する。電力スケーリング後の送信電力情報を送信電力設定部112−1〜112−Nに出力する。なお、SRSの電力スケーリング方法の詳細は後述する。
以降の処理(図2の場合)、符号化及び変調部110−1〜110−Nから無線送信処理部115までの一連の処理は、実施の形態1と同じため省略する。SRSが送信されるCCでは、送信電力設定部112−1〜112−NにSRSが入力され、電力スケーリング制御部109から入力された情報に基づいてSRSの送信電力が設定される。
複数SRS同時送信時のSRSに対する電力スケーリング方法1−A〜12−Aについて説明する。
電力スケーリング方法1−A
電力スケーリング方法1−Aでは、まず、送信電力計算部107において、複数CCの複数ULチャネルの送信電力を計算する。
次に、電力スケーリング検出部108において、複数CCで送信されるULチャネルの送信電力値が複数あるか否かの検出を行う(複数ULチャネルの同時送信が発生するか否かを検出する)。すなわち、電力スケーリングが発生するか否かを検出する。
次に、電力スケーリング制御部109において、Pcell(PCC)及びScell(SCC)を用いて、複数(ピリオディック又はアペリオディック)SRSを同時送信する場合において、電力スケーリング(複数ULチャネルの同時送信)が発生した場合には、同時に送信する複数(ピリオディック又はアペリオディック)SRSの中で、ScellのSRSより、PcellのSRSの送信電力を優先して電力割当を行う。
図4に、電力スケーリング方法1−Aの概要を示す。図4では、3CC(CC#0〜CC#2)において、SRSを同時に送信している。例えば、1サブフレームの最終シンボル位置(図3)において、3CCでSRSだけ送信している。そして、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2より、Pcellに設定されているCC#1のSRSに対して送信電力を優先的に割り当てる動作を示している。
これにより、電力割当優先度の低いSRSのCC(CQI測定誤差が大きくなる確率の高いCC)が、UCIを多重するCCと同一のCCとなる確率を低減できる。例えば、図4に示すように、電力割当優先度の低いScellのCC#0とCC#2が、UCIが多重されるCCと同一のCCとなる可能性を低減できる。従って、UCIが多重される確率の高いPcellの伝搬チャネル品質情報(CQI:Channel Quality Indicator)を電力割当優先度の高いSRSにより高精度に推定でき、eNBは後続のUCIを伝送するULチャネル(例えば、データとUCI多重ありのPUSCH、UCIを多重するPUCCHなど)に対して適切な送信電力(MCS)を指示できる。すなわち、UCIを送信するULチャネルに用いる送信フォーマットを過剰品質にすることなく送信することができる。また、他セルへの同一チャネル干渉、端末の消費電力を不必要に増加させずに伝送することができる。つまり、eNBは、所定の要求値を満たしたPcellの受信SRSから得られた通信品質測定値を用いて、重要度の高いUCIが多重されたPUSCHやPUCCHに対して適切な送信電力値(MCS値)を通知でき、再送が適用されないUCIを正しく伝送することができる。
電力スケーリング方法2−A
電力スケーリング方法2では、電力スケーリング制御部109において、PcellのSRSの送信電力を、CC個別の(各ULチャネルに対する)最大送信電力以下に設定し(CC個別な最大送信電力の条件は満たしつつ)、PcellのSRSの送信電力は保持し(変化させず)、Scellの送信電力を低減することにより、電力スケーリングを行う。
図5に、電力スケーリング方法2−Aの概要を示す。図5では、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#0及びCC#2のSRSの送信電力を低減させることにより、電力スケーリングを行う動作を示している。
これにより、端末毎に設定されるPcellのSRSの送信電力を、CC毎(各ULチャネル)の最大送信電力以下にするという条件を満たすことにより、優先して使われるPcellに設定されるCCの他セルへの同一チャネル干渉をある所定値以下に維持でき、各eNBでCC毎のスケジューリングやクロスキャリアスケジューリングを行いやすくできる。また、PcellのSRSの送信電力レベルは確実に保持する(変化させない)ことにより、電力スケーリング方法1−Aの場合と比較して、Pcellの(ピリオディック又はアペリオディック)SRSの伝搬チャネル品質測定を更に高精度に行うことができる。
つまり、Pcellの受信SRSから求めたPcellの通信品質情報を、端末での電力スケーリングの影響を受けていない情報にすることができる(eNBとUE間で、UEの送信電力に関する誤認識を生じさせない、または、所定の要求値を満たした受信SRSから得られた通信品質測定値を用いることができる)ため、eNBは、UCIが送信される可能性の高いPcellにおいて、後続するスケジューリング(リソース割当)、送信電力(AMC:Adaptive Modulation channel Coding)制御において、更に適切に動作させることができる。よって、送信電力(AMC)制御などにおいて大きなマージンを取るような消極的な制御を行わなくてもよいという効果が得られる。
電力スケーリング方法3−A
電力スケーリング方法3−Aでは、電力スケーリング制御部109において、PcellのSRSの送信電力は保持し(変化させず)、ScellのSRSをドロップする(送信しない、または、送信電力=0に設定する)ことにより、電力スケーリングを行う。
図6に、電力スケーリング方法3−Aの概要を示す。図6では、図4及び図5と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数SRSチャネルの同時送信が発生する)場合、Pcellに設定されているCC#1のSRS電力は維持し(変化させずに)、Scellに設定されているCC#2のSRSをドロップすることにより、電力スケーリングを行う動作を示している。
これにより、ScellのSRSをドロップすることにより、電力スケーリング方法1−Aの効果に加えて、CC間での複雑な電力割当制御を簡単化できる。また、LTE−Aでは、SRSを送信する場合は、14シンボルから構成される1サブフレームの最終シンボルだけにSRSが多重されるため、そのシンボルだけをドロップしても、spectrum efficiencyに与える影響は小さい。例えば、1CCだけでSRSを送信する場合においては1/14=7%のインパクトで済む。更に、SRSが送信される頻度(周期)は、例えば、ピリオディックSRSの場合は10msに1回程度であり、データが送信される頻度に比べて大幅に小さいため、spectrum efficiencyに与える影響は更に小さくなる(データの場合、最小1msに1回の伝送が可能である)。
また、SRSをドロップすることにより、eNBが伝搬チャネルの品質が劣悪になったと誤認識する可能性を低減でき、また、受信品質測定のための所定の要求条件値を満たさなくなる、(スケーリングされた)無駄なSRSの送信を回避することができる。つまり、端末の不必要な電力消費を低減することができる。
なお、実施の形態2において、一律に、複数Scellの全SRSをドロップしてもよい。図7では、CC#0〜CC#2で同時にSRSを送信する場合において、ScellのCC#0とCC#2の2つのSRSをドロップする場合を示している。これにより、CC間での電力割当処理に必要な演算を省略でき、上記と同様の効果を得つつ、LTE−Aの商用化において不可欠な、電力スケーリングに関する端末(又はeNB)のテスト工数を大幅に削減できる。また、端末の不必要な電力消費を更に低減することができる。
また、ScellでピリオディックSRSとアペリオディックSRSが送信される場合には、アペリオディックSRSよりピリオディックSRSを優先的にドロップしてもよい。
アペリオディックSRSは、LTE−Aで新たに導入されるSRSであり、eNBが新しい品質情報を低遅延で測定するために、物理層のダウンリンク制御チャネルであるPDCCHによってトリガーされる。一方、ピリオディックSRS(の送信周期、トリガー、タイマー等)は、上位層のシグナリングでconfigurationされるため、低速な制御しか行うことができない。従って、このアペリオディックSRSの特長(SRSを用いたCQI測定に関するeNBの直近の判断)を電力スケーリング処理に反映しつつ、上記と同様の効果が得られる。
図8は、同一サブフレームの同一シンボル位置(例えば、サブフレームの最終シンボル位置)において、ScellのCC#0にアペリオディックSRSがトリガーされ、ScellのCC#2にピリオディックSRSがトリガーされ、PcellのCC#1では何も送信されない場合において、ScellのCC#2におけるピリオディックSRSがドロップされる様子を示している。
電力スケーリング方法4−A
電力スケーリング方法4−Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))送信電力が小さい(又は最小の)ScellのSRS送信電力から順番に、送信電力を低減(ドロップ、送信電力=0に設定(送信しない))する。
図9に、電力スケーリング方法4−Aの概要を示す。図9では、図4及び図5と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。また、電力スケーリング前のScellのSRSの送信電力は、CC#0のSRSよりCC#2のSRSの方が大きい。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、送信電力が小さい(又は最小の)Scellに設定されている送信CC#0のSRSを優先的にドロップすることにより、電力スケーリングを行う。
これにより、送信電力が小さいSRSほど、eNBにおいて受信可能なSRS検出レベル(例えば、eNBでの雑音レベル)を下回る可能性が高いため、Scellの送信電力が小さいSRSの送信電力を優先的に低減することで、Pcellでの高精度品質測定を維持しつつ、送信電力を低減しないScellのSRSを用いた測定精度を維持できる。
電力スケーリング方法5−A
電力スケーリング方法5−Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、(PcellのSRSの送信電力は保持し(変化させず))Scellの複数SRS送信電力を一様に低減(同一の送信電力値の低減、同一のスケーリング(ウェイト)を適用)する。
図10に、電力スケーリング方法5−Aの概要を示す。図10では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2の送信電力を一様に低減している様子を示している。一様に送信電力を低減する方法としては、同一の送信電力値(真値、デシベル値)の低減、同一の(LTE−Aで適用される)スケーリング(ウェイト)を適用する方法などを用いてもよい。なお、SRSの送信電力低減に用いるスケーリングウェイトとして、SRS用のスケーリングウェイトを用いてもよいし、他のULチャネル(例えば、PUSCH、PUSCH with UCI、PUSCH without UCI)と同一のスケーリングウェイトをSRSに用いてもよい。ここで、スケーリングウェイトとは、eNBから端末へ事前に通知するパラメータである。
これにより、Pcellでの高精度品質測定を維持しつつ、CC間での複雑な電力割当制御を簡単化できる。
電力スケーリング方法6−A
電力スケーリング方法6−Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、Scellの全SRS(ScellのSRSを一律に)ドロップする(送信しない、または送信電力=0に設定)。
図11に、電力スケーリング方法6−Aの概要を示す。図11では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、Pcell及びScellから構成される、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、Scellに設定されているCC#0及びCC#2のSRSを一律にドロップする様子を示している。
これにより、上記電力スケーリング方法3−Aと同様の効果を得つつ、CC間での複雑な電力割当制御を簡単化できる。また、LTE−Aの商用化において、不可欠な端末(又はeNB)のテスト工数を大幅に削減できる。例えば、複数ScellのSRSの全ての送信組合せに対してテストを行うための仕様などを決定しなければならないが、そのテスト自体、テスト仕様の策定の工数自体を削減することができる。また、端末の不必要な電力消費を低減することができる。
なお、Scellに複数SRSがある場合に、一律に全てのSRSをドロップせずに、CC(cell)番号の順(昇順/降順)にドロップしてもよい。
電力スケーリング方法7−A
電力スケーリング方法7−Aでは、電力スケーリング制御部109は、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
図12に、電力スケーリング方法7−Aの概要を示す。図12では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、複数SRSの中で最大送信電力を有するSRSの送信電力から、ScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップする様子を示している。図12では、ScellのCC#2のSRSが、PcellのCC#1のSRSの最大送信電力から所定値以上の場合に該当している。
CC間でのSRSの送信電力差が大きい場合、送信電力の大きいCCのSRSの相互変調歪が、異なるCCのSRSの送信電力より大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。従って、SRSの最大送信電力からScellのSRS送信電力が所定の閾値以上の場合に、ScellのSRSをドロップすることにより、上記課題を回避することができる。
なお、閾値の設定方法として、パスロス(測定)値等に応じて適応的にその値を変化させてもよい。
また、基準値として、複数SRSの最大送信電力を有するSRSの送信電力ではなく、同時送信ULチャネル中で最大送信電力を有するチャネルの送信電力としてもよい。これにより、同様の効果が得られる。
電力スケーリング方法8−A
電力スケーリング方法8−Aでは、電力スケーリング制御部109は、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSの送信電力を低減又はドロップする(送信しない、または送信電力=0に設定)。
図13に、電力スケーリング方法8−Aの概要を示す。図13では、上記と同様に、3CC(CC#0〜CC#2)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、3CCで送信されるSRSチャネルの送信電力値が複数ある(複数ULチャネルの同時送信が発生する)場合、複数SRSの中で、ScellのSRS送信電力がある閾値以下の場合に、ScellのSRSをドロップする様子を示している。
CCのSRSの送信電力が小さすぎる場合には、端末(送信側)のD/A(Digital/Analog)変換器の解像度において、送信信号を正しく表現することができなくなる。しかしながら、閾値を導入し、閾値以下の送信電力を有するSRSをドロップすることにより、無駄な送信処理(低い送信電力値まで考慮(カバー)したD/Aの複雑な設計)を回避することができる(無駄な送信電力の消費を回避することができる)。
電力スケーリング方法9−A
電力スケーリング方法9−Aでは、電力スケーリング制御部109は、ピリオディックSRSの送信周期の長さに応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、送信周期が長いピリオディックSRSを優先的にドロップするCCのSRSとして選択するか、または、送信周期が短いピリオディックSRSを優先的にドロップするCCのSRSとして選択する。
送信周期が長いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3−Aと同様の効果を維持しつつ、短区間チャネル変動に優先的に追随し、短区間フェージング変動に応じた適応変復調(AMC:Adaptive Modulation and channel Coding)、時間−周波数領域スケジューリングを高精度に制御することが可能となり、UE個別のスループット、マルチユーザダイバーシチによるシステムスループットを改善することができる。
また、送信周期が短いSRSを優先的にドロップするCCのSRSとして選択する場合、電力スケーリング方法3−Aと同様の効果を維持しつつ、長区間のチャネル測定精度を高精度化することが可能となり、データ及び制御情報を送信するのに用いるCCの選択を適応的に行う、クロスキャリアスケジューリング制御を高精度に行うことが可能となる。
電力スケーリング方法10−A
電力スケーリング方法10−Aでは、電力スケーリング制御部109は、SRSの帯域幅に応じて、ドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)CCのSRSを選択する。具体的には、狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップするか、または、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする。
狭い帯域幅を有するSRSより、広い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。LTE−A(LTE)のULチャネル(PUSCH及びSRS等)の送信電力は、送信帯域幅と電力スペクトラム密度(PSD:Power Spectrum Density)によって決定される。従って、総送信電力の大きさへ与える影響が大きい帯域幅の広いSRSの送信電力割当優先度を低くすることにより、できるだけ少ないドロップSRS数を可能とする。例えば、複数CCでのSRS総帯域幅がBという条件下で、1CCのSRSの帯域幅がBの場合と、2CCで各CCのSRS帯域幅がB/2の場合を比較した場合、1CCのSRSの帯域幅がBを優先的にドロップするほうが、ドロップするCC数を削減できる。これは、データや制御情報などを伝送するCCを選択するために、SRSを用いてできるだけ多くのCCのサウンディング(sounding)を行う場合に、非常に有用である。また、帯域幅が広いほど相互変調歪の広がりも大きくなるため、帯域幅が広いSRSの電力割当優先度を低くすることにより、他CCへの広範囲にわたる帯域外漏洩電力(相互変調歪)の影響を軽減できる。
なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が大きいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
一方、広い帯域幅を有するSRSより、狭い帯域幅を有するSRSを優先的にドロップする場合、以下の効果が得られる。1CC内だけの広い帯域幅にわたって伝搬チャネルの測定を行い、品質のよい周波数リソースに割り当てを行う場合において、広範囲の周波数帯の測定を一度に実施することができる。
なお、ここで、帯域幅の判定に閾値を導入し、SRS間の帯域幅、又は、それらの差が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
また、CC毎の帯域幅とSRS帯域幅の比(例えば、SRS帯域幅/CC毎の帯域幅)が小さいほど、該当するCCのSRSの電力割当優先度を下げてもよい。
電力スケーリング方法11−A
電力スケーリング方法11−Aでは、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、複数ScellのSRSの中で、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCI(CQI、PMI等)報告がトリガーされた(される)CCのSRS電力割当優先度を高くする。例えば、アペリオディックCSI等のUCI報告がトリガーされた、CCのSRS電力割当優先度を高くする。また、例えば、eNBからRRC(Radio Resource Control)などの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告に使用するScellの優先順位に基づいて、その優先順位が高いScellに設定されたCCのSRS電力割当優先度を高くする。
つまり、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するようにeNBに指示されたCell(CC)、または、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するCell(CC)の中で、eNBから指示された優先順位の高いCell(CC)のSRS電力割当優先度を高くする。
反対に、ScellのSRSが複数ある場合において、電力スケーリング制御部109は、物理層の制御チャネルPDCCHに含まれる制御情報(UL又はDLグラント)、または、上位層のシグナリングで通知された(される)制御情報でUCI(CQI、PMI等)報告がトリガーされない(されていない)CCのSRS電力割当優先度を低くする(優先的にドロップする、送信電力を低減する、送信停止、または送信電力をゼロに設定する)。例えば、ULグラントでアペリオディックCSI等のUCI報告がトリガーされない(されていない)CCのSRS電力割当優先度を低くする。また、例えば、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、その優先順位が低いScellに設定されたCCのSRS電力割当優先度を低くする。
つまり、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信しないようにeNBに指示されたCell(CC)、または、UCIをPUSCHと共に(UCIをPUSCHに多重して)送信するCell(CC)の中で、eNBに指示された優先順位の低いCell(CC)のSRS電力割当優先度を低くする。
これは、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位が高いCCでは、UCIを送信する前にそのCell(CC)の品質測定を高精度に行う必要があるために、(例えば、アペリオディック)SRSを送信する確率が高い。これは、そのCCで送信する(アペリオディック)SRSの電力割当て優先度を低くする(又は、ドロップしてしまう)と、後続サブフレームで送信するUCIに対するMCS選択や送信電力制御が正しく行われないためである。
図14に、電力スケーリング方法11−Aの概要を示す。図14では、Scellの2CC(CC#0、CC#2)において、SRSを同時に送信しており、基地局から(RRCなどの上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はPcell、CC#2はScellに設定されている。このような状況下において、複数CCで送信されるSRSの送信電力値が複数ある(複数SRSの同時送信が発生する)場合、2Scellの2SRSの中で、ULグラントでアペリオディックCSI等のUCIがトリガーされた(される)CCのSRS電力割当優先度を高くする。図14では、ScellのCC#2において、過去のサブフレームにおいて、UCIがトリガーされており、CC#0はUCIがトリガーされていない場合を示している。
これにより、電力スケーリング方法1−Aと同様の効果を、複数Scell(SCC)の中で得ることができる。
なお、トリガーされたScellはある所定の期間、その優先度を保持してもよい。また、新たに別CCでUCIがトリガーされるまでその優先度を維持してもよい。また、UCIがトリガーされたScellが複数ある場合は、直近のトリガー情報に従って、SRSの電力スケーリングを行ってもよい。また、UCIがトリガーされたScellが複数あり、同一時点でそれらがトリガーされた場合は、UL CC ID番号(昇順・降順)に応じて電力スケーリング優先度を決定してもよい。
また、上位層のシグナリングで通知(指示)された、複数Scellの中でのUCIを送信するCCの優先度順位情報を、ある所定の期間保持してもよい(ある所定期間その情報に従って、電力スケーリングを行ってもよい)。また、上位層のシグナリングに依り、eNBから新たに上記した優先順位などが通知(指示)されるまで、その優先度を維持してもよい。新たな優先順位が通知(指示)されれば、その新たな優先順位に従って、電力スケーリングを行えばよい。
また、上記したように、eNBからRRC(Radio Resource Control)などの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、CCのSRS電力割当優先度を設定してもよい。例えば、複数Scellの中で、UCIをPUSCHと共に送信するようにeNBに指示されたCell(CC)、または、複数Scellにおいて、UCIをPUSCHと共に送信するCell(CC)の中で、eNBに指示された優先順位の高いCell(CC)のSRS電力割当優先度を高くする。反対に、複数Scellの中で、UCIをPUSCHと共に送信しないようにeNBに指示されたCell(CC)、または、複数Scellにおいて、UCIをPUSCHと共に送信するCell(CC)の中で、eNBに指示された優先順位の低いCell(CC)のSRS電力割当優先度を低くする。
これにより、上記と同様の効果を得ることができる。
また、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、優先順位の最も高いScellのSRSの送信電力(PSD)を、電力スケーリング処理において、保持してもよい(変化させなくてもよい)。
これにより、上記と同様の効果を得つつ、UCIが送信される確率の高いScellの品質測定を高精度化することができ、eNBはUCIの伝送に用いる適切な送信電力(MCS)を端末に通知することができる。
また、eNBからRRCなどの上位層のシグナリングで指示された、ピリオディックCQI(PMI)報告などに使用するScellの優先順位に基づいて、優先順位の低いScellをドロップするSRSとして選択してもよい。例えば、優先順位の最も高いScellのSRSの送信電力(PSD)を保持し(変化させずに)、それ以外の全ScellのSRSの送信電力(PSD)を全てドロップ(送信電力=0、送信停止、PSD=0、送信電力を低減)してもよい。
これにより、電力スケーリング方法3−Aと同様の効果を複数Scellの中で得ることができる。即ち、Pcell及び複数Scellで複数SRSを同時送信する全ての場合において、同様の効果を得ることができるようになる。また、優先順位の低いScell(CC)から順番に、ScellのSRSをドロップ(送信電力=0、送信停止、PSD=0に設定)してもよい。これにより、上記と同様の効果を得ることができる。
なお、上記の方法において、(図示していない)eNBでは、各端末に設定したScellおよびPcell情報やCC(Cell)毎のアップリンク被干渉状況などを用いて、複数Scellの中でピリオディックCQI(PMI)報告等に使用するScellの端末毎の優先順位の決定、又は、複数Scellの中でUCIをPUSCHと共に(UCIをPUSCHに多重して)送信する端末毎のcell(CC)の選択などを行う。そして、決定、選択した優先順位などの情報を上位レイヤの(RCC)シグナリングを用いて、端末に通知する。上記情報を受信した端末は、複数ULチャネル(SRS等)の同時送信が生じた場合において、その情報を電力スケーリングに用いる。
電力スケーリング方法12−A
電力スケーリング方法12−Aでは、電力スケーリング制御部109は、高いPSDを有するSRSより、低いPSDのSRSを優先的にドロップする(電力割当優先度を低くする、送信電力を低減する、送信しない、送信電力をゼロに設定する)。
CC間でのSRSのPSDの差が大きい場合、PSDの大きいCCのSRSの相互変調歪が、異なるCCのSRSのPSDより大きくなる場合が生じる。この相互変調歪は、送信フィルタで取り除くことができない。すなわち、このような場合にそのまま送信してしまうと、eNBは相互変調歪の影響を受けたSRSで該当CCの通信品質を測定してしまい、正しいスケジューリング、送信電力制御ができない。この課題に対して、相互変調歪みの影響を受けにくい高いPSDを持つSRSだけを送信することにより、該当CCを精度よく測定できる。
図15に、電力スケーリング方法12−Aの概要を示す。図15では、Scellの2CC(CC#0、CC#1)において、SRSを同時に送信しており、基地局から(上位レイヤシグナリングで)通知される制御信号により、CC#0はScell、CC#1はScellに設定されている。図15では、高調波歪(相互変調歪み)を点線で示している。このような状況下において、相互変調歪みの影響を受けやすい低いPSDを持つSRSをドロップする。
なお、PSDの値を計算するのに関連する(PUSCH、SRS)送信電力制御パラメータに基づいてもよい。例えば、TPCコマンド累積値、トランスポートブロックサイズ、MCSレベルに関連するオフセットパラメータ(TF)、PUSCHの送信電力に対するSRSオフセット値、1RE当たりのビット数(TBサイズ/割当RE数)など、これらの値が大きいほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。また、割当RE(Resource Element)数、または、割当サブキャリア数が少ないほど、高いPSDを有するSRSとなるため、これらの値に基づいて、ドロップするSRSを選択してもよい。
また、PSDや、上記各パラメータに対して、閾値を導入し、それらの値が閾値を超えた場合に該当SRSを優先的にドロップするようにしてもよい。
このように、実施の形態2によれば、Pcell及びScellを用いて複数SRSを同時送信する場合に、ScellのSRSよりPcellのSRSを優先して送信電力割当を行うことにより、電力割当優先度の低いSRSのCCが、UCIを多重するCCと同一のCCとなる確率を低減することができる。よって、UCIが多重される確率の高いPcellの伝搬チャネル品質情報を電力割当優先度の高いSRSにより高精度に推定することができ、eNBは後続のUCIを伝送するULチャネルに対して適切な送信電力を指示することができる。
なお、上記では、CC間の場合について説明したが、CC内の複数SRSに上記方法を適用してもよい。
また、上記各電力スケーリング方法を組み合わせて使用してもよい。
また、上記複数Scellの複数SRSへの適用を前提に述べた方法を、Pcellに複数SRS、複数Pcellに複数SRSが存在する場合には、同様に適用することができる。
また、上記に述べた、電力割当優先度の低いSRSの送信電力を低減する方法として、eNBから端末へ(上位レイヤのシグナリングで)通知されるSRS用のスケーリングウェイトを用いて、送信電力を低減してもよい。w_Pcell_SRSをPcellのSRSに適用するスケーリングウェイト、w_Scell_SRSをScellのSRSに適用するスケーリングウェイトとした場合、w_Pcell_SRS>w_Scell_SRSと設定(定義)すればよい。また、w_Pcell_SRS=1、w_Scell_SRS<1と定義してもよい。また、ドロップ(送信停止、送信電力=0)する場合には、w_Scell_SRS=0と設定してもよい。
また、上記各電力スケーリング方法を組み合わせて使用してもよい。
実施の形態1及び実施の形態2に記載の各電力スケーリング方法を組み合わせることにより、複数CC(cell)で送信される複数アップリンクチャネルの送信電力合計値がUE固有の最大送信電力を超えない場合、かつ、複数cell、又は、複数CCでの複数アップリンクチャネル同時送信が発生した場合における、電力スケーリングを行うこともできる。以下に、実施の形態1(2)に記載の電力スケーリング方法3(3−A)及び12(12−A)を組み合わせた場合の一例(電力スケーリング方法16−A)を示す。
電力スケーリング方法16−A
電力スケーリング方法16−Aでは、電力スケーリング制御部109は、複数Scellに複数SRSがある場合に、eNBから端末へ通知されるULグラントに含まれる、PUSCHのトランスポートブロック(TB:Transport Block)サイズの大きさに基づいて、SRSの電力優先度を決定する。
UCIのサイズが大きい(ビット数が多い)場合には、TBサイズが小さいPUSCHに、CQIやPMIのUCIが多重することができなくなる問題が生じる。複数CCのCQIやPMI情報を1つのScellのPUSCHでeNBに報告する場合にその問題が更に大きくなる。なお、複数PUSCHにUCIを分割してeNBに報告する方法は、ULマルチキャリア送信になるために、上記したようにPAへ与える影響などを考慮すると望ましくない。従って、複数Scellに複数PUSCHが割当てられた場合においては、TBサイズの大きいPUSCHにUCIを多重する方法を取ることが望ましい。
従って、電力スケーリング方法16−Aにおいては、例えば、複数Scellにおいて、TBサイズが大きいTBがマッピングされるPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を高くする。反対に、TBサイズが小さいTBがマッピングされるPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を低くする。
なお、上記方法において、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力の優先度を高くし、それ以外のScell(CC)のSRS送信電力優先度を低くしてもよい。
また、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力は保持し(変化させず)、それ以外のScell(CC)のSRS送信電力を低減してもよい。
また、TBサイズが最も大きいPUSCHが送信されるCC(Cell)の、SRS送信電力は保持し(変化させず)、それ以外のScell(CC)のSRSをドロップ(送信電力=0、送信停止、PSD=0に設定する)してもよい。
また、TBサイズが小さいPUSCHが送信されるScell(CC)から順番に、該当CCのSRSをドロップ(送信電力=0、送信停止、PSD=0に設定)してもよい。
これにより、上記の実施の形態に記載の各方法と同様の効果を得ることができる。
なお、上記電力スケーリング方法16−Aに依って設定されたSRSの電力優先度は、ある所定の期間、その優先度を保持してもよい。また、新たに複数Scell間で異なる複数TBサイズの組合せが送信されるまで、その優先度を複数Scell間で維持してもよい。また、上記電力スケーリング方法16−Aに依って設定されたSRSの電力優先度は、直近の優先度に従って、SRSの電力スケーリングを行ってもよい。
上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアによって実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
なお、上記各実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
アンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
2010年11月5日出願の特願2010−249005及び2010年11月18日出願の特願2010−258360の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
本発明にかかる無線通信端末装置及び電力割当方法は、LTE−Aなどの移動通信システム等に適用できる。
101 アンテナ
102 無線受信処理部
103 OFDM復調部
104 復調部
105 チャネル復号部
106 制御情報抽出部
107 送信電力計算部
108 電力スケーリング検出部
109 電力スケーリング制御部
110−1〜110−N 符号化及び変調部
111−1〜111−N 多重部
112−1〜112−N 送信電力設定部
113−1〜113−N SC−FDMA変調部
114 合成部
115 無線送信処理部

Claims (9)

  1. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、セカンダリセルの参照信号が複数ある場合、送信電力が小さいセカンダリセルの参照信号から順に送信電力を低減又は送信を停止又は送信電力を0に設定する
    線通信端末装置。
  2. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、セカンダリセルの参照信号が複数ある場合、複数のセカンダリセルの参照信号の送信電力を一様に低減する
    線通信端末装置。
  3. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、セカンダリセルの参照信号の送信電力が所定の閾値以下である場合、セカンダリセルの参照信号の送信電力を低減又は送信を停止又は送信電力を0に設定する
    線通信端末装置。
  4. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、複数の参照信号の中で最大送信電力から所定値以上離れた送信電力を有するセカンダリセルの参照信号の送信電力を低減又は送信を停止又は送信電力を0に設定する
    線通信端末装置。
  5. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、ピリオディック参照信号の送信周期の長さに応じて、コンポーネントキャリアの参照信号を選択し、選択した参照信号の電力割当優先度を低減するか、送信電力を低減するか、送信を停止するか、あるいは送信電力を0に設定する
    線通信端末装置。
  6. 前記電力スケーリング制御手段は、送信周期の長い参照信号を選択する請求項に記載の無線通信端末装置。
  7. 前記電力スケーリング制御手段は、送信周期の短い参照信号を選択する請求項に記載の無線通信端末装置。
  8. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算手段と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出手段と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御手段と、
    を具備し、
    前記電力スケーリング制御手段は、高い電力スペクトル密度を有する参照信号より、低い電力スペクトル密度を有する参照信号の電力割当優先度を低減するか、送信電力を低減するか、送信を停止するか、あるいは送信電力を0に設定する
    線通信端末装置。
  9. キャリアアグリゲーションを構成する複数のコンポーネントキャリアの複数の上り回線チャネルの送信電力を計算する送信電力計算工程と、
    計算された前記送信電力を用いて、前記複数のコンポーネントキャリアで送信される上り回線チャネルの送信電力の合計値が自装置に固有の最大送信電力を超え、電力スケーリングが発生するか否かを検出する電力スケーリング検出工程と、
    電力スケーリングが発生すると検出され、プライマリセル及びセカンダリセルを用いて、複数の参照信号を送信する場合、セカンダリセルの参照信号よりプライマリセルの参照信号を優先して送信電力の割り当てを行う電力スケーリング制御工程と、
    を具備し、
    前記電力スケーリング制御工程は、セカンダリセルの参照信号が複数ある場合、送信電力が小さいセカンダリセルの参照信号から順に送信電力を低減又は送信を停止又は送信電力を0に設定する、
    力割当方法。
JP2012541727A 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法 Active JP5898087B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012541727A JP5898087B2 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010249005 2010-11-05
JP2010249005 2010-11-05
JP2010258360 2010-11-18
JP2010258360 2010-11-18
PCT/JP2011/005906 WO2012060067A1 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法
JP2012541727A JP5898087B2 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016039931A Division JP6268553B2 (ja) 2010-11-05 2016-03-02 無線通信端末装置及び電力割当方法

Publications (2)

Publication Number Publication Date
JPWO2012060067A1 JPWO2012060067A1 (ja) 2014-05-12
JP5898087B2 true JP5898087B2 (ja) 2016-04-06

Family

ID=46024195

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012541727A Active JP5898087B2 (ja) 2010-11-05 2011-10-21 無線通信端末装置及び電力割当方法
JP2017237896A Active JP6537587B2 (ja) 2010-11-05 2017-12-12 集積回路
JP2019103694A Active JP6868855B2 (ja) 2010-11-05 2019-06-03 無線通信装置及び無線通信方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017237896A Active JP6537587B2 (ja) 2010-11-05 2017-12-12 集積回路
JP2019103694A Active JP6868855B2 (ja) 2010-11-05 2019-06-03 無線通信装置及び無線通信方法

Country Status (3)

Country Link
US (8) US9661588B2 (ja)
JP (3) JP5898087B2 (ja)
WO (1) WO2012060067A1 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294815B1 (ko) * 2009-05-15 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
WO2012060067A1 (ja) 2010-11-05 2012-05-10 パナソニック株式会社 無線通信端末装置及び電力割当方法
US8681627B2 (en) 2010-12-07 2014-03-25 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US9930677B2 (en) * 2010-12-07 2018-03-27 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
KR101748107B1 (ko) * 2011-07-29 2017-06-15 후지쯔 가부시끼가이샤 파워 제어 방법 및 단말 장치
US9386535B2 (en) * 2011-10-26 2016-07-05 Lg Electronics Inc. Method for determining transmission power information of downlink subframe and apparatus therefor
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
US9467956B2 (en) * 2012-05-11 2016-10-11 Nokia Technologies Oy Method for indication of reference symbol transmission power change in cellular network
JP2014072778A (ja) 2012-09-28 2014-04-21 Ntt Docomo Inc 無線通信システム、基地局装置、ユーザ端末及び無線通信方法
EP2901790B1 (en) * 2012-09-28 2019-12-18 Nokia Solutions and Networks Oy Method, apparatus and computer program for reporting in-device coexistence information
JP6159523B2 (ja) * 2012-12-11 2017-07-05 株式会社Nttドコモ ユーザ装置及び送信制御方法
US9876620B2 (en) * 2013-01-10 2018-01-23 Samsung Electronics Co., Ltd. Uplink control information transmissions/receptions in wireless networks
CN103945553B (zh) * 2013-01-18 2017-12-12 上海贝尔股份有限公司 基于载波聚合实现控制平面和用户平面分离的方法
JP5947240B2 (ja) * 2013-03-28 2016-07-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置及び送信方法
WO2014175800A1 (en) * 2013-04-26 2014-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and network efficiency node for increased data throughput in wireless networks
JP5964792B2 (ja) 2013-08-30 2016-08-03 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
CN104519561B (zh) * 2013-09-26 2019-02-12 中兴通讯股份有限公司 上行功率削减处理方法、装置、终端及基站
JP2015070323A (ja) * 2013-09-26 2015-04-13 株式会社Nttドコモ ユーザ端末および無線通信方法
KR101611825B1 (ko) 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
JP2015142349A (ja) * 2014-01-30 2015-08-03 株式会社Nttドコモ ユーザ装置及び送信制御方法
JP6497726B2 (ja) * 2014-03-14 2019-04-10 シャープ株式会社 端末、基地局、通信システム、通信方法、およびプログラム
JP6586091B2 (ja) * 2014-08-04 2019-10-02 シャープ株式会社 端末装置および方法
WO2016021992A1 (ko) * 2014-08-08 2016-02-11 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN106465290A (zh) * 2014-08-27 2017-02-22 华为技术有限公司 一种协调分配功率的方法及装置
US10980045B2 (en) * 2014-10-02 2021-04-13 Qualcomm Incorporated Techniques for managing power on an uplink component carrier transmitted over a shared radio frequency spectrum band
WO2016089185A1 (ko) * 2014-12-05 2016-06-09 엘지전자 주식회사 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치
US9900843B2 (en) * 2015-01-12 2018-02-20 Qualcomm Incorporated Uplink power control techniques for ultra low latency in LTE devices
WO2016117974A1 (ko) * 2015-01-22 2016-07-28 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 반송파 집성 방법 및 상기 방법을 이용하는 단말
WO2016159629A1 (ko) * 2015-03-31 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 피드백을 위한 비주기적 참조 신호 송신 방법 및 이를 위한 장치
CN106304299A (zh) 2015-05-15 2017-01-04 北京三星通信技术研究有限公司 一种上行功率的分配方法和用户设备
JP6019199B2 (ja) * 2015-10-28 2016-11-02 株式会社Nttドコモ 無線通信システム、ユーザ端末及び無線通信方法
US10348543B2 (en) * 2016-01-29 2019-07-09 Ofinno, Llc Uplink transmission in a wireless device and wireless network
GB2547269A (en) * 2016-02-12 2017-08-16 Vodafone Ip Licensing Ltd Cellular device cell selection
US10397904B2 (en) 2016-02-20 2019-08-27 Qualcomm Incorporated Communication of uplink control information
US10425922B2 (en) * 2016-02-20 2019-09-24 Qualcomm Incorporated Communication of uplink control information
JP6378227B2 (ja) * 2016-03-10 2018-08-22 Necプラットフォームズ株式会社 ポイントツーポイント無線装置および通信制御方法
US10716125B2 (en) 2016-04-01 2020-07-14 Qualcomm Incorporated Sounding reference signal triggering for enhanced carrier aggregation
WO2017197086A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Enabling sounding reference signal component carrier-based switching in wireless communication
JP6378256B2 (ja) * 2016-06-30 2018-08-22 京セラ株式会社 ユーザ端末、通信制御装置、及びプロセッサ
US20180054806A1 (en) * 2016-08-22 2018-02-22 Alcatel-Lucent Usa, Inc. Systems and methods for decoupling control and data channels in wireless networks
AU2016424804B2 (en) * 2016-09-30 2020-11-05 Huawei Technologies Co., Ltd. Data processing method, terminal and base station
JP6254240B2 (ja) * 2016-10-18 2017-12-27 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11184787B2 (en) * 2017-01-09 2021-11-23 Telefonaktiebolaget Lm Ericcson (Publ) Systems and methods for reliable dynamic indication for semi-persistent CSI-RS
US10798588B2 (en) * 2017-02-06 2020-10-06 Mediatek Inc. Mechanism for beam reciprocity determination and uplink beam management
JP7083810B2 (ja) 2017-03-22 2022-06-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
CN108632966B (zh) * 2017-03-23 2022-05-06 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
JP7242161B2 (ja) * 2017-06-14 2023-03-20 ソニーグループ株式会社 通信装置、通信制御方法及びコンピュータプログラム
EP3646514A1 (en) * 2017-06-27 2020-05-06 Intel IP Corporation Transmission of reference signals for acquisition of channel state information
CN109391395A (zh) 2017-08-09 2019-02-26 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
KR20200033345A (ko) * 2017-08-11 2020-03-27 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10873912B2 (en) 2017-09-07 2020-12-22 Ofinno, Llc Uplink beam management
KR102019477B1 (ko) * 2017-10-30 2019-09-06 에스케이텔레콤 주식회사 캐리어 어그리게이션 동작 시의 단말 출력 제어 방법 및 이를 위한 장치
US10757601B2 (en) 2017-12-13 2020-08-25 At&T Intellectual Property I, L.P. Physical layer procedures for user equipment in power saving mode
KR102298009B1 (ko) * 2018-03-30 2021-09-06 주식회사 케이티 상향링크 데이터 채널을 전송하는 방법 및 장치
CN110351040B (zh) * 2018-04-03 2020-08-14 维沃移动通信有限公司 探测参考信号传输、配置方法、用户设备及网络侧设备
WO2019203324A1 (ja) * 2018-04-18 2019-10-24 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110933763B (zh) * 2018-09-19 2022-02-08 维沃移动通信有限公司 一种传输方法及相关设备
US11381365B2 (en) * 2019-01-09 2022-07-05 Qualcomm Incorporated Collision of sounding reference signal (SRS) and physical uplink shared channel (PUSCH) in case of carrier aggregation
US11778569B2 (en) * 2019-01-21 2023-10-03 Qualcomm Incorporated Physical uplink shared channel (PUSCH) power scaling factor reporting
TW202040276A (zh) 2019-02-07 2020-11-01 日商三井化學股份有限公司 底層膜形成用材料、抗蝕劑底層膜及積層體
WO2020164106A1 (en) * 2019-02-15 2020-08-20 Zte Corporation System and method for determining uplink transmission priority
CN114026928B (zh) * 2019-04-18 2023-11-21 株式会社Ntt都科摩 用户终端以及无线通信方法
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
US20200412505A1 (en) * 2019-09-13 2020-12-31 Intel Corporation Methods of ue power saving for uplink transmission
US11026131B1 (en) * 2019-12-03 2021-06-01 Sprint Spectrum L.P. Dynamic carrier reconfiguration to facilitate voice-over-packet communication in response to predicted uplink intermodulation distortion
US20210282150A1 (en) * 2020-03-06 2021-09-09 Qualcomm Incorporated Building transport blocks in wireless networks
KR20220073425A (ko) * 2020-11-26 2022-06-03 삼성전자주식회사 전자 장치 및 복수의 안테나들을 통해 신호를 전송하는 전자 장치에서 기준 신호를 전송하는 방법
US11889427B2 (en) * 2021-07-27 2024-01-30 Qualcomm Incorporated Relative power setting between different cells in dual connectivity or carrier aggregation
US11877307B2 (en) * 2021-10-07 2024-01-16 Qualcomm Incorporated Signaling of non-linearities for inter-UE interference cancellation
WO2023136601A1 (ko) * 2022-01-11 2023-07-20 엘지전자 주식회사 무선 통신 시스템에서 조정된 전력 할당 기반 상향링크 송신 또는 수신 방법 및 장치
CN117279081A (zh) * 2022-06-14 2023-12-22 北京三星通信技术研究有限公司 通信方法、基站、用户设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041587A (ja) * 2008-08-07 2010-02-18 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP2010171563A (ja) * 2009-01-21 2010-08-05 Kyocera Corp 無線通信システム、無線端末、および無線端末の制御方法
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2010124192A2 (en) * 2009-04-23 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for power scaling for multi-carrier wireless terminals
WO2010125969A1 (ja) * 2009-04-27 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP2011166571A (ja) * 2010-02-12 2011-08-25 Sharp Corp 無線通信システム、移動局装置、無線通信方法および集積回路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2227061B1 (en) * 2007-01-31 2012-09-19 Sharp Kabushiki Kaisha Interference information indicator table for a mobile station located at a cell edge
US8638685B2 (en) * 2008-11-26 2014-01-28 Nec Corporation Base station, transmission power control method for base station, processing apparatus, storage medium storing program, and communication system
KR101639810B1 (ko) * 2009-01-13 2016-07-25 엘지전자 주식회사 무선통신 시스템에서 사운딩 참조신호의 전송방법
JP5302417B2 (ja) * 2009-01-29 2013-10-02 エルジー エレクトロニクス インコーポレイティド 伝送電力を制御する方法及び伝送電力を制御する装置
KR101674940B1 (ko) 2009-01-29 2016-11-10 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2010089284A2 (en) * 2009-02-03 2010-08-12 Nokia Siemens Networks Oy Uplink power control for multiple component carriers
EP2401882B1 (en) * 2009-02-25 2018-08-01 LG Electronics Inc. Method and device for controlling transmission power in uplink transmission
AU2010226635B2 (en) * 2009-03-17 2014-06-12 Samsung Electronics Co., Ltd. Uplink transmission power control in multi-carrier communication systems
TWI596969B (zh) * 2009-03-17 2017-08-21 內數位專利控股公司 在多輸入多輸出中上鏈功率控制方法和裝置
KR20110138388A (ko) * 2009-03-17 2011-12-27 인터디지탈 패튼 홀딩스, 인크 사운딩 레퍼런스 신호(srs) 전송의 전력 제어를 위한 방법 및 장치
US8768397B2 (en) * 2009-10-02 2014-07-01 Sharp Kabushiki Kaisha Transmission power control on a wireless communication device for a plurality of regulated bands or component carriers
KR101770209B1 (ko) * 2009-12-03 2017-08-22 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 저감 방법 및 장치
US8588205B2 (en) * 2010-02-12 2013-11-19 Mediatek Inc. Uplink power control message indexing in wireless OFDMA systems
EP3439220A1 (en) 2010-04-02 2019-02-06 Interdigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
US9363769B2 (en) 2010-05-05 2016-06-07 Qualcomm Incorporated Methods and systems for SRS power scaling in carrier aggregation
US8725167B2 (en) * 2010-08-11 2014-05-13 Optis Cellular Technology, Llc Methods of providing cell grouping for positioning and related networks and devices
US9131457B2 (en) * 2010-08-12 2015-09-08 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink sounding reference signals in a wireless network
WO2012024338A1 (en) * 2010-08-17 2012-02-23 Motorola Mobility, Inc. Method and apparatus for power headroom reporting during multi-carrier operation
US9258092B2 (en) 2010-09-17 2016-02-09 Blackberry Limited Sounding reference signal transmission in carrier aggregation
CN103190100B (zh) * 2010-10-28 2016-06-15 Lg电子株式会社 发送探测基准信号的方法和设备
WO2012060067A1 (ja) * 2010-11-05 2012-05-10 パナソニック株式会社 無線通信端末装置及び電力割当方法
JP5859982B2 (ja) * 2011-01-07 2016-02-16 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 無線通信端末装置及び電力制御方法
KR101611825B1 (ko) * 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
WO2015126289A1 (en) * 2014-02-19 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) Data transmission over a reduced number of physical antennas
US10091736B2 (en) * 2014-04-18 2018-10-02 Kt Corporation Method of controlling uplink signal transmission power and apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041587A (ja) * 2008-08-07 2010-02-18 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP2010171563A (ja) * 2009-01-21 2010-08-05 Kyocera Corp 無線通信システム、無線端末、および無線端末の制御方法
WO2010103862A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
WO2010124192A2 (en) * 2009-04-23 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for power scaling for multi-carrier wireless terminals
WO2010125969A1 (ja) * 2009-04-27 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及び通信制御方法
JP2011166571A (ja) * 2010-02-12 2011-08-25 Sharp Corp 無線通信システム、移動局装置、無線通信方法および集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016004606; Texas Instruments: 'Power Scaling Rules for Carrier Aggregation[online]' 3GPP TSG-RAN WG1#60b R1-102098 , 20100416 *

Also Published As

Publication number Publication date
US10051583B2 (en) 2018-08-14
JP2019165498A (ja) 2019-09-26
JP2018038096A (ja) 2018-03-08
JP2016129407A (ja) 2016-07-14
US20190246362A1 (en) 2019-08-08
US10560906B2 (en) 2020-02-11
JP6868855B2 (ja) 2021-05-12
WO2012060067A1 (ja) 2012-05-10
US11356960B2 (en) 2022-06-07
JP6537587B2 (ja) 2019-07-03
US20130215811A1 (en) 2013-08-22
US9894622B2 (en) 2018-02-13
US20180310260A1 (en) 2018-10-25
US20230276378A1 (en) 2023-08-31
US20170223644A1 (en) 2017-08-03
US9661588B2 (en) 2017-05-23
US10313988B2 (en) 2019-06-04
US20200128493A1 (en) 2020-04-23
US20180146441A1 (en) 2018-05-24
US20220264485A1 (en) 2022-08-18
JPWO2012060067A1 (ja) 2014-05-12
US11683765B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6868855B2 (ja) 無線通信装置及び無線通信方法
JP6410111B2 (ja) 通信装置、通信方法及び集積回路
EP2663136B1 (en) Wireless communication terminal and power control method
US8755832B2 (en) Methods and apparatuses for enabling power back-off indication in PHR in a telecommunications system
US8958370B2 (en) Method and apparatus for controlling transmission power in wireless communication system
JP2023058618A (ja) 基地局、受信方法及び集積回路
JP6268553B2 (ja) 無線通信端末装置及び電力割当方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5898087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313133

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250