JPWO2019195441A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019195441A5
JPWO2019195441A5 JP2020554518A JP2020554518A JPWO2019195441A5 JP WO2019195441 A5 JPWO2019195441 A5 JP WO2019195441A5 JP 2020554518 A JP2020554518 A JP 2020554518A JP 2020554518 A JP2020554518 A JP 2020554518A JP WO2019195441 A5 JPWO2019195441 A5 JP WO2019195441A5
Authority
JP
Japan
Prior art keywords
field
sensitive material
waveguide
generated
dielectric stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020554518A
Other languages
Japanese (ja)
Other versions
JP2021527839A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/025607 external-priority patent/WO2019195441A1/en
Publication of JP2021527839A publication Critical patent/JP2021527839A/en
Publication of JPWO2019195441A5 publication Critical patent/JPWO2019195441A5/ja
Pending legal-status Critical Current

Links

Description

一実施形態によれば、層7からパターン化された導波路11および導波路111は、シリコンにより形成され得、層8および層9からパターン化された導波路1111は、窒化シリコン(SiN)により形成され得る。
なお、一実施形態において、フィールド感受性材料は、セリウムYIG、ビスマスをドープした希土類鉄ガーネット、LiNbO3、ポリマー、および液晶からなる群から選択され得る。
According to one embodiment, the waveguides 11 and 111 patterned from layer 7 can be formed of silicon, and the waveguides 1111 patterned from layers 8 and 9 are made of silicon nitride (SiN). Can be formed.
In one embodiment, the field sensitive material can be selected from the group consisting of cerium YIG, bismuth-doped rare earth iron garnet, LiNbO3, polymers, and liquid crystal.

Claims (31)

光電気システムであって、
集積フォトニクス構造体の誘電体スタック内に配置された導波路を有する前記集積フォトニクス構造体であって、前記誘電体スタック内に配置されたフィールド生成導電性構造体をさらに含む、集積フォトニクス構造体と、
前記集積フォトニクス構造体に取り付けられた異質構造体であって、前記フィールド生成導電性構造体によって生成されたフィールドに感受性のあるフィールド感受性材料を有する、異質構造体と、を備える、光電気システム。
It ’s an optical system,
An integrated photonics structure comprising a field-generated conductive structure arranged within the dielectric stack of the integrated photonics structure having a waveguide arranged in the dielectric stack of the integrated photonics structure. ,
A photoelectric system comprising a heterologous structure attached to the integrated photonics structure, comprising a field-sensitive material that is sensitive to the field produced by the field-generated conductive structure.
前記光電気システムが、前記フィールド生成導電性構造体によって生成された前記フィールドが、前記導波路によって伝送された光信号のモード領域によって占有された前記フィールド感受性材料の区域と重なり合うように構成されている、請求項1に記載の光電気システム。 The optoelectric system is configured such that the field generated by the field-generated conductive structure overlaps an area of the field-sensitive material occupied by a modal region of an optical signal transmitted by the waveguide. The optical electrical system according to claim 1. 前記導波路が、SOIウェーハのシリコン層によって画定され、前記誘電体スタック内に配置された前記フィールド生成導電性構造体が、前記導波路よりも前記誘電体スタック内の低い高さに配置され、前記導波路と前記フィールド感受性材料との間の最小間隔距離が、前記フィールド生成導電性構造体と前記フィールド感受性材料との間の最小間隔距離よりも短い、請求項1または2に記載の光電気システム。 The waveguide is defined by the silicon layer of the SOI wafer, and the field-generated conductive structure placed in the dielectric stack is placed at a lower height in the dielectric stack than the waveguide. The photoelectricity according to claim 1 or 2, wherein the minimum distance between the waveguide and the field-sensitive material is shorter than the minimum distance between the field-generated conductive structure and the field-sensitive material. system. 前記光電気システムが、前記フィールド生成導電性構造体によって生成された前記フィールドが、前記導波路によって伝送された光信号のモード領域によって占有された前記フィールド感受性材料の区域と重なり合うように構成されており、前記導波路が、SOIウェーハのシリコン層によって画定され、前記誘電体スタック内に配置された前記フィールド生成導電性構造体が、前記導波路よりも前記誘電体スタック内の低い高さに配置され、前記導波路と前記フィールド感受性材料との間の最小間隔距離が、前記フィールド生成導電性構造体と前記フィールド感受性材料との間の最小間隔距離よりも短い、請求項1から3のいずれか一項に記載の光電気システム。 The optoelectric system is configured such that the field generated by the field-generated conductive structure overlaps the area of the field-sensitive material occupied by the modal region of the optical signal transmitted by the waveguide. The field-generated conductive structure is defined by the silicon layer of the SOI wafer and the field-generated conductive structure placed in the dielectric stack is placed at a lower height in the dielectric stack than the waveguide. One of claims 1 to 3, wherein the minimum distance between the waveguide and the field-sensitive material is shorter than the minimum distance between the field-generated conductive structure and the field-sensitive material. The opto-electric system according to paragraph 1. 前記異質構造体が、前記フィールド感受性材料に隣接して配置された結合導波路層を含み、前記結合導波路層が、前記導波路によって伝送された光信号を、前記フィールド感受性材料内に結合するように構成されている、請求項1から4のいずれか一項に記載の光電気システム。 The heterogeneous structure comprises a coupled waveguide layer disposed adjacent to the field sensitive material, the coupled waveguide layer couplings an optical signal transmitted by the waveguide into the field sensitive material. The optical electrical system according to any one of claims 1 to 4, which is configured as described above. 光電気システムが、前記誘電体スタック内に配置された前記導波路によって伝送された光信号が、前記フィールド感受性材料内に結合するように構成されており、前記フィールド感受性材料内に結合した前記光信号が、前記フィールド感受性材料によって伝送され、前記誘電体スタック内に配置された第2の導波路内に結合し、前記第2の導波路、前記フィールド感受性材料、前記導波路、およびフィールド生成導電性構造体が、フィールド感受性デバイスを画定する、請求項1から5のいずれか一項に記載の光電気システム。 The optoelectric system is configured such that the optical signal transmitted by the waveguide arranged in the dielectric stack is coupled into the field sensitive material and the light coupled into the field sensitive material. The signal is transmitted by the field sensitive material and coupled into a second waveguide placed in the dielectric stack, the second waveguide, the field sensitive material, the waveguide, and the field-generated conductivity. The photoelectric system according to any one of claims 1 to 5, wherein the sex structure defines a field-sensitive device. 前記誘電体スタック内に配置された前記フィールド生成導電性構造体が、1つ以上の同心環によって画定される、請求項1から6のいずれか一項に記載の光電気システム。 The photoelectric system according to any one of claims 1 to 6, wherein the field-generated conductive structure disposed in the dielectric stack is defined by one or more concentric rings. 前記フィールド感受性材料が、磁界感受性である、請求項1から7のいずれか一項に記載の光電気システム。 The photoelectric system according to any one of claims 1 to 7, wherein the field sensitive material is magnetic field sensitive. 前記フィールド感受性材料が、電界感受性である、請求項1から8のいずれか一項に記載の光電気システム。 The photoelectric system according to any one of claims 1 to 8, wherein the field sensitive material is electric field sensitive. 前記フィールド生成導電性構造体および前記フィールド感受性材料が、光アイソレータを画定する、請求項1から9のいずれか一項に記載の光電気システム。 The photoelectric system according to any one of claims 1 to 9, wherein the field-generated conductive structure and the field-sensitive material define an optical isolator. 前記フィールド生成導電性構造体および前記フィールド感受性材料が、変調器を画定する、請求項1から10のいずれか一項に記載の光電気システム。 The photoelectric system according to any one of claims 1 to 10, wherein the field-generated conductive structure and the field-sensitive material define a modulator. 前記フィールド感受性材料を有する前記フィールド生成導電性構造体が、アイソレータ、変調器、サーキュレータ、位相シフタ、偏光回転子、および共振器からなる群から選択されるフィールド感受性デバイスを画定する、請求項1から11のいずれか一項に記載の光電気システム。 From claim 1, wherein the field-generated conductive structure having the field-sensitive material defines a field-sensitive device selected from the group consisting of an isolator, a modulator, a circulator, a phase shifter, a polarized rotator, and a resonator. 11. The opto-electrical system according to any one of paragraphs 11. 前記集積フォトニクス構造体の誘電体スタック内に配置された前記導波路が、前記フィールド生成導電性構造体が、前記誘電体スタック内に配置されているよりも高い高さで配置されている、請求項1から12のいずれか一項に記載の光電気システム。 The waveguide placed in the dielectric stack of the integrated photonics structure is located at a higher height than the field-generated conductive structure placed in the dielectric stack. Item 12. The opto-electric system according to any one of Items 1 to 12. 前記集積フォトニクス構造体が、(a)表側終端部を有する集積回路チップ、および(b)インターポーザからなる群から選択されるもののうちの1つとして構成されており、前記インターポーザが、再配線層を含む、請求項1から13のいずれか一項に記載の光電気システム。 The integrated photonics structure is configured as one selected from the group consisting of (a) an integrated circuit chip having a front end and (b) an interposer, wherein the interposer provides a rewiring layer. The opto-electric system according to any one of claims 1 to 13, including the optical electric system according to any one of claims 1 to 13. 前記集積フォトニクス構造体が、インターポーザとして構成されており、前記インターポーザが、再配線層を含み、前記光電気システムが、前記フィールド生成導電性構造体に通電するためのストラップ接続体を含み、前記ストラップ接続体が、前記再配線層と電気的に連通しているシリコン貫通ビア、前記誘電体スタックの高さを通って延在する酸化物貫通ビア、および電気的に連通している金属化層を含み、前記金属化層が、前記フィールド生成導電性構造体を画定する金属化層の高さよりも高い高さを有する、請求項1から14のいずれか一項に記載の光電気システム。 The integrated photonics structure comprises an interposer, the interposer comprising a rewiring layer, the optoelectric system comprising a strap connector for energizing the field-generated conductive structure, the strap. Silicon-penetrating vias that the connector electrically communicates with the rewiring layer, oxide-penetrating vias that extend through the height of the dielectric stack, and metallized layers that electrically communicate. The photoelectric system according to any one of claims 1 to 14, wherein the metallized layer has a height higher than the height of the metallized layer defining the field-generated conductive structure. 方法であって、
集積フォトニクス構造体を製造することであって、誘電体スタック内に導波路を製造することを含み、前記誘電体スタック内にフィールド生成導電性構造体を製造することをさらに含む、製造することと、
異質構造体を、前記集積フォトニクス構造体に取り付けることであって、前記異質構造体が、前記フィールド生成導電性構造体によって生成されたフィールドに感受性のあるフィールド感受性材料を有する、取り付けることと、を含む、方法。
It ’s a method,
Manufacturing an integrated photonics structure, comprising manufacturing a waveguide in a dielectric stack, further comprising manufacturing a field-generated conductive structure in the dielectric stack, and manufacturing. ,
Attaching the heterogeneous structure to the integrated photonics structure, wherein the heterogeneous structure has a field-sensitive material that is sensitive to the field produced by the field-generated conductive structure. Including, method.
前記方法が、前記フィールド生成導電性構造体によって生成された前記フィールドが、前記導波路によって伝送された光信号のモード領域によって占有された前記フィールド感受性材料の区域と重なり合うように実行される、請求項16に記載の方法。 The method is performed such that the field generated by the field-generated conductive structure overlaps the area of the field-sensitive material occupied by the modal region of the optical signal transmitted by the waveguide. Item 16. The method according to Item 16. 誘電体スタック、および、Dielectric stack and
前記誘電体スタック内に配置された導波路Waveguides arranged in the dielectric stack
を含む集積フォトニクス構造体と、With integrated photonics structures, including
前記集積フォトニクス構造体の外部の異質構造体であって、前記異質構造体はフィールド感受性材料を有する、前記異質構造体とA heterogeneous structure outside the integrated photonics structure, wherein the heterologous structure has a field-sensitive material with the heterologous structure.
を備える光電気システム。An optical electrical system equipped with.
前記集積フォトニクス構造体は、前記誘電体スタック内に配置されたフィールド生成導電性構造体をさらに含む請求項18に記載の光電気システム。The optoelectronic system of claim 18, wherein the integrated photonics structure further comprises a field-generated conductive structure disposed within the dielectric stack. 前記フィールド感受性材料は、前記フィールド生成導電性構造体によって生成されたフィールドに感受性のある請求項19に記載の光電気システム。19. The photoelectric system of claim 19, wherein the field sensitive material is field sensitive to the field produced by the field-generated conductive structure. 前記フィールド生成導電性構造体によって生成された前記フィールドが、前記導波路によって伝送された光信号のモード領域によって占有された前記フィールド感受性材料の区域と重なり合うように、前記光電気システムが構成されている、請求項20に記載の光電気システム。The opto-electrical system is configured such that the field generated by the field-generated conductive structure overlaps the area of the field-sensitive material occupied by the modal region of the optical signal transmitted by the waveguide. The optical electrical system according to claim 20. 前記フィールド感受性材料は、前記誘電体スタック内から生成されたフィールドに感受性のある請求項18から21のいずれか1項に記載の光電気システム。The photoelectric system according to any one of claims 18 to 21, wherein the field-sensitive material is a field-sensitive material generated from within the dielectric stack. 前記光電気システムは、前記導波路および前記フィールド感受性材料によって画定されるフィールド感受性デバイスを含む請求項18から22のいずれか1項に記載の光電気システム。The optoelectric system according to any one of claims 18 to 22, wherein the opto-electric system comprises a waveguide and a field-sensitive device defined by the field-sensitive material. 前記フィールド感受性材料の区域が、前記導波路によって伝送された光信号のモード領域によって占有される請求項18から23のいずれか1項に記載の光電気システム。The optical electrical system according to any one of claims 18 to 23, wherein the area of the field sensitive material is occupied by a mode region of an optical signal transmitted by the waveguide. 前記誘電体スタック内から生成されたフィールドが前記導波路によって伝送された光信号のモード領域と重なり合うように、前記光電気システムが構成されている、請求項18から24のいずれか1項に記載の光電気システム。13. Optical electrical system. 前記フィールド感受性材料の区域が前記導波路によって伝送された光信号のモード領域によって占有され、前記光電気システムが前記導波路および前記フィールド感受性材料によって画定されるフィールド感受性デバイスを含む、請求項18に記載の光電気システム。18. The area of the field sensitive material is occupied by a modal region of an optical signal transmitted by the waveguide and the optoelectric system comprises a field sensitive device defined by the waveguide and the field sensitive material. The optical electrical system described. 前記誘電体スタック内から生成されたフィールドが前記導波路によって伝送された光信号のモード領域と重なり合うように、前記光電気システムが構成されており、前記光電気システムが、前記導波路および前記フィールド感受性材料によって画定されるフィールド感受性デバイスを含む、請求項18に記載の光電気システム。The opto-electrical system is configured such that a field generated from within the dielectric stack overlaps a mode region of an optical signal transmitted by the waveguide, and the opto-electrical system comprises the waveguide and the field. 18. The photoelectric system of claim 18, comprising a field sensitive device defined by a sensitive material. 前記フィールド感受性材料は、前記誘電体スタックの上部の下から生成されたフィールドに感受性のある請求項18から27のいずれか1項に記載の光電気システム。The photoelectric system according to any one of claims 18 to 27, wherein the field-sensitive material is field-sensitive generated from below the top of the dielectric stack. 前記導波路によって伝送された光信号が前記フィールド感受性材料内にエバネッセント的に結合するように、前記光電気システムが構成されている、請求項18から28のいずれか1項に記載の光電気システム。The opto-electric system according to any one of claims 18 to 28, wherein the opto-electric system is configured such that the optical signal transmitted by the waveguide is evanescently coupled within the field-sensitive material. .. 前記光電気システムは、前記フィールド感受性材料と連通するよう構成された前記誘電体スタック内に一体的に形成されたフィールド生成構造物を含む、請求項18から29のいずれか1項に記載の光電気システム。The light of any one of claims 18-29, wherein the photoelectric system comprises a field-generated structure integrally formed within the dielectric stack configured to communicate with the field sensitive material. Electrical system. 前記光電気システムは、前記フィールド感受性材料によって感受されるフィールドを生成するよう構成された前記誘電体スタック内に配置されたフィールド生成構造物を含む、請求項18から29のいずれか1項に記載の光電気システム。13. Optical electrical system.
JP2020554518A 2018-04-04 2019-04-03 Heterogeneous structure on an integrated photonics platform Pending JP2021527839A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862652810P 2018-04-04 2018-04-04
US62/652,810 2018-04-04
PCT/US2019/025607 WO2019195441A1 (en) 2018-04-04 2019-04-03 Heterogeneous structure on an integrated photonics platform

Publications (2)

Publication Number Publication Date
JP2021527839A JP2021527839A (en) 2021-10-14
JPWO2019195441A5 true JPWO2019195441A5 (en) 2022-04-12

Family

ID=66380137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020554518A Pending JP2021527839A (en) 2018-04-04 2019-04-03 Heterogeneous structure on an integrated photonics platform

Country Status (7)

Country Link
US (2) US10877300B2 (en)
EP (1) EP3776074B1 (en)
JP (1) JP2021527839A (en)
KR (1) KR20220124298A (en)
SG (1) SG11202009807UA (en)
TW (1) TWI742356B (en)
WO (1) WO2019195441A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195441A1 (en) 2018-04-04 2019-10-10 The Research Foundation For The State University Of New York Heterogeneous structure on an integrated photonics platform
US11349569B2 (en) 2018-10-26 2022-05-31 Raytheon Company Methods and apparatus for implementing an optical transceiver using a vapor cell
US11550099B2 (en) 2018-11-21 2023-01-10 The Research Foundation For The State University Of New York Photonics optoelectrical system
TWI829761B (en) 2018-11-21 2024-01-21 紐約州立大學研究基金會 Photonics structure with integrated laser
US11303356B1 (en) 2019-04-18 2022-04-12 Raytheon Company Methods and apparatus for maintaining receiver operating point with changing angle-of-arrival of a received signal
US11307395B2 (en) * 2019-05-23 2022-04-19 Raytheon Company Methods and apparatus for optical path length equalization in an optical cavity
US11290191B2 (en) 2019-06-20 2022-03-29 Raytheon Company Methods and apparatus for tracking moving objects using symmetric phase change detection
EP3994808A1 (en) 2019-07-03 2022-05-11 Raytheon Company Optical receiver comprising a rotatable optical resonator, and method for demodulating an optical signal using said receiver
US11199754B2 (en) 2019-07-15 2021-12-14 Raytheon Company Demodulator with optical resonator
US10935722B1 (en) * 2019-09-14 2021-03-02 Dong Li CMOS compatible material platform for photonic integrated circuits
WO2021075047A1 (en) * 2019-10-18 2021-04-22 日本電信電話株式会社 1×n optical switch
US11391888B2 (en) * 2019-11-07 2022-07-19 Cisco Technology, Inc. Wafer-scale fabrication of optical apparatus
US11221506B2 (en) * 2020-02-24 2022-01-11 Globalfoundries U.S. Inc. Polarization switches including a phase change material
CN111562688B (en) * 2020-05-22 2023-01-06 联合微电子中心有限责任公司 Method of manufacturing semiconductor device, and semiconductor integrated circuit
CN111580289B (en) * 2020-05-22 2023-07-18 联合微电子中心有限责任公司 Method for manufacturing semiconductor device, semiconductor device and semiconductor integrated circuit
CN111562687B (en) * 2020-05-22 2023-06-13 联合微电子中心有限责任公司 Method for manufacturing semiconductor device, semiconductor device and semiconductor integrated circuit
US11490177B1 (en) 2020-06-05 2022-11-01 Luminous Computing, Inc. Optical link system and method for computation
TW202217377A (en) * 2020-07-06 2022-05-01 新加坡商光子智能私人有限公司 Integrated circuit interposer, system, apparatus, method of fabricating integrated circuit interposer, and method and system for transmitting information from nodes to destination interposer
US11609375B2 (en) * 2021-02-22 2023-03-21 Luminous Computing, Inc. Photonic integrated circuit system and method of fabrication
US20230161120A1 (en) * 2021-11-22 2023-05-25 Taiwan Semiconductor Manufacturing Co., Ltd. Package Structure Including Photonic Package and Interposer Having Waveguide
DE102022101386A1 (en) 2022-01-21 2023-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Method for producing an electro-optical component and electro-optical component
US11835764B2 (en) * 2022-01-31 2023-12-05 Globalfoundries U.S. Inc. Multiple-core heterogeneous waveguide structures including multiple slots
WO2023167633A1 (en) * 2022-03-04 2023-09-07 Advanced Micro Foundry Pte Ltd A hybrid silicon photonics modulator and method to manufacture the same

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3090292B2 (en) * 1992-07-29 2000-09-18 日本電信電話株式会社 Non-reciprocal light circuit
US5841931A (en) 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
EP0867701A1 (en) 1997-03-28 1998-09-30 Interuniversitair Microelektronica Centrum Vzw Method of fabrication of an infrared radiation detector and more particularly an infrared sensitive bolometer
US6056630A (en) 1998-05-19 2000-05-02 Lucent Technologies Inc. Polishing apparatus with carrier head pivoting device
US6048775A (en) 1999-05-24 2000-04-11 Vanguard International Semiconductor Corporation Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes
WO2001001465A1 (en) 1999-06-25 2001-01-04 Massachusetts Institute Of Technology Cyclic thermal anneal for dislocation reduction
HUP0000532A2 (en) 2000-02-07 2002-03-28 Optilink Ab Method and system for recording information on a holographic card
US6879014B2 (en) 2000-03-20 2005-04-12 Aegis Semiconductor, Inc. Semitransparent optical detector including a polycrystalline layer and method of making
US6631225B2 (en) 2000-07-10 2003-10-07 Massachusetts Institute Of Technology Mode coupler between low index difference waveguide and high index difference waveguide
EP1354229A2 (en) 2000-07-10 2003-10-22 Massachusetts Institute Of Technology Graded index waveguide
US6850683B2 (en) 2000-07-10 2005-02-01 Massachusetts Institute Of Technology Low-loss waveguide and method of making same
US7103245B2 (en) 2000-07-10 2006-09-05 Massachusetts Institute Of Technology High density integrated optical chip
AUPQ897600A0 (en) 2000-07-25 2000-08-17 Liddiard, Kevin Active or self-biasing micro-bolometer infrared detector
JP2002353205A (en) 2000-08-28 2002-12-06 Mitsubishi Electric Corp Method for fabricating semiconductor device and wafer treatment equipment used therefor and semiconductor device
AU2002213212A1 (en) 2000-10-13 2002-04-29 Massachusetts Institute Of Technology Optical waveguides with trench structures
US6694082B2 (en) 2001-04-05 2004-02-17 Lucent Technologies Inc. Polycrystalline ferroelectric optical devices
US6990257B2 (en) * 2001-09-10 2006-01-24 California Institute Of Technology Electronically biased strip loaded waveguide
GB0122427D0 (en) 2001-09-17 2001-11-07 Denselight Semiconductors Pte Fabrication of stacked photonic lightwave circuits
AU2002353969A1 (en) 2001-11-01 2003-05-12 Massachusetts Institute Of Technology Arrayed waveguide grating
US6706576B1 (en) 2002-03-14 2004-03-16 Advanced Micro Devices, Inc. Laser thermal annealing of silicon nitride for increased density and etch selectivity
WO2003087905A1 (en) 2002-04-09 2003-10-23 Massachusetts Institute Of Technology Polysilane thin films for directly patternable waveguides
US6855975B2 (en) 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US7453132B1 (en) 2002-06-19 2008-11-18 Luxtera Inc. Waveguide photodetector with integrated electronics
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
AU2002368035A1 (en) 2002-06-19 2004-01-06 Massachusetts Institute Of Technology Ge photodetectors
FR2842022B1 (en) 2002-07-03 2005-05-06 Commissariat Energie Atomique DEVICE FOR HOLDING A VACUUM OBJECT AND METHODS OF MANUFACTURING THE SAME, APPLICATION TO NON-COOLED INTRARED SENSORS
JP2004109888A (en) 2002-09-20 2004-04-08 Yasuo Kokubu Optical waveguide and its manufacturing method
US7389029B2 (en) 2003-07-03 2008-06-17 Applied Research And Photonics, Inc. Photonic waveguide structures for chip-scale photonic integrated circuits
US7095010B2 (en) 2002-12-04 2006-08-22 California Institute Of Technology Silicon on insulator resonator sensors and modulators and method of operating the same
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US20060249753A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes
US7767499B2 (en) 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
JP2004259882A (en) 2003-02-25 2004-09-16 Seiko Epson Corp Semiconductor device and its manufacturing method
US7262117B1 (en) 2003-06-10 2007-08-28 Luxtera, Inc. Germanium integrated CMOS wafer and method for manufacturing the same
WO2004113977A1 (en) 2003-06-16 2004-12-29 Massachusetts Institute Of Technology Multiple oxidation and etch smoothing method for reducing silicon waveguide roughness
KR101211451B1 (en) * 2003-07-09 2012-12-12 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US7205525B2 (en) 2003-09-05 2007-04-17 Analog Devices, Inc. Light conversion apparatus with topside electrode
US7262140B2 (en) 2003-11-24 2007-08-28 Intel Corporation Method of smoothing waveguide structures
US7773836B2 (en) 2005-12-14 2010-08-10 Luxtera, Inc. Integrated transceiver with lightpipe coupler
US7251386B1 (en) 2004-01-14 2007-07-31 Luxtera, Inc Integrated photonic-electronic circuits and systems
US20050185884A1 (en) 2004-01-23 2005-08-25 Haus Hermann A. Single-level no-crossing microelectromechanical hitless switch for high density integrated optics
US20050220984A1 (en) 2004-04-02 2005-10-06 Applied Materials Inc., A Delaware Corporation Method and system for control of processing conditions in plasma processing systems
DK1779418T3 (en) 2004-06-17 2014-12-08 Ion Optics Inc EMITTER, DETECTOR AND SENSOR WITH photonic crystal
US7340709B1 (en) 2004-07-08 2008-03-04 Luxtera, Inc. Method of generating a geometrical rule for germanium integration within CMOS
US7397101B1 (en) 2004-07-08 2008-07-08 Luxtera, Inc. Germanium silicon heterostructure photodetectors
US7723754B2 (en) 2004-07-28 2010-05-25 Massachusetts Institute Of Technology Ge photodetectors
US7194166B1 (en) 2004-08-26 2007-03-20 Luxtera, Inc. Use of waveguide grating couplers in an optical mux/demux system
WO2006034271A1 (en) 2004-09-17 2006-03-30 Massachusetts Institute Of Technology Silicon based on-chip photonic band gap cladding waveguide
US7157300B2 (en) 2004-11-19 2007-01-02 Sharp Laboratories Of America, Inc. Fabrication of thin film germanium infrared sensor by bonding to silicon wafer
US7358527B1 (en) 2005-02-03 2008-04-15 Luxtera, Inc. Systems and methods for testing germanium devices
US7008813B1 (en) 2005-02-28 2006-03-07 Sharp Laboratories Of America, Inc.. Epitaxial growth of germanium photodetector for CMOS imagers
US7186611B2 (en) 2005-02-28 2007-03-06 Sharp Laboratories Of America, Inc. High-density germanium-on-insulator photodiode array
US7260282B2 (en) 2005-03-30 2007-08-21 Intel Corporation Integratable optical waveguide isolator
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060250836A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US7801406B2 (en) 2005-08-01 2010-09-21 Massachusetts Institute Of Technology Method of fabricating Ge or SiGe/Si waveguide or photonic crystal structures by selective growth
US7358107B2 (en) 2005-10-27 2008-04-15 Sharp Laboratories Of America, Inc. Method of fabricating a germanium photo detector on a high quality germanium epitaxial overgrowth layer
US7266263B2 (en) 2005-11-08 2007-09-04 Massachusetts Institute Of Technology Integrated waveguide photodetector apparatus with matching propagation constants and related coupling methods
US7305157B2 (en) 2005-11-08 2007-12-04 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US7811913B2 (en) 2005-12-19 2010-10-12 Sharp Laboratories Of America, Inc. Method of fabricating a low, dark-current germanium-on-silicon pin photo detector
SE529855C2 (en) 2005-12-30 2007-12-11 Sandvik Intellectual Property Coated cemented carbide inserts and ways of making this
US20070170536A1 (en) 2006-01-25 2007-07-26 Sharp Laboratories Of America, Inc. Liquid phase epitaxial GOI photodiode with buried high resistivity germanium layer
US7459686B2 (en) 2006-01-26 2008-12-02 L-3 Communications Corporation Systems and methods for integrating focal plane arrays
KR20080100213A (en) * 2006-01-31 2008-11-14 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Optical isolator
US7480430B2 (en) 2006-02-08 2009-01-20 Massachusetts Institute Of Technology Partial confinement photonic crystal waveguides
US7508050B1 (en) 2006-03-16 2009-03-24 Advanced Micro Devices, Inc. Negative differential resistance diode and SRAM utilizing such device
US7501331B2 (en) 2006-03-31 2009-03-10 Sandisk 3D Llc Low-temperature metal-induced crystallization of silicon-germanium films
US7700975B2 (en) 2006-03-31 2010-04-20 Intel Corporation Schottky barrier metal-germanium contact in metal-germanium-metal photodetectors
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7613369B2 (en) 2006-04-13 2009-11-03 Luxtera, Inc. Design of CMOS integrated germanium photodiodes
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US20070262296A1 (en) 2006-05-11 2007-11-15 Matthias Bauer Photodetectors employing germanium layers
US7943471B1 (en) 2006-05-15 2011-05-17 Globalfoundries Inc. Diode with asymmetric silicon germanium anode
US7755048B2 (en) 2006-05-30 2010-07-13 Ying Hsu Large format thermoelectric infrared detector and method of fabrication
US7718965B1 (en) 2006-08-03 2010-05-18 L-3 Communications Corporation Microbolometer infrared detector elements and methods for forming same
US7831123B2 (en) 2006-09-07 2010-11-09 Massachusetts Institute Of Technology Microphotonic waveguide including core/cladding interface layer
US7651880B2 (en) 2006-11-04 2010-01-26 Sharp Laboratories Of America, Inc. Ge short wavelength infrared imager
WO2008073967A1 (en) 2006-12-13 2008-06-19 Massachusetts Institute Of Technology Mode transformers for low index high confinement waveguides
JP4996938B2 (en) 2007-02-16 2012-08-08 株式会社日立製作所 Semiconductor light emitting device
TW200837965A (en) 2007-03-05 2008-09-16 Univ Nat Taiwan Photodetector
JP2008224938A (en) * 2007-03-12 2008-09-25 Fujitsu Ltd Optical control component and manufacturing method of optical control component
US7586773B2 (en) 2007-03-27 2009-09-08 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
TWI360232B (en) 2007-06-12 2012-03-11 Univ Nat Taiwan Method for manufacturing photodetector
JP2008311457A (en) 2007-06-15 2008-12-25 Renesas Technology Corp Manufacturing method of semiconductor device
US7537968B2 (en) 2007-06-19 2009-05-26 Sandisk 3D Llc Junction diode with reduced reverse current
US8072791B2 (en) 2007-06-25 2011-12-06 Sandisk 3D Llc Method of making nonvolatile memory device containing carbon or nitrogen doped diode
US7514751B2 (en) 2007-08-02 2009-04-07 National Semiconductor Corporation SiGe DIAC ESD protection structure
US8787774B2 (en) 2007-10-10 2014-07-22 Luxtera, Inc. Method and system for a narrowband, non-linear optoelectronic receiver
US7994066B1 (en) 2007-10-13 2011-08-09 Luxtera, Inc. Si surface cleaning for semiconductor circuits
WO2009052479A2 (en) 2007-10-19 2009-04-23 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing vertical germanium detectors
US8343792B2 (en) 2007-10-25 2013-01-01 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing lateral germanium detectors
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
US7659627B2 (en) 2007-12-05 2010-02-09 Fujifilm Corporation Photodiode
US7723206B2 (en) 2007-12-05 2010-05-25 Fujifilm Corporation Photodiode
US8078063B2 (en) 2008-02-05 2011-12-13 Finisar Corporation Monolithic power monitor and wavelength detector
US7902620B2 (en) 2008-08-14 2011-03-08 International Business Machines Corporation Suspended germanium photodetector for silicon waveguide
WO2009107194A1 (en) * 2008-02-25 2009-09-03 学校法人芝浦工業大学 Method of manufacturing light nonreciprocal element
US8269303B2 (en) 2008-03-07 2012-09-18 Nec Corporation SiGe photodiode
US7737534B2 (en) 2008-06-10 2010-06-15 Northrop Grumman Systems Corporation Semiconductor devices that include germanium nanofilm layer disposed within openings of silicon dioxide layer
US8168939B2 (en) 2008-07-09 2012-05-01 Luxtera, Inc. Method and system for a light source assembly supporting direct coupling to an integrated circuit
US20100006961A1 (en) 2008-07-09 2010-01-14 Analog Devices, Inc. Recessed Germanium (Ge) Diode
WO2010023738A1 (en) * 2008-08-27 2010-03-04 学校法人芝浦工業大学 Optical non-reciprocal device manufacturing method and optical non-reciprocal device
US8877616B2 (en) 2008-09-08 2014-11-04 Luxtera, Inc. Method and system for monolithic integration of photonics and electronics in CMOS processes
US8238014B2 (en) 2008-09-08 2012-08-07 Luxtera Inc. Method and circuit for encoding multi-level pulse amplitude modulated signals using integrated optoelectronic devices
US20120025212A1 (en) 2008-09-16 2012-02-02 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University GeSn Infrared Photodetectors
KR101000941B1 (en) 2008-10-27 2010-12-13 한국전자통신연구원 Germanium photodetector and method of forming the same
US7916377B2 (en) 2008-11-03 2011-03-29 Luxtera, Inc. Integrated control system for laser and Mach-Zehnder interferometer
JP5468011B2 (en) 2008-11-12 2014-04-09 株式会社日立製作所 Light emitting element, light receiving element and method for manufacturing the same
US8188512B2 (en) 2008-12-03 2012-05-29 Electronics And Telecommunications Research Institute Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
US8798476B2 (en) 2009-02-18 2014-08-05 Luxtera, Inc. Method and system for single laser bidirectional links
JP5428400B2 (en) 2009-03-04 2014-02-26 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US20100238536A1 (en) * 2009-03-18 2010-09-23 Juejun Hu Integrated silicon/silicon-germanium magneto-optic isolator
US7927909B2 (en) 2009-05-01 2011-04-19 Sharp Laboratories Of America, Inc. Germanium film optical device fabricated on a glass substrate
US8358940B2 (en) 2009-07-10 2013-01-22 Luxtera Inc. Method and system for optoelectronic receivers for uncoded data
US20110027950A1 (en) 2009-07-28 2011-02-03 Jones Robert E Method for forming a semiconductor device having a photodetector
US8592745B2 (en) 2009-08-19 2013-11-26 Luxtera Inc. Method and system for optoelectronic receivers utilizing waveguide heterojunction phototransistors integrated in a CMOS SOI wafer
US8289067B2 (en) 2009-09-14 2012-10-16 Luxtera Inc. Method and system for bandwidth enhancement using hybrid inductors
US8742398B2 (en) 2009-09-29 2014-06-03 Research Triangle Institute, Int'l. Quantum dot-fullerene junction based photodetectors
US8243559B2 (en) * 2009-11-13 2012-08-14 Tdk Corporation Thermally-assisted magnetic recording head comprising near-field optical device with propagation edge
US8319237B2 (en) 2009-12-31 2012-11-27 Intel Corporation Integrated optical receiver architecture for high speed optical I/O applications
US8649639B2 (en) 2010-03-04 2014-02-11 Luxtera, Inc. Method and system for waveguide mode filters
US8923664B2 (en) 2010-06-15 2014-12-30 Luxtera, Inc. Method and system for multi-mode integrated receivers
US8625935B2 (en) 2010-06-15 2014-01-07 Luxtera, Inc. Method and system for integrated power combiners
US8304272B2 (en) 2010-07-02 2012-11-06 International Business Machines Corporation Germanium photodetector
US8471639B2 (en) 2010-07-06 2013-06-25 Luxtera Inc. Method and system for a feedback transimpedance amplifier with sub-40khz low-frequency cutoff
FR2966976B1 (en) 2010-11-03 2016-07-29 Commissariat Energie Atomique VISIBLE AND INFRARED MULTISPECTRAL MONOLITHIC IMAGER
FR2966977B1 (en) 2010-11-03 2016-02-26 Commissariat Energie Atomique VISIBLE AND NEAR INFRARED RADIATION DETECTOR
CN102465336B (en) 2010-11-05 2014-07-09 上海华虹宏力半导体制造有限公司 Method for germanium-silicon epitaxy of high germanium concentration
WO2012068451A2 (en) 2010-11-19 2012-05-24 Arizona Board of Regents, a body corporate of the state of Arizona, acting for and on behalf of Dilute sn-doped ge alloys
US8633067B2 (en) 2010-11-22 2014-01-21 International Business Machines Corporation Fabricating photonics devices fully integrated into a CMOS manufacturing process
US8803068B2 (en) 2011-01-26 2014-08-12 Maxim Integrated Products, Inc. Light sensor having a contiguous IR suppression filter and a transparent substrate
US8354282B2 (en) 2011-01-31 2013-01-15 Alvin Gabriel Stern Very high transmittance, back-illuminated, silicon-on-sapphire semiconductor wafer substrate for high quantum efficiency and high resolution, solid-state, imaging focal plane arrays
US8741684B2 (en) 2011-05-09 2014-06-03 Imec Co-integration of photonic devices on a silicon photonics platform
US8471350B2 (en) 2011-05-23 2013-06-25 Alvin Gabriel Stern Thin, very high transmittance, back-illuminated, silicon-on-saphire semiconductor substrates bonded to fused silica
US8399949B2 (en) 2011-06-30 2013-03-19 Micron Technology, Inc. Photonic systems and methods of forming photonic systems
US8455292B2 (en) 2011-09-09 2013-06-04 International Business Machines Corporation Deposition of germanium film
US9653639B2 (en) 2012-02-07 2017-05-16 Apic Corporation Laser using locally strained germanium on silicon for opto-electronic applications
WO2013119981A1 (en) 2012-02-10 2013-08-15 Massachusetts Institute Of Technology Athermal photonic waveguide with refractive index tuning
US8772899B2 (en) 2012-03-01 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for backside illumination sensor
US8866247B2 (en) 2012-03-29 2014-10-21 Intel Corporation Photonic device with a conductive shunt layer
US9091827B2 (en) 2012-07-09 2015-07-28 Luxtera, Inc. Method and system for grating couplers incorporating perturbed waveguides
US9105772B2 (en) 2012-07-30 2015-08-11 Bae Systems Information And Electronic Systems Integration Inc. In-line germanium avalanche photodetector
US8765502B2 (en) 2012-07-30 2014-07-01 International Business Machines Corporation Germanium photodetector schottky contact for integration with CMOS and Si nanophotonics
US8723125B1 (en) 2012-11-06 2014-05-13 Laxense Inc. Waveguide end-coupled infrared detector
CN103000650B (en) 2012-12-10 2015-07-29 复旦大学 Near-infrared-visibllight light adjustable image sensor and manufacture method thereof
US8802484B1 (en) 2013-01-22 2014-08-12 Globalfoundries Singapore Pte. Ltd. Integration of germanium photo detector in CMOS processing
US20140206190A1 (en) 2013-01-23 2014-07-24 International Business Machines Corporation Silicide Formation in High-Aspect Ratio Structures
US9046650B2 (en) 2013-03-12 2015-06-02 The Massachusetts Institute Of Technology Methods and apparatus for mid-infrared sensing
US9703125B2 (en) * 2013-03-26 2017-07-11 Nec Corporation Silicon-based electro-optic modulator
WO2015124175A1 (en) * 2014-02-18 2015-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Polarization independent electro-optically induced waveguide
US10571631B2 (en) 2015-01-05 2020-02-25 The Research Foundation For The State University Of New York Integrated photonics including waveguiding material
US10114269B2 (en) * 2015-02-11 2018-10-30 The Regents Of The University Of California Heterogeneous waveguides and methods of manufacture
US9874693B2 (en) 2015-06-10 2018-01-23 The Research Foundation For The State University Of New York Method and structure for integrating photonics with CMOs
US20170054039A1 (en) * 2015-08-20 2017-02-23 Globalfoundries Singapore Pte. Ltd. Photonic devices with through dielectric via interposer
US9829728B2 (en) * 2015-11-19 2017-11-28 Massachusetts Institute Of Technology Method for forming magneto-optical films for integrated photonic devices
US9726821B2 (en) * 2015-12-01 2017-08-08 Ranovus Inc. Adiabatic elliptical optical coupler device
WO2017136459A1 (en) 2016-02-02 2017-08-10 The Regents Of The University Of California Reconfigurable integrated-optics-based non-reciprocal devices
WO2017210534A1 (en) * 2016-06-03 2017-12-07 University Of Central Florida Research Foundation, Inc. Hetero-structure-based integrated photonic devices, methods and applications
US10976491B2 (en) 2016-11-23 2021-04-13 The Research Foundation For The State University Of New York Photonics interposer optoelectronics
US10698156B2 (en) 2017-04-27 2020-06-30 The Research Foundation For The State University Of New York Wafer scale bonded active photonics interposer
WO2019195441A1 (en) 2018-04-04 2019-10-10 The Research Foundation For The State University Of New York Heterogeneous structure on an integrated photonics platform
US10816724B2 (en) 2018-04-05 2020-10-27 The Research Foundation For The State University Of New York Fabricating photonics structure light signal transmission regions
US11550099B2 (en) 2018-11-21 2023-01-10 The Research Foundation For The State University Of New York Photonics optoelectrical system
TWI829761B (en) 2018-11-21 2024-01-21 紐約州立大學研究基金會 Photonics structure with integrated laser

Similar Documents

Publication Publication Date Title
JPWO2019195441A5 (en)
US10877300B2 (en) Heterogeneous structure on an integrated photonics platform
US10444451B2 (en) Shielded photonic integrated circuit
US10620390B2 (en) Optical and thermal interface for photonic integrated circuits
CN107040318A (en) Method and system for communication
US20060177173A1 (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
US20140270629A1 (en) Optical waveguide network of an interconnecting ic module
KR20150094635A (en) Fiber optic coupler array
US20140270621A1 (en) Photonic multi-chip module
US7474825B1 (en) Circular grating resonator with integrated electro-optical modulation
CN111090145A (en) Semiconductor device with integrated optical component
KR20130008299A (en) Semiconductor device
Kimerling et al. Scaling computation with silicon photonics
CN109564363B (en) Optical ISO modulator
WO2020084306A1 (en) Optical waveguide connecting device
US11385409B2 (en) Connection structure for optical waveguide chip
CN110416224B (en) Enhanced bonding between III-V materials and oxide materials
JP5317198B2 (en) Grating coupler
US11719885B2 (en) Apparatus for optical coupling and system for communication
US11762145B2 (en) Apparatus for optical coupling and system for communication
CN219320525U (en) Semiconductor packaging structure