JPWO2019189212A1 - Coolant quality management system and coolant quality detection unit - Google Patents

Coolant quality management system and coolant quality detection unit Download PDF

Info

Publication number
JPWO2019189212A1
JPWO2019189212A1 JP2020510933A JP2020510933A JPWO2019189212A1 JP WO2019189212 A1 JPWO2019189212 A1 JP WO2019189212A1 JP 2020510933 A JP2020510933 A JP 2020510933A JP 2020510933 A JP2020510933 A JP 2020510933A JP WO2019189212 A1 JPWO2019189212 A1 JP WO2019189212A1
Authority
JP
Japan
Prior art keywords
coolant
measuring means
concentration
flow path
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510933A
Other languages
Japanese (ja)
Other versions
JP7395105B2 (en
Inventor
憲吾 山本
憲吾 山本
正俊 新堂
正俊 新堂
雅人 逸見
雅人 逸見
貴行 山内
貴行 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO METAL TECHNOS CO., LTD.
Original Assignee
YAMAMOTO METAL TECHNOS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO METAL TECHNOS CO., LTD. filed Critical YAMAMOTO METAL TECHNOS CO., LTD.
Publication of JPWO2019189212A1 publication Critical patent/JPWO2019189212A1/en
Application granted granted Critical
Publication of JP7395105B2 publication Critical patent/JP7395105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Abstract

【課題】本発明は、金属加工装置の動作中又は停止中に加工ツールを冷却する冷却液の良否を検出する冷却液良否管理システム及びこれに用いる冷却液良否検出ユニットを提供する。【解決手段】本冷却液良否管理システムは、少なくとも、所定の時間又は期間ごとに前記冷却液の供給流路中にある冷却液の貯留タンク内の液面近傍の冷却液を分取して、その温度、濃度及びpH値をそれぞれ計測する温度計測手段、濃度計測手段及びpH値計測手段を備え、前記濃度計測手段は、前記分取した冷却液の光の屈折率の変化に基づいて濃度に換算することで濃度計測し、前記pH値計測手段は、該分取した冷却液の電導度の変化に基づいて水素イオン濃度を推定することでpH値を計測し、前記温度計測手段、濃度計測手段及びpH値計測手段による前記分取した冷却液の計測は、同時に行う。【選択図】図4PROBLEM TO BE SOLVED: To provide a coolant quality management system for detecting the quality of a coolant for cooling a processing tool while a metal processing apparatus is operating or stopped, and a coolant quality detection unit used therefor. SOLUTION: The present coolant quality management system separates the coolant near the liquid level in the coolant storage tank in the coolant supply flow path at least every predetermined time or period. It is provided with a temperature measuring means, a concentration measuring means and a pH value measuring means for measuring the temperature, concentration and pH value, respectively, and the concentration measuring means adjusts the concentration based on the change in the refractive index of the light of the separated coolant. The concentration is measured by conversion, and the pH value measuring means measures the pH value by estimating the hydrogen ion concentration based on the change in the conductivity of the separated coolant, and the temperature measuring means and the concentration measuring means. The measurement of the separated coolant by the means and the pH value measuring means is performed at the same time. [Selection diagram] Fig. 4

Description

本発明は、金属加工装置における動作中の冷却液を各種センサ(温度計、濃度計、pHメータ)で定期的に計測し外部で集中管理でき、各種センサの動作障害となる物理現象を回避(又は低減)しつつ、システム導入が容易且つ計測が安定的であり、加工条件の変化に対して標準化した評価を得やすい冷却液良否管理システム及び冷却液良否管理システムに関するものである。 According to the present invention, the cooling liquid in operation in a metal processing apparatus can be periodically measured by various sensors (thermometer, densitometer, pH meter) and centrally managed externally, and physical phenomena that hinder the operation of various sensors can be avoided (). It relates to a coolant quality management system and a coolant quality management system, which are easy to introduce the system, have stable measurement, and can easily obtain a standardized evaluation against changes in processing conditions.

金属加工装置において加工時の加工ツールの冷却は、製品の加工精度、歩留まり、工具寿命等に大きく影響するものでありながら、個々の装置、使用工具、 加工工程(作業)ごとに冷却油の状態を測定しておらず、現場の作業員の経験則に任せている状況であった。高精度な加工現場においては冷却油を冷却する追加のクーラント冷却装置で管理する場合もあるが、クーラント冷却装置は大型で高価なもので広く現場に普及できておらず、その管理も冷却油メーカ指定の標準的な閾値・使用条件での管理(濃度、pH、交換頻度、推奨交換時期等)のみであり個々現場での加工部品の精度や工具の寿命に寄与するような最適なものではなかった。 Cooling of processing tools during processing in metal processing equipment greatly affects the processing accuracy, yield, tool life, etc. of products, but the state of cooling oil for each equipment, tools used, and processing process (work). Was not measured, and it was left to the rule of thumb of the workers at the site. In a high-precision processing site, it may be managed by an additional coolant cooling device that cools the cooling oil, but the coolant cooling device is large and expensive and has not been widely spread in the field, and the management is also done by the cooling oil manufacturer. Only control under specified standard thresholds and usage conditions (concentration, pH, replacement frequency, recommended replacement time, etc.) is not the optimum that contributes to the accuracy of machined parts and tool life at individual sites. It was.

したがって、加工条件ごと、各加工装置(切削装置、研削装置,旋盤装置、鍛造装置や鋳造装置など、広く金属加工装置全般)において、種々の仕様のクーラントを使った実加工に際して、その良否が定量的に評価できるシステムに対する社会的・潜在的なニーズが高まっていた。各加工ツールの加工中の計測評価技術(特許文献1、2参照)を提唱してきた出願人は、これらの技術と密接に関係し組み合わせ発展させ得るものとして、金属加工装置における加工ツールのクーラント(以下、「冷却液」とも称する。)を供給する流路において、温度や濃度、不純物量等を計測し、外部に無線送信する冷却液良否検出システムを提供した(特許文献3(国際出願PCT/JP2017/035050))。 Therefore, for each processing condition, the quality of each processing device (cutting device, grinding device, lathe device, forging device, casting device, etc., widely used in metal processing equipment) is quantified when actual processing is performed using coolants of various specifications. There was an increasing social and potential need for a system that could be evaluated in a positive manner. Applicants who have proposed measurement and evaluation techniques during machining of each machining tool (see Patent Documents 1 and 2) are closely related to these techniques and can be combined and developed as a coolant for machining tools in metal processing equipment (see Patent Documents 1 and 2). Provided is a coolant quality detection system that measures temperature, concentration, amount of impurities, etc. in a flow path for supplying (hereinafter, also referred to as “coolant”) and wirelessly transmits the coolant to the outside (Patent Document 3 (International Application PCT /). JP2017 / 035050)).

上記出願人提案の冷却液良否検出システムでは、金属加工装置の動作中に所定時間又は期間ごとに冷却液の温度や濃度、pH値を定期的に計測することができ、その計測値の変化により冷却液の性能劣化を数値データとして客観的に検出し、冷却液の性能劣化を定量的に判定することができる。その結果、冷却液の経時的な変化や劣化に起因する工具の疲労、破損等の回避、ひいては被加工物の加工精度の低下、製品の歩留まり低下を回避するようにリアルタイムに評価・管理を行うことができる。 In the coolant quality detection system proposed by the applicant, the temperature, concentration, and pH value of the coolant can be periodically measured at predetermined time or period during the operation of the metal processing apparatus, and the change in the measured values can be used. It is possible to objectively detect the performance deterioration of the coolant as numerical data and quantitatively determine the performance deterioration of the coolant. As a result, evaluation and management are performed in real time to avoid tool fatigue and breakage caused by changes and deterioration of the coolant over time, as well as to avoid a decrease in machining accuracy of the workpiece and a decrease in product yield. be able to.

しかしながら、上記冷却液良否検出システムでは、各種センサ(温度計、濃度計、pHメータ)の設置場所が種々選択的に提案されたが、その後、出願人は実用化開発を続けた結果、センサの動作障害を避けつつ長期間計測可能な耐久性を担保し得るための課題及び良好な構成がわかってきた。また、実際の加工装置に各種センサを設置する各位置での具体的な設置や計測のしやすさも検討された。さらに、実加工中に冷却液良否を評価する場合、金属加工の加工条件に拘わらず計測データと冷却液の良否との関係を標準化して定量的に評価し得ることが好ましく、この点(課題)にも適応し得る良好な具体的構成の提供が要求される。 However, in the above-mentioned coolant quality detection system, various installation locations of various sensors (thermometer, concentration meter, pH meter) have been proposed selectively, but after that, the applicant continued the practical development and development of the sensor. Issues and good configurations have been found to ensure long-term measurable durability while avoiding operational failures. In addition, the ease of specific installation and measurement at each position where various sensors are installed in the actual processing equipment was also examined. Further, when evaluating the quality of the coolant during actual processing, it is preferable that the relationship between the measurement data and the quality of the coolant can be standardized and quantitatively evaluated regardless of the processing conditions of metal processing. ) Is also required to provide a good concrete configuration.

国際公開公報WO2015−022967International Publication WO2015-022967 国際公開公報WO2016−111336International Publication WO2016-11136 国際出願PCT/JP2017/035050International application PCT / JP2017 / 035050

本発明は、上記の事情に鑑みて創作されたものであり、金属加工装置における冷却液の冷却液良否検出システムにおいて、各種センサ(温度計、濃度計、pHメータ)の動作障害となる物理現象を回避(又は低減)しつつシステム導入が容易且つ計測が安定的であり、加工条件の変化に対して標準化した評価を得やすい具体的な冷却液良否検出システムの構成を提供することを目的とする。 The present invention has been created in view of the above circumstances, and is a physical phenomenon that interferes with the operation of various sensors (thermometer, densitometer, pH meter) in a coolant quality detection system for a coolant in a metal processing apparatus. The purpose is to provide a concrete coolant quality detection system configuration that makes it easy to introduce the system, stabilize the measurement, and easily obtain a standardized evaluation for changes in processing conditions, while avoiding (or reducing) the above. To do.

本発明は、金属加工装置の動作中に加工ツールを冷却する冷却液の良否を検出する冷却液良否管理システムであって、少なくとも、
所定の時間又は期間ごとに前記冷却液の供給流路中にある冷却液の貯留タンク内の底部から液面までの中間層の冷却液を分取して、その温度、濃度及びpH値をそれぞれ計測する温度計測手段、濃度計測手段及び/又はpH値計測手段を備え、
前記濃度計測手段は、前記分取した冷却液の光の屈折率の変化に基づいて濃度に換算することで濃度計測し、前記pH値計測手段は、該分取した冷却液の電導度の変化に基づいて水素イオン濃度を推定することでpH値を計測し、
前記温度計測手段、濃度計測手段及び/又はpH値計測手段による前記分取した冷却液の計測は、同時に行う。
The present invention is a coolant quality management system that detects the quality of a coolant that cools a processing tool during the operation of a metal processing apparatus, and at least
The coolant in the intermediate layer from the bottom to the liquid surface in the coolant storage tank in the coolant supply flow path in the coolant supply flow path is separated at predetermined time or period, and the temperature, concentration and pH value thereof are set respectively. It is equipped with a temperature measuring means, a concentration measuring means, and / or a pH value measuring means for measuring.
The concentration measuring means measures the concentration by converting the concentration into a concentration based on the change in the refractive index of the light of the separated coolant, and the pH value measuring means changes the conductivity of the separated coolant. Measure the pH value by estimating the hydrogen ion concentration based on
The temperature measuring means, the concentration measuring means, and / or the pH value measuring means measure the separated coolant at the same time.

金属加工装置における冷却液の冷却液良否検出システムにおいて、特許文献3では冷却液の温度変化を主たる冷却液良否の評価指標としていたが、温度変化は装置の構成、加工条件、環境条件、計測場所ごとに種々の変化をし、これのみを冷却液評価の指標として標準化することは難しいことがわかってきた。したがって、温度変化以外に冷却液の直接的な良否指標としての濃度やpH値の計測も必須の計測指標とする方が好ましいことがわかってきた。 In the coolant quality detection system for coolants in metal processing equipment, Patent Document 3 uses the temperature change of the coolant as the main evaluation index for the quality of the coolant, but the temperature change is the configuration of the equipment, processing conditions, environmental conditions, and measurement location. Various changes have been made for each, and it has become clear that it is difficult to standardize only this as an index for coolant evaluation. Therefore, it has been found that it is preferable to measure the concentration and pH value as a direct quality index of the coolant in addition to the temperature change as an essential measurement index.

一方、各種センサ(温度計測手段、濃度計測手段、pH値計測手段)の動作の障害の要因となる物理現象としては、クーラント内への気泡の混入、切削くずの混入、冷却液の増減による液面の変動、温度変化が代表的である。光の屈折率の変化を利用して、濃度に換算する濃度計測手段(濃度計)では、冷却液に気泡の混入や切削くず(金属片)の混入が進行すると、冷却液の種類が異なるものと同じように冷却液メーカから提示された換算係数に影響が出ることがあり計測データ(計測濃度)の信頼性が低下する。 On the other hand, as physical phenomena that cause obstacles to the operation of various sensors (temperature measuring means, concentration measuring means, pH value measuring means), air bubbles are mixed in the coolant, cutting chips are mixed, and the liquid due to the increase or decrease of the coolant is used. Surface fluctuations and temperature changes are typical. In the concentration measuring means (concentration meter) that converts the concentration by using the change in the refractive index of light, the type of coolant is different when air bubbles or cutting chips (metal pieces) are mixed in the coolant. In the same way as above, the conversion coefficient presented by the coolant manufacturer may be affected, and the reliability of the measurement data (measured concentration) decreases.

また、電導度(電気抵抗)の変化を利用して水素イオン濃度を推定するpH値計測手段(pHメータ)では、電導度の変化を計測している以上、基本的に水系の冷却液しか計測対象とできないため冷却液に気泡の混入や、不水溶性の浮上油の発生、切削くず(金属片)の混入、液面の変動が発生すると、適正な計測データ(計測pH値)の出力が困難となる。一方、切削くずや気泡や浮上油を循環系の配管流路にフィルタを設けたり配管交換で除去することも考えられるが、フィルタのみで不水溶性の浮上油を除去することは難しく、長期の連続使用を考慮すると目詰まり対策や配管交換のメンテナンスが煩雑であり、逆洗での対応は堆積した切削くず等の飛翔になるため計器損傷のおそれもある。したがって、本発明では冷却流路の中で気泡や不水溶性の浮上油、切削くずの混入を避け、液面変動が小さい箇所で計測できる箇所として、冷却液を一時的に静水として貯留する貯留タンク内の冷却液に注目した。貯留タンク内では一時貯留により液面変動が小さく切削くずが底部に沈殿し気泡が曝気されるため、特に「貯留タンク」内の液面から底部までの中間層の高さ位置の冷却液(以下、「中間層の冷却液」とも称する。)を「分取」あるいは選択的に計測することが好ましいことがわかった。 In addition, the pH value measuring means (pH meter) that estimates the hydrogen ion concentration using the change in conductivity (electric resistance) basically measures only the aqueous coolant as long as the change in conductivity is measured. Appropriate measurement data (measured pH value) will be output if air bubbles are mixed in the coolant, water-insoluble floating oil is generated, cutting chips (metal pieces) are mixed, or the liquid level fluctuates because it cannot be targeted. It will be difficult. On the other hand, it is conceivable to install a filter in the piping flow path of the circulation system or remove the cutting waste, air bubbles and floating oil by replacing the piping, but it is difficult to remove the water-insoluble floating oil only by the filter, and it is a long-term. Considering continuous use, measures against clogging and maintenance of pipe replacement are complicated, and backwashing may cause damage to the instrument because accumulated cutting debris will fly away. Therefore, in the present invention, the cooling liquid is temporarily stored as still water as a place where air bubbles, water-insoluble floating oil, and cutting chips are prevented from being mixed in the cooling flow path and measurement can be performed at a place where the liquid level fluctuation is small. We paid attention to the coolant in the tank. In the storage tank, the liquid level fluctuation is small due to temporary storage, and cutting chips settle to the bottom and aerate the air bubbles. Therefore, especially the coolant at the height of the intermediate layer from the liquid level to the bottom in the "storage tank" (hereinafter , Also referred to as "intermediate layer coolant") was found to be preferable to "precipitate" or selectively measure.

さらに、上記濃度計測手段、pH値計測手段は共に、その計測データの温度依存性が大きく、冷却液の良否による大きな温度変化も予想されるため(元来、温度変化と冷却液良否との関連が大きいことから本発明の元開発技術(特許文献3)が創出された)、同じ温度状態での濃度計測及びpH値計測が好ましく、本発明では温度、濃度及び/又はpH値の計測を同時に行うこととした。 Further, both the concentration measuring means and the pH value measuring means have a large temperature dependence of the measured data, and a large temperature change is expected depending on the quality of the coolant (originally, the relationship between the temperature change and the quality of the coolant). The original developed technique of the present invention (Patent Document 3) was created), concentration measurement and pH value measurement under the same temperature state are preferable, and in the present invention, temperature, concentration and / or pH value measurement are performed at the same time. I decided to do it.

また、前記温度計測手段は、別途の温度計、及び/又は前記濃度計測手段と前記pH値計測手段とのそれぞれの内蔵温度計で構成される場合がある。 Further, the temperature measuring means may be composed of a separate thermometer and / or a built-in thermometer of the concentration measuring means and the pH value measuring means.

上述したように濃度及びpH値の計測データは温度依存性が高く、同じ温度条件での計測データを評価することが望ましい。その一方、濃度計測手段、pH値計測手段には、温度依存性を排除すべく温度変化に対して自動補正する内蔵温度計を備える場合がある。したがって、濃度計測データおよびpH値計測データの温度依存性除去の補正としては、(1)冷却液良否の評価指標としての温度変化計測用の温度計(別途の温度計)からの温度計測データを使用する場合や、(2)濃度計等内蔵の温度計による温度変化に対する濃度等自動補正機能を使用する場合が考えられる。 As described above, the measurement data of the concentration and the pH value are highly temperature-dependent, and it is desirable to evaluate the measurement data under the same temperature conditions. On the other hand, the concentration measuring means and the pH value measuring means may be provided with a built-in thermometer that automatically corrects for temperature changes in order to eliminate temperature dependence. Therefore, as a correction for removing the temperature dependence of the concentration measurement data and the pH value measurement data, (1) the temperature measurement data from the thermometer for temperature change measurement (separate thermometer) as an evaluation index of the quality of the coolant is used. It may be used, or (2) the automatic correction function for temperature changes by a built-in thermometer such as a densitometer may be used.

前記貯留タンクは、液面の高さが異なり上方に開口された複数の容器で構成され、
前記貯留タンク内の液面近傍の冷却液を分取は、上流上方側の容器の流出口から外部放出された冷却液が下流下方側の容器内に注がれても良い。
The storage tank is composed of a plurality of containers having different liquid levels and opened upward.
When the coolant near the liquid level in the storage tank is separated, the coolant discharged to the outside from the outlet of the container on the upstream upper side may be poured into the container on the downstream lower side.

本冷却液良否管理システムにおいて貯留タンク内の浮上油や底部に溜まった金属くずを含むドレン以外の計測に良好な冷却液のみを分取するには、複数の容器を上下方向多段に設置し、上流側の容器内の中間層の冷却液を下流側に注いでいくことが考えられる。この例では、単に中間層の冷却液を何度か分取することで順に切削くずや不水溶性の浮上油等の不純物が除去される。とりわけ切削くずが多い場合や腐敗した沈殿物が多い場合。不水溶性の浮上油が液面近傍に溜まっている場合、などは効果的である。具体例は後述する。 In this coolant quality management system, in order to separate only the coolant that is good for measurement other than drainage, including floating oil in the storage tank and metal waste accumulated at the bottom, multiple containers are installed in multiple stages in the vertical direction. It is conceivable to pour the coolant of the intermediate layer in the container on the upstream side to the downstream side. In this example, impurities such as cutting chips and water-insoluble floating oil are removed in order by simply separating the coolant in the intermediate layer several times. Especially when there is a lot of cutting waste or a lot of rotten sediment. It is effective when water-insoluble floating oil is accumulated near the liquid surface. Specific examples will be described later.

また、前記濃度計測手段及び前記pH値計測手段の計測は、冷却液の流動や液面の変動が無い状態及び/又は冷却液の流動が停止した状態で行うことが好ましい。 Further, it is preferable that the concentration measuring means and the pH value measuring means are measured in a state where the flow of the cooling liquid and the liquid level do not fluctuate and / or in a state where the flow of the cooling liquid is stopped.

具体的には、後述する冷却液良否検出ユニットで冷却液を吸引する吸引ポンプを間欠的に作動させることが好ましい。 Specifically, it is preferable to intermittently operate the suction pump that sucks the coolant in the coolant quality detection unit described later.

また本発明は、上述してきた本冷却液良否管理システムにおいて貯留タンク内の冷却液から分取したバイパス流路中に配設されて、該バイパス流路内の冷却液の濃度及びpH値をそれぞれ計測する濃度計測手段及びpH値計測手段と、
前記バイパス流路内の冷却液を貯留させる貯留槽と、
前記貯留タンク内の冷却液を吸引する吸引ポンプと、を備える冷却液良否検出ユニットを提供する。
Further, the present invention is arranged in a bypass flow path separated from the coolant in the storage tank in the above-mentioned present coolant quality management system, and the concentration and pH value of the coolant in the bypass flow path are set, respectively. Concentration measuring means and pH value measuring means to measure,
A storage tank for storing the coolant in the bypass flow path and
Provided is a coolant quality detection unit including a suction pump for sucking the coolant in the storage tank.

本冷却液良否検出ユニットは、上述した冷却液良否管理システムにおいて貯留タンクから分取したバイパス流路過程に設置して濃度、pH値を計測するユニットである。このユニットは、その中にも貯留槽を設けており、この貯留槽に一旦、冷却液が溜められるため上述してきた金属加工装置の貯留タンク同様に底部に切削くずが沈殿する沈殿槽の機能と気泡を除去する曝気槽の機能とを有する。また、本冷却液良否検出ユニットは貯留タンクから冷却液を分取するための吸引ポンプを設けることでユニット内への冷却液供給(特に濃度計、pHメータへの供給)をスムーズにし、吸引ポンプの作動時に濃度、pH値を計測することで小型のユニットであっても適正な計測を行うことができる。 This coolant quality detection unit is a unit that is installed in the bypass flow path process separated from the storage tank in the above-mentioned coolant quality management system to measure the concentration and pH value. This unit also has a storage tank in it, and since the coolant is temporarily stored in this storage tank, it has the function of a settling tank in which cutting chips settle on the bottom like the storage tank of the metal processing equipment described above. It has the function of an aeration tank that removes air bubbles. In addition, this coolant quality detection unit is provided with a suction pump for separating the coolant from the storage tank to facilitate the supply of coolant into the unit (especially the supply to the densitometer and pH meter), and the suction pump. By measuring the concentration and pH value at the time of operation, even a small unit can perform proper measurement.

また、本冷却液良否検出ユニットは、
前記バイパス流路内の冷却液をろ過する交換可能なフィルタと、
前記バイパス流路内の冷却液の流量を測定する流量センサと、を備えることが好ましい。
In addition, this coolant quality detection unit is
A replaceable filter that filters the coolant in the bypass flow path and
It is preferable to include a flow rate sensor for measuring the flow rate of the coolant in the bypass flow path.

上記貯留槽には冷却液のろ過するフィルタを設けることが好ましく、このフィルタで切削くずを除去する。また、流量センサにより冷却液の流量が低減した場合にフィルタは目詰まりしたと検出する目詰まり検知も可能である。 The storage tank is preferably provided with a filter for filtering the coolant, and the filter removes cutting chips. It is also possible to detect clogging, which detects that the filter is clogged when the flow rate of the coolant is reduced by the flow rate sensor.

また、前記貯留槽は、前記冷却液良否検出ユニット内で高床状に配設され、前記バイパス流路内の冷却液は、該貯留槽の上方の流入口から流入されて下方の流出口から放出される、ことが好ましい。 Further, the storage tank is arranged in a raised floor in the coolant quality detection unit, and the coolant in the bypass flow path flows in from the upper inflow port of the storage tank and is discharged from the lower outflow port. It is preferable to be done.

この構成を採用すると、貯留槽を通過する際の切削くず等を除去と冷却液の上流から下流へのスムーズな流れとのバランスを調整することができ、吸引ポンプの出力に応じたユニット設計が可能となる。 By adopting this configuration, it is possible to remove cutting chips when passing through the storage tank and adjust the balance between the smooth flow of the coolant from upstream to downstream, and the unit design according to the output of the suction pump. It will be possible.

また、上記冷却液良否検出ユニットの濃度計測手段は、冷却液を貯留して光の屈折率を計測するための計測用貯留部を設け、
該計測用貯留部は、冷却液を流入する流入口と、冷却液を流出する流出口とを有し、該流入口及び流出口はそれぞれ、前記計測用貯留部内の冷却液の濃度の計測するための通常用流入口及び通常用流出口と計測用貯留部内を洗浄するための洗浄用流入口及び洗浄用流出口とを備え、前記洗浄用流入口及び洗浄用流出口はそれぞれ、端部から前記計測用貯留部に至る流路を略直線とし、前記通常用流入口及び通常用流出口はそれぞれ、端部から前記計測用貯留部に至る流路に変曲部を設ける、ことが好ましい。
Further, the concentration measuring means of the coolant quality detection unit is provided with a storage unit for measurement for storing the coolant and measuring the refractive index of light.
The measurement storage unit has an inflow port for the coolant to flow in and an outflow port for the coolant to flow out, and each of the inflow port and the outflow port measures the concentration of the coolant in the measurement storage unit. It is provided with a normal inflow port and a normal inflow port for cleaning, a cleaning inflow port and a cleaning inflow port for cleaning the inside of the measurement storage part, and the cleaning inflow port and the cleaning outflow port are respectively from the end. It is preferable that the flow path leading to the measurement storage portion is a substantially straight line, and the normal inflow port and the normal use outlet are each provided with a curved portion in the flow path from the end portion to the measurement storage portion.

本冷却液良否検出ユニットの濃度計測手段によれば、通常時(計測時)用の流出入口と洗浄用の流出入口とを兼用にするので、端部を洗浄用に付け替えるだけで通常時と同じ放出クーラントで計測用貯留部を洗浄でき、計測用貯留部内の切削くず等を容易かつ確実に洗浄し、常に高い計測精度の濃度計測をすることができる。また、洗浄用の流出入口は直線状のクーラント助走区間を設けているため流速低下がなく、計測用貯留部内では通常時と近似軌跡のクーラント噴流を放射できるため洗浄力を高く保つことができ、同時に通常用の流出入口に変曲部(屈曲部等)を設けてクーラントの流速を低下させ、気泡の除去をすることも可能である。 According to the concentration measuring means of this coolant quality detection unit, the outflow port for normal operation (during measurement) and the outflow port for cleaning are shared, so it is the same as the normal operation just by replacing the end part for cleaning. The measurement reservoir can be cleaned with the discharged coolant, cutting chips and the like in the measurement reservoir can be easily and surely cleaned, and the concentration can always be measured with high measurement accuracy. In addition, since the outflow port for cleaning is provided with a linear coolant approach section, there is no decrease in flow velocity, and the coolant jet flow with an approximate trajectory can be radiated in the storage unit for measurement, so the cleaning power can be maintained high. At the same time, it is also possible to provide a bending portion (bending portion or the like) at the outflow port for normal use to reduce the flow velocity of the coolant and remove air bubbles.

さらに、pH値計測手段は前記貯留槽に装着されてその内部の冷却液を計測し、前記貯留槽は電気絶縁性の素材で構成される、ことが好ましい。 Further, it is preferable that the pH value measuring means is mounted on the storage tank to measure the cooling liquid inside the storage tank, and the storage tank is made of an electrically insulating material.

pH値の計測においては、pHメータ9を取り付ける貯留槽21を電気絶縁性の素材で構成もしくは、貯留槽21内部のクーラント液を電気的にフローティング(非電気導電性に)することで、切削油の循環により、外部装置と電気的に接続された切削油と、pH値計測対象の切削油が回路を構成し、タンク内の電位を変動させることがなくなり、pHメータによる計測が不能もしくは、誤差が大きくなる現象の発生が抑制される。 In measuring the pH value, the storage tank 21 to which the pH meter 9 is attached is made of an electrically insulating material, or the coolant liquid inside the storage tank 21 is electrically floated (non-electrically conductive) to make cutting oil. Due to the circulation of, the cutting oil electrically connected to the external device and the cutting oil to be measured for the pH value form a circuit, and the potential in the tank does not fluctuate, making measurement with a pH meter impossible or error. The occurrence of the phenomenon that becomes large is suppressed.

また、冷却液良否管理システムにおいて貯留タンク内の冷却液から分取したバイパス流路中に配設されて、該バイパス流路内の冷却液の濃度を計測する濃度計測手段と、
前記貯留タンク内の冷却液を吸引する吸引ポンプと、を備え、
前記濃度計測手段は、前記バイパス流路内に配設された該計測用貯留部内に冷却液を流出入させて内部に配設されたレンズで冷却液の光の屈折率を計測し、前記計測用貯留部は、冷却液の流出口が最上部に位置し、前記レンズが傾斜部分に配設されるように傾斜して位置決めされる、冷却液良否検出ユニットであっても良い。
Further, in the coolant quality management system, a concentration measuring means which is arranged in a bypass flow path separated from the coolant in the storage tank and measures the concentration of the coolant in the bypass flow path, and a concentration measuring means.
A suction pump for sucking the coolant in the storage tank is provided.
The concentration measuring means measures the refractive index of the light of the coolant with a lens disposed inside by allowing the coolant to flow in and out of the measuring reservoir arranged in the bypass flow path, and the measurement is performed. The storage unit may be a coolant quality detection unit in which the outlet of the coolant is located at the uppermost portion and the lens is tilted and positioned so as to be arranged on the tilted portion.

この濃度計測手段によれば、計測用貯留部を傾斜させつつ、不水溶性の浮上油を抜き出してレンズが不水溶性の冷却液に浸されて計測不能にならないように流出口が計測用貯留部の最上部に配設し、レンズを傾斜部に配設することで金属くず等の不純物(ドレン)がレンズ周りに溜まって屈折率計測できなくなることも防止できる。 According to this concentration measuring means, the outlet is stored for measurement so that the water-insoluble floating oil is extracted and the lens is not immersed in the water-insoluble coolant and measurement becomes impossible while tilting the measurement storage part. By arranging the lens at the uppermost portion of the portion and arranging the lens at the inclined portion, it is possible to prevent impurities (drain) such as metal scraps from accumulating around the lens and making it impossible to measure the refractive index.

さらに、pH値計測手段は前記貯留タンクの内部又は前記バイパス流路と別に配設された流路内の冷却液を計測しても良い。 Further, the pH value measuring means may measure the cooling liquid inside the storage tank or in a flow path arranged separately from the bypass flow path.

以上、本発明の冷却液良否管理システム及び冷却液良否検出ユニットによれば、金属加工装置における実加工中等の冷却液を各種センサ(温度計、濃度計、pHメータ)で計測し外部で集中管理でき、各種センサの動作障害となる物理現象を回避しつつ、システム導入が容易且つ計測が安定的で加工条件の変化に対して標準化した評価を得やすい構成を提供している。 As described above, according to the coolant quality management system and the coolant quality detection unit of the present invention, the coolant during actual processing in the metal processing apparatus is measured by various sensors (thermometer, concentration meter, pH meter) and centrally managed externally. It provides a configuration that makes it easy to introduce the system, stabilizes the measurement, and makes it easy to obtain a standardized evaluation against changes in processing conditions, while avoiding physical phenomena that interfere with the operation of various sensors.

本発明の冷却液良否管理システム及び冷却液良否検出ユニットを用いる金属加工装置の一例としての切削装置の斜視図を示している。A perspective view of a cutting apparatus as an example of a metal processing apparatus using the coolant quality management system and the coolant quality detection unit of the present invention is shown. 切削装置の加工ツールに対する冷却液の供給経路を示す流路図である。It is a flow path diagram which shows the supply path of the coolant to the processing tool of a cutting apparatus. 温度計、濃度計、pHメータで計測するためにクーラントを分取する切削装置の貯留タンクを例示している。An example is a storage tank of a cutting device that separates coolant for measurement with a thermometer, densitometer, and pH meter. (a)は冷却液良否検出ユニットの実施形態の正面図であり、(b)は冷却液良否検出ユニット内の濃度計の計測用貯留部の略断面図を示している。(A) is a front view of the embodiment of the coolant quality detection unit, and (b) is a schematic cross-sectional view of the measurement storage unit of the densitometer in the coolant quality detection unit. (a)は、図4と略同視点の3次元図、(b)は図4の上方視点の3次元図(天面視点)、を示している。(A) shows a three-dimensional view having substantially the same viewpoint as that of FIG. 4, and (b) shows a three-dimensional view (top viewpoint) of the upper viewpoint of FIG. 図4及び図5の冷却液良否検出ユニットの他の例を示す略斜視図を示している。FIG. 6 is a schematic perspective view showing another example of the coolant quality detection unit of FIGS. 4 and 5. 図6の冷却液良否検出ユニットに配設される濃度計の計測用貯留部の傾斜や、流入口及び流出とレンズとの位置関係の種々の例を示す略断面である。It is a schematic cross section which shows various examples of the inclination of the measurement storage part of the densitometer arranged in the coolant quality detection unit of FIG. 6, and the positional relationship between the inflow port and the outflow and the lens. 計測された温度、濃度、pH値が外部ユニッ卜に送信されるまでの電気信号のフローを示している。It shows the flow of electrical signals until the measured temperature, concentration, and pH values are transmitted to the external unit.

《切削装置例の概説》
図1は、本発明の冷却液良否検出システムを用いる金属加工装置の一例としての切削装置100の斜視図を示している。切削装置100は、概ねツールホルダ把持部105と、被加工部材設置面102aと、ワークステージ102と、ヘッド支台108と、ヘッド107と、操作盤106と、を備えて構成される。なお、図1に示していない参照番号の部材は後述する図2等を参照する。
<< Overview of cutting equipment example >>
FIG. 1 shows a perspective view of a cutting device 100 as an example of a metal processing device using the coolant quality detection system of the present invention. The cutting device 100 is generally configured to include a tool holder grip portion 105, a member installation surface 102a to be machined, a work stage 102, a head abutment 108, a head 107, and an operation panel 106. For the members having reference numbers not shown in FIG. 1, refer to FIG. 2 and the like described later.

まず、ツールホルダ把持部105に加工対象となる被加工部材109(図2参照)に回転当接(当接方向=矢印Z方向、回転方向=矢印Zの軸周り方向)させるドリル等の加工ツール110(図2参照)を把持させたツールホルダ104を装着する。これによりツールホルダ把持部105とツールホルダ104及び加工ツール110は一体に回転することとなる。また、被加工部材109は、基台103上をX方向に移動するワークステージ102の上面の被加工部材設置面102aに載置され、固定用クランプ(図示せず)や固定用ボルト(図示せず〉等を用いて固定される。 First, a machining tool such as a drill that causes the tool holder grip portion 105 to make a rotational contact (contact direction = arrow Z direction, rotation direction = arrow Z axial direction) with a member to be machined 109 (see FIG. 2) to be machined. The tool holder 104 holding the 110 (see FIG. 2) is attached. As a result, the tool holder grip portion 105, the tool holder 104, and the machining tool 110 rotate integrally. Further, the member 109 to be processed is placed on the member installation surface 102a on the upper surface of the work stage 102 that moves on the base 103 in the X direction, and is a fixing clamp (not shown) or a fixing bolt (not shown). It is fixed by using> etc.

オペレータは、操作盤106を操作し、ワークステージ102をX方向へ移動させ、被加工部材が所望の接合位置直上に加工ツール110が位置するところで停止・位置決めする。次に、被加工部材上に停止・位置決めされた状態で操作盤106を操作して、加えてツール110を下降させ被加工部材に当接させ、切削部に当接しながら回転させ、加工方向に繰り返し移動させる。オペレータは操作盤106で予め加工ツール110に付与する荷重や、加工ツール110の加工速度や1回あたりの切削距離、加工ツール110の回転速度等の各パラメータを入力し、切削条件を設定する。 The operator operates the operation panel 106 to move the work stage 102 in the X direction, and stops and positions the member to be machined at a position where the machining tool 110 is located directly above a desired joining position. Next, the operation panel 106 is operated in a state of being stopped and positioned on the member to be machined, and in addition, the tool 110 is lowered to be brought into contact with the member to be machined, rotated while being in contact with the cutting portion, and in the machining direction. Move repeatedly. The operator inputs each parameter such as the load applied to the machining tool 110 in advance on the operation panel 106, the machining speed of the machining tool 110, the cutting distance per cutting, and the rotation speed of the machining tool 110, and sets the cutting conditions.

操作盤106での設定が終了すると、被加工部材上で加工ツール110を回転させて設定した各パラメータに従って、ヘッド107をZ方向下方へ移動させ、被加工部材109の切削開始点で加工ツール110を当接する。また、図1の例ではY方向の移動についてはヘッド支台108を設定した移動速度でY方向に移動させることで行う。なお、図1の例では、X方向の移動をワークステージ、Y方向の移動をヘッド支台108、Z方向の移動を主軸101で行う切削装置100が示されているが、X方向の移動やY方向の移動をワークステージ102で行う装置の場合もある。所望の切削が達成された後、加工ツール110の回転を維持させながらヘッド107をZ方向上方へ移動させ、切削終了点から加工ツール110を引き抜いた後にその回転を停止させる。この工程により切削加工が終了する。 When the setting on the operation panel 106 is completed, the machining tool 110 is rotated on the member to be machined to move the head 107 downward in the Z direction according to each parameter set, and the machining tool 110 is moved downward at the cutting start point of the member 109 to be machined. Abut. Further, in the example of FIG. 1, the movement in the Y direction is performed by moving the head abutment 108 in the Y direction at a set moving speed. In the example of FIG. 1, a cutting device 100 is shown in which the X-direction movement is performed by the work stage, the Y-direction movement is performed by the head abutment 108, and the Z-direction movement is performed by the spindle 101. In some cases, the device moves in the Y direction on the work stage 102. After the desired cutting is achieved, the head 107 is moved upward in the Z direction while maintaining the rotation of the machining tool 110, and the machining tool 110 is pulled out from the cutting end point and then the rotation is stopped. Cutting is completed by this process.

≪加工装置でのクーラントの流路例について》
続いて、図2の切削装置100の加工ツール110に対する冷却液(以下、「クーラント」とも称する)の供給経路について図2を参照して説明する。なお、ここでクーラントとは、切削箇所に対する潤滑機能や冷却機能等を有する切削液であり、後述のpHメータで水素イオン濃度を計測するため水溶性切削油である。図2に示すように、切削装置100は、クーラントが貯留される貯留タンク(以下、単に「タンク」とも称する)112と、タンク112内に設置される切削装置100内へのクーラント供給用のポンプ114とを有している。また、切削装置100は、複数の電磁弁116,118,120等によって構成されるバルブユニット(クーラント供給部)122を有している。バルブユニッ卜122は、ポンプ114の吐出ポート(出力ポート)に接続される入力流路124を有している。入力流路112は、ポンプ114の吐出ポート直後の吐出流路124aにはリリーフ弁126が接続され、リリーフ弁126にはバルブユニット122に入力される余剰流量(これは、ポンプ114からの流量から、バルブユニッ卜122に必要な流量を差し引いた流量に等しい)をタンク112内に戻すドレン流路128に接続されることで、バルブユニット122に入力される流量を制御している。
<< Example of coolant flow path in processing equipment >>
Subsequently, the supply path of the coolant (hereinafter, also referred to as “coolant”) to the machining tool 110 of the cutting apparatus 100 of FIG. 2 will be described with reference to FIG. Here, the coolant is a cutting fluid having a lubrication function, a cooling function, and the like for the cutting portion, and is a water-soluble cutting oil for measuring the hydrogen ion concentration with a pH meter described later. As shown in FIG. 2, the cutting device 100 includes a storage tank (hereinafter, also simply referred to as “tank”) 112 in which coolant is stored, and a pump for supplying coolant into the cutting device 100 installed in the tank 112. It has 114 and. Further, the cutting device 100 has a valve unit (coolant supply unit) 122 composed of a plurality of solenoid valves 116, 118, 120 and the like. The valve unit 122 has an input flow path 124 connected to a discharge port (output port) of the pump 114. In the input flow path 112, a relief valve 126 is connected to the discharge flow path 124a immediately after the discharge port of the pump 114, and a surplus flow rate input to the valve unit 122 to the relief valve 126 (this is from the flow rate from the pump 114). , Equal to the flow rate obtained by subtracting the flow rate required for the valve unit 122) is connected to the drain flow path 128 that returns the valve unit 122 to the inside of the tank 112 to control the flow rate input to the valve unit 122.

また、リリーフ弁126を通過した入力流路112には、第1供給経路130、第2供給経路132および第3供給経路134が接続されている。それぞれの供給経路130、132、134は、チェック弁136、138、140、電磁切替弁116、118、120および絞り弁142、144、146によって構成されている。第1供給経路130に接続される出力流路148は、クーラントを噴射する噴射ノズル(噴射手段)154に接続されている。同様に、第2供給経路132、に接続される出力流路150は、ヘッド107 (やヘッド支台108)およびツールホルダ把持部105、ツールホルダ104内に形成される接続流路150を介して、回転工具等の加工ツール110に接続されている。加工ツール110は上端から下端までの貫通孔(オイルホール:図示せず)が設けられており、接続流路150と連通している。また、第3供給経路134に接続される出力流路152は、同様にヘッド107等およびツールホルダ把持部105内(又はツールホルダ104内)に形成される接続流路152を介してツールホルダ把持部105(又はツールホルダ104)の下端のポート(図示せず)まで接続している。 Further, the first supply path 130, the second supply path 132, and the third supply path 134 are connected to the input flow path 112 that has passed through the relief valve 126. Each of the supply paths 130, 132, and 134 is composed of check valves 136, 138, 140, electromagnetic switching valves 116, 118, 120 and check valves 142, 144, 146. The output flow path 148 connected to the first supply path 130 is connected to an injection nozzle (injection means) 154 for injecting coolant. Similarly, the output flow path 150 connected to the second supply path 132 is via the head 107 (or the head abutment 108), the tool holder grip portion 105, and the connection flow path 150 formed in the tool holder 104. , Is connected to a machining tool 110 such as a rotary tool. The processing tool 110 is provided with through holes (oil holes: not shown) from the upper end to the lower end, and communicates with the connection flow path 150. Further, the output flow path 152 connected to the third supply path 134 similarly grips the tool holder via the head 107 and the like and the connection flow path 152 formed in the tool holder gripping portion 105 (or in the tool holder 104). It is connected to the port (not shown) at the lower end of the part 105 (or the tool holder 104).

バルブユニッ卜122の電磁切替弁116,118,120の作動状態を制御するため、切削装置100にはCPU、メモリおよび駆動回路等からなる制御ユニット160が設けられている。制御ユニッ卜160は、所定の制御プログラムに沿って電磁切替弁116,118、120を連通状態または遮断状態に制御する。第2供給経路132、第3供給経路134の電磁切替弁118、120が連通状態に切り替えられると、ポンプ114から吐出されるクーラントは、第2供給経路132、第3供給経路134から接続流路150、152を経て、加工ツール110の内部又は外部から加工ツール110に供給される。一方、第2供給経路132、第3供給経路134の電磁切替弁118、120が遮断状態に切り替えられると、第2供給経路132、第3供給経路134においてクーラントが遮断される。 In order to control the operating state of the electromagnetic switching valves 116, 118, 120 of the valve unit 122, the cutting device 100 is provided with a control unit 160 including a CPU, a memory, a drive circuit, and the like. The control unit 160 controls the electromagnetic switching valves 116, 118, 120 to the communicating state or the shutoff state according to a predetermined control program. When the electromagnetic switching valves 118 and 120 of the second supply path 132 and the third supply path 134 are switched to the communication state, the coolant discharged from the pump 114 is connected from the second supply path 132 and the third supply path 134. It is supplied to the machining tool 110 from the inside or the outside of the machining tool 110 via 150 and 152. On the other hand, when the electromagnetic switching valves 118 and 120 of the second supply path 132 and the third supply path 134 are switched to the shutoff state, the coolant is shut off in the second supply path 132 and the third supply path 134.

このように、第2供給経路132を連通する状態(第1状態)にバルブユニッ卜122が制御されると、クーラントが加工ツール110内を通過して下端のクーラント穴から放出される。また、第3供給経路134を連通する状態(第2状態)にバルブユニッ卜122が制御されると、ツールホルダ把持部105内(又はツールホルダ104内)をクーラントが通過して下端のクーラント穴から加工ツール110に噴射される。一方、第2供給経路132、第3供給経路134を遮断する状態にバルブユニット122が制御されると、前記それぞれのクーラント穴からのクーラントの放出・噴射が停止される。 When the valve unit 122 is controlled in the state of communicating with the second supply path 132 (first state) in this way, the coolant passes through the machining tool 110 and is discharged from the coolant hole at the lower end. Further, when the valve unit 122 is controlled in a state of communicating with the third supply path 134 (second state), the coolant passes through the tool holder grip portion 105 (or the inside of the tool holder 104) from the coolant hole at the lower end. It is sprayed onto the processing tool 110. On the other hand, when the valve unit 122 is controlled so as to shut off the second supply path 132 and the third supply path 134, the discharge / injection of the coolant from the respective coolant holes is stopped.

また、第1供給経路130の電磁切替弁116が連通状態に切り替えられると、ポンプ114から吐出されるクーラントは、第1供給経路130および出力流路148を経て噴射ノズル154に供給される。そして、噴射ノズル154に供給されたクーラントは、被加工部材109や加工ツール110に向けて外部から噴射される。 When the electromagnetic switching valve 116 of the first supply path 130 is switched to the communication state, the coolant discharged from the pump 114 is supplied to the injection nozzle 154 via the first supply path 130 and the output flow path 148. Then, the coolant supplied to the injection nozzle 154 is injected from the outside toward the member 109 to be processed and the processing tool 110.

《クーラントの分取及び分取されたクーラントの温度、濃度、pH値の計測》
金属加工装置内のクーラントの良否評価は、所定期間ごと(所定時間ごと、所定期間ごと等)にクーラントの温度、濃度、pH値を計測(検出)したデータに基づいて行う。本冷却液良否検出システムでは、温度、濃度、pH値の計測手段となる温度計、濃度計、pHメータで計測するクーラントはタンク112から分取する。ここでは温度計としては日本電測株式会社製、濃度計としては光の屈折率の変化を利用して濃度換算する株式会社アタゴ製「CM−BASEα(A)」、pHメータとしては電導度(電気抵抗)の変化を利用して水素イオン濃度を推定する株式会社佐藤計測器製作所製「ハンディ型pH計SK−620PH II」を用いて行い、それぞれデジタル化した温度信号、濃度信号、pH値信号を外部送信する。なお、後述する温度依存性の補正を考慮して温度計は、上記濃度計やpHメータに内蔵する温度計を活用することも考えられる。
<< Separation of coolant and measurement of temperature, concentration, and pH value of the separated coolant >>
The quality evaluation of the coolant in the metal processing apparatus is performed based on the data obtained by measuring (detecting) the temperature, concentration, and pH value of the coolant at predetermined periods (every predetermined time, every predetermined period, etc.). In this coolant quality detection system, the coolant measured by the thermometer, the densitometer, and the pH meter, which are means for measuring the temperature, concentration, and pH value, is separated from the tank 112. Here, the thermometer is manufactured by Nippon Densoku Co., Ltd., the densitometer is "CM-BASEα (A)" manufactured by Atago Co., Ltd., which converts the concentration by using the change in the refractive index of light, and the pH meter is the conductivity ( The hydrogen ion concentration is estimated using the change in electrical resistance) using the "Handy pH Meter SK-620PH II" manufactured by Sato Keiki Seisakusho Co., Ltd., and the digitized temperature signal, concentration signal, and pH value signal, respectively. Is sent externally. In consideration of the correction of temperature dependence described later, it is conceivable to utilize the thermometer built in the densitometer or the pH meter as the thermometer.

温度計、濃度計、pHメータで計測するためにタンク112から分取されるクーラントは、タンク112から貯留するクーラントのうち不純物が少なく下流に放出して良い部分である。不純物の少ないかつ上澄み(液面近傍のクーラント)である。例えば図3(a)の例では装置内の回収流路153のクーラントがタンク112内に放出(ドレン)され(図3(a)矢印1)、タンク112の側部中央近傍にクーラントの流出口113を設け、流出口113から放出されたクーラント((図3(a)矢印2)の温度、濃度、pH値を計測している。タンク112内のクーラントに混入していた切削くず等の不純物(図3(a)下方の「ドレン」)が底部に沈殿し、不水溶性の成分からなる浮上油が上部に溜まっている場合(図3(a)上方の「浮上油」)であっても、浮上油とドレンとの中間層のクーラントのみ分取することで良好なクーラントのみ計測することができ、濃度計の汚れ、pHメータの目詰まり等を避けることができる。 The coolant separated from the tank 112 for measurement with a thermometer, a densitometer, and a pH meter is a portion of the coolant stored from the tank 112 that has few impurities and can be discharged downstream. It is a supernatant (coolant near the liquid surface) with few impurities. For example, in the example of FIG. 3A, the coolant in the recovery flow path 153 in the apparatus is discharged (drained) into the tank 112 (arrow 1 in FIG. 3A), and the coolant outlet is near the center of the side portion of the tank 112. 113 is provided to measure the temperature, concentration, and pH value of the coolant discharged from the outlet 113 (arrow 2 in FIG. 3A). Impures such as cutting chips mixed in the coolant in the tank 112. (The lower "drain" in FIG. 3 (a)) is settled at the bottom, and the floating oil composed of the water-insoluble component is accumulated in the upper part (the upper "floating oil" in FIG. 3 (a)). However, by separating only the coolant in the intermediate layer between the floating oil and the drain, only good coolant can be measured, and dirt on the densitometer, clogging of the pH meter, etc. can be avoided.

また、タンク112は、図3(b)(c)に示すように複数の容器を上下方向多段に設置し、上流側の容器内の良好な冷却液を下流側に注いでいく場合もある。図3(b)の場合、まず装置内の回収流路153のクーラントが容器112a内に放出され(図3(b)矢印3)、一旦、容器112a内に貯留した比較的良好なクーラントが流出口113aから下段の容器112bに放出される((図3(b)矢印4)。流出口113aは、浮上油とドレンとの中間層のクーラントが存在する容器112a内の液面から底部までの高さの中央近傍に位置する。下段の容器112bに放出されたクーラントは一旦、容器112b内に貯留し、容器112aの場合同様にさらに良好なクーラントが流出口113bから下段の容器112cに放出される(図3(b)矢印5)。この段階でクーラント内に浮上油やドレンはほぼ含まれておらず、下段の容器112c内の良好なクーラントが流出口113cから放出され(図3(b)矢印6)、このクーラントを温度計、濃度計、pHメータで計測する。この例では上流から下段の容器に放出されるたびに不水溶性の浮上油や切削くず等の不純物(ドレン)が除去される。 Further, in the tank 112, as shown in FIGS. 3 (b) and 3 (c), a plurality of containers may be installed in multiple stages in the vertical direction, and a good cooling liquid in the container on the upstream side may be poured to the downstream side. In the case of FIG. 3B, first, the coolant in the recovery flow path 153 in the apparatus is discharged into the container 112a (arrow 3 in FIG. 3B), and the relatively good coolant once stored in the container 112a flows. It is discharged from the outlet 113a to the lower container 112b ((FIG. 3 (b) arrow 4). The outlet 113a is from the liquid level to the bottom in the container 112a in which the coolant of the intermediate layer between the floating oil and the drain is present. Located near the center of the height. The coolant released into the lower container 112b is temporarily stored in the container 112b, and as in the case of the container 112a, a better coolant is discharged from the outlet 113b to the lower container 112c. (FIG. 3 (b) Arrow 5). At this stage, the coolant contains almost no floating oil or drain, and good coolant in the lower container 112c is discharged from the outlet 113c (FIG. 3 (b). ) Arrow 6), this coolant is measured with a thermometer, densitometer, and pH meter. In this example, impurities (drain) such as water-insoluble floating oil and cutting chips are generated each time the coolant is discharged from the upstream to the lower container. Will be removed.

また、図3(c)のクーラントの分取例では、容器112eの内で底部から高床の容器112dが設置されており、まず装置内の回収流路153のクーラントが容器112d内に放出され(図3(c)矢印7)、一旦、容器112d内に貯留したクーラントのうち浮上油やドレンの大部分を除いたクーラントが流出口113dから下段の容器112cに放出される((図3(c)矢印8)。下段の容器112eに放出されたクーラントは容器112e内に貯留し、さらに良好なクーラントのみが流出口113eから放出され(図3(c)矢印9)、不水溶性の不溶油や切削くず等の不純物が除去された後のクーラントが温度計、濃度計、pHメータで計測される。なお、流出口113d、113eは、流出口113a等と同様に容器112d内の浮上油とドレンとの中間層のクーラントが存在する位置、すなわち底部から液面の中間に位置する。 Further, in the example of coolant preparation shown in FIG. 3C, a container 112d having a raised floor is installed from the bottom in the container 112e, and the coolant in the recovery flow path 153 in the apparatus is first discharged into the container 112d ( FIG. 3C, arrow 7), the coolant once stored in the container 112d, excluding most of the floating oil and drain, is discharged from the outlet 113d to the lower container 112c ((FIG. 3C). ) Arrow 8). The coolant discharged into the lower container 112e is stored in the container 112e, and only the better coolant is discharged from the outlet 113e (FIG. 3 (c) arrow 9), and the water-insoluble insoluble oil. The coolant after removing impurities such as cutting chips and cutting chips is measured with a thermometer, a densitometer, and a pH meter. Note that the outlets 113d and 113e are the floating oil in the container 112d like the outlet 113a and the like. It is located at the position where the coolant in the intermediate layer with the drain exists, that is, between the bottom and the liquid level.

《第1の冷却液良否検出ユニット例について》
次に、タンク112から分取したクーラントを計測する第1の冷却液良否検出ユニット1の具体例について説明する。図4〜図5は、冷却液良否検出ユニットの実施形態の主要構成例の1つを示した図であり、図4は正面図、図4(b)は冷却液良否検出ユニット内の濃度計の計測用貯留部の略断面図、図5(a)は図4と略同視点の3次元図、図5(b)は図4の上方視点の3次元図(天面視点)、を示している。なお、図4〜図5は後述する各部材の説明の理解を助けるために必要な部材のみ示しており、各図により省略している部材が異なるものもある(後述する図6〜図7も同様)。冷却液良否検出ユニット1は概ね、pHメータ9と濃度計11と台座23と貯留槽21と吸引ポンプ24とを有している。なお、温度計10は冷却液良否検出ユニット1内に別途、配設されても、後述するように濃度計11やpHメータ9に内蔵される温度計を利用しても良い。
<< About the example of the first coolant quality detection unit >>
Next, a specific example of the first coolant quality detection unit 1 for measuring the coolant separated from the tank 112 will be described. 4 to 5 are views showing one of the main configuration examples of the embodiment of the coolant quality detection unit, FIG. 4 is a front view, and FIG. 4B is a densitometer in the coolant quality detection unit. 5 (a) shows a schematic cross-sectional view of the storage unit for measurement, FIG. 5 (a) shows a three-dimensional view having substantially the same viewpoint as FIG. 4, and FIG. 5 (b) shows a three-dimensional view (top viewpoint) of the upper viewpoint of FIG. ing. It should be noted that FIGS. 4 to 5 show only the members necessary for assisting the understanding of the description of each member described later, and some members are omitted depending on the drawings (also in FIGS. 6 to 7 described later). Similarly). The coolant quality detection unit 1 generally includes a pH meter 9, a concentration meter 11, a pedestal 23, a storage tank 21, and a suction pump 24. The thermometer 10 may be separately arranged in the coolant quality detection unit 1, or a thermometer built in the densitometer 11 or the pH meter 9 may be used as described later.

この冷却液良否検出ユニット1は、タンク112から分取されたバイパス流路(図示せず)の途中に配設されるものである。ここに言うタンク112のクーラントを分取した「バイパス流路」は加工装置100の循環系と異なる計測専用のバイパス流路であり、このバイパス流路の途中に冷却液良否検出ユニット1が介在しても良く、冷却液良否検出ユニット1が直接タンク内のクーラントの上澄みに接続して流出入するものであっても良い。まず、タンク112内のクーラントは吸引ポンプ24により吸引される。吸引ポンプ24は、電気モータ24aで駆動部24bが駆動して計測タイミングに合わせて間欠的に作動する(例えば10分ごとに作動)。本冷却液良否検出ユニット1では吸引ポンプ24は駆動部24bを外部側、電気モータ24bを内部側にして外枠2に固定されている。タンク112から吸引したクーラントは図4(a)の矢印丸1〜丸2に示すように吸引ポンプ24で吸引され、冷却液良否検出ユニット1内(外枠2内)に運ばれる。 The coolant quality detection unit 1 is arranged in the middle of a bypass flow path (not shown) separated from the tank 112. The "bypass flow path" from which the coolant of the tank 112 is separated is a bypass flow path dedicated to measurement, which is different from the circulation system of the processing apparatus 100, and the coolant quality detection unit 1 is interposed in the middle of the bypass flow path. Alternatively, the coolant quality detection unit 1 may be directly connected to the supernatant of the coolant in the tank to flow in and out. First, the coolant in the tank 112 is sucked by the suction pump 24. The suction pump 24 is driven by the electric motor 24a to operate the drive unit 24b intermittently according to the measurement timing (for example, it operates every 10 minutes). In the present coolant quality detection unit 1, the suction pump 24 is fixed to the outer frame 2 with the drive unit 24b on the outer side and the electric motor 24b on the inner side. The coolant sucked from the tank 112 is sucked by the suction pump 24 as shown by the arrows circles 1 to 2 in FIG. 4A, and is carried into the coolant quality detection unit 1 (inside the outer frame 2).

吸引ポンプ24で吸引されたクーラントは、濃度計11の流入口11aから計測用貯留部11c内に流入される(矢印丸3参照)。図4(b)は、濃度計11の計測用貯留部11cへのクーラントの流出入を示す略断面である。計測用貯留部11cは、先端が小さい円錐台形であり中心に濃度計測用のレンズ(プリズム)24(サファイア製)が配設されている。計測用貯留部11cの流入口11aから流入したクーラントは、レンズ24に向かって放出され円錐台形内壁を廻ってレンズ24にクーラント内の金属くず等が溜まらせずクーラントの速度を低下させながら流出口11bから流出される。このときレンズ24で計測用貯留部11c内のクーラントの光の屈折率を計測し、その変化から濃度を換算する。 The coolant sucked by the suction pump 24 flows into the measurement storage unit 11c from the inflow port 11a of the densitometer 11 (see the arrow circle 3). FIG. 4B is a schematic cross section showing the inflow and outflow of coolant into the measurement storage portion 11c of the densitometer 11. The measurement storage unit 11c has a conical trapezoidal shape with a small tip, and a lens (prism) 24 (made of sapphire) for concentration measurement is arranged in the center. The coolant flowing in from the inflow port 11a of the measurement storage unit 11c is discharged toward the lens 24, goes around the inner wall of the conical trapezoid, and does not collect metal debris in the coolant on the lens 24, and the outflow port reduces the speed of the coolant. It is discharged from 11b. At this time, the refractive index of the light of the coolant in the measuring reservoir 11c is measured by the lens 24, and the concentration is converted from the change.

濃度計11は外枠2の底部から起立する支持板25の上部に装着される。図4(a)の例では支持板25の上部が右下方に傾斜しているが、この傾斜角度は計測用貯留部11c内に流出入するクーラントの速度や傾斜角、計測用貯留部11cの形状等に応じて変更されるものであって図4(a)の例よりも矢印A方向に起き上がっても良い。 The densitometer 11 is mounted on the upper part of the support plate 25 that stands up from the bottom of the outer frame 2. In the example of FIG. 4A, the upper part of the support plate 25 is inclined to the lower right, but this inclination angle is the speed and inclination angle of the coolant flowing in and out of the measurement storage part 11c, and the measurement storage part 11c. It is changed according to the shape and the like, and may rise in the direction of arrow A as compared with the example of FIG. 4A.

また、計測用貯留部11cの内壁は反射板となっており、クーラント中の切削くず等が付着すると濃度計11の計測精度が低下する。このため計測用貯留部11cの流入口11a、流出口11bは、図4(b)に示すように計測時(通常時)の流入口、流出口以外にそれぞれ洗浄用の流入口、流出口を有している。洗浄用の流入口、流出口は、計測時(通常時)の流入口、流出口に合流しており、計測用貯留部11c内にクーラントが放出されるときには計測時(通常時)、洗浄時ともに同じ流路及び同じ位置から放出される。計測時(通常時)のクーラントの流れに応じて付着した切削くず等であるため同じ流路を辿って洗浄することが好ましいからである。また、流入口11a、流出口11bのうち洗浄側(図4(b)の「洗浄IN」「洗浄OUT」参照)は、計測用貯留部11c内に至る流路及び計測用貯留部11c内から外部に至る流路、すなわち助走区間を略直線とし噴流の洗浄水の流速低下を回避している。その一方、計測時(通常時:図4(b)の「通常IN」「通常OUT」参照)の流入口及び流出口は、助走区間を屈曲させて流速を低下させるようにしている。 Further, the inner wall of the measurement storage unit 11c is a reflector, and if cutting chips or the like in the coolant adhere to the inner wall, the measurement accuracy of the densitometer 11 deteriorates. Therefore, as shown in FIG. 4B, the inflow port 11a and the outflow port 11b of the measurement storage unit 11c have an inflow port and an outflow port for cleaning in addition to the inflow port and the outflow port at the time of measurement (normal time), respectively. Have. The inflow port and outflow port for cleaning merge with the inflow port and outflow port at the time of measurement (normal time), and when the coolant is discharged into the storage unit 11c for measurement, at the time of measurement (normal time) and at the time of cleaning. Both are discharged from the same flow path and the same position. This is because it is preferable to follow the same flow path for cleaning because it is cutting debris or the like that has adhered according to the flow of coolant during measurement (normal time). Further, of the inflow port 11a and the outflow port 11b, the cleaning side (see "cleaning IN" and "cleaning OUT" in FIG. 4B) is from the flow path leading to the measurement storage unit 11c and the measurement storage unit 11c. The flow path to the outside, that is, the approach section is made substantially straight to avoid a decrease in the flow velocity of the washing water of the jet. On the other hand, at the time of measurement (normal time: see "normal IN" and "normal OUT" in FIG. 4B), the inflow port and the outflow port bend the approach section to reduce the flow velocity.

計測用貯留部11c内に流入したクーラントは、下方の流出口11bから放出され(矢印丸4参照)、貯留槽21の上方に流入する(矢印丸5参照)。貯留槽12は、図5に示すように上方に開口する筒状部材であり、外枠2の底部に設置される台座23に高床状に装着されている。貯留槽12の上方の開口は蓋部材22で閉鎖され、蓋部材22に設けられた貫通孔(又は貯留槽21の側部上方の貫通孔等)をクーラントの流入口としている。また、蓋部材22は中心に貫通孔を設けて該貫通孔を通してpHメータ9を担持している。貯留槽22に流入したクーラントは貯留槽21内を通過することで流速が低下し、切削くず等が沈殿するため、沈殿物に接して誤計測しないようにpHメータ9の下端は貯留槽21の底部から隙間を空けて配設される。なお、貯留槽21の流入部(例えば、蓋部材22の貫通孔近傍)には、切削くず等をろ過するフィルタが装着されることが好ましい。そして貯留槽21への流出入前後の流路に流量センサを設け、流量の低下が計測されると目詰まり検出とすることもできる。 The coolant that has flowed into the measurement storage unit 11c is discharged from the lower outlet 11b (see the arrow circle 4) and flows into the upper part of the storage tank 21 (see the arrow circle 5). As shown in FIG. 5, the storage tank 12 is a tubular member that opens upward, and is mounted on a pedestal 23 installed at the bottom of the outer frame 2 in a raised floor shape. The opening above the storage tank 12 is closed by the lid member 22, and a through hole provided in the lid member 22 (or a through hole above the side of the storage tank 21 or the like) is used as an inflow port for coolant. Further, the lid member 22 is provided with a through hole in the center and carries the pH meter 9 through the through hole. The flow velocity of the coolant flowing into the storage tank 22 decreases as it passes through the storage tank 21, and cutting chips and the like settle. Therefore, the lower end of the pH meter 9 is located on the storage tank 21 so as not to come into contact with the precipitate and make an erroneous measurement. It is arranged with a gap from the bottom. It is preferable that a filter for filtering cutting chips and the like is attached to the inflow portion of the storage tank 21 (for example, in the vicinity of the through hole of the lid member 22). Then, a flow rate sensor can be provided in the flow path before and after the inflow and outflow to and from the storage tank 21, and when the decrease in the flow rate is measured, clogging can be detected.

そして、貯留槽21内に流入したクーラントは、pHメータ9でクーラントの電導度の計測、水素イオン濃度の推定によりpH値が検出され、下方の流出口21b(図5(b)参照)から流出する(矢印丸6参照)。貯留槽21から流出されたクーラントは、タンク112へのバイパス流路へ流入し、タンク112に戻される。なお、図4〜図5の冷却液良否検出ユニットでは、クーラントは上述してきたように吸引ポンプ24、濃度計11、貯留槽21の順(矢印丸1、丸2,丸3、丸4、丸5、丸6の順)に流れるが、吸引ポンプ24、貯留槽21、濃度計11の順(矢印丸1、丸2,丸5、丸6、丸3、丸4の順)に流されても良い。 Then, the pH value of the coolant flowing into the storage tank 21 is detected by measuring the conductivity of the coolant with the pH meter 9 and estimating the hydrogen ion concentration, and flows out from the lower outlet 21b (see FIG. 5B). (See arrow circle 6). The coolant flowing out of the storage tank 21 flows into the bypass flow path to the tank 112 and is returned to the tank 112. In the coolant quality detection unit of FIGS. 4 to 5, the coolant is in the order of the suction pump 24, the concentration meter 11, and the storage tank 21 (arrow circle 1, circle 2, circle 3, circle 4, circle) as described above. It flows in the order of 5 and 6), but it flows in the order of suction pump 24, water tank 21, and densitometer 11 (arrow circle 1, circle 2, circle 5, circle 6, circle 3, circle 4). Is also good.

また、冷却液良否検出ユニット1では、温度計10による温度計測対象はタンク112内のクーラントである場合もあるが、濃度計11とpHメータ9とに温度計10が内蔵されており、この内蔵の温度計10で濃度又はpH値を測定すると同時に測定された温度を出力する場合もある。この温度情報により、それぞれの濃度計11とpHメータ9とで計測される濃度、pH値を温度依存性が排除されるように補正する。この補正には、濃度計11及びpHメータ9それぞれの基準温度が異なる場合に両者の基準温度における濃度及びpH値に変換する補正が含まれることもある。また、温度計測は、クーラントの腐敗に影響する「室温(大気温度)」を受信機に付けた熱電対にて計測、データ収集する場合もあり、この温度情報をも加味して濃度及びpH値を補正し温度依存性を排除する場合もある。 Further, in the coolant quality detection unit 1, the temperature measurement target by the thermometer 10 may be the coolant in the tank 112, but the thermometer 10 is built in the densitometer 11 and the pH meter 9, and the thermometer 10 is built-in. In some cases, the measured temperature is output at the same time as the concentration or pH value is measured with the thermometer 10. Based on this temperature information, the concentration and pH value measured by the respective densitometer 11 and the pH meter 9 are corrected so that the temperature dependence is eliminated. This correction may include a correction for converting the reference temperature of the densitometer 11 and the pH meter 9 into the concentration and pH value at the reference temperature of both. In addition, temperature measurement may be performed by measuring the "room temperature (atmospheric temperature)" that affects the decay of the coolant with a thermocouple attached to the receiver, and data may be collected. Taking this temperature information into consideration, the concentration and pH value may be collected. In some cases, the temperature dependence is eliminated.

さらに、pH値の計測においては、pHメータ9を取り付ける貯留槽21を電気絶縁性の素材で構成もしくは、貯留槽21内部のクーラント液を電気的にフローティング(非電気通電性に)することで、切削油の循環により、外部装置と電気的に接続された切削油と、pH値計測対象の切削油が回路を構成し、タンク内の電位が変動することがなくなり、pHメータによる計測が不能もしくは、誤差が大きくなる現象の発生が抑制される。 Further, in the measurement of the pH value, the storage tank 21 to which the pH meter 9 is attached is made of an electrically insulating material, or the coolant liquid inside the storage tank 21 is electrically floated (non-electrically conductive). Due to the circulation of cutting oil, the cutting oil electrically connected to the external device and the cutting oil whose pH value is to be measured form a circuit, and the potential in the tank does not fluctuate, making measurement with a pH meter impossible or impossible. , The occurrence of the phenomenon that the error becomes large is suppressed.

なお、配管内を切削油が流動することで発生した、「静電気によるチャージ」も、pH計測結果に影響を与えることがあり、pH値及び/または濃度を計測する際には、クーラント液の流動を停止することが、pH値及び/または濃度の計測値の精度を確保するうえで好ましい。 The "charge due to static electricity" generated by the flow of cutting oil in the piping may also affect the pH measurement result, and when measuring the pH value and / or concentration, the flow of the coolant liquid Is preferable in order to ensure the accuracy of the measured values of pH value and / or concentration.

《第2の冷却液良否検出ユニット例(小型化例)について》
次に、タンク112から分取したクーラントを計測する第2の冷却液良否検出ユニット1’の具体例について図6〜図7を参照して説明する。図6〜図7の中で同種の部材は同一の参照番号を付して説明する。図6〜図7は、第2の冷却液良否検出ユニット1’の実施形態の主要構成例の1つを示した図であり、図6は図5と同様にユニット内部をも示した3次元斜視図である。なお、図6〜図7は後述する各部材の説明の理解を助けるために必要な部材のみ示しており、特に言及していない部材等については概ね図4〜図5と同様である。
<< About the second coolant quality detection unit example (miniaturization example) >>
Next, a specific example of the second coolant quality detection unit 1'that measures the coolant separated from the tank 112 will be described with reference to FIGS. 6 to 7. In FIGS. 6 to 7, the same type of members will be described with the same reference numbers. 6 to 7 are views showing one of the main configuration examples of the embodiment of the second coolant quality detection unit 1', and FIG. 6 is a three-dimensional view showing the inside of the unit as in FIG. It is a perspective view. It should be noted that FIGS. 6 to 7 show only the members necessary for assisting the understanding of the description of each member described later, and the members and the like not particularly mentioned are substantially the same as those of FIGS. 4 to 5.

第2の冷却液良否検出ユニット1’では、第1の冷却液良否検出ユニット1と異なり、タンク112周辺のスペースを考慮してユニット全体の小型化を達成した例であり、pHメータ9を貯留槽21ではなくタンク112等に直接挿入してpH計測している(挿入一例は図4(b)を参照)。ユニットの小型化を企図するにあたって第1の冷却液良否検出ユニット1の構成そのままで小型化するとpHメータ9と濃度計11への電力供給を共通電源から得る必要性があり、その場合、pHメータ9の計測電位が狂ってくる問題があったが、その原因が共通電源の影響で接地電位が狂い、液絡による電位シフトが発生したものであることがわかった。したがって、第2の冷却液良否検出ユニット1’ではpHメータ9をユニット内に配設せず、別途の電源でタンク112に直接又はタンク112から分取した流路内に挿入して計測することとした。pHメータ9が第2の冷却液良否検出ユニット1’に配設されないこととなったため貯留槽21も配設されず、結果、一定の小型化を達成している(図6参照)。 Unlike the first coolant quality detection unit 1, the second coolant quality detection unit 1'is an example of achieving miniaturization of the entire unit in consideration of the space around the tank 112, and stores the pH meter 9. The pH is measured by directly inserting it into the tank 112 or the like instead of the tank 21 (see FIG. 4B for an example of insertion). When attempting to miniaturize the unit, if the configuration of the first coolant quality detection unit 1 is miniaturized as it is, it is necessary to obtain power supply to the pH meter 9 and the densitometer 11 from a common power source. In that case, the pH meter There was a problem that the measured potential of No. 9 was out of order, but it was found that the cause was that the ground potential was out of order due to the influence of the common power supply and the potential shift due to the liquid connection occurred. Therefore, in the second coolant quality detection unit 1', the pH meter 9 is not arranged in the unit, but is inserted directly into the tank 112 or into the flow path separated from the tank 112 by a separate power source for measurement. And said. Since the pH meter 9 is not arranged in the second coolant quality detection unit 1', the storage tank 21 is also not arranged, and as a result, a certain degree of miniaturization is achieved (see FIG. 6).

さらに第2の冷却液良否検出ユニット1’では、pHメータ9及び貯留槽21が排除されたことによる小型化による弊害解消やさらなる小型化の達成をすべくクーラントの流れ方向の改善も行っている。具体的には、濃度計11傾きや流入口11a及び流出口11bの位置が異なる。タンク112内のクーラントは吸引ポンプ24により吸引される。本冷却液良否検出ユニット1’では、タンク112から吸引したクーラントは図6の矢印丸1’〜丸2’に示すように吸引ポンプ24で吸引され、冷却液良否検出ユニット1‘内(外枠2内)に運ばれる。 Furthermore, in the second coolant quality detection unit 1', the flow direction of the coolant is also improved in order to eliminate the harmful effects of miniaturization due to the elimination of the pH meter 9 and the storage tank 21 and to achieve further miniaturization. .. Specifically, the inclination of the densitometer 11 and the positions of the inflow port 11a and the outflow port 11b are different. The coolant in the tank 112 is sucked by the suction pump 24. In the present coolant quality detection unit 1', the coolant sucked from the tank 112 is sucked by the suction pump 24 as shown by the arrow circles 1'to 2'in FIG. 6, and is inside the coolant quality detection unit 1'(outer frame). It is carried to (inside 2).

吸引ポンプ24で吸引されたクーラントは、濃度計11の流入口11aから計測用貯留部11c内に流入される(矢印3参照)。図7(a)は、濃度計11の計測用貯留部11cへのクーラントの流出入を示す略断面である(計測用貯留部11cの部分のみを示す図4(b)と異なり濃度計11全体の透視断面図を示している)。図4(b)で前述するように計測用貯留部11cは、先端が小さい円錐台形であり中心(中心の凹部)に濃度計測用のレンズ(プリズム)24が配設され、流入口11aから流入したクーラントは、レンズ24に向かって放出され、レンズ24でクーラントの光の屈折率を計測し、その変化から濃度を換算する。 The coolant sucked by the suction pump 24 flows into the measurement storage unit 11c from the inflow port 11a of the densitometer 11 (see arrow 3). FIG. 7A is a schematic cross section showing the inflow and outflow of coolant into the measurement storage unit 11c of the densitometer 11 (unlike FIG. 4B showing only the portion of the measurement storage unit 11c, the entire densitometer 11). (Shows a perspective sectional view of). As described above in FIG. 4B, the measurement storage unit 11c has a conical trapezoidal shape with a small tip, and a lens (prism) 24 for concentration measurement is arranged at the center (recess in the center) and flows in from the inflow port 11a. The resulting coolant is emitted toward the lens 24, the refractive index of the light of the coolant is measured by the lens 24, and the concentration is converted from the change.

図4(b)や図7(b)のように流入口11aをレンズ24より下方に位置するように傾斜させて配設した場合、上述するようにレンズ24にクーラント内の金属くずが溜まり難くなる点では有利であるが、その反面、気泡の発生を抑制できるため油面より上方で泡状の浮上油が発生し、これがレンズ24にまで至ると屈折率計測の阻害要因となるが、図4(b)や図7(b)の構成の場合、浮上油を通常の対流で流出口11bから抜き出すことが難しいという問題がある。 When the inflow port 11a is tilted so as to be located below the lens 24 as shown in FIGS. 4 (b) and 7 (b), metal debris in the coolant is unlikely to collect in the lens 24 as described above. On the other hand, since the generation of air bubbles can be suppressed, foamy floating oil is generated above the oil surface, and when this reaches the lens 24, it becomes an obstacle to the measurement of the refractive index. In the case of the configuration of 4 (b) and FIG. 7 (b), there is a problem that it is difficult to extract the floating oil from the outlet 11b by normal convection.

逆に、図7(c)のようにレンズ24のように単に流入口11aをレンズ24より上方に位置するように配設した場合、上述する浮上油が抜けない問題は発生しないが、レンズ24にクーラント内の金属くずが溜まり易い点では問題である。 On the contrary, when the inflow port 11a is simply arranged above the lens 24 as in the lens 24 as shown in FIG. 7C, the above-mentioned problem that the floating oil does not come out does not occur, but the lens 24 There is a problem in that metal scraps in the coolant tend to collect.

図4(b)や図7(b)の計測用貯留部11cの傾斜及びレンズ24の位置の有利な点及び問題点と、図7(c)の計測用貯留部11cの傾斜及びレンズ24の位置の有利な点及び問題点と、は互いに背反し、両者の有利な点及び問題点とのバランスを考慮した例が図6及び図7(a)に示される。図6及び図7(a)の例では、計測用貯留部11cを45°程度傾斜させつつ、流入口11a及び流出口11bが共にレンズ24より上方に位置するように計測用貯留部11cを45°程度傾斜(矢印B方向に傾斜)させて配設している。この構成の場合、傾斜箇所にレンズ24を配設しているためレンズ24にクーラント内の金属くずが溜まり難く、同時に流出口11bが最上点に位置するため浮上油が抜け易くなっている。 Advantages and problems of the inclination of the measurement storage unit 11c and the position of the lens 24 in FIGS. 4 (b) and 7 (b), and the inclination of the measurement storage unit 11c and the lens 24 in FIG. 7 (c). 6 and 7 (a) show an example in which the advantageous points and problems of the position are contrary to each other and the balance between the advantageous points and the problems of both is taken into consideration. In the examples of FIGS. 6 and 7A, the measurement storage unit 11c is tilted by about 45 °, and the measurement storage unit 11c is 45 so that the inflow port 11a and the outflow port 11b are both located above the lens 24. It is arranged at an angle of about ° (inclined in the direction of arrow B). In the case of this configuration, since the lens 24 is arranged at the inclined portion, the metal debris in the coolant is unlikely to collect on the lens 24, and at the same time, the outlet 11b is located at the uppermost point, so that the floating oil is easily discharged.

再び図6を参照する。計測用貯留部11c内に流入したクーラントは、上方の流出口11bから放出され(矢印丸4’参照)、計測用貯留部11を下方に配設したことによる上方スペースを用いてクーラントを運搬し(矢印丸7’参照)、図6の例ではpHメータが内蔵されないためそのまま下方に向かって放出する(矢印丸8’参照)。 See FIG. 6 again. The coolant that has flowed into the measurement storage unit 11c is discharged from the upper outlet 11b (see the arrow circle 4'), and the coolant is transported using the upper space due to the measurement storage unit 11 being arranged below. (Refer to the arrow circle 7'). In the example of FIG. 6, since the pH meter is not built in, the pH meter is discharged downward as it is (see the arrow circle 8').

《外部送信について》
次に、図4〜図7の冷却液良否検出ユニット1(1')で計測された温度情報、濃度情報、pH値情報の外部への送信について説明する。図8では計測された温度、濃度、pH値について外部ユニッ卜16に送信されるまでの電気信号のフローを例示説明する。この例では概ね、pH値検出手段(pHメータ)9、温度計測手段(温度計)10、濃度計測手段(濃度計)11、から電気信号の流れを示している。なお、温度計測手段10は図4〜図7に示すような冷却液良否検出ユニット1に内蔵されても、タンク112内に設置されても良く、pH値検出手段9及び濃度計測手段(濃度計)11自体に内蔵されても良い(いずれの場合も温度計測手段10が冷却液良否検出ユニット1の構成要素と言える)。またpH値検出手段9についても、図8では図4〜図5の冷却液良否検出ユニット1のようにpH値検出手段9が内蔵された例が示されているが、pH値検出手段9は図7の冷却液良否検出ユニット1’のように内蔵せずタンク112内に設置されても良い。
<< About external transmission >>
Next, the transmission of the temperature information, the concentration information, and the pH value information measured by the coolant quality detection unit 1 (1') of FIGS. 4 to 7 to the outside will be described. In FIG. 8, the flow of the electric signal until the measured temperature, concentration, and pH value are transmitted to the external unit 16 will be illustrated and described. In this example, the flow of electric signals is generally shown from the pH value detecting means (pH meter) 9, the temperature measuring means (thermometer) 10, and the concentration measuring means (concentration meter) 11. The temperature measuring means 10 may be built in the coolant quality detection unit 1 as shown in FIGS. 4 to 7 or may be installed in the tank 112, and the pH value detecting means 9 and the concentration measuring means (concentration meter). ) 11 itself may be built in (in either case, the temperature measuring means 10 can be said to be a component of the coolant quality detection unit 1). As for the pH value detecting means 9, FIG. 8 shows an example in which the pH value detecting means 9 is built in like the coolant quality detecting unit 1 of FIGS. 4 to 5, but the pH value detecting means 9 is Like the coolant quality detection unit 1'in FIG. 7, it may be installed in the tank 112 without being built in.

上述したpHメータ9、温度計10、濃度計11からの信号は、デジタル信号化して出力される。図8での温度計測手段10は、代表的には熱電対を用いて電位差増幅器やA/D変換器を介してデバイス内の制御回路によりデジタル信号を出力する温度受信部である。また、pH値計測手段9、温度計測手段10、濃度計測手段11からの出力信号は、切削装置100が備え付けた又は有線接続された送信部13のコントローラ14が受信し、無線送信デバイス15で外部に無線送信される。また、冷却液良否検出ユニット1は、図4〜図7
に示すようにタンク112からクーラントを吸引するポンプ(吸引ポンプ)24を備える。ポンプ24は電気式であり間欠的に作動であり、pH値計測手段9、温度計測手段10、濃度計測手段11からの出力信号を受信した送信部13のコントローラ14により適正な間欠信号をポンプ24に送信し、ポンプ24を作動する。
The signals from the pH meter 9, the thermometer 10, and the densitometer 11 described above are converted into digital signals and output. The temperature measuring means 10 in FIG. 8 is a temperature receiving unit that typically uses a thermocouple to output a digital signal by a control circuit in the device via a potential difference amplifier or an A / D converter. Further, the output signals from the pH value measuring means 9, the temperature measuring means 10, and the concentration measuring means 11 are received by the controller 14 of the transmission unit 13 provided in the cutting device 100 or connected by wire, and are externally connected by the wireless transmission device 15. Is transmitted wirelessly to. Further, the coolant quality detection unit 1 is shown in FIGS. 4 to 7.
As shown in the above, a pump (suction pump) 24 for sucking coolant from the tank 112 is provided. The pump 24 is an electric type and operates intermittently, and an appropriate intermittent signal is transmitted by the controller 14 of the transmission unit 13 that has received the output signals from the pH value measuring means 9, the temperature measuring means 10, and the concentration measuring means 11. To operate the pump 24.

また、無線送信された温度情報及びpH値情報、濃度情報の出力信号は、外部ユニッ卜16の無線受信デバイス17で受信される。図8中の破線で示す無線送信デバイス15・無線受信デバイス17間の無線通信規格は、Wi-Fi (Wireless Fidelity)、Bluetooth (ブルートゥース)、無線LAN (Local Area Network)、及び、ZigBee (ジグビー)等を使用することが可能である。外部ユニット16は無線受信デバイス17を含むノー卜パソコン等の記憶・演算装置19の例も考えられるが、図8の例では別途専用の無線受信デバイス17を設置し、これとUSBポートで有線接続し、記憶・演算装置19で信号受信される。そして、ディスプレイやプリンタ等の出力装置20で画像表示、印刷等される。 Further, the wirelessly transmitted temperature information, pH value information, and concentration information output signals are received by the wireless receiving device 17 of the external unit 16. The wireless communication standards between the wireless transmitting device 15 and the wireless receiving device 17 shown by the broken lines in FIG. 8 are Wi-Fi (Wireless Fidelity), Bluetooth (Bluetooth), wireless LAN (Local Area Network), and ZigBee. Etc. can be used. The external unit 16 may be an example of a storage / arithmetic unit 19 such as a no-computer computer including a wireless receiving device 17, but in the example of FIG. 8, a dedicated wireless receiving device 17 is separately installed and connected to the external unit 16 by a USB port. Then, the signal is received by the storage / arithmetic unit 19. Then, an image is displayed, printed, or the like on an output device 20 such as a display or a printer.

また、図8では、冷却液良否検出ユニット1と送信部13とが別ブロックで示されているが、送信部13は冷却液良否検出ユニット1に含まれても良い。例えば、図4〜図5に示す冷却液良否検出ユニット1の外枠2内に送信部13が含まれても良い。また、温度計測手段10についても冷却液良否検出ユニット1とは別に設けても良く、タンク112内に熱電対を挿入し、電位差増幅器やA/D変換器を介してデバイス内の制御回路によりデジタル信号を出力する温度受信部を設けても良い。 Further, in FIG. 8, the coolant quality detection unit 1 and the transmission unit 13 are shown in separate blocks, but the transmission unit 13 may be included in the coolant quality detection unit 1. For example, the transmission unit 13 may be included in the outer frame 2 of the coolant quality detection unit 1 shown in FIGS. 4 to 5. Further, the temperature measuring means 10 may be provided separately from the coolant quality detection unit 1, a thermocouple is inserted into the tank 112, and the temperature is digitally measured by the control circuit in the device via the potential difference amplifier and the A / D converter. A temperature receiving unit that outputs a signal may be provided.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されるものではなく、本発明に含まれる種々の変形例、改良例が存在し得ることは当業者に明らかであろう。なお、本発明の冷却液良否管理システム及び冷却液良否検出ユニットで冷却液の計測を行う金属加工装置について切削装置を例示して説明したが、金属加工装置には冷却液を循環させるその他の金属加工装置、例えば研削装置や放電加工装置なども含まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and it will be clear to those skilled in the art that various modifications and improvements included in the present invention may exist. .. The metal processing device that measures the coolant with the coolant quality management system and the coolant quality detection unit of the present invention has been described by exemplifying a cutting device, but other metals that circulate the coolant in the metal processing device have been described. Processing equipment, such as grinding equipment and electric discharge machining equipment, is also included.

1,1’ 冷却液良否検出ユニット
2 外枠
9 pH値計測手段(pHメータ)
10 温度計測手段(温度計)
11 濃度計測手段(濃度計)
13 送信部
14 コントローラ
15 無線送信デバイス
16 外部ユニッ卜
17 無線受信デパイス
18 シリアルUSB変換器
19 記録・演算装置
20 出力装置
21 貯留槽
22 蓋部
23 台座
24 吸引ポンプ
25 支持板
100 切削装置
101 主軸
102 ワークステージ
102a 被加工部材接地面
103 基台
104 ツールホルダ
105 ツールホルダ把持部
106 操作盤
107 ヘッド
108 ヘッド支台
109 被加工部材(ワーク)
110 加工ツール
112 貯留容器(タンク)
112a,112b,112c,112d,112e 容器
113 流出口
114 クーラント供給用ポンプ(ポンプ)
116、118、120 電磁切替弁
122 バルブユニット(クーラント供給部)
124 入力流路
124a 吐出流路
126 リリーフ弁
128 ドレン流路
129 フィルタ(濾過手段)
130 第1供給経路
132 第2供給経路
134 第3供給経路
136, 138,140 チェック弁
142,144,144 絞り弁
148,150,152 出力流路(接続流路)
154 噴射ノズル(噴射手段)
160 制御ユニット
1,1'coolant quality detection unit
2 outer frame
9 pH value measuring means (pH meter)
10 Temperature measuring means (thermometer)
11 Concentration measuring means (concentration meter)
13 Transmitter
14 controller
15 Wireless transmission device
16 External unit
17 Wireless reception device
18 serial USB converter
19 Recording / Arithmetic Logic Unit
20 Output device
21 Water tank
22 Lid
23 pedestal
24 suction pump
25 Support plate
100 cutting equipment
101 spindle
102 work stage
102a Tread of the member to be machined
103 base
104 Tool Holder
105 Tool holder grip
106 Operation panel
107 head
108 head abutment
109 Work member (work)
110 Machining tool
112 Storage container (tank)
112a, 112b, 112c, 112d, 112e container
113 Outlet
114 Coolant supply pump (pump)
116, 118, 120 Electromagnetic switching valve
122 Valve unit (coolant supply unit)
124 Input flow path
124a Discharge flow path
126 relief valve
128 Drain flow path
129 Filter (filtration means)
130 1st supply route
132 Second supply route
134 Third supply route
136, 138,140 Check valve
142,144,144 throttle valve
148,150,152 Output flow path (connection flow path)
154 Injection nozzle (injection means)
160 control unit

Claims (11)

金属加工装置の動作中又は停止中に加工ツールを冷却する冷却液の良否を検出する冷却液良否管理システムであって、少なくとも、
所定の時間又は期間ごとに前記冷却液の供給流路中にある冷却液の貯留タンク内の底部から液面までの中間層の冷却液を分取して、その温度、濃度及び/又はpH値をそれぞれ計測する温度計測手段、濃度計測手段及び/又はpH値計測手段を備え、
前記濃度計測手段は、前記分取した冷却液の光の屈折率の変化に基づいて濃度に換算することで濃度計測し、前記pH値計測手段は、該分取した冷却液の電導度の変化に基づいて水素イオン濃度を推定することでpH値を計測し、
前記温度計測手段、濃度計測手段及び/又はpH値計測手段による前記分取した冷却液の計測は、同時に行う、冷却液良否管理システム。
A coolant quality management system that detects the quality of the coolant that cools the machining tool while the metal processing equipment is operating or stopped, and at least
The temperature, concentration, and / or pH value of the cooling liquid in the intermediate layer from the bottom to the liquid level in the cooling liquid storage tank in the cooling liquid supply flow path is separated at predetermined time or period. A temperature measuring means, a concentration measuring means, and / or a pH value measuring means are provided.
The concentration measuring means measures the concentration by converting the concentration into a concentration based on the change in the refractive index of the light of the separated coolant, and the pH value measuring means changes the conductivity of the separated coolant. Measure the pH value by estimating the hydrogen ion concentration based on
A coolant quality management system that simultaneously measures the separated coolant by the temperature measuring means, the concentration measuring means, and / or the pH value measuring means.
前記温度計測手段は、別途の温度計、及び/又は前記濃度計測手段と前記pH値計測手段とのそれぞれの内蔵温度計で構成される、請求項1に記載の冷却液良否管理システム。 The coolant quality management system according to claim 1, wherein the temperature measuring means includes a separate thermometer and / or a built-in thermometer of the concentration measuring means and the pH value measuring means. 前記貯留タンクは、液面の高さが異なり上方に開口された複数の容器で構成され、
前記貯留タンク内の冷却液を分取は、上流上方側の容器の流出口から外部放出された冷却液が下流下方側の容器内に注がれる、請求項1又は2に記載の冷却液良否管理システム。
The storage tank is composed of a plurality of containers having different liquid levels and opened upward.
The quality of the coolant according to claim 1 or 2, wherein the coolant discharged to the outside from the outlet of the container on the upstream upper side is poured into the container on the downstream lower side when the coolant in the storage tank is separated. Management system.
前記濃度計測手段及び前記pH値計測手段の計測は、冷却液の流動や液面の変動が無い状態及び/又は冷却液の流動が停止した状態で行う、請求項1〜3のいずれか1項に記載の冷却液良否管理システム。 The measurement of the concentration measuring means and the pH value measuring means is performed in a state where there is no flow of the coolant or fluctuation in the liquid level and / or in a state where the flow of the coolant is stopped, any one of claims 1 to 3. Coolant quality management system described in. 請求項1〜4のいずれか1項に記載の冷却液良否管理システムにおいて貯留タンク内の冷却液から分取したバイパス流路中に配設されて、該バイパス流路内の冷却液の濃度及びpH値をそれぞれ計測する濃度計測手段及びpH値計測手段と、
前記バイパス流路内の冷却液を貯留させる貯留槽と、
前記貯留タンク内の冷却液を吸引する吸引ポンプと、を備える冷却液良否検出ユニット。
In the coolant quality management system according to any one of claims 1 to 4, the coolant is arranged in a bypass flow path separated from the coolant in the storage tank, and the concentration of the coolant in the bypass flow path and the concentration of the coolant are determined. Concentration measuring means and pH value measuring means for measuring pH value, respectively,
A storage tank for storing the coolant in the bypass flow path and
A coolant quality detection unit including a suction pump for sucking the coolant in the storage tank.
前記バイパス流路内の冷却液をろ過する交換可能なフィルタと、
前記バイパス流路内の冷却液の流量を測定する流量センサと、を備える請求項5に記載の冷却液良否検出ユニット。
A replaceable filter that filters the coolant in the bypass flow path and
The coolant quality detection unit according to claim 5, further comprising a flow rate sensor for measuring the flow rate of the coolant in the bypass flow path.
前記貯留槽は、前記冷却液良否検出ユニット内で高床状に配設され、前記バイパス流路内の冷却液は、該貯留槽の上方の流入口から流入されて下方の流出口から放出される、請求項5又は6に記載の冷却液良否検出ユニット。 The storage tank is arranged in a raised floor in the coolant quality detection unit, and the coolant in the bypass flow path flows in from the upper inflow port of the storage tank and is discharged from the lower outflow port. , The coolant quality detection unit according to claim 5 or 6. 前記濃度計測手段は、冷却液を貯留して光の屈折率を計測するための計測用貯留部を設け、
該計測用貯留部は、冷却液を流入する流入口と、冷却液を流出する流出口とを有し、該流入口及び流出口はそれぞれ、前記計測用貯留部内の冷却液の濃度の計測するための通常用流入口及び通常用流出口と計測用貯留部内を洗浄するための洗浄用流入口及び洗浄用流出口とを備え、前記洗浄用流入口及び洗浄用流出口はそれぞれ、端部から前記計測用貯留部に至る流路を略直線とし、前記通常用流入口及び通常用流出口はそれぞれ、端部から前記計測用貯留部に至る流路に変曲部を設ける、請求項5〜7のいずれか1項に記載の冷却液良否検出ユニット。
The concentration measuring means is provided with a measuring storage unit for storing a cooling liquid and measuring the refractive index of light.
The measurement storage unit has an inflow port for the cooling liquid to flow in and an outflow port for the cooling liquid to flow out, and each of the inflow port and the outflow port measures the concentration of the cooling liquid in the measurement storage unit. It is provided with a normal inflow port and a normal inflow port for cleaning, a cleaning inflow port and a cleaning inflow port for cleaning the inside of the measurement storage part, and the cleaning inflow port and the cleaning outflow port are respectively from the end. Claims 5 to 5, wherein the flow path leading to the measurement storage portion is a substantially straight line, and each of the normal inflow port and the normal use outlet is provided with a curved portion in the flow path from the end portion to the measurement storage portion. 7. The coolant quality detection unit according to any one of 7.
pH値計測手段は前記貯留槽に装着されてその内部の冷却液を計測し、前記貯留槽は電気絶縁性の素材で構成される、請求項5〜8のいずれか1項に記載の冷却液良否検出ユニット。 The coolant according to any one of claims 5 to 8, wherein the pH value measuring means is mounted on the storage tank to measure the cooling liquid inside the storage tank, and the storage tank is made of an electrically insulating material. Good / bad detection unit. 請求項1〜4のいずれか1項に記載の冷却液良否管理システムにおいて貯留タンク内の冷却液から分取したバイパス流路中に配設されて、該バイパス流路内の冷却液の濃度を計測する濃度計測手段と、
前記貯留タンク内の冷却液を吸引する吸引ポンプと、を備え、
前記濃度計測手段は、前記バイパス流路内に配設された該計測用貯留部内に冷却液を流出入させて内部に配設されたレンズで冷却液の光の屈折率を計測し、前記計測用貯留部は、冷却液の流出口が最上部に位置し、前記レンズが傾斜部分に配設されるように傾斜して位置決めされる、冷却液良否検出ユニット。
In the coolant quality management system according to any one of claims 1 to 4, the concentration of the coolant in the bypass flow path is determined by being arranged in the bypass flow path separated from the coolant in the storage tank. Concentration measuring means to measure and
A suction pump for sucking the coolant in the storage tank is provided.
The concentration measuring means measures the refractive index of the light of the coolant with a lens disposed inside by allowing the coolant to flow in and out of the measuring reservoir arranged in the bypass flow path, and the measurement is performed. The storage unit is a coolant quality detection unit in which the outlet of the coolant is located at the uppermost portion and the lens is tilted and positioned so as to be arranged on the tilted portion.
pH値計測手段は前記貯留タンクの内部又は前記バイパス流路と別に配設された流路内の冷却液を計測する、請求項10に記載の冷却液良否検出ユニット。 The cooling liquid quality detection unit according to claim 10, wherein the pH value measuring means measures the cooling liquid inside the storage tank or in a flow path arranged separately from the bypass flow path.
JP2020510933A 2018-03-28 2019-03-26 Coolant quality management system and coolant quality detection unit Active JP7395105B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018063273 2018-03-28
JP2018063273 2018-03-28
PCT/JP2019/012922 WO2019189212A1 (en) 2018-03-28 2019-03-26 Coolant quality management system and coolant quality detection unit

Publications (2)

Publication Number Publication Date
JPWO2019189212A1 true JPWO2019189212A1 (en) 2021-04-08
JP7395105B2 JP7395105B2 (en) 2023-12-11

Family

ID=68059042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510933A Active JP7395105B2 (en) 2018-03-28 2019-03-26 Coolant quality management system and coolant quality detection unit

Country Status (2)

Country Link
JP (1) JP7395105B2 (en)
WO (1) WO2019189212A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110802442B (en) * 2019-11-26 2024-03-29 广西玉柴机器股份有限公司 Detection device and detection method for internal cooling system of numerical control machine tool
CN111534359B (en) * 2020-04-27 2022-09-23 北京工业大学 Grinding wheel in-place electric spark precision shaping machining liquid based on ELID grinding
JPWO2023012973A1 (en) 2021-08-05 2023-02-09

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985577A (en) * 1995-09-20 1997-03-31 Exedy Corp Automatic management device for water soluble cutting oil
JP4240566B2 (en) * 1998-04-01 2009-03-18 ヤマハ発動機株式会社 Coolant purification system
DE19755477A1 (en) 1997-12-13 1999-06-17 Mann & Hummel Filter Device for monitoring a processing liquid
JP3641956B2 (en) 1998-11-30 2005-04-27 三菱住友シリコン株式会社 Polishing slurry regeneration system
JP2006130603A (en) 2004-11-05 2006-05-25 Yukawa Kakoyu Kk Oil state detecting device and oil state monitoring system
JP2009002252A (en) 2007-06-22 2009-01-08 Terada Pump Seisakusho:Kk Coolant pump device
JP5148948B2 (en) 2007-08-23 2013-02-20 Sumco Techxiv株式会社 Polishing slurry recycling method
JP5103151B2 (en) 2007-12-10 2012-12-19 株式会社森精機製作所 Cutting fluid supply device
JP5580388B2 (en) 2012-11-02 2014-08-27 ファナック株式会社 Machine tool with filter cleaning device
JP5667230B2 (en) 2013-03-15 2015-02-12 ファナック株式会社 Cutting fluid management device for machine tools
JP2015157330A (en) 2014-02-24 2015-09-03 オリオン機械株式会社 Coolant cooling device
JP6309936B2 (en) 2015-11-17 2018-04-11 ファナック株式会社 Control device with coolant monitoring function

Also Published As

Publication number Publication date
JP7395105B2 (en) 2023-12-11
WO2019189212A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JPWO2019189212A1 (en) Coolant quality management system and coolant quality detection unit
KR20070033884A (en) Cutting device
CN106525905A (en) Water quality on-line monitoring system with electrode automatic cleaning and calibration functions
KR20170055476A (en) Liquid supply systems
JPWO2018062317A1 (en) Cooling liquid quality detection system and cooling liquid management system
EP1336436A1 (en) Washing system for drain pipe inside mobile frame
EP2926935B1 (en) Wire electric discharge machine
CN104234962A (en) Fluid drain manifold
EP1239277A1 (en) Measurement arrangement
RU2748255C2 (en) Device for separating water and solid particles of sprayed water in continuous casting machine and method for continuous control and control of corrosion background
JP5085857B2 (en) Cutting apparatus and cutting method
US20110180493A1 (en) Device and method for processing a cooling and rinsing liquid
US20070246405A1 (en) Flushing agent conditioning device for a hard material-tipped cutting machine
CN204789558U (en) Improve water quality monitoring sample thief
EP4282580A1 (en) Machine tool, machine tool control method, and machine tool control program
KR101769477B1 (en) A blast burnace slag flow rate measuring system
CN208109623U (en) Urea monitoring device and urea selective catalysis reduction apparatus
US20070235090A1 (en) Fluid processing system
US20110192803A1 (en) Apparatus for treating a cooling and rinsing fluid and control method for a treatment apparatus
JP2001219338A (en) Method and device for controlling degree of pollution of working fluid
KR101799967B1 (en) In-situ head-driven washing method of groundwater wells
KR101808638B1 (en) An Apparatus for Determining a Backwashing Time of a Filter Basin of a Sedimentation Plant and a Method for Determining the Same
CN108511367B (en) Processing liquid supply device
CN209742930U (en) Cleaning and separating system for pure water hydraulic support and pure water hydraulic support
CN220498534U (en) Novel coolant liquid integration filters device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7395105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150