JPWO2019183608A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019183608A5
JPWO2019183608A5 JP2020550666A JP2020550666A JPWO2019183608A5 JP WO2019183608 A5 JPWO2019183608 A5 JP WO2019183608A5 JP 2020550666 A JP2020550666 A JP 2020550666A JP 2020550666 A JP2020550666 A JP 2020550666A JP WO2019183608 A5 JPWO2019183608 A5 JP WO2019183608A5
Authority
JP
Japan
Prior art keywords
fluid
chamber
sample
tapered
assay chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020550666A
Other languages
Japanese (ja)
Other versions
JP2021518539A (en
JP7401448B2 (en
Publication date
Priority claimed from US15/928,551 external-priority patent/US10046322B1/en
Application filed filed Critical
Publication of JP2021518539A publication Critical patent/JP2021518539A/en
Publication of JPWO2019183608A5 publication Critical patent/JPWO2019183608A5/ja
Priority to JP2023206579A priority Critical patent/JP2024026300A/en
Application granted granted Critical
Publication of JP7401448B2 publication Critical patent/JP7401448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本明細書に含まれる実施例及び具体例は、本発明対象が実施されうる具体的な実施形態を、限定ではなく例示として示す。言及されたように、他の実施形態が利用されたり派生したりしてよく、本開示の範囲から逸脱しない限り、構造的な、或いは論理的な置換又は変更が行われてよい。本発明対象のそのような実施形態は、本明細書においては、個別に参照されてよく、或いは、「本発明」という言い方でまとめて参照されてよく、「本発明」という言い方で参照することは、あくまで便宜上であって、本出願の範囲を、実際には2つ以上が開示されていても、いずれか1つの発明又は発明概念に自発的に限定することを意図するものではない。従って、本明細書では特定の実施形態を図示及び説明してきたが、この、示された特定の実施形態を、同じ目的を達成するように作られた任意の構成で置き換えてよい。本開示は、様々な実施形態のあらゆる翻案又は変形を包含するものである。当業者であれば、上述の説明を精査することにより、上述の複数の実施形態の組み合わせ、及び本明細書に具体的な記載がない他の実施形態が明らかになるであろう。

〔付記1〕
底面を有する本体と、
前記本体の中央開口部と、
前記底面上の乾燥試薬と、を含み、前記本体は、赤色スペクトル、青色スペクトル、及び緑色スペクトルのうちの少なくとも1つにおける励起波長及び発光波長に対して透過性を有する材料から形成されている、
を含むプラグ。
〔付記2〕
前記乾燥試薬は、前記底面のうちの、前記本体の前記中央開口部の幅より幅広な部分の上にある、付記1に記載のプラグ。
〔付記3〕
前記中央開口部の幅が、前記底面のうちの、前記乾燥試薬を収容している部分より幅広である、付記1に記載のプラグ。
〔付記4〕
前記底面に、前記乾燥試薬が入るキャビティを更に含む、付記1に記載のプラグ。
〔付記5〕
中央開口部の底部と前記プラグ本体の底部との間のプラグ厚さを更に含み、前記キャビティの深さが前記プラグ厚さの90%未満である、付記4に記載のプラグ。
〔付記6〕
中央開口部の底部と前記プラグ本体の底部との間のプラグ厚さを更に含み、前記キャビティの深さが前記プラグ厚さの70%未満である、付記4に記載のプラグ。
〔付記7〕
中央開口部の底部と前記プラグ本体の底部との間のプラグ厚さを更に含み、前記キャビティの深さが前記プラグ厚さの50%未満である、付記4に記載のプラグ。
〔付記8〕
前記プラグ本体の外側エッジから前記キャビティの外周部にかけての環形を前記プラグ底面上に更に含む、付記4に記載のプラグ。
〔付記9〕
前記環形は前記キャビティの前記外周部を完全に取り囲む、付記6に記載のプラグ。
〔付記10〕
前記キャビティは更に、前記底面に外周部を含み、前記キャビティの開始角度が前記外周部から、前記底面に対して測定され、前記開始角度は60度以下である、付記4に記載のプラグ。
〔付記11〕
前記キャビティは前記プラグ本体中央開口部より幅広である、付記4~8のいずれか一項に記載のプラグ。
〔付記12〕
前記プラグ本体中央開口部は前記キャビティより幅広である、付記4~8のいずれか一項に記載のプラグ。
〔付記13〕
前記プラグ本体底面は更に、境界のあるエリアを前記プラグ本体底面上に含み、前記乾燥試薬は前記境界のあるエリアの中にある、付記1に記載のプラグ。
〔付記14〕
前記プラグ底面上の前記境界のあるエリアは、前記プラグ本体底面上のフィーチャによって与えられる、付記11に記載のプラグ。
〔付記15〕
前記フィーチャは、前記プラグ底面の上方に持ち上げられているか、前記プラグ底面に埋め込まれている、付記12に記載のプラグ。
〔付記16〕
前記フィーチャは湾曲断面又は矩形断面を有する、付記13に記載のプラグ。
〔付記17〕
前記境界のあるエリアの幅が前記本体中央開口部の幅より大きいか、前記境界のあるエリアの幅が前記本体中央開口部の幅より小さいか、前記境界のあるエリアの幅が前記本体中央開口部の幅とほぼ同じである、付記11に記載のプラグ。
〔付記18〕
前記プラグは研磨仕上げ又は平滑仕上げであることで、前記励起波長及び前記発光波長の透過性を促進する、付記1~15のいずれか一項に記載のプラグ。
〔付記19〕
前記プラグ本体上の、前記プラグ本体の前記中央開口部の周囲にフランジを更に含む、付記1~16のいずれか一項に記載のプラグ。
〔付記20〕
前記乾燥試薬は、核酸合成試薬、ペプチド合成試薬、ポリマー合成試薬、核酸、ヌクレオチド、核酸塩基、ヌクレオシド、ペプチド、アミノ酸、モノマー、検出試薬、触媒、又はこれらの組み合わせから成る群から選択される、付記1~17のいずれか一項に記載のプラグ。
〔付記21〕
前記乾燥試薬は、前記プラグ底面に付着する連続膜である、付記1~18のいずれか一項に記載の装置。
〔付記22〕
前記乾燥試薬は凍結乾燥試薬である、付記1~18のいずれか一項に記載の装置。
〔付記23〕
前記乾燥試薬は、前記プラグ底面に付着する複数の液滴を含む、付記1~18のいずれか一項に記載の装置。
〔付記24〕
アッセイチャンバであって、
a.テーパ状入口と、
b.テーパ状出口と、
c.底面及び中央開口部を本体に含むプラグであって、前記本体は、紫外スペクトル、青色スペクトル、緑色スペクトル、及び赤色スペクトルのうちの少なくとも1つにおける励起波長及び発光波長に対して透過性を有する材料から形成されている、前記プラグと、
d.2つの湾曲境界であって、前記2つの湾曲境界と前記プラグとが一緒に前記アッセイチャンバの体積を囲むように、各湾曲境界が前記テーパ状入口から前記テーパ状出口まで延びている、前記2つの湾曲境界と、
e.各湾曲境界から延びる肩部であって、前記プラグが各肩部と接触することによって、前記アッセイチャンバの境界が前記2つの湾曲境界によって与えられ、前記肩部は前記湾曲境界のそれぞれと前記プラグとから延びる、前記肩部と、
を含むアッセイチャンバ。
〔付記25〕
前記プラグは、前記アッセイチャンバ内で前記プラグ上に乾燥試薬を有する、付記24に記載のアッセイチャンバ。
〔付記26〕
前記プラグ上のキャビティが前記肩部のそれぞれの間に位置し、前記乾燥試薬は前記キャビティ内にある、付記25に記載のアッセイチャンバ。
〔付記27〕
前記湾曲境界又は前記肩部の一部分が、前記キャビティの外周部に合致する形状になっている、付記26に記載のアッセイチャンバ。
〔付記28〕
前記プラグ上の前記乾燥試薬は前記肩部のそれぞれの間に位置する、付記25に記載のアッセイチャンバ。
〔付記29〕
前記プラグ本体の前記底部の平らな一部分が前記肩部に接触する、付記24に記載のアッセイチャンバ。
〔付記30〕
前記アッセイチャンバの前記体積を調節する為に、前記肩部のそれぞれの高さが使用される、付記24に記載のアッセイチャンバ。
〔付記31〕
前記肩部のそれぞれの前記高さは100マイクロメートル以上である、付記30に記載のアッセイチャンバ。
〔付記32〕
前記肩部のそれぞれの前記高さは、前記2つの湾曲境界の、離隔距離が最大になった時点での互いからの距離を超えない、付記30に記載のアッセイチャンバ。
〔付記33〕
前記肩部は、前記テーパ状入口から前記テーパ状出口にかけて前記アッセイチャンバの湾曲境界全体を保持する形状になっている、付記24~32のいずれか一項に記載のアッセイチャンバ。
〔付記34〕
前記2つの湾曲境界及び前記肩部はモノリシック基板に形成されている、付記24に記載のアッセイチャンバ。
〔付記35〕
前記モノリシック基板の表面に接着された膜を更に含み、前記膜は前記アッセイチャンバの1つの壁を形成する、付記34に記載のアッセイチャンバ。
〔付記36〕
付記1~23のいずれか一項に記載のようなプラグを有する、付記24~35のいずれか一項に記載のアッセイチャンバ。
〔付記37〕
a.共通流体経路と、
b.前記共通流体経路に接続された、複数の独立した連続的な流体経路であって、独立した連続的な各流体経路は、
i.アッセイチャンバと、
ii.空気区画と、
を含み、
1.前記アッセイチャンバは前記共通流体経路に接続されており、前記アッセイチャンバの流体体積の一部が、乾燥試薬をプラグ上に有する前記プラグによって定義されており、
2.前記空気区画は、空気体積を有していて、前記アッセイチャンバを介して前記共通流体経路につながっており、
前記複数の独立した連続的な流体経路の各流体経路は、前記アッセイチャンバと前記共通流体源との接続を含まない閉鎖系であり、各アッセイチャンバは更に、を含む、
前記複数の独立した連続的な流体経路と、
c.両側テーパ状チャンバであって、
iii.前記流体経路の入口導管の終端部と流体連通しているテーパ状入口と、
iv.前記空気区画の終端部と流体連通しているテーパ状出口と、
v.2つの湾曲境界であって、前記2つの湾曲境界が一緒に前記アッセイチャンバの体積を囲むように、各湾曲境界が前記テーパ状入口から前記テーパ状出口まで延びている、前記2つの湾曲境界と、
を含む前記両側テーパ状チャンバと、
d.各湾曲境界から延びる肩部であって、前記プラグが各肩部と接触することによって、前記アッセイチャンバの境界が前記2つの湾曲境界によって与えられ、前記肩部は前記湾曲境界のそれぞれと前記プラグとから延びる、前記肩部と、
を含む装置。
〔付記38〕
前記プラグ上のキャビティが前記肩部のそれぞれの間に位置し、前記乾燥試薬は前記キャビティ内にある、付記37に記載の装置。
〔付記39〕
前記プラグ上の乾燥試薬が前記肩部のそれぞれの間に位置する、付記37に記載の装置。
〔付記40〕
前記プラグ本体の前記底部の平らな一部分が前記肩部に接触する、付記37に記載の装置。
〔付記41〕
前記アッセイチャンバの前記体積を調節する為に、前記肩部のそれぞれの高さが使用される、付記37に記載の装置。
〔付記42〕
前記肩部のそれぞれの前記高さは100マイクロメートル以上である、付記41に記載の装置。
〔付記43〕
前記肩部は、前記テーパ状入口から前記テーパ状出口にかけて前記アッセイチャンバの湾曲境界全体を保持する形状になっている、付記37~42のいずれか一項に記載のアッセイチャンバ。
〔付記44〕
前記2つの湾曲境界はモノリシック基板に形成されている、付記37に記載の装置。
〔付記45〕
前記プラグの前記本体はある深さで前記アッセイチャンバの前記モノリシック基板内に突出しており、前記プラグの前記本体が前記アッセイチャンバの前記モノリシック基板内に突出する前記深さを変化させることによって、前記アッセイチャンバ体積を変化させることが容易に可能である、付記44に記載の装置。
〔付記46〕
前記湾曲境界又は前記肩部の一部分が、前記キャビティの外周部に合致する形状になっている、付記38に記載の装置。
〔付記47〕
前記装置の少なくとも一部分の表面に接着された第1の膜を更に含み、前記第1の膜は、前記装置の1つ以上のチャンバ、区画、又は導管の1つの壁を形成する、付記37~46のいずれか一項に記載の装置。
〔付記48〕
前記第1の膜に接着された第2の膜を更に含み、前記第2の膜は前記第1の膜より融解温度が高い、付記47に記載の装置。
〔付記49〕
前記第1の膜又は前記第2の膜を使用して前記流体経路のそれぞれに形成された熱カシメ領域を更に含み、前記熱カシメ領域は、前記共通流体経路を前記アッセイチャンバ及び前記空気チャンバから封鎖する、付記48に記載の装置。
〔付記50〕
前記複数の独立した連続的な流体経路のそれぞれの中に持ち上がったプラットフォームを更に含み、前記持ち上がったプラットフォームは前記アッセイチャンバの入口と前記共通流体経路との間に位置し、前記熱カシメ領域は、前記持ち上がったプラットフォームの一部分を使用して形成される、付記49に記載の装置。
〔付記51〕
付記1~23のいずれか一項に記載のようなプラグを有する、付記37~50のいずれか一項に記載の装置。
〔付記52〕
複数の試料チャンバの同時充填を行う方法であって、
a.共通流体経路内の流体試料を加圧するステップと、
b.前記共通流体経路から複数の入口導管に前記流体試料を導入するステップと、
c.前記入口導管のそれぞれに沿って前記入口導管のそれぞれの入口導管終端部に向けて前記流体試料を流すステップであって、各入口導管は試料チャンバに接続されている、前記ステップと、
d.各試料チャンバのテーパ状入口部分に沿って前記流体試料を流すステップと、
e.各試料チャンバ内で肩部のペアに隣接する前記流体試料をプラグに沿って流すステップと、
f.前記流体試料を各試料チャンバのテーパ状出口部分に沿って空気区画終端部に向けて流すステップと、
g.各入口導管及び各試料チャンバに収容されていた気体を、各空気区画終端部と連通している空気チャンバ内へと押し退けるステップと、
を含む方法。
〔付記53〕
前記流体試料を加圧する前記ステップは一定圧力で実施される、付記52に記載の方法。
〔付記54〕
前記一定圧力は、5、10、20、40、又は60psiのうちの1つである、付記53に記載の方法。
〔付記55〕
前記流体を加圧する前記ステップは更に、前記流体試料を一連の増加する圧力レベルで加圧することを含む、付記52に記載の方法。
〔付記56〕
圧力の各増加レベルは一定の継続時間で印加される、付記55に記載の方法。
〔付記57〕
圧力の各増加レベルは一定量ずつ増やされる、付記55に記載の方法。
〔付記58〕
前記流体試料を加圧する前記ステップにより、低い圧力レベルから高い圧力レベルにかけての一連の圧力レベルが印加される、付記55に記載の方法。
〔付記59〕
使用時に、前記空気チャンバが試料チャンバの上方にあり、その為、前記流体試料を前記試料チャンバのテーパ状出口部分に沿って空気区画終端部に向けて流す前記ステップ、並びに各入口導管に収容されていた気体を押し退ける前記ステップは、重力に逆らって実施される、付記52に記載の方法。
〔付記60〕
使用時には、前記複数の試料チャンバの方向付けが、前記複数の試料チャンバのうちの特定の試料チャンバに関連付けられた各空気チャンバが前記試料チャンバの上方に位置付けられるように行われる、付記52又は付記59に記載の方法。
〔付記61〕
前記流体試料を前記装置の各流体経路の前記試料チャンバに流入させることにより、前記流体経路内の気体が前記流体経路の前記空気区画に向かって圧縮される、付記52に記載の方法。
〔付記62〕
前記空気区画のそれぞれの内圧が前記共通流体経路に印加されている圧力と等しくなった時点で、流体試料を加圧する前記ステップの間に達した圧力を保持するステップを更に含む、付記52に記載の方法。
〔付記63〕
気体を押し退ける前記ステップの間に各空気区画の内圧を高めるステップと、前記共通流体経路に印加されている圧力が各空気区画の内圧と等しくなった時点で前記内圧を高めることを停止するステップと、を更に含む、付記52に記載の方法。
〔付記64〕
前記空気区画のそれぞれの前記内圧が前記共通流体経路に印加されている圧力と等しくなった時点で、前記試料を流す前記ステップのそれぞれを停止するステップを更に含む、付記52に記載の方法。
〔付記65〕
前記複数の試料チャンバのうちの少なくとも2つの試料チャンバの体積が異なる、付記52に記載の方法。
〔付記66〕
前記共通流体経路から前記複数の試料チャンバの各試料チャンバに入る流量が前記試料チャンバの流体体積に比例し、少なくとも2つの異なる流量がある、付記65に記載の方法。
〔付記67〕
前記複数の試料チャンバの各試料チャンバの同時充填を行うステップを更に含む、付記52に記載の方法。
〔付記68〕
前記流体試料を前記テーパ状入口に沿って流す前記ステップの途中又は後に、前記流体試料を前記試料チャンバ内の分岐する2つの湾曲境界に沿って流すステップを更に含む、付記52に記載の方法。
〔付記69〕
前記流体試料を前記肩部ペアに沿って流す前記ステップの後又は途中に、前記流体試料を前記試料チャンバ内の収斂する2つの湾曲境界に沿って流すステップを更に含む、付記52に記載の方法。
〔付記70〕
前記2つの湾曲境界の収斂によって、前記流体試料のメニスカスの前面先導部における流体前進速度が低下し、これによって、前記流体試料が前記テーパ状出口に達した時点で、前記流体試料の前記メニスカスは前記アッセイチャンバの最大寸法に関してほぼ対称であり、これによって、充填中の前記アッセイチャンバ内での気泡のトラッピングが最小限に抑えられる、付記69に記載の方法。
〔付記71〕
各試料チャンバにおいてメニスカスを前記空気チャンバ終端部に近接して位置させるステップを更に含む、付記52に記載の方法。
〔付記72〕
前記流体試料内で形成された1つ以上の気泡を前記試料チャンバ内の前記流体試料のメニスカスに近接して位置させる為に、前記ステップのうちの1つ以上を実施することを更に含む、付記52に記載の方法。
〔付記73〕
前記メニスカスは前記空気チャンバ終端部に近接する、付記72に記載の方法。
〔付記74〕
前記共通流体経路内の流体試料を加圧する前記ステップを実施する間は前記複数の入口導管のそれぞれを封止するステップを更に含む、付記52に記載の方法。
〔付記75〕
前記試料チャンバのテーパ状部分に沿って前記流体試料を流す前記ステップを停止した時点で、前記複数の入口導管のそれぞれを封止するステップを更に含む、付記52に記載の方法。
〔付記76〕
前記共通流体経路から前記入口導管のそれぞれに沿って前記流体試料を流す前記ステップを停止した時点で、前記複数の入口導管のそれぞれを封止するステップを更に含む、付記52に記載の方法。
〔付記77〕
封止する前記ステップは、前記入口導管の閉鎖された部分を熱カシメするステップを更に含む、付記74~76のいずれか一項に記載の方法。
〔付記78〕
第1の膜の、前記入口導管のそれぞれに近接する部分を加熱するステップと、前記第1の膜を溶融して前記入口導管の前記それぞれを封鎖するステップと、を更に含む、付記74~76のいずれか一項に記載の方法。
〔付記79〕
全ての入口導管を同時に封止するステップを更に含む、付記77に記載の方法。
〔付記80〕
前記第1の膜によって前記入口導管から隔てられている第2の膜を、溶融することなく加熱するステップを更に含む、付記77に記載の方法。
〔付記81〕
前記第2の膜を溶融することなく、前記入口導管の一部分を前記第1の膜の一部分に融着させるステップを更に含む、付記80に記載の方法。
〔付記82〕
前記入口導管のそれぞれを封止した後、第1の膜又は第2の膜の一部分が、前記入口導管のそれぞれに形成された持ち上がったプラットフォームに融着される、付記74~81のいずれか一項に記載の方法。

参照符号一覧
アイテム 最後の2桁
装置 00
共通流体源 01
モノリシック基板 02
熱カシメ 03
持ち上がったプラットフォーム 05
独立した流体経路 10
第1の膜 12
第2の膜 14
試料チャンバ 20
アッセイチャンバ 21
入口導管 22
入口導管終端部 23
空気区画 30
空気チャンバ 31
空気導管 32
空気区画終端部 33
両側テーパ状チャンバ 40
テーパ状入口 41
テーパ状出口 42
両側テーパ状チャンバの中心点 43
第1の湾曲境界 44
第2の湾曲境界 45
第1の湾曲境界中点 46
第2の湾曲境界中点 47
最大寸法 48
空気 50
凹部 52
流体試料 60
メニスカス 61
前面先導部 62
プラグ 70
プラグ本体 71
プラグキャップ 72
プラグキャップのフランジ 73
プラグキャップの内部キャビティ 74
乾燥試薬 75
プラグ底面 76
中央開口部 77
中央開口部の側壁 78
中央開口部の底部 79
平らな環形 80
磁気式混合要素 81
外部磁石 82
モータ 83
被加熱要素 84
プラグ厚さ 85
開始角度 86
凸状フィーチャ 87
凹状フィーチャ 88
肩部高さ 92
肩部 95
アッセイチャンバ体積 96
支持リング/凸状環形 97
モノリシック基板のプラグ用開口部 98
The examples and specific examples included in the present specification show specific embodiments in which the subject of the present invention can be carried out, without limitation, as examples. As mentioned, other embodiments may be utilized or derived, and structural or logical substitutions or modifications may be made without departing from the scope of the present disclosure. Such embodiments of the subject matter of the present invention may be referred to individually in the present specification, or may be collectively referred to by the term "invention", and may be referred to by the term "invention". Is for convenience only and is not intended to voluntarily limit the scope of the present application to any one invention or invention concept, even if two or more are actually disclosed. Accordingly, although specific embodiments have been illustrated and described herein, this particular embodiment may be replaced with any configuration designed to achieve the same purpose. The present disclosure embraces any adaptation or modification of the various embodiments. Those skilled in the art will discover combinations of the plurality of embodiments described above, as well as other embodiments not specifically described herein, by scrutinizing the above description.

[Appendix 1]
The main body with the bottom and
The central opening of the main body and
The body comprises a drying reagent on the bottom surface, and the body is formed of a material that is transparent to the excitation and emission wavelengths in at least one of a red spectrum, a blue spectrum, and a green spectrum.
Plug including.
[Appendix 2]
The plug according to Appendix 1, wherein the drying reagent is on a portion of the bottom surface that is wider than the width of the central opening of the main body.
[Appendix 3]
The plug according to Appendix 1, wherein the width of the central opening is wider than the portion of the bottom surface containing the drying reagent.
[Appendix 4]
The plug according to Appendix 1, further comprising a cavity in the bottom surface for containing the drying reagent.
[Appendix 5]
The plug according to Appendix 4, further comprising a plug thickness between the bottom of the central opening and the bottom of the plug body, the depth of the cavity being less than 90% of the plug thickness.
[Appendix 6]
The plug according to Appendix 4, further comprising a plug thickness between the bottom of the central opening and the bottom of the plug body, the depth of the cavity being less than 70% of the plug thickness.
[Appendix 7]
The plug according to Appendix 4, further comprising a plug thickness between the bottom of the central opening and the bottom of the plug body, the depth of the cavity being less than 50% of the plug thickness.
[Appendix 8]
The plug according to Appendix 4, further comprising a ring shape from the outer edge of the plug body to the outer peripheral portion of the cavity on the bottom surface of the plug.
[Appendix 9]
The plug according to Appendix 6, wherein the ring shape completely surrounds the outer peripheral portion of the cavity.
[Appendix 10]
The plug according to Appendix 4, wherein the cavity further includes an outer peripheral portion in the bottom surface, the starting angle of the cavity is measured from the outer peripheral portion to the bottom surface, and the starting angle is 60 degrees or less.
[Appendix 11]
The plug according to any one of Supplementary note 4 to 8, wherein the cavity is wider than the central opening of the plug body.
[Appendix 12]
The plug according to any one of Supplementary note 4 to 8, wherein the central opening of the plug body is wider than the cavity.
[Appendix 13]
The plug according to Appendix 1, wherein the bottom surface of the plug body further includes an area having a boundary on the bottom surface of the plug body, and the drying reagent is in the area having the boundary.
[Appendix 14]
The plug according to Appendix 11, wherein the bordered area on the bottom of the plug is provided by a feature on the bottom of the plug body.
[Appendix 15]
The plug according to Appendix 12, wherein the feature is lifted above the bottom of the plug or embedded in the bottom of the plug.
[Appendix 16]
The plug according to Appendix 13, wherein the feature has a curved or rectangular cross section.
[Appendix 17]
Whether the width of the area with the boundary is larger than the width of the central opening of the main body, the width of the area with the boundary is smaller than the width of the central opening of the main body, or the width of the area with the boundary is the central opening of the main body. The plug according to Appendix 11, which has almost the same width as the portion.
[Appendix 18]
The plug according to any one of Supplementary note 1 to 15, wherein the plug has a polished finish or a smooth finish to promote the transparency of the excitation wavelength and the emission wavelength.
[Appendix 19]
The plug according to any one of Supplementary note 1 to 16, further comprising a flange around the central opening of the plug body on the plug body.
[Appendix 20]
The drying reagent is selected from the group consisting of a nucleic acid synthesis reagent, a peptide synthesis reagent, a polymer synthesis reagent, a nucleic acid, a nucleotide, a nucleic acid base, a nucleoside, a peptide, an amino acid, a monomer, a detection reagent, a catalyst, or a combination thereof. The plug according to any one of 1 to 17.
[Appendix 21]
The apparatus according to any one of Supplementary note 1 to 18, wherein the drying reagent is a continuous film adhering to the bottom surface of the plug.
[Appendix 22]
The apparatus according to any one of Supplementary note 1 to 18, wherein the drying reagent is a freeze-drying reagent.
[Appendix 23]
The apparatus according to any one of Supplementary note 1 to 18, wherein the drying reagent contains a plurality of droplets adhering to the bottom surface of the plug.
[Appendix 24]
It ’s an assay chamber.
a. With a tapered entrance,
b. With a tapered exit,
c. A plug that includes a bottom surface and a central opening in the body, the body of which is transparent to the excitation and emission wavelengths in at least one of the ultraviolet, blue, green, and red spectra. With the plug, which is formed from
d. The two curved boundaries, wherein each curved boundary extends from the tapered inlet to the tapered outlet so that the two curved boundaries and the plug together enclose the volume of the assay chamber. With two curved boundaries,
e. A shoulder extending from each curved boundary, the contact of the plug with each shoulder provides the boundary of the assay chamber by the two curved boundaries, the shoulder being each of the curved boundaries and the plug. With the shoulder extending from
Assay chamber containing.
[Appendix 25]
The assay chamber according to Appendix 24, wherein the plug has a drying reagent on the plug in the assay chamber.
[Appendix 26]
The assay chamber according to Appendix 25, wherein the cavity on the plug is located between each of the shoulders and the drying reagent is in the cavity.
[Appendix 27]
26. The assay chamber according to Appendix 26, wherein the curved boundary or a portion of the shoulder is shaped to match the outer periphery of the cavity.
[Appendix 28]
25. The assay chamber according to Appendix 25, wherein the drying reagent on the plug is located between each of the shoulders.
[Appendix 29]
24. The assay chamber according to Appendix 24, wherein the flat portion of the bottom of the plug body contacts the shoulder.
[Appendix 30]
24. The assay chamber according to Appendix 24, wherein the height of each of the shoulders is used to adjust the volume of the assay chamber.
[Appendix 31]
30. The assay chamber according to Appendix 30, wherein the height of each of the shoulders is 100 micrometers or more.
[Appendix 32]
The assay chamber according to Appendix 30, wherein the height of each of the shoulders does not exceed the distance of the two curved boundaries from each other at the time of maximum separation.
[Appendix 33]
The assay chamber according to any one of Supplementary note 24 to 32, wherein the shoulder portion is shaped to hold the entire curved boundary of the assay chamber from the tapered inlet to the tapered outlet.
[Appendix 34]
The assay chamber according to Appendix 24, wherein the two curved boundaries and the shoulder are formed on a monolithic substrate.
[Appendix 35]
The assay chamber according to Appendix 34, further comprising a membrane adhered to the surface of the monolithic substrate, wherein the membrane forms one wall of the assay chamber.
[Appendix 36]
The assay chamber according to any one of Supplementary Provisions 24 to 35, which has a plug as described in any one of Supplementary note 1 to 23.
[Appendix 37]
a. Common fluid path and
b. A plurality of independent continuous fluid paths connected to the common fluid path, and each independent continuous fluid path is
i. Assay chamber and
ii. Air compartment and
Including
1. 1. The assay chamber is connected to the common fluid pathway, and a portion of the fluid volume of the assay chamber is defined by the plug having a desiccant on the plug.
2. 2. The air compartment has an air volume and is connected to the common fluid path through the assay chamber.
Each fluid pathway of the plurality of independent continuous fluid pathways is a closed system that does not include a connection between the assay chamber and the common fluid source, and each assay chamber further comprises.
With the plurality of independent continuous fluid paths,
c. It is a tapered chamber on both sides,
iii. A tapered inlet that communicates with the end of the inlet conduit of the fluid path,
iv. A tapered outlet that communicates with the end of the air compartment,
v. With the two curved boundaries, each of which extends from the tapered inlet to the tapered outlet so that the two curved boundaries surround the volume of the assay chamber together. ,
With the tapered chambers on both sides, including
d. A shoulder extending from each curved boundary, the contact of the plug with each shoulder provides the boundary of the assay chamber by the two curved boundaries, the shoulder being each of the curved boundaries and the plug. With the shoulder extending from
Equipment including.
[Appendix 38]
37. The apparatus of Appendix 37, wherein the cavity on the plug is located between each of the shoulders and the drying reagent is in the cavity.
[Appendix 39]
37. The apparatus of Appendix 37, wherein the desiccant on the plug is located between each of the shoulders.
[Appendix 40]
37. The device of Appendix 37, wherein a flat portion of the bottom of the plug body contacts the shoulder.
[Appendix 41]
37. The device of Appendix 37, wherein the height of each of the shoulders is used to adjust the volume of the assay chamber.
[Appendix 42]
The device according to Appendix 41, wherein the height of each of the shoulders is 100 micrometers or more.
[Appendix 43]
The assay chamber according to any one of Supplementary note 37 to 42, wherein the shoulder portion is shaped to hold the entire curved boundary of the assay chamber from the tapered inlet to the tapered outlet.
[Appendix 44]
The device according to Appendix 37, wherein the two curved boundaries are formed on a monolithic substrate.
[Appendix 45]
The body of the plug projects at a certain depth into the monolithic substrate of the assay chamber, and by varying the depth at which the body of the plug projects into the monolithic substrate of the assay chamber. 44. The device of Appendix 44, wherein the assay chamber volume can be easily varied.
[Appendix 46]
The device according to Appendix 38, wherein the curved boundary or a part of the shoulder portion has a shape that matches the outer peripheral portion of the cavity.
[Appendix 47]
It further comprises a first membrane adhered to the surface of at least a portion of the device, wherein the first membrane forms one wall of one or more chambers, compartments, or conduits of the device, Appendix 37-. The apparatus according to any one of 46.
[Appendix 48]
47. The apparatus of Appendix 47, further comprising a second membrane adhered to the first membrane, wherein the second membrane has a higher melting temperature than the first membrane.
[Appendix 49]
Further comprising a thermal caulking region formed in each of the fluid pathways using the first membrane or the second membrane, the thermal caulking region extends the common fluid pathway from the assay chamber and the air chamber. The device according to Appendix 48, which is to be closed.
[Appendix 50]
The lifted platform further comprises a platform lifted within each of the plurality of independent continuous fluid pathways, the lifted platform located between the inlet of the assay chamber and the common fluid pathway, the thermal caulking region. The device according to Appendix 49, which is formed using a portion of the lifted platform.
[Appendix 51]
The device according to any one of the appendices 37 to 50, which has a plug as described in any one of the appendices 1 to 23.
[Appendix 52]
It is a method of simultaneous filling of multiple sample chambers.
a. The step of pressurizing the fluid sample in the common fluid path,
b. The step of introducing the fluid sample from the common fluid path into a plurality of inlet conduits,
c. A step of flowing the fluid sample along each of the inlet conduits towards the respective inlet conduit termination of the inlet conduit, wherein each inlet conduit is connected to a sample chamber.
d. A step of flowing the fluid sample along the tapered inlet portion of each sample chamber,
e. The step of flowing the fluid sample adjacent to the shoulder pair in each sample chamber along the plug,
f. A step of flowing the fluid sample toward the end of the air compartment along the tapered outlet portion of each sample chamber.
g. A step of pushing the gas contained in each inlet conduit and each sample chamber into the air chamber communicating with the end of each air compartment.
How to include.
[Appendix 53]
52. The method of Appendix 52, wherein the step of pressurizing the fluid sample is performed at a constant pressure.
[Appendix 54]
The method according to Appendix 53, wherein the constant pressure is one of 5, 10, 20, 40, or 60 psi.
[Appendix 55]
25. The method of Appendix 52, wherein the step of pressurizing the fluid further comprises pressurizing the fluid sample at a series of increasing pressure levels.
[Appendix 56]
The method of Appendix 55, wherein each increasing level of pressure is applied over a fixed duration.
[Appendix 57]
The method of Appendix 55, wherein each increase level of pressure is increased by a constant amount.
[Appendix 58]
55. The method of Appendix 55, wherein the step of pressurizing the fluid sample applies a series of pressure levels from a low pressure level to a high pressure level.
[Appendix 59]
In use, the air chamber is above the sample chamber and is therefore accommodated in the step, as well as in each inlet conduit, which allows the fluid sample to flow along the tapered outlet portion of the sample chamber towards the end of the air compartment. The method according to Appendix 52, wherein the step of pushing away the existing gas is carried out against gravity.
[Appendix 60]
In use, the orientation of the plurality of sample chambers is performed such that each air chamber associated with a particular sample chamber of the plurality of sample chambers is located above the sample chamber, appendix 52 or appendix. 59.
[Appendix 61]
52. The method of Appendix 52, wherein by allowing the fluid sample to flow into the sample chamber of each fluid path of the apparatus, the gas in the fluid path is compressed towards the air compartment of the fluid path.
[Appendix 62]
Addendum 52 further comprises a step of retaining the pressure reached during the step of pressurizing the fluid sample when the internal pressure of each of the air compartments becomes equal to the pressure applied to the common fluid path. the method of.
[Appendix 63]
A step of increasing the internal pressure of each air compartment during the step of pushing away the gas, and a step of stopping increasing the internal pressure when the pressure applied to the common fluid path becomes equal to the internal pressure of each air compartment. The method according to Appendix 52, further comprising.
[Appendix 64]
52. The method of Appendix 52, further comprising stopping each of the steps of flowing the sample when the internal pressure of each of the air compartments becomes equal to the pressure applied to the common fluid path.
[Appendix 65]
52. The method of Appendix 52, wherein at least two of the plurality of sample chambers have different volumes.
[Appendix 66]
65. The method of Appendix 65, wherein the flow rate from the common fluid path into each sample chamber of the plurality of sample chambers is proportional to the fluid volume of the sample chamber and there are at least two different flow rates.
[Appendix 67]
52. The method of Appendix 52, further comprising the step of simultaneously filling each sample chamber of the plurality of sample chambers.
[Appendix 68]
52. The method of Appendix 52, further comprising flowing the fluid sample along two bifurcated curved boundaries in the sample chamber during or after the step of flowing the fluid sample along the tapered inlet.
[Appendix 69]
52. The method of Appendix 52, further comprising flowing the fluid sample along two convergent curved boundaries in the sample chamber after or in the middle of the step of flowing the fluid sample along the shoulder pair. ..
[Appendix 70]
Convergence of the two curved boundaries slows the fluid advance speed at the frontal lead of the meniscus of the fluid sample, thereby causing the meniscus of the fluid sample to reach the tapered outlet. The method of Appendix 69, which is substantially symmetrical with respect to the maximum dimensions of the assay chamber, thereby minimizing trapping of air bubbles in the assay chamber during filling.
[Appendix 71]
52. The method of Appendix 52, further comprising locating the meniscus in each sample chamber in close proximity to the end of the air chamber.
[Appendix 72]
Addendum, further comprising performing one or more of the steps to position one or more bubbles formed in the fluid sample close to the meniscus of the fluid sample in the sample chamber. 52.
[Appendix 73]
72. The method of Appendix 72, wherein the meniscus is in close proximity to the end of the air chamber.
[Appendix 74]
52. The method of Appendix 52, further comprising sealing each of the plurality of inlet conduits while performing the step of pressurizing a fluid sample in the common fluid path.
[Appendix 75]
52. The method of Appendix 52, further comprising sealing each of the plurality of inlet conduits when the step of flowing the fluid sample along the tapered portion of the sample chamber is stopped.
[Appendix 76]
52. The method of Appendix 52, further comprising sealing each of the plurality of inlet conduits when the step of flowing the fluid sample from the common fluid path along each of the inlet conduits is stopped.
[Appendix 77]
The method according to any one of Supplementary note 74-76, wherein the sealing step further comprises a step of heat caulking the closed portion of the inlet conduit.
[Appendix 78]
Addendum 74-76 further comprises heating a portion of the first membrane close to each of the inlet conduits and melting the first membrane to seal each of the inlet conduits. The method described in any one of the above.
[Appendix 79]
The method of Appendix 77, further comprising the step of sealing all inlet conduits simultaneously.
[Appendix 80]
77. The method of Appendix 77, further comprising heating the second membrane, which is separated from the inlet conduit by the first membrane, without melting.
[Appendix 81]
80. The method of Appendix 80, further comprising the step of fusing a portion of the inlet conduit to the portion of the first membrane without melting the second membrane.
[Appendix 82]
Any one of Appendix 74-81, after sealing each of the inlet conduits, the first membrane or a portion of the second membrane is fused to the lifted platform formed on each of the inlet conduits. The method described in the section.

Reference code list Item Last 2-digit device 00
Common fluid source 01
Monolithic board 02
Heat caulking 03
Lifted platform 05
Independent fluid path 10
First film 12
Second membrane 14
Sample chamber 20
Assay chamber 21
Inlet conduit 22
Inlet conduit end 23
Air compartment 30
Air chamber 31
Air conduit 32
Air compartment end 33
Both sides tapered chamber 40
Tapered entrance 41
Tapered outlet 42
Center point of tapered chambers on both sides 43
First curved boundary 44
Second curved boundary 45
First curved boundary midpoint 46
Second curved boundary midpoint 47
Maximum dimensions 48
Air 50
Recess 52
Fluid sample 60
Meniscus 61
Front lead part 62
Plug 70
Plug body 71
Plug cap 72
Plug cap flange 73
Internal cavity of plug cap 74
Dry reagent 75
Plug bottom 76
Central opening 77
Side wall of central opening 78
Bottom of central opening 79
Flat annelid 80
Magnetic mixing element 81
External magnet 82
Motor 83
Heated element 84
Plug thickness 85
Starting angle 86
Convex feature 87
Concave feature 88
Shoulder height 92
Shoulder 95
Assay chamber volume 96
Support ring / convex annelid 97
Monolithic board plug opening 98

Claims (27)

装置であって、 It ’s a device,
(a)共通流体源と、 (A) Common fluid source and
(b)複数の独立した連続的な流体経路であって、独立した連続的な各流体経路は、 (B) A plurality of independent continuous fluid paths, and each independent continuous fluid path is
(i)前記共通流体源に接続された試料チャンバであって、前記試料チャンバは流体体積を含み、アッセイチャンバと入口導管とを備え、前記アッセイチャンバはアッセイチャンバ体積を含み、前記入口導管は前記共通流体源と前記アッセイチャンバとを接続する、前記試料チャンバと、 (I) A sample chamber connected to the common fluid source, wherein the sample chamber contains a fluid volume and comprises an assay chamber and an inlet conduit, the assay chamber contains an assay chamber volume, and the inlet conduit is said. The sample chamber, which connects the common fluid source and the assay chamber,
(ii)前記試料チャンバに接続された空気区画であって、前記空気区画は空気体積を含む、前記空気区画と、 (Ii) An air compartment connected to the sample chamber, wherein the air compartment comprises an air volume.
を含む、前記流体経路と、 Including the fluid path and
(c)前記装置の少なくとも一部分の表面に接着された第1の膜であって、前記第1の膜が各流体経路の入口導管の1つの壁を形成している、前記第1の膜と、 (C) A first membrane adhered to the surface of at least a portion of the device, wherein the first membrane forms one wall of an inlet conduit for each fluid path. ,
(d)前記第1の膜に接着された第2の膜であって、前記第2の膜は前記第1の膜よりも高い溶融温度を含む、前記第2の膜と、 (D) A second film adhered to the first film, wherein the second film contains a melting temperature higher than that of the first film, and the second film.
を備え、 Equipped with
前記試料チャンバと前記共通流体源との間の接続部を除いて、各流体経路は閉鎖系であり、前記空気体積に対する前記流体体積の比は、前記複数の流体経路の各流体経路についてほぼ同等である、 Except for the connection between the sample chamber and the common fluid source, each fluid path is a closed system, and the ratio of the fluid volume to the air volume is approximately the same for each fluid path of the plurality of fluid paths. Is,
装置。 Device.
前記複数の流体経路のうち第1の流体経路の前記流体体積は、前記複数の流体経路のうち第2の流体経路の前記流体体積より大きい、請求項1に記載の装置。 The apparatus according to claim 1, wherein the fluid volume of the first fluid path among the plurality of fluid paths is larger than the fluid volume of the second fluid path among the plurality of fluid paths. 前記空気区画は空気チャンバと空気導管を含み、前記空気導管は前記試料チャンバを前記空気チャンバに接続する、請求項1に記載の装置。 The device of claim 1, wherein the air compartment comprises an air chamber and an air conduit, wherein the air conduit connects the sample chamber to the air chamber. 前記アッセイチャンバは、両側テーパ状チャンバを含み、 The assay chamber includes a bilateral tapered chamber.
前記両側テーパ状チャンバは、 The tapered chambers on both sides are
前記流体経路の前記入口導管の終端部と流体連通しているテーパ状入口と、 A tapered inlet that communicates with the end of the inlet conduit of the fluid path,
前記空気区画の終端部と流体連通しているテーパ状出口であって、前記テーパ状入口と前記テーパ状出口は、前記アッセイチャンバ体積の最大寸法だけ離れている、前記テーパ状出口と、 A tapered outlet that communicates fluid with the end of the air compartment, wherein the tapered inlet and the tapered outlet are separated by the maximum dimension of the assay chamber volume.
2つの湾曲境界であって、各湾曲境界は前記テーパ状入口から前記テーパ状出口まで延びており、前記2つの湾曲境界は一緒に前記アッセイチャンバ体積を囲み、各湾曲境界は中点を含み、前記2つの湾曲境界が前記中点から前記テーパ状入口に向かって、並びに前記中点から前記テーパ状出口に向かって湾曲するにつれて、前記2つの湾曲境界の間の距離が短くなっていく、前記2つの湾曲境界と、 Two curved boundaries, each curved boundary extending from the tapered inlet to the tapered exit, the two curved boundaries together enclosing the assay chamber volume, and each curved boundary containing a midpoint. As the two curved boundaries bend from the midpoint towards the tapered inlet and from the midpoint towards the tapered exit, the distance between the two curved boundaries becomes shorter. Two curved boundaries and
を含む、請求項1に記載の装置。 The apparatus according to claim 1.
前記両側テーパ状チャンバの前記2つの湾曲境界は、前記アッセイチャンバ体積の中心点に対して凹状である、請求項4に記載の装置。 The device of claim 4, wherein the two curved boundaries of the bilateral tapered chamber are concave with respect to the center point of the assay chamber volume. 前記両側テーパ状チャンバはモノリシックである、請求項4に記載の装置。 The device of claim 4, wherein the bilateral tapered chamber is monolithic. 前記アッセイチャンバは、モノリシック基板に形成された第1の境界表面と、プラグで形成された第2の境界表面とを含み、前記プラグは、本体とキャップを含み、前記本体は、ある深さで前記モノリシック基板内に突出しており、前記プラグの前記キャップは、前記アッセイチャンバの前記第2の境界表面を形成する、請求項1に記載の装置。 The assay chamber comprises a first boundary surface formed on a monolithic substrate and a second boundary surface formed by a plug, the plug containing a body and a cap, the body at a depth. The device of claim 1, wherein the cap of the plug projects into the monolithic substrate and forms the second boundary surface of the assay chamber. 前記アッセイチャンバは、膜によって形成された第3の境界表面を含み、前記第1の境界表面、前記第2の境界表面、及び前記第3の境界表面が、一緒に前記アッセイチャンバ体積を囲む、請求項7に記載の装置。 The assay chamber comprises a third boundary surface formed by a membrane, wherein the first boundary surface, the second boundary surface, and the third boundary surface together enclose the assay chamber volume. The device according to claim 7. 前記プラグの前記キャップに形成された内部キャビティは、1つ以上の乾燥試薬を含む、請求項7に記載の装置。 The device of claim 7, wherein the internal cavity formed in the cap of the plug comprises one or more drying reagents. 前記アッセイチャンバ体積は、前記プラグの前記本体が前記アッセイチャンバの前記モノリシック基板に突出する深さに少なくとも部分的に依存する、請求項7に記載の装置。 7. The apparatus of claim 7, wherein the assay chamber volume is at least partially dependent on the depth at which the body of the plug projects into the monolithic substrate of the assay chamber. 前記プラグは、透明である、請求項7に記載の装置。 The device of claim 7, wherein the plug is transparent. 前記アッセイチャンバ体積は、1μLから35μLの間である、請求項1に記載の装置。 The apparatus of claim 1, wherein the assay chamber volume is between 1 μL and 35 μL. 各流体経路の前記アッセイチャンバ内に配置された磁気式混合要素を含み、前記磁気式混合要素は、旋回することが可能である、請求項1に記載の装置。 The device of claim 1, comprising a magnetic mixing element disposed within the assay chamber of each fluid path, wherein the magnetic mixing element is capable of swirling. 前記磁気式混合要素の旋回は、前記アッセイチャンバの外側の磁石を回転させることによって、引き起こされる、請求項13に記載の装置。 13. The apparatus of claim 13, wherein the swirl of the magnetic mixing element is triggered by rotating a magnet outside the assay chamber. 複数の試料チャンバの同時充填を行う方法であって、 It is a method of simultaneous filling of multiple sample chambers.
請求項1に記載の装置を提供するステップであって、前記共通流体源は流体試料を含み、各独立した連続した流体経路は気体を含む、ステップと、 A step of providing the apparatus of claim 1, wherein the common fluid source comprises a fluid sample and each independent continuous fluid path comprises a gas.
前記共通流体源内の前記流体試料に供給圧力を印加することにより、前記流体試料を前記入口導管を介して各流体経路の前記試料チャンバに強制的に送り込むステップであって、前記流体試料を前記試料チャンバまで流して、前記流体経路内の前記気体を前記流体経路の前記空気区画に向かって圧縮することにより、前記空気区画の内圧を高め、前記空気区画の前記内圧が前記供給圧力に等しいとき、前記流体試料が前記共通流体源から前記流体経路に流れるのを停止する、ステップと、 A step of forcibly feeding the fluid sample into the sample chamber of each fluid path through the inlet conduit by applying a supply pressure to the fluid sample in the common fluid source, wherein the fluid sample is referred to the sample. When the internal pressure of the air compartment is increased by flowing to a chamber and compressing the gas in the fluid path towards the air compartment of the fluid passage, the internal pressure of the air compartment is equal to the supply pressure. A step of stopping the fluid sample from flowing from the common fluid source into the fluid path.
を含む方法。 How to include.
前記供給圧力は、一定の圧力で印加される、請求項15に記載の方法。 15. The method of claim 15, wherein the supply pressure is applied at a constant pressure. 前記供給圧力は、低い圧力から高い圧力にかけて増加するように印加される、請求項15に記載の方法。 15. The method of claim 15, wherein the supply pressure is applied so as to increase from low pressure to high pressure. 前記複数の流体経路のうち第1の流体経路の試料チャンバの流体体積は、前記複数の流体経路のうち第2の流体経路の試料チャンバの流体体積より大きく、前記第1の流体経路の前記試料チャンバと前記第2の流体経路の前記試料チャンバが、ほぼ比例する流量で充填する、請求項15に記載の方法。 The fluid volume of the sample chamber of the first fluid path among the plurality of fluid paths is larger than the fluid volume of the sample chamber of the second fluid path among the plurality of fluid paths, and the sample of the first fluid path. 15. The method of claim 15, wherein the chamber and the sample chamber of the second fluid path are filled at a flow rate that is approximately proportional. 前記流体試料は、重力に逆らって前記入口導管を通って前記複数の試料チャンバまで移動する、請求項15に記載の方法。 15. The method of claim 15, wherein the fluid sample moves against gravity through the inlet conduit to the plurality of sample chambers. 前記複数の試料チャンバの少なくとも2つの試料チャンバは体積が異なり、前記共通流体源から前記複数の試料チャンバの各試料チャンバへの流速が、前記試料チャンバの流体体積に比例することにより、前記複数の試料チャンバの同時充填が可能になる、請求項15に記載の方法。 At least two sample chambers of the plurality of sample chambers have different volumes, and the flow velocity from the common fluid source to each sample chamber of the plurality of sample chambers is proportional to the fluid volume of the sample chambers. 15. The method of claim 15, which allows simultaneous filling of the sample chamber. 各試料チャンバの前記アッセイチャンバは、両側テーパ状チャンバを含み、 The assay chamber of each sample chamber includes a bilateral tapered chamber.
前記両側テーパ状チャンバは、 The tapered chambers on both sides are
前記流体経路の前記入口導管の終端部と流体連通しているテーパ状入口と、 A tapered inlet that communicates with the end of the inlet conduit of the fluid path,
前記空気区画の終端部と流体連通しているテーパ状出口であって、前記テーパ状入口と前記テーパ状出口は、前記アッセイチャンバ体積の最大寸法だけ離れている、前記テーパ状出口と、 A tapered outlet that communicates fluid with the end of the air compartment, wherein the tapered inlet and the tapered outlet are separated by the maximum dimension of the assay chamber volume.
2つの湾曲境界であって、各湾曲境界は前記テーパ状入口から前記テーパ状出口まで延びており、前記2つの湾曲境界は一緒に前記アッセイチャンバ体積を囲み、各湾曲境界は中点を含み、前記2つの湾曲境界が前記中点から前記テーパ状入口に向かって、並びに前記中点から前記テーパ状出口に向かって湾曲するにつれて、前記2つの湾曲境界の間の距離が短くなっていく、前記2つの湾曲境界と、 Two curved boundaries, each curved boundary extending from the tapered inlet to the tapered exit, the two curved boundaries together enclosing the assay chamber volume, and each curved boundary containing a midpoint. As the two curved boundaries bend from the midpoint towards the tapered inlet and from the midpoint towards the tapered exit, the distance between the two curved boundaries becomes shorter. Two curved boundaries and
を含む、請求項15に記載の方法。 15. The method of claim 15.
前記両側テーパ状チャンバの前記2つの湾曲境界によって、前記流体試料のメニスカスの前面先導部における流体前進速度が低下し、これによって、前記流体試料が前記テーパ状出口に達した時点で、前記流体試料の前記メニスカスは前記アッセイチャンバの前記最大寸法に関してほぼ対称であり、これによって、充填中の前記アッセイチャンバ内での気泡のトラッピングが最小限に抑えられる、請求項21に記載の方法。 The two curved boundaries of the tapered chamber on both sides reduce the fluid advance velocity at the frontal lead of the meniscus of the fluid sample, whereby the fluid sample reaches the tapered outlet when the fluid sample reaches the tapered outlet. 21. The method of claim 21, wherein the meniscus is substantially symmetrical with respect to the maximum dimension of the assay chamber, thereby minimizing the trapping of air bubbles in the assay chamber during filling. 前記共通流体源から前記流体経路への前記流体試料の流れが停止した時点で、前記複数の流体経路の各流体経路の前記入口導管を封止するステップをさらに含む、請求項15に記載の方法。 15. The method of claim 15, further comprising sealing the inlet conduit of each of the fluid paths of the plurality of fluid paths when the flow of the fluid sample from the common fluid source to the fluid path is stopped. .. 前記封止するステップは、熱カシメによって実施される、請求項23に記載の方法。 23. The method of claim 23, wherein the sealing step is performed by thermal caulking. 乾燥試薬を再水和する装置であって、 A device for rehydrating dry reagents
アッセイチャンバであって、前記アッセイチャンバは、モノリシック基板に形成された第1の境界表面と、プラグで形成された第2の境界表面とを含み、前記プラグは、本体とキャップを含み、前記本体は、ある深さで前記モノリシック基板内に突出しており、前記プラグの前記キャップは、前記アッセイチャンバの前記第2の境界表面を形成することにより、前記アッセイチャンバの体積を囲む、前記アッセイチャンバと、 An assay chamber, the assay chamber comprising a first boundary surface formed on a monolithic substrate and a second boundary surface formed by a plug, the plug comprising a body and a cap, said body. Projecting into the monolithic substrate at a certain depth, the cap of the plug encloses the volume of the assay chamber by forming the second boundary surface of the assay chamber with the assay chamber. ,
前記プラグ前記のキャップに形成された内部キャビティに含まれる1つ以上の乾燥試薬と、 The plug One or more drying reagents contained in the internal cavity formed in the cap and
前記アッセイチャンバ体積で旋回を引き起こすことが可能なように構成された磁気式混合要素と、 With a magnetic mixing element configured to be capable of causing swirl in the assay chamber volume,
を含む装置。 Equipment including.
前記アッセイチャンバは、膜からなる第3の境界表面を含み、前記第1の境界表面、前記第2の境界表面、及び前記第3の境界表面が、一緒に前記アッセイチャンバ体積を囲む、請求項25に記載の装置。 The assay chamber comprises a third boundary surface made of a membrane, wherein the first boundary surface, the second boundary surface, and the third boundary surface together enclose the assay chamber volume. 25. 乾燥試薬を可溶化する方法であって、 It is a method of solubilizing the drying reagent.
請求項25に記載の装置を提供するステップと、 The step of providing the apparatus according to claim 25,
前記アッセイチャンバに流体を充填するステップと、 The step of filling the assay chamber with fluid and
前記アッセイチャンバの外側の磁石を回転させて前記磁気式混合要素の旋回を引き起こすことにより、前記試薬を前記流体内で可溶化するステップと、 A step of solubilizing the reagent in the fluid by rotating a magnet outside the assay chamber to cause swirling of the magnetic mixing element.
を含む方法。 How to include.
JP2020550666A 2018-03-22 2019-03-22 Optical reaction wells for assay devices Active JP7401448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023206579A JP2024026300A (en) 2018-03-22 2023-12-07 Reaction well for assay device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/928,551 2018-03-22
US15/928,551 US10046322B1 (en) 2018-03-22 2018-03-22 Reaction well for assay device
US16/027,749 2018-07-05
US16/027,749 US10618047B2 (en) 2018-03-22 2018-07-05 Reaction well for assay device
PCT/US2019/023764 WO2019183608A1 (en) 2018-03-22 2019-03-22 Optical reaction well for assay device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023206579A Division JP2024026300A (en) 2018-03-22 2023-12-07 Reaction well for assay device

Publications (3)

Publication Number Publication Date
JP2021518539A JP2021518539A (en) 2021-08-02
JPWO2019183608A5 true JPWO2019183608A5 (en) 2022-03-30
JP7401448B2 JP7401448B2 (en) 2023-12-19

Family

ID=63079344

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020550666A Active JP7401448B2 (en) 2018-03-22 2019-03-22 Optical reaction wells for assay devices
JP2023206579A Pending JP2024026300A (en) 2018-03-22 2023-12-07 Reaction well for assay device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023206579A Pending JP2024026300A (en) 2018-03-22 2023-12-07 Reaction well for assay device

Country Status (11)

Country Link
US (4) US10046322B1 (en)
EP (2) EP3768426A4 (en)
JP (2) JP7401448B2 (en)
KR (1) KR20200139697A (en)
CN (4) CN112041068B (en)
AU (2) AU2019237517B2 (en)
CA (1) CA3092112A1 (en)
IL (2) IL311285A (en)
SG (1) SG11202007766VA (en)
WO (2) WO2019183559A1 (en)
ZA (1) ZA202005052B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system
EP3992610A1 (en) * 2020-10-30 2022-05-04 Hach Lange GmbH A process photometer arrangement
CN113522381B (en) * 2021-05-26 2022-11-15 西北工业大学太仓长三角研究院 Different concentration liquid drop produces chip based on induction charge electroosmosis
DE102022210777A1 (en) 2022-10-13 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Microfluidic cartridge, microfluidic device and method for its operation

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454178A (en) 1966-01-10 1969-07-08 Charles E Bender Sterile cap for a freeze-drying container and method of freeze-drying materials under sterile conditions
US3689224A (en) 1966-04-13 1972-09-05 Westinghouse Electric Corp Chemical contaminant detection sampler
US4119407A (en) 1976-03-08 1978-10-10 Bio-Dynamics, Inc. Cuvette with reagent release means
US4070249A (en) 1976-06-08 1978-01-24 American Home Products Corporation Apparatus for compensating for pressure within a biological test device
US4608231A (en) 1984-12-12 1986-08-26 Becton, Dickinson And Company Self-contained reagent package device for an assay
US4964539A (en) 1989-04-06 1990-10-23 Seaquist Closures Multiple chamber dispensing container and closure system
EP0501796A3 (en) 1991-03-01 1993-10-06 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US5256571A (en) 1991-05-01 1993-10-26 Cytyc Corporation Cell preservative solution
JPH10503993A (en) 1994-08-19 1998-04-14 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Vented vials for lyophilization and methods to minimize contamination of lyophilized products
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5662866A (en) 1995-09-25 1997-09-02 Steris Corporation Two compartment cup for powdered sterilant reagent components
US6027694A (en) 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
FR2760838B1 (en) * 1997-03-13 1999-05-21 Corning Inc INTEGRATED FLUIDIC CIRCUIT FOR EXECUTING A PROCESS FOR THE PREPARATION OR ANALYSIS OF A SAMPLE OF FLUID MATERIAL, ITS MANUFACTURING METHOD AND APPARATUS FOR OPERATING THE CIRCUIT
NZ504223A (en) 1997-10-27 2001-10-26 Idexx Lab Inc Device and methods for determination of the presence or amount of an analyte or microorganism in a solution
US6043097A (en) 1997-12-05 2000-03-28 Bayer Corporation Reagent package
US6204375B1 (en) 1998-07-31 2001-03-20 Ambion, Inc. Methods and reagents for preserving RNA in cell and tissue samples
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
WO2000049382A2 (en) 1999-02-16 2000-08-24 The Perkin-Elmer Corporation Bead dispensing system
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
GB9922971D0 (en) 1999-09-29 1999-12-01 Secr Defence Reaction system
US6627159B1 (en) 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US6734401B2 (en) * 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
AU8095101A (en) 2000-08-02 2002-02-13 Caliper Techn Corp High throughput separations based analysis systems
US6615856B2 (en) 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
JP2002100291A (en) 2000-09-21 2002-04-05 Hitachi Ltd Measurement method and instrument of electron beam intensity distribution, and manufacturing method of cathode-ray tube
US6453928B1 (en) 2001-01-08 2002-09-24 Nanolab Ltd. Apparatus, and method for propelling fluids
US20050047976A1 (en) 2001-01-25 2005-03-03 Klaus Gubernator Method and apparatus for solid or solution phase reaction under ambient or inert conditions
US6805841B2 (en) 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US20040208751A1 (en) 2001-05-22 2004-10-21 Lazar Juliana M Microchip integrated multi-channel electroosmotic pumping system
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
GB0129816D0 (en) 2001-12-13 2002-01-30 The Technology Partnership Plc Testing device for chemical or biochemical analysis
AU2003248273A1 (en) 2002-07-12 2004-02-02 Mitsubishi Chemical Corporation Analytical chip, analytical chip unit, analyzing apparatus, method of analysis using the apparatus, and method of producing the analytical chip
US7135147B2 (en) 2002-07-26 2006-11-14 Applera Corporation Closing blade for deformable valve in a microfluidic device and method
JP3768486B2 (en) 2003-03-20 2006-04-19 株式会社エンプラス Micro fluid handling equipment
US6843281B1 (en) 2003-07-30 2005-01-18 Agilent Techinologies, Inc. Methods and apparatus for introducing liquids into microfluidic chambers
US20050086830A1 (en) 2003-10-24 2005-04-28 Zukor Kenneth S. Processing cap assembly for isolating contents of a container
US7432106B2 (en) 2004-03-24 2008-10-07 Applied Biosystems Inc. Liquid processing device including gas trap, and system and method
MXPA06011580A (en) 2004-04-08 2007-05-04 Biomatrica Inc Integration of sample storage and sample management for life science.
US20080176209A1 (en) 2004-04-08 2008-07-24 Biomatrica, Inc. Integration of sample storage and sample management for life science
US20060099567A1 (en) 2004-04-08 2006-05-11 Biomatrica, Inc. Integration of sample storage and sample management for life science
US8961900B2 (en) 2004-04-28 2015-02-24 Yokogawa Electric Corporation Chemical reaction cartridge, method of producing chemical reaction cartridge, and mechanism for driving chemical reaction cartridge
US7887750B2 (en) 2004-05-05 2011-02-15 Bayer Healthcare Llc Analytical systems, devices, and cartridges therefor
US7645423B2 (en) 2004-08-20 2010-01-12 International Business Machines Corporation Optical micro plugs for multichannel and multilayer pharmaceutical device
EP1824600B1 (en) 2004-10-18 2016-12-28 Life Technologies Corporation Fluid processing device including size-changing barrier
GB0503986D0 (en) 2005-02-26 2005-04-06 Secr Defence Reaction apparatus
US20070014695A1 (en) 2005-04-26 2007-01-18 Applera Corporation Systems and Methods for Multiple Analyte Detection
US20060286004A1 (en) 2005-06-15 2006-12-21 Jacobs Merrit N Containers for reducing or eliminating foaming
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
US7763453B2 (en) 2005-11-30 2010-07-27 Micronics, Inc. Microfluidic mixing and analytic apparatus
US20080241910A1 (en) 2007-03-27 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Devices for pathogen detection
US20070280856A1 (en) 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
US20070280857A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Positioning Dried Reagent In Microfluidic Devices
US8187557B2 (en) 2006-07-13 2012-05-29 Cepheid Reagent reservoir system for analytical instruments
EP1878802A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Disposable device for analysing a liquid sample containing a nucleic acid with a nucleic acid amplification apparatus
WO2008024319A2 (en) 2006-08-20 2008-02-28 Codon Devices, Inc. Microfluidic devices for nucleic acid assembly
KR100758274B1 (en) 2006-09-27 2007-09-12 한국전자통신연구원 Microfluidic device for equalizing multiple microfluids in a chamber, and microfluidic network using it
WO2008127438A2 (en) 2006-11-27 2008-10-23 The Penn State Research Foundation Parallel flow control (pfc) approach for active control, characterization, and manipulation of nanofluidics
AU2008236612B2 (en) * 2007-04-04 2014-09-04 Ande Corporation Methods for rapid multiplexed amplification of target nucleic acids
AU2008275508A1 (en) 2007-04-24 2009-01-15 Biomatrica, Inc. Sample storage for life science
KR101335726B1 (en) * 2007-06-04 2013-12-04 삼성전자주식회사 Disk type microfluidic device for conducting immunoassey and biochemistry analysis simultaneously
US20090047191A1 (en) 2007-06-08 2009-02-19 Gafur Zainiev Closed space disposable micro-reactor and uses thereof
CN103418295B (en) * 2007-06-21 2015-11-18 简.探针公司 For the instruments and methods of the content of hybrid detection chamber
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
WO2009035847A1 (en) 2007-09-14 2009-03-19 Siemens Heathcare Diagnostics Inc. Apparatus and methods for encapsulation of in vitro diagnostic reagents
US20090081768A1 (en) 2007-09-21 2009-03-26 Applera Corporation Devices and Methods for Thermally Isolating Chambers of an Assay Card
DE102007059533A1 (en) 2007-12-06 2009-06-10 Thinxxs Microtechnology Ag Microfluidic storage device
US8697010B2 (en) 2007-12-19 2014-04-15 Shimadzu Corporation Dispensing device
CN102149812A (en) * 2008-02-21 2011-08-10 埃凡特拉生物科技公司 Assays based on liquid flow over arrays
US20110041922A1 (en) 2008-03-12 2011-02-24 Fluimedix Aps Controlled liquid handling
JP5244461B2 (en) 2008-05-29 2013-07-24 株式会社東芝 Chemical analyzer and analysis chip
US8795607B2 (en) 2008-06-19 2014-08-05 Boehringer Ingelheim Microparts Gmbh Fluid metering container
US20110229927A1 (en) * 2008-08-01 2011-09-22 Smart Biosystems Aps Sample port of a cell culture system
US8546128B2 (en) * 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
KR101578149B1 (en) 2009-01-29 2015-12-17 삼성전자주식회사 Microfluidic valve unit for controlling fluid flow and method for fabricating the same
DE102009015395B4 (en) 2009-03-23 2022-11-24 Thinxxs Microtechnology Gmbh Flow cell for treating and/or examining a fluid
US8519125B2 (en) 2009-05-11 2013-08-27 Biomatrica, Inc. Compositions and methods for biological sample storage
KR20110027419A (en) 2009-09-10 2011-03-16 삼성전자주식회사 Fluid receiving chamber, microfluidic device with fluid receiving chamber, and fluid mixing method
SG169918A1 (en) 2009-10-02 2011-04-29 Fluidigm Corp Microfluidic devices with removable cover and methods of fabrication and application
DE102009048378B3 (en) 2009-10-06 2011-02-17 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Microfluidic structure
GB0919159D0 (en) 2009-11-02 2009-12-16 Sec Dep For Environment Food A Device and apparatus
CA2994889C (en) 2009-12-07 2019-01-22 Meso Scale Technologies, Llc Assay cartridges and methods of using the same
EP2542900B1 (en) 2010-03-01 2022-04-20 Ecole Polytechnique Fédérale de Lausanne (EPFL) Apparatus and method for detecting and measuring biomolecular interactions
US8720036B2 (en) 2010-03-09 2014-05-13 Netbio, Inc. Unitary biochip providing sample-in to results-out processing and methods of manufacture
WO2011126892A2 (en) 2010-03-30 2011-10-13 Advanced Liquid Logic, Inc. Droplet operations platform
CN102985827A (en) * 2010-07-09 2013-03-20 皇家飞利浦电子股份有限公司 System for selectively processing a sample
US9376709B2 (en) 2010-07-26 2016-06-28 Biomatrica, Inc. Compositions for stabilizing DNA and RNA in blood and other biological samples during shipping and storage at ambient temperatures
GB201013267D0 (en) 2010-08-06 2010-09-22 Enigma Diagnostics Ltd Vessel and process for production thereof
EP2436446B1 (en) * 2010-10-04 2016-09-21 F. Hoffmann-La Roche AG Multi-chamber plate and method for filling it with a sample fluid
DK2624954T3 (en) 2010-10-07 2020-11-23 Boehringer Ingelheim Microparts Gmbh PROCEDURE FOR WASHING A MICROFLUID CABINET
GB201101488D0 (en) 2011-01-28 2011-03-16 Ge Healthcare Ltd Container storing freeze dried biological sample
DE102011003856B4 (en) 2011-02-09 2020-06-18 Robert Bosch Gmbh Microsystem for fluidic applications as well as manufacturing and use methods for a microsystem for fluidic applications
GB201103917D0 (en) 2011-03-08 2011-04-20 Univ Leiden Apparatus for and methods of processing liquids or liquid based substances
JP6190822B2 (en) 2012-01-09 2017-08-30 マイクロニクス, インコーポレイテッド Microfluidic reactor system
AU2013249007B2 (en) 2012-04-20 2016-04-21 California Institute Of Technology Fluidic devices and systems for sample preparation or autonomous analysis
US9063121B2 (en) * 2012-05-09 2015-06-23 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
WO2013171483A1 (en) 2012-05-18 2013-11-21 Fluorogenics Ltd Vessel of thermally conductive plastic for freeze - drying
EP2679307B1 (en) 2012-06-28 2015-08-12 Thinxxs Microtechnology Ag Microstorage device, in particular for integration into a microfluid flow cell
ITTO20120703A1 (en) 2012-08-03 2014-02-04 Biomerieux Sa DISPOSABLE MICROFLUID DEVICE, CARTRIDGE INCLUDING THE MICROFLUID DEVICE, APPARATUS TO PERFORM AN AMPLIFICATION OF NUCLEIC ACID, METHOD OF MANUFACTURING THE MICROFLUIDIC DEVICE, AND METHOD OF USING THE MICROFLUIDIC DEVICE
CN103849548A (en) 2012-12-03 2014-06-11 三星电子株式会社 Reagent container for amplifying nucleic acid, method of preparing the reagent container, method of storing the reagent, and microfluidic system for nucleic acid analysis
CA2903382A1 (en) * 2013-03-01 2014-09-12 Wave 80 Biosciences, Inc. Methods and systems for enhanced microfluidic processing
US9039993B2 (en) 2013-03-14 2015-05-26 Formulatrix, Inc. Microfluidic device
CN105121019A (en) * 2013-03-15 2015-12-02 伊鲁米那股份有限公司 System and method for generating or analyzing a biological sample
DE102013205412A1 (en) 2013-03-27 2014-10-02 Robert Bosch Gmbh Normally closed valve for microfluidic components made of a polymer layer system and method
US9968930B2 (en) 2013-04-04 2018-05-15 Surnetics, Llc Microfluidic products with controlled fluid flow
CN105307703B (en) 2013-05-23 2019-12-10 转向点医疗设备公司 Pneumatically coupled fluid control system and method with air detection and removal
US10946376B2 (en) 2013-07-05 2021-03-16 Thinxxs Microtechnology Ag Carrier element for introducing a dry substance into a flow cell
EP2821138B2 (en) * 2013-07-05 2022-02-09 Thinxxs Microtechnology Ag Flow cell with integrated dry substance
WO2015047190A1 (en) 2013-09-30 2015-04-02 Agency For Science, Technology And Research Microfluidic device
CN110560187B (en) * 2013-11-18 2022-01-11 尹特根埃克斯有限公司 Cartridge and instrument for sample analysis
EP3074204B1 (en) 2013-11-27 2017-12-27 Roche Diabetes Care GmbH A method for laser welding a disposable test-unit
DE102013114634A1 (en) 2013-12-20 2015-06-25 Karlsruher Institut für Technologie Microfluidic bioreactor with a modular structure for the synthesis of cell metabolites, the method of use and its use
AU2015326473B2 (en) * 2014-09-29 2020-07-23 Chipcare Corporation A device for optical detection of cells comprising a cartridge and fluidic chip and methods thereof
US9579678B2 (en) * 2015-01-07 2017-02-28 Nordson Corporation Dispenser and method of dispensing and controlling with a flow meter
US20160289669A1 (en) 2015-01-22 2016-10-06 Becton, Dickinson And Company Devices and systems for molecular barcoding of nucleic acid targets in single cells
TWI581862B (en) 2015-06-16 2017-05-11 亞諾法生技股份有限公司 Holding carrier for a microfluidic device
US10233491B2 (en) * 2015-06-19 2019-03-19 IntegenX, Inc. Valved cartridge and system
US10775370B2 (en) * 2015-07-17 2020-09-15 Stat-Diagnostica & Innovation, S.L. Fluidic system for performing assays
CN105344394B (en) * 2015-09-24 2017-05-10 基蛋生物科技股份有限公司 High-precision micro liquid equivalent flow distributor
CN205047979U (en) * 2015-09-30 2016-02-24 博奥生物集团有限公司 Micro -fluidic valve and micro -fluidic chip
WO2017112911A1 (en) * 2015-12-22 2017-06-29 Canon U.S. Life Sciences, Inc Sample-to-answer system for microorganism detection featuring target enrichment, amplification and detection
EP3263215B1 (en) 2016-06-30 2021-04-28 ThinXXS Microtechnology AG Device with a flow cell with reagent storage
US20210008559A1 (en) 2016-12-12 2021-01-14 Talis Biomedical Corporation Capsule containment of dried reagents
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device

Similar Documents

Publication Publication Date Title
US8377393B2 (en) Microchip
CN113019212B (en) Microfluidic device and method of use thereof
US20170342360A1 (en) Pcr apparatus comprising repeated sliding means and pcr method using same
JP2011506998A (en) Microfluidic device
JP7401448B2 (en) Optical reaction wells for assay devices
JPWO2019183608A5 (en)
JP5140386B2 (en) Microchannel mixing method and apparatus
US20080152543A1 (en) Temperature regulation method of microfluidic chip, sample analysis system and microfluidic chip
JP2007051881A (en) Reaction cartridge, reaction apparatus, and moving method for solution of the reaction cartridge
JPH0581311B2 (en)
CN110191759A (en) Micro-fluidic sample chip uses the analysis system of the chip and the PCR method for detecting DNA sequence dna
JP2004513779A (en) Equipment for heat cycle
EP2962092A1 (en) Methods and systems for enhanced microfluidic processing
JP2011155921A (en) Biochip, specimen reactor, and method for specimen reaction
CN111592972A (en) Micro-fluidic chip and method for nucleic acid amplification
US11865535B2 (en) Microfluidic reaction system
ITTO20081000A1 (en) MICROREACTOR WITH BREATHER CHANNELS TO REMOVE AIR FROM A REACTION CHAMBER
CN113956963A (en) Tiled chip used for liquid drop type digital PCR system and fluorescence detection system
CN109073436A (en) The fluid conveying of gas-powered
CN116948806B (en) Digital PCR chip with wide measurement range, use method and manufacturing method
KR20170139595A (en) Method, device and apparatus for coating the inner surface of a substrate
CN110819523B (en) Digital PCR system and digital PCR liquid drop forming method
WO2020034479A1 (en) Digital pcr system and digital pcr droplet forming method
CN110699250A (en) Digital PCR system
CN110724632A (en) Digital PCR (polymerase chain reaction) liquid drop forming method