JPWO2019176112A1 - Steel plate for hold of coal and ore carrier - Google Patents

Steel plate for hold of coal and ore carrier Download PDF

Info

Publication number
JPWO2019176112A1
JPWO2019176112A1 JP2018534889A JP2018534889A JPWO2019176112A1 JP WO2019176112 A1 JPWO2019176112 A1 JP WO2019176112A1 JP 2018534889 A JP2018534889 A JP 2018534889A JP 2018534889 A JP2018534889 A JP 2018534889A JP WO2019176112 A1 JPWO2019176112 A1 JP WO2019176112A1
Authority
JP
Japan
Prior art keywords
thickness
ferrite
steel
less
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018534889A
Other languages
Japanese (ja)
Other versions
JP6418361B1 (en
Inventor
市川 和利
和利 市川
鹿島 和幸
和幸 鹿島
金子 道郎
道郎 金子
和寿 柳田
和寿 柳田
鉄平 大川
鉄平 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6418361B1 publication Critical patent/JP6418361B1/en
Publication of JPWO2019176112A1 publication Critical patent/JPWO2019176112A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

所定の成分のフェライトパーライト鋼板であって、ミクロ組織が1/4厚部のフェライト面積分率が80〜95%、1/4厚部のパーライト面積分率が5〜20%で構成される組織で、1/4厚部のフェライト粒の平均アスペクト比が1.0〜1.5、1/4厚部のフェライト粒の平均粒径が5〜20μm、1/4厚部のフェライト中の平均転位密度が7×1012/m2以下、1mmピッチのビッカース硬さの試験で、鋼板の表面から1/4厚部まで、または3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%、板厚の厚み方向の1/2厚±(板厚の)10%範囲でSnの最大濃度が0.01〜5.0%、である石炭・鉱石運搬船ホールド用鋼板。Microstructure of a ferrite pearlite steel sheet having a predetermined composition, wherein the microstructure is such that the 1/4 thick part has a ferrite area fraction of 80 to 95%, and the 1/4 thick part has a pearlite area fraction of 5 to 20%. Then, the average aspect ratio of the 1/4 thick part ferrite particles is 1.0 to 1.5, the average particle size of the 1/4 thick part ferrite particles is 5 to 20 μm, and the average in the 1/4 thick part ferrite. In the Vickers hardness test with a dislocation density of 7 × 10 12 / m 2 or less and a pitch of 1 mm, the average Vickers hardness from the front surface of the steel plate to the 1/4 thick portion or from the 3/4 thickness portion to the back surface is 1 / The maximum Sn concentration is 0.01 in the range of 80 to 105% of the average value of Vickers hardness from the 4th thickness portion to the 3 / 4th thickness portion and 1/2 thickness ± (of the thickness) 10% in the thickness direction of the thickness. ~ 5.0%, steel plate for coal and ore carrier hold.

Description

本発明は、石炭・鉱石運搬船ホールド用鋼板に関する。例えば船舶の衝突が万一起きた場合でも、上記船舶の船舶側面部の破口を抑制等することができる板厚5mm以上の石炭・鉱石運搬船ホールド用鋼板に関する。   The present invention relates to a steel plate for holding a coal or ore carrier. For example, the present invention relates to a steel sheet for holding a coal or ore carrier having a plate thickness of 5 mm or more, which can suppress the breakage of the side surface of the ship even if a ship collision occurs.

近年、最近の造船分野においては、万一船舶同士が衝突事故を起こしてもその破壊(破口)を最小限にくい止め、破損部からの浸水等の被害を最小限にし、人命や積荷を保護するための技術が検討されている。   In recent years, in the recent field of shipbuilding, even in the unlikely event of a collision between ships, the destruction (breakage) is minimized, the damage such as flooding from the damaged part is minimized, and human life and cargo are protected. Techniques for doing so are being studied.

その中でも、船体用鋼材面からの取り組みとして、衝突時のエネルギーを鋼材自体に多く吸収させ船体の破壊を抑制することが提案されている。   Among them, as an approach from the aspect of steel materials for hulls, it has been proposed to suppress the destruction of the hull by absorbing a large amount of energy at the time of collision in the steel materials themselves.

例えば、衝突時のエネルギー吸収能力を向上させる方法としては、鋼板の組織をフェライト(α)主体とし、かつαを強化する技術が特許文献1に提案されている。この技術は、α分率Fが80%以上であり、かつαの硬さHについては下限値(H≧400−2.6×F)を規定することを特徴としている。   For example, as a method for improving the energy absorption capacity at the time of collision, Patent Document 1 proposes a technique in which the structure of the steel sheet is mainly ferrite (α) and α is strengthened. This technique is characterized in that the α fraction F is 80% or more, and the hardness H of α defines a lower limit value (H ≧ 400−2.6 × F).

また、鋼板の表裏層に残留オーステナイト(γ)を含ませる技術が特許文献2に提案されている。この技術は、C、Si、Mn、Alを含有し、さらに必要に応じて強化元素を含有し、鋼板の少なくとも板厚の1/8以上の表裏層に面積率で1.0〜20%の残留γを含むというものである。   Further, Patent Document 2 proposes a technique of including retained austenite (γ) in the front and back layers of a steel sheet. This technique contains C, Si, Mn, and Al, and further contains a strengthening element as necessary, and has an area ratio of 1.0 to 20% in the front and back layers of at least ⅛ of the plate thickness of the steel plate. The residual γ is included.

これらの他に、特許文献3には、鋼板金属組織中のフェライト(α)の分率を板厚中央部で70%以上、板厚表層部で50%以上とし、均一伸びを増加させることにより、耐衝突性を向上させる技術が開示されている。   In addition to these, in Patent Document 3, the fraction of ferrite (α) in the steel sheet metallographic structure is 70% or more in the central portion of the sheet thickness and 50% or more in the surface layer portion of the sheet thickness, thereby increasing the uniform elongation. , A technique for improving the collision resistance is disclosed.

さらに、特許文献4に、鋼板の全金属組織に占めるαの面積分率を90%以上、その平均α粒径を3〜12μm、最大α粒径を40μm以下、第2相の平均円相当径を0.8μm以下とし、均一伸びと破断応力の積を大きくすることにより、衝突吸収性を向上させる技術が提案されている。   Further, in Patent Document 4, the area fraction of α occupying the entire metallographic structure of the steel sheet is 90% or more, the average α grain size is 3 to 12 μm, the maximum α grain size is 40 μm or less, and the average circle equivalent diameter of the second phase. Is set to 0.8 μm or less and the product of uniform elongation and rupture stress is increased to improve collision absorbability.

上記の特許文献1と特許文献2では、伸びと強度の積(EL×(YP+TS)/2)を耐衝撃性を表す指標(衝撃吸収エネルギー)として、これを高める手段が開示されている。ところが、船舶同士が衝突した際の破口抑制という観点からは、上記指標よりも伸びの値そのものの方がより大きく影響することが大規模衝突シミュレーションによって明らかになりつつある。特許文献1の技術では、α粒径が5μm以下で、αの硬さはHv160〜190と高めであるため、伸び自体は必ずしも高くなく、衝突時の破口を抑制する効果はあまり期待できない。   The above-mentioned Patent Documents 1 and 2 disclose means for increasing the product of elongation and strength (EL × (YP + TS) / 2) as an index (impact absorption energy) indicating impact resistance. However, from the viewpoint of suppressing the breakage of ships when they collide with each other, it is becoming clear from the large-scale collision simulation that the growth value itself has a greater effect than the above index. In the technique of Patent Document 1, since the α particle size is 5 μm or less and the hardness of α is as high as Hv160 to 190, the elongation itself is not necessarily high, and the effect of suppressing the breakage at the time of collision cannot be expected so much.

また、特許文献2の技術では、組織に残留γを含むようにするため、合金元素が多目に添加されており、実施例として開示されている鋼は炭素当量(Ceq)が高いか、Siが高い鋼種となっている。そのため、溶接性や継手靭性を確保することが困難で、実船への適用は限定的と考えられる。   Further, in the technique of Patent Document 2, alloy elements are added in large amounts in order to contain residual γ in the structure, and the steel disclosed in the examples has a high carbon equivalent (Ceq) or Si. Is a high grade steel. Therefore, it is difficult to secure weldability and joint toughness, and application to actual ships is considered to be limited.

一方、特許文献3の技術では、合金元素添加量を低目に抑え、2段階の冷却により特に板厚中心部のαの分率、硬さ、粒径を制御することにより、均一伸びの向上を図っているが、造船用のような広幅長尺鋼板を製造する際には、材質ばらつきが生じてしまい、実用的な製造方法とはいい難い。   On the other hand, in the technique of Patent Document 3, the amount of alloying elements added is kept low, and the uniform elongation is improved by controlling the α fraction, hardness, and grain size, especially in the center of the plate thickness, by two-stage cooling. However, when manufacturing a wide and long steel sheet for shipbuilding, material variations occur, and it is difficult to say that this is a practical manufacturing method.

特許文献4では、鋼材の化学成分と金属組織の情報は開示されているが、製造方法において実用上不確実な点が多い。すなわち、詳細な説明に記されている製造方法は、熱間圧延、冷却後に再加熱を推奨しているが、廉価かつ大量生産が必須の造船用鋼板において、再加熱のようなプロセスは生産コストと製造工期の観点から実用化が懸念される。   Patent Document 4 discloses information on the chemical composition and metal structure of steel materials, but there are many practical uncertainties in the manufacturing method. In other words, the manufacturing method described in the detailed description recommends hot rolling, reheating after cooling, but for steel plates for shipbuilding that are inexpensive and mass production is essential, processes such as reheating are not costly. Therefore, there is concern that it will be put to practical use from the viewpoint of the manufacturing period.

さらには、船体用鋼材を、特殊な耐食性が要求される環境に置かれる石炭・鉱石運搬船ホールド用の鋼板として使用する場合、使用中に腐食が生じ、減肉する可能性がある。著しく減肉した鋼材を使用していれば、万が一衝突が起きた場合に、減肉していない材料に比べて、破口が生じる可能性が大きくなる。   Furthermore, when the hull steel material is used as a steel plate for holding a coal or ore carrier, which is placed in an environment where special corrosion resistance is required, corrosion may occur during use and the thickness may be reduced. If a steel material having a significantly reduced thickness is used, in the unlikely event that a collision occurs, there is a greater possibility that a breakage will occur as compared with the material without the reduced thickness.

特許文献5では衝突安全性に関しては示されているが、腐食による減肉は考慮されていない。   Although Patent Document 5 shows the collision safety, it does not consider the thinning due to corrosion.

逆に特許文献6では腐食の抑制に関しては、示されているが、衝突安全性能に関しては考慮されていない。   On the contrary, in Patent Document 6, although suppression of corrosion is shown, collision safety performance is not considered.

以上を鑑みると、石炭・鉱石運搬船ホールド用の高強度高延性厚板鋼板で、例えば、船舶が衝突したときに船舶側面部の破口を抑制等することができる強度と延性、さらには耐食性も兼ね備えた石炭・鉱石運搬船ホールド用鋼板についての技術は、未だ確立されていないのが実情である。   In view of the above, with a high-strength and high-ductility thick steel plate for a coal or ore carrier hold, for example, strength and ductility that can suppress the breakage of the side surface of the ship when the ship collides, and also corrosion resistance The fact is that the technology for holding steel sheets for coal and ore carriers has not been established yet.

特開平10−306340号公報JP, 10-306340, A 特開平11−246935号公報JP, 11-246935, A 特開2003−89841号公報JP-A-2003-98841 特開2007−162101号公報JP, 2007-162101, A 特開2016−125077号公報JP, 2016-125077, A 特開2008−174768号公報JP, 2008-174768, A

石炭・鉱石運搬船ホールド用の鋼板として使用する場合、その腐食環境は、以下の理由によって、過酷なものとなる。   When used as a steel plate for a coal or ore carrier hold, the corrosive environment becomes severe due to the following reasons.

石炭・鉱石運搬船のホールド内は、石炭や鉱石という固形物を収容して運搬するために、塗膜が機械的に傷つけられ易いため、ホールド内の塗膜の一部が傷付いたり塗膜が全面で剥離したりして、鋼材が直接腐食環境に曝されることになる。   In the hold of a coal or ore carrier, since the solid materials such as coal and ore are stored and transported, the coating film is easily mechanically damaged. If it is peeled off on the entire surface, the steel material is directly exposed to the corrosive environment.

また、石炭・鉱石運搬船のホールド内の腐食環境は、SO 2−とClを含む湿潤環境あるいは乾湿繰り返し環境であり、結露水はSO 2−によりpH値が約2〜3に低下する。そして、塗膜の傷部直下は濃厚塩化物環境であり、pH値が大幅に低下している。そのため、石炭・鉱石運搬船のホールド内において、塗膜が機械的に傷つけられ易いだけでなく、SO 2−とClの両方の影響を受け易い。Further, the corrosive environment in the hold of the coal or ore carrier is a wet environment containing SO 4 2− and Cl or a repeated dry-wet environment, and the pH value of dew condensation water is reduced to about 2 to 3 by SO 4 2−. . And, immediately below the scratched portion of the coating film is a rich chloride environment, and the pH value is significantly lowered. Therefore, in the hold of the coal / ore carrier, the coating film is not only mechanically damaged, but also susceptible to both SO 4 2− and Cl .

このように、石炭・鉱石運搬船ホールドは過酷な腐食環境にあり、単純に使用開始時の鋼板が衝突安全性に優れていても経年使用する過程において、著しく腐食減肉していれば、衝突安全性が低下する。   In this way, the coal or ore carrier hold is in a severe corrosive environment, and even if the steel plate at the start of use has excellent collision safety, if the corrosion thinning is significant during the course of long-term use, collision safety Sex decreases.

本発明は、上記実情に鑑み、石炭・鉱石運搬船ホールド用鋼板、例えば衝突時の船舶側面部の破口を抑制等することができる強度と延性とを兼ね備えた石炭・鉱石運搬船ホールド用鋼板を提供することに加え、塗膜が機械的に傷つけられ易く、かつSO 2−とClの両方の影響を受け易い腐食環境であっても、塗膜の寿命延長と塗膜が剥がれた後の腐食抑制を図ることができ、さらに、通常の製造方法において圧延割れの発生を防止しうる、石炭・鉱石運搬船ホールド用鋼板を提供することを目的とする。In view of the above circumstances, the present invention provides a steel sheet for holding a coal or ore carrier, for example, a steel sheet for holding a coal or ore carrier that has strength and ductility capable of suppressing breakage of a side surface of a ship during a collision. In addition to that, even in a corrosive environment in which the coating film is easily mechanically damaged and is susceptible to both SO 4 2− and Cl , the life of the coating film is extended and the coating film is peeled off. An object of the present invention is to provide a steel sheet for holding a coal or ore carrier, which can prevent corrosion and can prevent rolling cracks from occurring in a usual manufacturing method.

船舶が衝突したときに船舶側面部に破口が生じるメカニズムを考察する。例えば、船舶側壁部に他の船舶の舳先が衝突した場合には、船舶の舳先の全体が船舶側壁部の平らな鋼板にめり込んでくるので、船舶側壁部の鋼板は大きく曲げ変形を受け、奥に引き伸ばされて大きく引っ張られる。そして、鋼板が破壊されると、船舶側壁部の鋼板が破口することとなる。   Let us consider the mechanism by which a fracture occurs on the side surface of a ship when the ship collides. For example, when the bow of another ship collides with the side wall of the ship, the entire bow of the ship is embedded in the flat steel plate of the side wall of the ship, so the steel plate of the side wall of the ship undergoes a large bending deformation and It is stretched to and greatly pulled. When the steel plate is broken, the steel plate on the side wall of the ship is broken.

したがって、船舶が衝突したときに船舶側面部の鋼板に破口を生じさせないようにするためには、衝突時の初期段階で鋼板が大きく曲げられた時に、その曲げに耐えられること、そして、曲がっていない部分が大きく引き伸ばされ引張り変形を起こすこととなるが、その部分が伸びて破断しないことが必要である。   Therefore, in order to prevent breakage of the steel plate on the side surface of the ship when the ship collides, the steel plate must be able to withstand bending when it is largely bent at the initial stage of the collision, and The unstretched portion is greatly stretched and causes tensile deformation, but it is necessary that the portion does not stretch and break.

船舶が衝突したときに船舶側面部の破口を抑制するには鋼板の伸びを大きくすることが本質的に重要であるが、一般に鋼板の強度を向上させると鋼板の伸びが劣化するので、強度と伸びとを両立させた高強度高延性厚板鋼板が望まれている。   It is essentially important to increase the elongation of the steel plate in order to suppress the breakage of the side surface of the ship when the ship collides, but generally, if the strength of the steel plate is improved, the elongation of the steel plate deteriorates. There is a demand for a high-strength and high-ductility thick steel plate that achieves both high elongation and high elongation.

本発明者は、石炭・鉱石運搬船ホールド用鋼板、特に衝突時の船舶側面部の破口を抑制等することができる石炭・鉱石運搬船ホールド用耐衝突性鋼板を得るために、鋼板の成分組成およびミクロ組織に着目して研究を進めた結果、鋼板内での強度と伸びの変動を抑制しやすいフェライト+パーライト鋼で、ミクロ組織としてフェライト(以下「α」とも表記する。)の存在状態による延性向上と第二相であるパーライトによる強度向上を図り、かつ板厚内のSnの最大濃度、ならびに板厚方向の硬さを制御すること等によって、強度、延性並びに耐食性とを兼ね備えた石炭・鉱石運搬船ホールド用鋼板が得られることを見出して、本発明を完成した。   The present inventor, in order to obtain a collision-resistant steel plate for a coal or ore carrier hold, particularly a coal or ore carrier hold steel plate capable of suppressing the breakage of the side surface of the ship at the time of collision, the composition of the steel plate and As a result of conducting research focusing on the microstructure, it is a ferrite + pearlite steel that easily suppresses fluctuations in strength and elongation in the steel sheet, and ductility due to the presence of ferrite (hereinafter also referred to as “α”) as a microstructure. Coal and ore having both strength, ductility and corrosion resistance by improving the strength and strength of the second phase, pearlite, and controlling the maximum Sn concentration in the plate thickness and the hardness in the plate thickness direction. The present invention has been completed by finding that a steel sheet for holding a carrier can be obtained.

本発明の要旨は、次の通りである。
〔1〕 質量%で、
C:0.05〜0.20%、
Si:0.2〜1.0%、
Mn:0.5〜2.0%、
Nb:0.003〜0.030%、
Ti:0.003〜0.020%、
Al:0.002〜0.050%、
Sn:0.010〜0.30%、
N:0.0010〜0.0050%、
O:0.0005〜0.0050%、
Ca:0〜0.0080%、
Mg:0〜0.0080%、
REM:0〜0.0080%、
Ca+Mg+REM:0.0005〜0.0080%、
P:0.008%以下、
S:0.003%以下、
Cu:0〜0.05%、
Ni:0〜1.0%、
Cr:0〜0.10%未満%、
Mo:0〜0.5%、
V:0〜0.050%、
Co:0〜1.0%、
B:0〜0.0030%、
Ti/N:0.5〜4.0、
残部:Fe及び不純物、
であり;
圧延方向断面を観察した際にミクロ組織が、
1/4厚部のフェライト面積分率:80〜95%、
1/4厚部のパーライト面積分率:5〜20%、
1/4厚部のベイナイト面積分率:0〜10%未満、
1/4厚部のフェライト粒の平均アスペクト比:1.0〜1.5、
1/4厚部のフェライト粒の平均粒径:5〜20μm、
1/4厚部のフェライト中の平均転位密度:7×1012/m以下、
であり;
1mmピッチのビッカース硬さの試験で、
鋼板の表面から1/4厚部までおよび3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%、
板厚の厚み方向の1/2厚±(板厚の)10%範囲でSnの最大濃度が0.01〜5.0%;
であることを特徴とする石炭・鉱石運搬船ホールド用鋼板。
〔2〕板厚の厚み方向の1/2厚±(板厚の)10%範囲でPの最大濃度が0.02〜0.20%;
であることを特徴とする本発明の石炭・鉱石運搬船ホールド用鋼板。
〔3〕下記式(1)で示されるArが、760〜820℃であることを特徴とする本発明の石炭・鉱石運搬船ホールド用鋼板。
Ar=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
〔4〕板厚が5〜50mmであることを特徴とする本発明の石炭・鉱石運搬船ホールド用鋼板。
〔5〕引張強さ(TS)が400〜650N/mmであることを特徴とする本発明の石炭・鉱石運搬船ホールド用鋼板。
The gist of the present invention is as follows.
[1] In mass%,
C: 0.05 to 0.20%,
Si: 0.2 to 1.0%,
Mn: 0.5-2.0%,
Nb: 0.003 to 0.030%,
Ti: 0.003 to 0.020%,
Al: 0.002-0.050%,
Sn: 0.010 to 0.30%,
N: 0.0010 to 0.0050%,
O: 0.0005 to 0.0050%,
Ca: 0 to 0.0080%,
Mg: 0 to 0.0080%,
REM: 0 to 0.0080%,
Ca + Mg + REM: 0.0005 to 0.0080%,
P: 0.008% or less,
S: 0.003% or less,
Cu: 0 to 0.05%,
Ni: 0 to 1.0%,
Cr: 0 to less than 0.10%,
Mo: 0-0.5%,
V: 0 to 0.050%,
Co: 0 to 1.0%,
B: 0 to 0.0030%,
Ti / N: 0.5-4.0,
Remainder: Fe and impurities,
And
When observing the cross section in the rolling direction, the microstructure
Ferrite area fraction of 1/4 thick part: 80 to 95%,
Perlite area fraction of 1/4 thick part: 5 to 20%,
Bainite area fraction of 1/4 thick part: 0 to less than 10%,
Average aspect ratio of 1/4 thick part ferrite grains: 1.0 to 1.5,
Average particle size of ferrite particles in 1/4 thick part: 5 to 20 μm,
Average dislocation density in 1/4 thick part of ferrite: 7 × 10 12 / m 2 or less,
And
In the Vickers hardness test of 1 mm pitch,
The average Vickers hardness from the front surface of the steel sheet to the 1/4 thick portion and from the 3/4 thick portion to the back surface is 80 to 105% of the average Vickers hardness value from the 1/4 thick portion to the 3/4 thick portion. ,
The maximum Sn concentration is 0.01 to 5.0% within a range of ½ thickness ± 10% (of the plate thickness) of the plate thickness;
Steel plate for hold of coal or ore carrier.
[2] The maximum concentration of P is 0.02 to 0.20% within a range of ½ thickness ± (of plate thickness) 10% in the thickness direction of the plate thickness;
The steel plate for holding a coal or ore carrier according to the present invention, characterized in that
[3] Ar 3 represented by the following formula (1) is 760 to 820 ° C., the steel plate for holding a coal or ore carrier according to the present invention.
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, the element symbol represents the content (mass%) of each element. The elements not contained are 0%.
[4] The steel plate for holding a coal or ore carrier according to the present invention, which has a plate thickness of 5 to 50 mm.
[5] The steel sheet for holding a coal or ore carrier of the present invention, which has a tensile strength (TS) of 400 to 650 N / mm 2 .

本発明の石炭・鉱石運搬船ホールド用耐鋼板を石炭・鉱石運搬船ホールドに使用することにより、万一船舶同士の衝突事故が起こった場合でも、船舶の鋼板が破断して破口する可能性を低減することができるので、船舶事故時における衝突損傷部からの浸水量を低減でき、沈没を回避することにより、人命や貨物の保護や燃料油の流出による海洋汚染の可能性を低減できるなど環境保護及び安全性の点から顕著な効果を奏する。   By using the steel plate for coal / ore carrier hold of the present invention for the coal / ore carrier hold, even if a collision accident occurs between ships, the possibility that the steel plate of the ship will break and break Therefore, it is possible to reduce the amount of water flooded from the collision damage part in the event of a ship accident, and by avoiding sinking, it is possible to protect human life and cargo and reduce the possibility of marine pollution due to spillage of fuel oil. Also, it has a remarkable effect from the viewpoint of safety.

さらに、本発明の石炭・鉱石運搬船ホールド用鋼板は、耐食性にも優れているので、石炭・鉱石運搬船ホールドに用いて、経年使用を経ても良好な衝突安全性が得られるという格別顕著な効果を奏する。   Further, the steel sheet for hold of a coal or ore carrier of the present invention is also excellent in corrosion resistance, and therefore, when used for a hold of a coal or ore carrier, it has a particularly remarkable effect that good collision safety can be obtained even after long-term use. Play.

また、本発明の石炭・鉱石運搬船ホールド用鋼板の製造方法は、従来の製造設備に大幅な改造を加える必要が無く、通常の製造工程に工夫を加えるだけで、圧延割れの発生を防止しうる顕著な効果を奏する。   In addition, the method for manufacturing a steel sheet for holding a coal or ore carrier of the present invention does not require significant modification to the conventional manufacturing equipment, and can prevent the occurrence of rolling cracks only by adding a device to a normal manufacturing process. Has a remarkable effect.

鉱石運搬船ホールド内の腐食を模擬したサイクル試験のフローチャートである。It is a flowchart of the cycle test which simulated the corrosion in the ore carrier hold.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

船舶が衝突したときに船舶側面部の破口を抑制するためには船舶側面部の鋼板の伸びを大きくすることが本質的に重要である。伸びは均一伸びと局部伸びに分けることができるが、これらの支配因子は異なっており、通常両立することは困難である。すなわち、均一伸びはα自体の延性向上に加えて、第二相の硬さ増加により高めることができ、一般に複合組織とする方が有利である。一方、局部伸びは硬さ分布の均一化、第二相や介在物等の微細分散等、均一組織とする方が有利である。構造物が衝突した際の破壊を防止するという観点からは、どちらかの伸びを重点的に向上させるというよりも、両者をバランスよく向上させることが望ましい。   In order to suppress the breakage of the side surface of the ship when the ship collides, it is essentially important to increase the elongation of the steel plate on the side surface of the ship. Elongation can be divided into uniform elongation and local elongation, but these governing factors are different and it is usually difficult to achieve both at the same time. That is, the uniform elongation can be increased by increasing the hardness of the second phase in addition to improving the ductility of α itself, and it is generally advantageous to form a composite structure. On the other hand, it is advantageous for the local elongation to have a uniform structure such as uniform hardness distribution and fine dispersion of the second phase and inclusions. From the viewpoint of preventing the destruction when the structures collide, it is desirable to improve both of them in a well-balanced manner rather than to improve the elongation of either one.

なお、鋼板の伸びが一般鋼に比べて約1.4倍となることで、船舶の側面から衝突された際に穴が開くまでの衝撃吸収エネルギーが約3倍となり、従来の鋼材に比べて船体に穴が開きにくくなる特徴をもつことが知られているので、本発明では伸びの目標は、一般鋼の約1.4倍の24%以上とした。ただし、引張試験片は、JIS Z2241:2011の1B号試験片(幅(W):25mm、原標点距離(GL):20mm)とした。また、その他の特性としては、降伏応力(YP)が355〜500N/mm、引張強度(TS)が490〜620N/mmで、鋼板板厚(t)が5〜50mmを目標値とした。Since the elongation of the steel plate is about 1.4 times that of general steel, the impact absorption energy until a hole is opened is about 3 times that of a collision from the side of a ship, which is more than that of conventional steel materials. Since it is known that the hull is less likely to have holes, the elongation target in the present invention is 24% or more, which is about 1.4 times that of general steel. However, the tensile test piece was a No. 1B test piece (width (W): 25 mm, original gauge length (GL): 20 mm) of JIS Z2241: 2011. Further, as other characteristics, the yield stress (YP) was 355 to 500 N / mm 2 , the tensile strength (TS) was 490 to 620 N / mm 2 , and the steel plate thickness (t) was 5 to 50 mm as the target values. .

この強度の目標値は、例えば日本海事協会制定の「鋼船規則 K編 材料」における「材料記号KA36、KD36、KE36、KF36」(YP36規格:降伏点または耐力355N/mm(MPa)以上、引張強さ490〜620N/mm(MPa))に対応する。The target value of this strength is, for example, “Material Code KA36, KD36, KE36, KF36” (YP36 standard: Yield point or proof stress 355 N / mm 2 (MPa) or more in “Steel Vessel Regulations, K Edition Materials” established by the Japan Maritime Association It corresponds to a tensile strength of 490 to 620 N / mm 2 (MPa)).

本発明者らは、このような目標値を達成できる石炭・鉱石運搬船ホールド用鋼板として、鋼板内での強度と伸びの変動を抑制しやすいフェライト+パーライト鋼を前提として、フェライトの延性向上と第二相であるパーライトによる強度向上を図るという指針のもと、鋼板の化学成分、製造条件の影響について詳細な調査を行い、以下のことを知見した。   As a steel sheet for holding a coal or ore carrier that can achieve such a target value, the present inventors have assumed that ferrite + pearlite steel, which easily suppresses fluctuations in strength and elongation in the steel sheet, as a prerequisite for improving ductility of ferrite and Based on the guideline of improving the strength by the two-phase pearlite, a detailed investigation was conducted on the influence of the chemical composition of the steel sheet and the manufacturing conditions, and the following was found.

αの延性を向上させるためには、αの清浄度をできる限り高める必要がある。ただし、鋼板の強度は担保する必要があることから、パーライトを形成するCと、置換型固溶元素であるSi、Mn等は一定量添加せざるを得ない。   In order to improve the ductility of α, it is necessary to increase the cleanliness of α as much as possible. However, since it is necessary to secure the strength of the steel sheet, C forming pearlite and Si, Mn, etc., which are substitutional solid solution elements, have to be added in a certain amount.

本発明者は、以下の点について知見した。
α中で析出物を形成するNb、Ti等の元素は必要最小限の添加にとどめ、侵入型で固溶して降伏応力を顕著に上昇させるNや、不純物元素であるP、S等を極力低減することが効果的である。
The present inventor has found out the following points.
Elements such as Nb and Ti that form precipitates in α are added to the minimum necessary amount, and N, which is an interstitial solid solution and significantly increases the yield stress, and P and S, which are impurity elements, are added as much as possible. It is effective to reduce.

Ca、Mg、REM(La,Ce等の希土類元素)の単独または複合添加によりこれらを含有する硫化物を形成させ、粗大な介在物(延伸MnS等)の生成を抑制することが伸び向上に有効である。   Effective addition of Ca, Mg, and REM (rare earth elements such as La and Ce) or a combination thereof to form sulfides containing them and suppress the formation of coarse inclusions (stretched MnS, etc.) is effective in improving elongation. Is.

α中の転位密度が高くなると、塑性変形により容易に増殖してαを硬化させ、伸びを低下させる原因となるため、転位密度を低減しておく。
If the dislocation density in α becomes high, it easily proliferates due to plastic deformation to harden α and reduce elongation, so the dislocation density is reduced.

同様に、耐食性向上に必要なSnも板厚中心部に偏析すれば、脆化域を形成して割れを生じさせると共に伸びを劣化させるので、Snの最大濃度を低下させるように造り込むことが必要であることも知見した。
また、第二相であるパーライトを分散させることで強度向上が図れるが、船舶が衝突したときに船舶側面部の破口を抑制するためには、鋼板板厚方向の組織を均一化し、鋼板板厚方向の硬さの分布を均一化することに効果があること等を知見した。
Similarly, if Sn, which is necessary for improving the corrosion resistance, is segregated in the center of the plate thickness, an embrittlement zone is formed to cause cracks and the elongation is deteriorated. Therefore, it is necessary to build Sn to reduce the maximum Sn concentration. We also found that it was necessary.
Although the strength can be improved by dispersing pearlite, which is the second phase, in order to suppress the breakage of the side surface of the ship when the ship collides, the structure in the steel plate thickness direction is made uniform and the steel plate It was found that there is an effect in making the hardness distribution in the thickness direction uniform.

本発明では、これらの知見に基づいて、石炭・鉱石運搬船ホールド用耐衝突性鋼板の鋼成分およびミクロ組織を決定した。
まず、本発明鋼板の鋼成分の限定理由を説明する。なお、成分についての「%」はすべて質量%を意味する。
In the present invention, based on these findings, the steel composition and microstructure of the collision-resistant steel plate for hold of a coal / ore carrier are determined.
First, the reasons for limiting the steel components of the steel sheet of the present invention will be described. In addition, all "%" regarding a component means the mass%.

(C:0.05〜0.20%)
Cは、パーライトを形成して強度を高めるのに不可欠な元素であるため0.05%以上含有する。一方、C量が増えると溶接性や継手靭性確保が困難となるため0.20%を上限とする。なお、C量は0.10%以上、0.16%以下が好ましい。
(C: 0.05 to 0.20%)
C is an element indispensable for forming pearlite and increasing the strength, so C is contained in an amount of 0.05% or more. On the other hand, if the C content increases, it becomes difficult to secure weldability and joint toughness, so 0.20% is made the upper limit. The C content is preferably 0.10% or more and 0.16% or less.

(Si:0.2〜1.0%)
Siは、安価な脱酸元素であり、固溶強化に効くとともに、変態点を上昇させてα中の転位密度低減に寄与するため0.2%以上含有する。一方、Si量が1.0%を超えると溶接性と継手靭性を劣化させるため上限を1.0%とする。Si量は、0.3%以上、0.5%以下が好ましい。
(Si: 0.2-1.0%)
Si is an inexpensive deoxidizing element, is effective in solid solution strengthening, and raises the transformation point to contribute to the reduction of dislocation density in α, so Si is contained by 0.2% or more. On the other hand, if the Si content exceeds 1.0%, the weldability and joint toughness deteriorate, so the upper limit is made 1.0%. The amount of Si is preferably 0.3% or more and 0.5% or less.

(Mn:0.5〜2.0%)
Mnは、母材の強度及び靭性を向上させる元素として有効であるため0.5%以上含有する。一方、Mnを過剰に含有すると、継手靭性、溶接割れ性を劣化させるため2.0%を上限とする。Mn量は、0.8%以上、1.6%以下が好ましく、更に好ましくは、0.9%以上、1.5%以下である。
(Mn: 0.5-2.0%)
Mn is effective as an element that improves the strength and toughness of the base material, and is therefore contained in an amount of 0.5% or more. On the other hand, if Mn is excessively contained, the joint toughness and the weld cracking property are deteriorated, so 2.0% is made the upper limit. The amount of Mn is preferably 0.8% or more and 1.6% or less, and more preferably 0.9% or more and 1.5% or less.

(Nb:0.003〜0.030%)
Nbは、微量の添加により組織微細化に寄与し、特にYP36などの高強度鋼の延性向上と母材強度確保に有効な元素であるため、0.003%以上を含有する。0.030%超のNbを含有すると、溶接部を硬化させて著しく靭性を劣化させるため、0.030%を上限とする。
(Nb: 0.003 to 0.030%)
Nb contributes to the refinement of the structure by the addition of a trace amount, and is an element particularly effective for improving the ductility of the high strength steel such as YP36 and ensuring the strength of the base metal, so Nb is contained at 0.003% or more. If Nb is contained in excess of 0.030%, the weld zone is hardened and the toughness is significantly deteriorated, so 0.030% is made the upper limit.

(Ti:0.003〜0.020%)
Tiは、微量の添加により母材と溶接部の組織微細化を通じて延性向上と靭性向上に寄与するため、0.003%以上含有する。一方、過剰に添加すると溶接部を硬化させ著しく靭性を劣化させるため、0.020%を上限とする。Ti量は、0.006〜0.013%が好ましい。
(Ti: 0.003 to 0.020%)
Since Ti contributes to the improvement of ductility and toughness through the refinement of the structure of the base material and the welded portion by the addition of a trace amount, it is contained in 0.003% or more. On the other hand, if added excessively, the welded part is hardened and the toughness is remarkably deteriorated, so 0.020% is made the upper limit. The amount of Ti is preferably 0.006 to 0.013%.

(Al:0.002〜0.050%)
Alは、重要な脱酸元素であるため0.002%以上含有する。一方、Alを過剰に含有すると鋼片の表面品位を損ない、靭性に有害な介在物を形成するため0.050%を上限とする。Al量は、好ましくは0.002〜0.040%であり、更に好ましくは、0.010〜0.040%である。
(Al: 0.002-0.050%)
Since Al is an important deoxidizing element, it is contained in an amount of 0.002% or more. On the other hand, when Al is contained excessively, the surface quality of the steel slab is impaired and inclusions harmful to toughness are formed, so the upper limit is 0.050%. The amount of Al is preferably 0.002 to 0.040%, more preferably 0.010 to 0.040%.

(Sn:0.010〜0.30%)
合金元素としてSnを含有させると、塗装部の耐食性が著しく向上するだけでなく、石炭や鉱石という固形物を収容して運搬するために塗膜が機械的に傷つけられ、塗膜が剥がれて裸鋼となった後の耐食性も著しく向上する。これは、石炭・鉱石運搬船ホールド内のpHが低下した環境において、Snが溶解して鋼材上に析出するが、Snは水素過電圧の大きい元素であるから、Snが析出した部分では低pH環境におけるカソード反応である水素発生反応を著しく抑制することになり、その結果、耐食性が向上する。また、Snはイオンとして存在する場合においても、鋼材の溶解反応であるアノード反応を抑制する効果がある。これは、Snイオンの作用により鉄の溶解経路となる鉄表面へのOHやClの吸着を抑制し、鉄の溶解そのものを抑えるためである。これらの効果を得るには、0.010%以上の含有量が必要であるが、0.30%を超えて含有させても前記の効果は飽和するばかりでなく、伸びや靭性の著しい劣化をまねく。したがって、含有量は0.010〜0.30%とする。好ましくは、0.02〜0.25%である。
(Sn: 0.010 to 0.30%)
When Sn is contained as an alloying element, not only the corrosion resistance of the coated part is significantly improved, but also the coating film is mechanically damaged to contain and transport solid substances such as coal and ore, and the coating film is peeled off to leave it naked. The corrosion resistance after becoming steel is also significantly improved. This is because Sn dissolves and precipitates on the steel material in an environment where the pH inside the coal or ore carrier hold decreases, but since Sn is an element with a large hydrogen overvoltage, the part where Sn precipitates is in a low pH environment. The hydrogen generation reaction, which is a cathode reaction, is significantly suppressed, and as a result, the corrosion resistance is improved. Further, even when Sn is present as an ion, it has an effect of suppressing an anode reaction which is a dissolution reaction of a steel material. This is because the action of Sn ions suppresses the adsorption of OH and Cl − on the iron surface, which serves as a dissolution route of iron, and suppresses the dissolution itself of iron. In order to obtain these effects, the content of 0.010% or more is necessary. However, if the content exceeds 0.30%, the above effects are not only saturated, but also elongation and toughness are significantly deteriorated. Inspire. Therefore, the content is set to 0.010 to 0.30%. It is preferably 0.02 to 0.25%.

(N:0.0010〜0.0050%)
Nは、Alと共に窒化物を形成し継手靭性を向上させるため、含有量の下限を0.0010%以上、好ましくは0.002%以上とする。一方、Nの含有量が過剰であると、固溶Nによる脆化や伸びの低下が生じるため、上限を0.0050%とする。好ましくは、0.0040%以下である。
(N: 0.0010 to 0.0050%)
N forms a nitride together with Al and improves the joint toughness, so the lower limit of the content is made 0.0010% or more, preferably 0.002% or more. On the other hand, if the N content is excessive, embrittlement and elongation decrease due to solid solution N occur, so the upper limit is made 0.0050%. Preferably, it is 0.0040% or less.

(O:0.0005〜0.0050%)
Oは、Mg、Ca、REMとともに酸化物を形成する。0.0050%を超えると酸化物が粗大化して伸びや靭性が低下するので、0.0050%以下とする。一方、Oは少ないほど良いが、Oを減らすには、例えば、RH真空脱ガス装置での還流作業が長時間となり現実的ではないので、0.0005%以上とする。ここで、Оは総酸素(T.O)である。
(O: 0.0005 to 0.0050%)
O forms an oxide together with Mg, Ca and REM. If it exceeds 0.0050%, the oxide becomes coarse and the elongation and toughness decrease, so the content is made 0.0050% or less. On the other hand, the smaller the amount of O, the better, but in order to reduce the amount of O, for example, the reflux work in the RH vacuum degassing apparatus takes a long time and is not realistic, so the content is made 0.0005% or more. Here, O is total oxygen (TO).

(Ca:0〜0.0080%、Mg:0〜0.0080%、REM:0〜0.0080%、Ca+Mg+REM:0.0005〜0.0080%、)
Ca、Mg、REMは、いずれも硫化物を形成することで粗大な介在物(延伸MnS等)の生成を抑制する重要な元素である。これらの元素は同等の効果を有するため、個々の含有量は問わないが、Ca含有量、Mg含有量およびREM含有量の合計としては0.0005〜0.0080%とする必要がある。これらの含有量の合計つまりCa+Mg+REMが0.0005%未満であると伸び向上の効果が安定して得られない。一方、0.0080%を超えて過剰含有しても効果は飽和し、粗大な酸・硫化物を形成して靭性や伸びを劣化させる。したがって、これらの含有量の合計は、0.0005〜0.0080%としたが、好ましくは0.0010〜0.0060%、更に好ましくは0.0015〜0.0040%である。なお、Ca、Mg、REMについて、個々の含有量はいずれも0〜0.008%(5〜80ppm)とするが、少なくともいずれかひとつの元素の含有量を0.0005〜0.008%(5〜80ppm)とすることが好ましい。
(Ca: 0 to 0.0080%, Mg: 0 to 0.0080%, REM: 0 to 0.0080%, Ca + Mg + REM: 0.0005 to 0.0080%,)
Ca, Mg, and REM are all important elements that suppress the formation of coarse inclusions (stretched MnS, etc.) by forming sulfides. Since these elements have the same effect, the individual contents are not limited, but the total of the Ca content, the Mg content and the REM content needs to be 0.0005 to 0.0080%. If the total of these contents, that is, Ca + Mg + REM is less than 0.0005%, the effect of improving elongation cannot be stably obtained. On the other hand, if the content exceeds 0.0080% and is excessively contained, the effect is saturated, and coarse acids and sulfides are formed to deteriorate toughness and elongation. Therefore, the total content of these is set to 0.0005 to 0.0080%, preferably 0.0010 to 0.0060%, and more preferably 0.0015 to 0.0040%. Note that Ca, Mg, and REM each have an individual content of 0 to 0.008% (5 to 80 ppm), but the content of at least one element is 0.0005 to 0.008% ( 5-80 ppm) is preferable.

(P:0.008%以下、S:0.003%以下)
P、Sは、不可避不純物であり、特にここでは、伸びや靭性に対しては望ましくない合金であるSnを意図的に含有していることもあって、これらの特性を確保するためにはP及びSの含有量は少ないほど望ましいので、Pは0.008%、Sは0.003%を上限とする。
(P: 0.008% or less, S: 0.003% or less)
P and S are unavoidable impurities, and here, in particular, Sn, which is an alloy undesired in terms of elongation and toughness, is intentionally contained. Therefore, in order to secure these characteristics, P The lower the content of S and the lower the content of S, the better. Therefore, P is 0.008% and S is 0.003%.

(Ti/Nが0.5〜4.0)
Ti/Nを0.5〜4.0とするのは、TiをNで固定して伸びの劣化の原因となるTiCの生成を抑制するためで、少ない方がよいが、0.5未満となるとN量が多くなり、固溶Nが生じ伸びを劣化させる原因となり、さらにスラブの表面疵の発生の原因ともなる。一方、4.0を超えるとTiCが生成して、伸びを劣化させる。したがって、Ti/Nは0.5〜4.0とした。
(Ti / N is 0.5 to 4.0)
The Ti / N ratio of 0.5 to 4.0 is for fixing Ti with N to suppress the generation of TiC that causes deterioration of elongation. In this case, the amount of N increases, which causes solid solution N to deteriorate elongation and further causes surface defects of the slab. On the other hand, when it exceeds 4.0, TiC is generated and the elongation is deteriorated. Therefore, Ti / N is set to 0.5 to 4.0.

以上の元素が、必須成分あるいは、不可避的に含まれる成分である。次に、任意添加元素について述べる。
更に、強度確保のために、選択元素として、Cu:0〜0.05%、Ni:0〜1.0%、Cr:0〜0.10%未満%、Mo:0〜0.5%、V:0〜0.050%、Co:0〜1.0%、B:0〜0.0030%の群の内の1種又は2種以上を含有してもよい。
The above elements are essential components or components that are inevitably contained. Next, the optional additional element will be described.
Further, in order to secure strength, as selective elements, Cu: 0 to 0.05%, Ni: 0 to 1.0%, Cr: 0 to less than 0.10%, Mo: 0 to 0.5%, You may contain 1 type (s) or 2 or more types in the group of V: 0-0.050%, Co: 0-1.0%, B: 0-0.0030%.

Cuは、焼入れ性を向上させ、高強度化に有効であるが、Cuを過剰に含有する鋼材は、その製造過程において、圧延時に割れが発生しやすく、特にSnと共存すると割れ感受性がさらに高くなるという問題があるので、0.05%を上限とする。好ましくはCuの含有量は0.01%未満とする。   Cu is effective in improving hardenability and strengthening, but a steel material containing excessive Cu is likely to be cracked during rolling in the manufacturing process thereof, and particularly, if it coexists with Sn, has a higher cracking susceptibility. Therefore, the upper limit is set to 0.05%. Preferably, the Cu content is less than 0.01%.

特にNiは、強度確保と靭性向上に有効であると共に、酸性環境において耐食性を向上させる元素であり、母材の耐食性とさびの防食性の両方の効果により腐食を抑制する作用を有する。しかし、Niを1.0%超含有させた場合、Snの析出が抑制されるため、Snによる耐食性改善効果が低下する。したがって、Ni含有量は1.0%以下とする。好ましくは、0.01〜1.0%であり、より好ましくは、0.05%以上であるが、それ未満であっても本発明の効果を阻害しない。   In particular, Ni is an element that is effective in securing strength and improving toughness, and also improves corrosion resistance in an acidic environment, and has the effect of suppressing corrosion by both the corrosion resistance of the base material and the corrosion resistance of rust. However, when Ni is contained by more than 1.0%, the precipitation of Sn is suppressed, so that the effect of improving corrosion resistance by Sn is reduced. Therefore, the Ni content is 1.0% or less. It is preferably 0.01 to 1.0%, more preferably 0.05% or more, but even if it is less than that, the effect of the present invention is not impaired.

Crは、焼入れ性を向上させ、高強度化に有効であるが、低pH環境における耐食性を低下させる元素であるため、0.10%未満とする。より好ましくは、0.04%未満、さらに好ましくは0.02%未満である。   Cr is an element that improves hardenability and enhances strength, but is an element that lowers corrosion resistance in a low pH environment, so Cr is set to less than 0.10%. It is more preferably less than 0.04%, and even more preferably less than 0.02%.

Moは、焼入れ性を向上させ、高強度化に有効であり、裸鋼の耐食性および塗装部の耐食性を向上させる効果も有するが、過剰に含有すると、継手の硬さが上昇して靭性が低下することがあるため、0.5%以下含有することが好ましい。その効果を得るためには、0.01%以上を含有することが好ましいが、それ未満であっても本発明の効果を阻害しない。   Mo improves the hardenability and is effective for increasing the strength, and also has the effect of improving the corrosion resistance of bare steel and the corrosion resistance of the painted part, but if it is contained excessively, the hardness of the joint increases and the toughness decreases. Therefore, the content is preferably 0.5% or less. In order to obtain the effect, it is preferable to contain 0.01% or more, but even if it is less than that, the effect of the present invention is not impaired.

Vは、析出強化により強度上昇に寄与するため、0.050%以下を含有することが好ましい。0.050%超のVを含有すると、継手靭性を損なうことがあるため、0.050%を上限とする。V添加の効果を得るためには0.010%以上を含有することが好ましいが、それ未満であっても本発明の効果を阻害しない。   V contributes to an increase in strength due to precipitation strengthening, so V is preferably contained in an amount of 0.050% or less. If the content of V exceeds 0.050%, the joint toughness may be impaired, so 0.050% is the upper limit. In order to obtain the effect of V addition, it is preferable to contain 0.010% or more, but even if it is less than that, the effect of the present invention is not impaired.

本発明においては、耐食性を向上させるためにSnを含有しているが、さらに耐食性を向上させるために、Snに加えて、Coを含有させてもよい。Coは、酸性環境において耐食性を向上させる元素であり、母材の耐食性とさびの防食性の両方の効果により腐食を抑制する作用を有する。しかし、Coを1.0%超含有させた場合、Snの析出が抑制されるため、Snによる耐食性改善効果が低下する。また、フェライトを硬化させて、伸びが低減する。好ましくは、0.01〜1.0%である。   In the present invention, Sn is contained to improve the corrosion resistance, but Co may be contained in addition to Sn to further improve the corrosion resistance. Co is an element that improves corrosion resistance in an acidic environment, and has an effect of suppressing corrosion by both the corrosion resistance of the base material and the corrosion resistance of rust. However, when Co is contained more than 1.0%, the precipitation of Sn is suppressed, so that the corrosion resistance improving effect of Sn is reduced. Further, the ferrite is hardened to reduce the elongation. It is preferably 0.01 to 1.0%.

Bは、微量添加により焼き入れ性を高め母材強度向上に寄与するので、0.0030%以下含有することが好ましい。0.0030%を超えて添加すると伸びと継手靭性を劣化させる。B添加の効果を得るためには0.0003%以上を含有することが好ましいが、それ未満であっても本発明の効果を阻害しない。
これらの選択元素の下限は0%であってもよい。
なお、以上に述べた化学組成の残部はFeおよび不可避不純物である。
Addition of a small amount of B enhances the hardenability and contributes to the improvement of the base metal strength, so B is preferably contained in an amount of 0.0030% or less. If added in excess of 0.0030%, the elongation and joint toughness deteriorate. In order to obtain the effect of B addition, it is preferable to contain 0.0003% or more, but even if it is less than that, the effect of the present invention is not impaired.
The lower limit of these selective elements may be 0%.
The balance of the chemical composition described above is Fe and inevitable impurities.

次に、本発明鋼板のミクロ組織等の限定理由について説明する。以下のミクロ組織は、圧延方向垂直断面について、観察した際の数値である。なお、圧延方向垂直断面とは、圧延方向に垂直であり、且つ、鋼板表面に垂直である面とする。   Next, the reasons for limiting the microstructure of the steel sheet of the present invention will be described. The following microstructure is a numerical value when observing the cross section perpendicular to the rolling direction. The cross section perpendicular to the rolling direction is a plane that is perpendicular to the rolling direction and is also perpendicular to the steel sheet surface.

(1/4厚部のフェライト面積分率が80〜95%、1/4厚部のパーライト面積分率が5〜20%、1/4厚部のベイナイト面積分率:0〜10%未満)
フェライト(α)面積分率が高くなるほど均一伸び特性が向上し、α面積分率が80%以上となると、急激に伸び特性が改善される。組織は板厚方向で多少変化するが、十分な伸びを確保するために1/4厚部のフェライト面積分率が80%以上必要である。一方、95%を超えると強度を確保できないので、1/4厚部のフェライト面積分率を80〜95%とした。この板厚1/4厚部は、冷却時において、板厚中央部に比べて相対的に冷却速度が速くなり、硬質相が生成しやすく、均一伸びが劣化しやすい領域である。板厚全体を考慮した場合、板厚中央部との特性差を考慮する必要があるので、1/4厚部のフェライト面積分率を80〜95%に限定したが、85〜90%がより好ましい。
(Ferrite area fraction of 1/4 thick portion is 80 to 95%, pearlite area fraction of 1/4 thick portion is 5 to 20%, bainite area fraction of 1/4 thick portion: less than 0 to 10%)
As the ferrite (α) area fraction becomes higher, the uniform elongation property is improved, and when the α area fraction is 80% or more, the elongation property is rapidly improved. The structure changes somewhat in the plate thickness direction, but the ferrite area fraction of the 1/4 thick portion is required to be 80% or more in order to secure sufficient elongation. On the other hand, if it exceeds 95%, the strength cannot be secured, so the ferrite area fraction of the 1/4 thick portion is set to 80 to 95%. This 1/4 thick part is a region in which the cooling rate is relatively faster than the central part of the plate thickness during cooling, a hard phase is likely to be generated, and uniform elongation is likely to deteriorate. When considering the entire plate thickness, it is necessary to consider the characteristic difference from the central part of the plate thickness, so the ferrite area fraction of the 1/4 thick part was limited to 80 to 95%, but 85 to 90% is more preferable. preferable.

また、強度特性である降伏点または耐力(YP)、引張強さ(TS)は、伸び特性ELとは一般にトレードオフの関係にあって、両者を同時に向上させることは一般に困難とされていて、フェライト面積分率を増加させることによって伸び特性が改善されるが、伸びが向上すれば引張強さが低下するので、フェライト面積分率の増加だけでは強度特性の確保に限度がある。   In addition, the yield point or yield strength (YP) and tensile strength (TS), which are strength characteristics, generally have a trade-off relationship with the elongation characteristic EL, and it is generally difficult to improve both at the same time. Although the elongation property is improved by increasing the ferrite area fraction, the tensile strength decreases as the elongation increases, so there is a limit to securing the strength property only by increasing the ferrite area fraction.

そこで、本発明では、伸び特性を確保しつつ、強度特性である降伏点または耐力(YP)、引張強さ(TS)を確保するために1/4厚部のパーライト面積分率を5%以上とした。しかし、20%を超えると伸びを確保できなくなるので、上限を20%とした。好ましくは、10〜15%である。   Therefore, in the present invention, the pearlite area fraction of the 1/4 thick portion is 5% or more in order to secure the elongation property and the yield point or proof stress (YP) and tensile strength (TS) which are strength properties. And However, if it exceeds 20%, the elongation cannot be secured, so the upper limit was made 20%. Preferably, it is 10 to 15%.

なお、1/4厚部のフェライト面積分率およびパーライト面積分率の合計は、90%以上とするのが好ましく、10%未満のベイナイトが存在していても本発明の効果を阻害するものではない。つまり、ベイナイト面積分率の下限は0%であり、その上限は10%未満である。また、フェライト面積分率およびパーライト面積分率は、光学顕微鏡により500倍の倍率でミクロ組織を撮影し、画像解析により各相の面積分率を求めたものである。フェライトおよびパーライト以外の残部組織のすべては、ベイナイトであり、フェライト、パーライト、ベイナイト以外の組織は存在しない。ここでいう、「存在しない」とは、光学顕微鏡で観察する限り、その存在を確認できないことをいう。   The total of the ferrite area fraction and the pearlite area fraction of the 1/4 thick portion is preferably 90% or more, and even if less than 10% bainite is present, the effect of the present invention is not impaired. Absent. That is, the lower limit of the bainite area fraction is 0% and the upper limit thereof is less than 10%. The ferrite area fraction and the pearlite area fraction are obtained by photographing the microstructure with an optical microscope at a magnification of 500 times and determining the area fraction of each phase by image analysis. All the remaining structures other than ferrite and pearlite are bainite, and there is no structure other than ferrite, pearlite, and bainite. The term "absent" as used herein means that its presence cannot be confirmed as long as it is observed with an optical microscope.

(1/4厚部のフェライト粒の平均アスペクト比が1.0〜1.5)
1/4厚部のフェライト粒の平均アスペクト比は小さいほど好ましく、1.5を超えると転位密度が高く伸びが劣化するので、上限を1.5とした。また、下限はフェライト粒が球状となる1.0とした。
(Average aspect ratio of 1/4 thick ferrite grains is 1.0 to 1.5)
The smaller the average aspect ratio of the ferrite grains in the 1/4 thick part is, the better. If it exceeds 1.5, the dislocation density becomes high and the elongation deteriorates, so the upper limit was made 1.5. Further, the lower limit was set to 1.0 at which the ferrite grains became spherical.

(1/4厚部のフェライト粒の平均粒径が5〜20μm)
1/4厚部のフェライト粒の平均粒径が20μmを超えると強度を確保できなくなるので、上限を20μmとした。また、フェライト粒は細粒であるほど好ましいが5μm未満は工業上実現が難しいので、下限を5μmとした。ここで限定する平均粒径とは、例えば、500倍で撮影した250μm×200μm×5視野の光学顕微鏡組織写真から抽出できる。フェライト粒径は、このような組織写真から各結晶粒の面積により換算した円相当径を単純平均で算出した、結晶粒の平均円相当直径として求めることができる。
(Average grain size of ferrite grains in 1/4 thick part is 5 to 20 μm)
If the average grain size of the ferrite grains in the 1/4 thick portion exceeds 20 μm, the strength cannot be ensured, so the upper limit was made 20 μm. Further, finer ferrite grains are more preferable, but it is difficult to industrially realize ferrite grains having a grain size of less than 5 μm, so the lower limit was made 5 μm. The average grain size limited here can be extracted from, for example, a photograph of an optical microscope structure of 250 μm × 200 μm × 5 fields of view taken at a magnification of 500. The ferrite grain size can be obtained as an average circle equivalent diameter of crystal grains obtained by simply averaging the circle equivalent diameters converted from the area of each crystal grain from such a structure photograph.

(1/4厚部のフェライト中の平均転位密度が7×1012/m以下)
伸びを確保するためにはフェライト(α)中の平均転位密度を7×1012/m以下とする必要がある。転位密度が7×1012/m超であると、鋼板の塑性変形により転位が顕著に増殖してフェライト(α)が硬くなり、十分な全伸び(T.EL%)が得られない。転位密度は低ければ低いほどよいが、通常1×1012/mを下回ることはほとんどない。平均転位密度の好ましい上限は6×1012/mである。
(The average dislocation density in the ferrite of 1/4 thick part is 7 × 10 12 / m 2 or less)
In order to secure the elongation, the average dislocation density in ferrite (α) needs to be 7 × 10 12 / m 2 or less. When the dislocation density is more than 7 × 10 12 / m 2 , dislocations are prominently proliferated due to plastic deformation of the steel sheet and the ferrite (α) becomes hard, and sufficient total elongation (T.EL%) cannot be obtained. The lower the dislocation density, the better, but it is rarely lower than 1 × 10 12 / m 2 . The preferable upper limit of the average dislocation density is 6 × 10 12 / m 2 .

(1mmピッチのビッカース硬さの試験で、鋼板の表面から1/4厚部まで、および3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%)
厚鋼板の冷却時において、板厚表裏層部は板厚中央部に比べて相対的に冷却速度が速くなり、硬質化しやすく、表層部近傍の硬さが大きすぎると伸びを劣化させる。板厚全体の伸び特性を考慮した場合、板厚表裏層部の硬質化の影響はある程度は許容できるが、板厚表裏層部と板厚中央部との硬度差が大きくなると影響を無視できなくなってくる。そのため、1mmピッチのビッカース硬さの試験で、板厚表裏層部(鋼板の表面から1/4厚部まで、および3/4厚部から裏面まで)のビッカース硬さ(Hv)の平均値を、板厚中心部(板厚の1/4厚部から3/4厚部まで)のビッカース硬さ(Hv)の平均値の80〜105%とすることが必要である。伸びを確保するためには、板厚表裏層部の硬さを抑えた方がよく、板厚表裏層部のビッカース硬さの工業的に可能な下限は、板厚中心部のビッカース硬さ平均値の80%である。また、105%を超えると伸びの確保が困難となる。したがって、(板厚表裏層部のビッカース硬さ平均値)/(板厚中心部のビッカース硬さ平均値)を80〜105%とした。なお、ビッカース硬さは、JIS Z 2244のHV10(つまり試験力98.07Nのビッカース硬さ)とする。
(In the 1 mm pitch Vickers hardness test, the average Vickers hardness values from the front surface of the steel plate to the 1/4 thick portion and from the 3/4 thickness portion to the back surface are 1/4 thick portion to 3/4 thick portion. Up to 80-105% of the average Vickers hardness)
When a thick steel plate is cooled, the front and back layer portions of the plate thickness have a relatively higher cooling rate than the central portion of the plate thickness and are easily hardened. If the hardness near the surface layer portion is too large, the elongation is deteriorated. Considering the elongation characteristics of the entire plate thickness, the effect of hardening the front and back layers of the plate thickness can be tolerated to some extent, but the effect cannot be ignored if the difference in hardness between the front and back layers of the plate thickness and the center of the plate thickness becomes large. Come on. Therefore, in the 1 mm pitch Vickers hardness test, the average value of the Vickers hardness (Hv) of the plate thickness front and back layer portions (from the front surface of the steel plate to the 1/4 thickness portion and from the 3/4 thickness portion to the back surface) is calculated. It is necessary that the average value of the Vickers hardness (Hv) at the center part of the plate thickness (from the 1/4 thick part to the 3/4 thick part of the plate thickness) is 80 to 105%. In order to secure the elongation, it is better to suppress the hardness of the front and back layers of the plate thickness, and the industrially possible lower limit of the Vickers hardness of the front and back layers of the plate thickness is the average Vickers hardness at the center of the plate thickness. 80% of the value. If it exceeds 105%, it becomes difficult to secure the elongation. Therefore, the average value of Vickers hardness of the front and back layer portions of the plate thickness / (the average value of Vickers hardness of the central portion of the plate thickness) is set to 80 to 105%. Note that the Vickers hardness is HV10 of JIS Z 2244 (that is, the Vickers hardness of the test force of 98.07N).

(板厚の厚み方向の1/2厚±(板厚の)10%範囲でSnの最大濃度が0.01〜5.0%)
Snは連続鋳造時に中心偏析して板厚中心部に脆化域を形成し、割れを生じさせて局部伸びを劣化させるので、Snの最大濃度は小さい方が好ましい。Snの最大濃度の上限は、伸びを確保するためには、板厚中心部(板厚の厚み方向の1/2厚±(板厚の)10%範囲を意味する)のSnの最大濃度は5.0%以下が必要である。より好ましくは、0.01〜1.0%である。なお、Snの添加濃度の下限値が0.01%であるので、板厚中心部のSn濃度の下限値は自ずと0.01%となる。
(1/2 thickness of the plate thickness in the thickness direction ±, the maximum concentration of Sn is 0.01 to 5.0% within a range of 10% (of the plate thickness))
Since Sn segregates in the center during continuous casting to form an embrittlement region in the center of the plate thickness and causes cracking to deteriorate local elongation, it is preferable that the maximum concentration of Sn is small. The upper limit of the maximum concentration of Sn is to secure the elongation, the maximum concentration of Sn in the central part of the plate thickness (meaning a range of ½ thickness ± 10% of the plate thickness in the thickness direction of the plate thickness) 5.0% or less is required. More preferably, it is 0.01 to 1.0%. Since the lower limit of the Sn addition concentration is 0.01%, the lower limit of the Sn concentration at the center of the plate thickness is naturally 0.01%.

Snは耐食性を向上し、経年使用した場合でも減肉を抑制するので、結果的に衝突安全性能も向上させる。しかしながら単純にSnを添加しただけでは、特に板厚中心部分に多く偏析し、伸びに有害であるので、Snの活用は本件のような衝突安全性能を鑑みた場合、容易ではない。偏析を抑制することで、Snが板厚全体にわたって比較的均一に適正濃度で分布するため、鋼板表面での耐食性がより向上して、経年使用での腐食反応による板厚減少がより抑制される。望ましくは、上記の板厚中心部のSnの最大濃度を板表面下1mmのSnの平均濃度で除した値が60以下とする。   Sn improves corrosion resistance and suppresses metal thinning even after long-term use, resulting in improved collision safety performance. However, simply adding Sn causes a large amount of segregation particularly in the central portion of the plate thickness and is harmful to the elongation. Therefore, it is not easy to use Sn in view of the collision safety performance as in the present case. By suppressing the segregation, Sn is relatively uniformly distributed at an appropriate concentration over the entire plate thickness, so that the corrosion resistance on the surface of the steel plate is further improved and the reduction in plate thickness due to the corrosion reaction during long-term use is further suppressed. . Desirably, the value obtained by dividing the maximum Sn concentration at the center of the plate thickness by the average Sn concentration 1 mm below the plate surface is 60 or less.

Snの最大濃度は、中心偏析を生じやすい板厚中心部の±(板厚の)10%の範囲、例えば板厚10mmであれば、板厚の中心部20%(±10%)角、すなわち2mm(±1mm)角について、EPMA(Electron Probe MicroAnalyser:電子プローブ微小分析器)により、加速電圧:15kV、ビーム径:20μm、照射時間:20ms、測定ピッチ:20μmで、上記2mm角の測定範囲を測定したときのSnの濃度の最大値である。   The maximum concentration of Sn is in the range of ± 10% (of the plate thickness) of the center part of the plate thickness where center segregation easily occurs, for example, if the plate thickness is 10 mm, the central part of the plate thickness is 20% (± 10%) angle, that is, For a 2 mm (± 1 mm) square, an accelerating voltage: 15 kV, a beam diameter: 20 μm, an irradiation time: 20 ms, a measuring pitch: 20 μm, and a measuring range of the above 2 mm square are measured by an EPMA (Electron Probe MicroAnalyzer). It is the maximum value of the Sn concentration when measured.

(板厚の厚み方向の1/2厚±(板厚の)10%範囲のPの最大濃度が0.02〜0.20%)
Pは連続鋳造時に中心偏析して板厚中心部に脆化域を形成し、割れを生じさせて局部伸びを劣化させるので、Pの最大濃度は小さい方が好ましい。Pの最大濃度の上限は特に特定するものではないが、伸びを確保するためには、板厚中心部(板厚の厚み方向の1/2厚±(板厚の)10%範囲を意味する)のPの最大濃度は0.20%以下とすることが好ましい。また、Pの最大濃度を0.02%未満とすることは現実的に困難であるので、0.02%を下限とし、0.02〜0.20%を好ましい範囲とした。
(Maximum concentration of P in the thickness direction ½ thickness ± (% of plate thickness) 10% range is 0.02 to 0.20%)
Since P segregates at the center during continuous casting to form an embrittlement region at the center of the plate thickness and causes cracking to deteriorate local elongation, it is preferable that the maximum concentration of P is small. The upper limit of the maximum concentration of P is not particularly specified, but in order to secure the elongation, it means the central portion of the plate thickness (1/2 thickness of the plate thickness in the thickness direction ± (of the plate thickness) 10% range). It is preferable that the maximum concentration of P in (1) is 0.20% or less. Further, since it is practically difficult to set the maximum concentration of P to less than 0.02%, the lower limit is 0.02%, and the preferable range is 0.02 to 0.20%.

Pの最大濃度は、中心偏析を生じやすい板厚中心部の±(板厚の)10%の範囲、例えば板厚10mmであれば、板厚の中心部20%(±10%)角、すなわち2mm(±1mm)角について、EPMA(Electron Probe MicroAnalyser:電子プローブ微小分析器)により、加速電圧:15kV、ビーム径:20μm、照射時間:20ms、測定ピッチ:20μmで、上記2mm角の測定範囲を測定したときのPの濃度の最大値である。   The maximum concentration of P is within the range of ± 10% (of the plate thickness) of the center part of the plate thickness where center segregation easily occurs, for example, if the plate thickness is 10 mm, the center part of the plate thickness is 20% (± 10%) angle, that is, For a 2 mm (± 1 mm) square, an accelerating voltage: 15 kV, a beam diameter: 20 μm, an irradiation time: 20 ms, a measuring pitch: 20 μm, and a measuring range of the above 2 mm square are measured by an EPMA (Electron Probe MicroAnalyzer). It is the maximum value of the concentration of P when measured.

(冷却する際のフェライト変態開始温度Arが760〜820℃)
鋼を冷却する際のフェライト変態開始温度Arは、鋼組成としてのArが高いほど高温でフェライト変態するため、フェライト粒内の転位密度が低下し、伸びが向上する。したがって、鋼のArが大きい方が好ましいが、820℃を超えて大きすぎるとフェライトが粗大化し強度が低下するので、上限を820℃とすることが好ましい。一方、Arが低すぎるとベイナイトを形成し伸びが劣化するので、760℃を下限とすることが好ましい。
なお、冷却する際のフェライト変態開始温度Arは、公知の下記式(1)で示される。
(Ferrite transformation starting temperature Ar 3 during cooling is 760 to 820 ° C.)
Regarding the ferrite transformation start temperature Ar 3 when cooling the steel, the higher the Ar 3 as the steel composition, the higher the temperature of the ferrite transformation, so that the dislocation density in the ferrite grains decreases and the elongation improves. Therefore, it is preferable that the Ar 3 of the steel is large, but if it exceeds 820 ° C. and is too large, ferrite coarsens and the strength decreases, so the upper limit is preferably 820 ° C. On the other hand, if Ar 3 is too low, bainite is formed and elongation is deteriorated, so 760 ° C. is preferable as the lower limit.
The ferrite transformation start temperature Ar 3 at the time of cooling is represented by the following known formula (1).

Ar=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, the element symbol represents the content (mass%) of each element. The elements not contained are 0%.

続いて、本発明に係る鋼板の好適な製造条件を説明する。   Next, suitable manufacturing conditions for the steel sheet according to the present invention will be described.

まず、鋳造前処理として、溶鋼から炭素を除く1次精錬を行った後、溶鋼の成分調整をするにあたり、真空脱ガス処理により溶鋼の溶存酸素量を好ましくは65ppm以下、さらに好ましくは40ppm以下に調整する。溶鋼の溶存酸素量を特に40ppm以下に調整するには、例えば、RH真空脱ガス装置の真空度が1〜5torr(133〜667Pa)で、溶鋼を1〜3分還流して調整する。溶鋼の溶存酸素量を40ppm以下となった後、溶鋼にAlをAlの最終含有量が0.002〜0.050%となるように添加することが好ましい。溶鋼中の溶存酸素量が40ppmを以下にすれば、脱酸材としてAlを添加し、RH真空脱ガス装置で還流作業を行うことで、溶鋼中の最終溶存酸素量を16ppm以下、特に10ppm以下に調整することができる。また、溶存酸素量は少ないほどよく、溶鋼の溶存酸素量の下限については設定する必要はない。   First, as a casting pretreatment, after performing primary refining to remove carbon from molten steel, when adjusting the composition of molten steel, the dissolved oxygen content of molten steel is preferably 65 ppm or less, more preferably 40 ppm or less by vacuum degassing treatment. adjust. In order to adjust the dissolved oxygen amount of the molten steel to 40 ppm or less, for example, the degree of vacuum of the RH vacuum degassing device is 1 to 5 torr (133 to 667 Pa), and the molten steel is refluxed for 1 to 3 minutes for adjustment. It is preferable to add Al to the molten steel so that the final content of Al is 0.002 to 0.050% after the dissolved oxygen amount of the molten steel becomes 40 ppm or less. If the dissolved oxygen amount in the molten steel is 40 ppm or less, by adding Al as a deoxidizing agent and performing the reflux operation in the RH vacuum degassing device, the final dissolved oxygen amount in the molten steel is 16 ppm or less, particularly 10 ppm or less. Can be adjusted to. Further, the smaller the dissolved oxygen amount, the better, and it is not necessary to set the lower limit of the dissolved oxygen amount of the molten steel.

ついで、溶鋼の溶存酸素量を10ppm以下に調整した後、Ca、Mg、REMの1種または2種以上をCa、Mg、REMの1種または2種以上の合計の最終含有量が0.0005〜0.0080%となるように添加して優先的に硫化物化して、MnS生成を抑制することが好ましい。   Then, after adjusting the dissolved oxygen content of the molten steel to 10 ppm or less, one or two or more of Ca, Mg, and REM have a total final content of one or more of Ca, Mg, and REM of 0.0005. It is preferable that the MnS formation is suppressed by preferentially sulfiding by adding so as to be 0.0080%.

溶存酸素量を10ppm以下にすれば、Ca、Mg、REMを添加しても硫化物制御が十分にできる。
溶鋼の溶存酸素量を10ppm以下に調整するには、例えば、脱酸剤としてAlを添加後、RH真空脱ガス装置の真空度が1〜5torr(133〜667Pa)で、溶鋼を10〜60分還流して、溶鋼の溶存酸素量を10ppm以下に調整する。真空度が1〜5torr(133〜667Pa)で、溶鋼を10〜60分還流しなければ、溶存酸素量を10ppm以下とすることができない。また、溶存酸素量は少ないほどよく、溶鋼の溶存酸素量の下限については設定する必要はない。
When the dissolved oxygen amount is 10 ppm or less, sulfide control can be sufficiently performed even if Ca, Mg, and REM are added.
To adjust the amount of dissolved oxygen of molten steel to 10 ppm or less, for example, after adding Al as a deoxidizer, the degree of vacuum of the RH vacuum degassing device is 1 to 5 torr (133 to 667 Pa), and the molten steel is used for 10 to 60 minutes. Reflux to adjust the dissolved oxygen content of the molten steel to 10 ppm or less. If the degree of vacuum is 1 to 5 torr (133 to 667 Pa) and the molten steel is not refluxed for 10 to 60 minutes, the amount of dissolved oxygen cannot be reduced to 10 ppm or less. Further, the smaller the dissolved oxygen amount, the better, and it is not necessary to set the lower limit of the dissolved oxygen amount of the molten steel.

成分調整した溶鋼を連続鋳造して鋳片を製造する際に、鋳片の凝固末期である鋳片の中心固相率が0.2〜0.7の範囲において、鋳造ロールの間隙を、鋳造進行方向1mにつき0.2mm〜3.0mm、好ましくは鋳造進行方向1mにつき0.5〜2.0mm、さらに好ましくは鋳造進行方向1mにつき0.7〜1.5mmに狭めて軽圧下しながら鋳造し、Sn、P等の濃化溶鋼を上流側に排出させることが好ましい。それにより、有害な中心偏析を低減することが可能となる。ここでいう中心固相率とは、鋳片厚み方向の中心部で、かつ、鋳片幅方向の溶融部分の固相率と定義でき、伝熱、凝固計算によって求めることができること等が知られている。なお、軽圧下をすることが好ましいが、Sn、P含有量が低い化学組成の場合には軽圧下をしなくてもよい。   When continuously manufacturing the molten steel with adjusted composition, to produce a slab, when the central solid fraction of the slab, which is the final stage of solidification of the slab, is 0.2 to 0.7, the gap of the casting roll is cast. 0.2 mm to 3.0 mm per 1 m of advancing direction, preferably 0.5 to 2.0 mm per 1 m of advancing direction of casting, more preferably 0.7 to 1.5 mm per 1 m of advancing direction of casting, and casting with light pressure reduction. However, it is preferable to discharge concentrated molten steel such as Sn and P to the upstream side. This makes it possible to reduce harmful center segregation. It is known that the central solid fraction here can be defined as the solid fraction of the molten portion in the slab width direction and the central portion in the slab thickness direction, and can be obtained by heat transfer, solidification calculation, etc. ing. It is preferable to carry out a light reduction, but in the case of a chemical composition having a low Sn and P content, a light reduction may not be carried out.

ついで、鋳造した鋳片(鋼片)を熱間圧延する。
熱間圧延では、圧延前にまず、鋳片を1200〜1300℃で4〜48時間加熱した後に室温まで冷却する。耐食性には必要であるが、偏析すると靭性には必ずしも好ましくないSnの偏析を拡散させて、板厚の厚み方向の1/2厚±(板厚の)10%範囲でSnの最大濃度が0.01〜5.0%とするために、この熱処理(SP処理)が特に有効であることを知見したことにより、導入した。望ましくは、1200〜1300℃で24時間〜48時間加熱する。
Then, the cast slab (steel slab) is hot-rolled.
In hot rolling, first, before rolling, the slab is heated at 1200 to 1300 ° C. for 4 to 48 hours and then cooled to room temperature. Although necessary for corrosion resistance, segregation diffuses Sn segregation, which is not necessarily favorable for toughness, so that the maximum Sn concentration is 0% within the range of ½ thickness ± 10% (of plate thickness) in the thickness direction of the plate thickness. It was introduced by finding that this heat treatment (SP treatment) is particularly effective in order to achieve 0.01 to 5.0%. Desirably, it heats at 1200-1300 degreeC for 24 hours-48 hours.

その後、さらに鋳造した鋼片を950〜1300℃、好ましくは1000〜1100℃、より好ましくは1000〜1050℃の範囲で低温加熱する。この低温加熱を、SP処理の加熱に続いておこなうことから、2回目の加熱と呼ぶ。2回目の加熱温度を1300℃以下にして加熱するとオーステナイト(γと称することがある)粒を微細化し、フェライトを細粒化するともにγ→α変態温度を高めて転位密度を低減することができるので、1300℃を上限とした。また、950℃未満ではγ化が不十分で靭性が劣化するので950℃を下限とした。   After that, the cast steel piece is heated at a low temperature in the range of 950 to 1300 ° C, preferably 1000 to 1100 ° C, more preferably 1000 to 1050 ° C. This low temperature heating is called second heating because it is performed after the SP processing heating. When the second heating temperature is set to 1300 ° C. or lower, the austenite (sometimes called γ) grains are made finer, the ferrite is made finer, and the γ → α transformation temperature can be increased to reduce the dislocation density. Therefore, the upper limit was 1300 ° C. Further, if the temperature is lower than 950 ° C, γ conversion is insufficient and the toughness deteriorates, so 950 ° C was set as the lower limit.

加熱した鋼片を粗圧延した後、累積圧下率が50〜75%の仕上圧延を行う。累積圧下率が50%を超えるとγ中のα核生成サイトが増え、αを細粒化するとともにγ→α変態温度を高めることができるが、75%を超えると生産性が低下するので、累積圧下率を50〜75%としたが、好ましくは55〜65%である。   After roughly rolling the heated steel slab, finish rolling with a cumulative reduction of 50 to 75% is performed. When the cumulative rolling reduction exceeds 50%, the α nucleation sites in γ increase, and α can be made finer and the γ → α transformation temperature can be increased, but if it exceeds 75%, the productivity decreases, so The cumulative rolling reduction is 50 to 75%, preferably 55 to 65%.

仕上圧延は、αを細粒化するために重要な工程であり、圧延途中の鋼片の表面温度が公知の次式(1)で示す冷却する際のフェライト変態開始温度Ar−30℃以上、次式(2)で示す結晶粒の成長が始まる再結晶開始温度Trex℃以下で行う。温度がAr−30℃未満では2相域圧延となり、延伸したフェライトを形成し、伸びが劣化する。また、Trex超では未再結晶域圧延とならず、フェライトが粗大化して伸びを劣化させる。
Ar=910−310[C]+65[Si]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
rex=−91900[Nb*]+9400[Nb*]+770 ・・・ (2)
ここで、[Nb*]は、下記式(3)により求めるものとする。
rexは、通常の厚板圧延のパス間時間(10〜15秒間程度)で概ね再結晶を完了させるために必要な温度(再結晶限界温度)のことで、Nb添加量を用いて上記の式(2)で表すことができる。
[Sol.Nb]=(10(−6770/(T+273)+2.26))/([C]+12/14×[N])・・ (3)
なお、式(3)のTは鋼片の2回目の加熱温度で、単位は摂氏温度(℃)とし、
[Nb]≧[Sol.Nb]の場合は、[Nb*]=[Sol.Nb]、
[Nb]<[Sol.Nb]の場合は、[Nb*]=[Nb]、
とする。ここで、[Nb]は、Nb含有量(質量%)を、[Sol.Nb]は式(3)で求めたSol.Nb(固溶Nb)(質量%)を表す。
また、Trexの式(2)は実験式で、低温加熱することで固溶していないNbもあるので、固溶Nb量(Sol.Nb量)を、固溶Nbと再結晶温度の関係から求めた式である。
Finish rolling is an important step in order to fine the alpha, ferrite transformation starting temperature Ar 3 -30 ° C. or more when the surface temperature of the steel strip in the middle rolling cools shows a known equation (1) Then, it is performed at a recrystallization start temperature Trex ° C or lower at which the growth of crystal grains represented by the following formula (2) starts. If the temperature is less than Ar 3 −30 ° C., the rolling will be in the two-phase region, the stretched ferrite will be formed, and the elongation will be deteriorated. Also, in T rex than not the non-recrystallization region rolling, ferrite deteriorates the elongation coarsened.
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] ··· (1)
However, the element symbol represents the content (mass%) of each element. The elements not contained are 0%.
T rex = -91900 [Nb *] 2 +9400 [Nb *] + 770 ··· (2)
Here, [Nb *] is obtained by the following equation (3).
Trex is a temperature (recrystallization limit temperature) required to complete recrystallization generally in the time between passes (about 10 to 15 seconds) of normal thick plate rolling, and is the above-mentioned value using the Nb addition amount. It can be expressed by equation (2).
[Sol. Nb] = (10 (-6770 / (T + 273) +2.26) ) / ([C] + 12/14 × [N]) ... (3)
In addition, T of Formula (3) is the second heating temperature of the steel slab, and the unit is Celsius temperature (° C),
[Nb] ≧ [Sol. In the case of Nb], [Nb *] = [Sol. Nb],
[Nb] <[Sol. In the case of Nb], [Nb *] = [Nb],
And Here, as for [Nb], the Nb content (mass%) is [Sol. Nb] is the Sol. It represents Nb (solid solution Nb) (mass%).
Further, expression of T rex (2) in the empirical formula, because some Nb not dissolved by low-temperature heating, the amount of solute Nb and (Sol.Nb amount), the relationship between the solute Nb and recrystallization temperature This is the formula obtained from

仕上圧延後の冷却工程としては、仕上圧延された厚鋼板を冷却速度1℃/秒以下の空冷、または鋼板の表面温度がAr−150℃以上、Ar−50℃以下の温度まで冷却速度1℃/秒超、20℃/秒以下の水冷した後空冷する。なお、空冷終了温度は、室温である。As the cooling step after finish rolling, the finish rolled thick steel plate is air-cooled at a cooling rate of 1 ° C./sec or less, or the surface temperature of the steel plate is cooled to a temperature of Ar 3 −150 ° C. or more and Ar 3 −50 ° C. or less. Water cooling at over 1 ° C / sec and at 20 ° C / sec or less and then air cooling. The air cooling end temperature is room temperature.

冷却速度1℃/秒以下の空冷は冷却速度が小さいため、フェライト変態温度が高温化するのでフェライト粒内の転位密度が低下し、伸びを向上させることができる。空冷の冷却速度の下限は、特に限定する必要がない。   Since air cooling at a cooling rate of 1 ° C./sec or less has a low cooling rate, the ferrite transformation temperature rises, so that the dislocation density in the ferrite grains decreases and the elongation can be improved. The lower limit of the cooling rate of air cooling does not need to be particularly limited.

圧延完了後は空冷でもよいが、強度を高めるためには鋼板の表面温度がAr−150℃以上、Ar−50℃以下の温度まで冷却速度1℃/秒超、20℃/秒以下の水冷後に空冷しても良い。冷却停止温度がAr−150℃未満では変態温度が低温化し、フェライト粒内の転位密度上昇やベイナイト形成が起こり、伸びが劣化する。一方、Ar−50℃超では効果が得られない。水冷の冷却速度が20℃/秒を超えると、変態温度が低温化し伸びが劣化するので、水冷の冷却速度の上限は20℃/秒とした。水冷は、空冷の冷却速度以上であれば効果があるので、水冷の冷却速度の下限は1℃/秒超とした。After rolling is completed, air cooling may be performed, but in order to enhance strength, the surface temperature of the steel sheet is set to a temperature of Ar 3 −150 ° C. or higher and Ar 3 −50 ° C. or lower at a cooling rate of more than 1 ° C./sec and 20 ° C./sec or less. You may air-cool after water cooling. If the cooling stop temperature is less than Ar 3 -150 ° C., the transformation temperature becomes low, the dislocation density in ferrite grains increases, bainite is formed, and the elongation deteriorates. On the other hand, if Ar 3 exceeds 50 ° C, the effect cannot be obtained. If the cooling rate of water cooling exceeds 20 ° C./second, the transformation temperature becomes low and the elongation deteriorates. Therefore, the upper limit of the cooling rate of water cooling was set to 20 ° C./second. Since the water cooling is effective if it is equal to or higher than the cooling rate of the air cooling, the lower limit of the cooling rate of the water cooling is set to more than 1 ° C / sec.

以下、本発明の実施例を表1〜4を参照して説明する。
表1の化学成分を有する鋼片を用いて、表2、3の製造条件により板厚6〜40mmの鋼板を試作した。なお、表2、3のCa、Mg、REM前溶存酸素量は、Ca、Mg、REMの1種または2種以上を添加する前を意味する。溶存酸素は、ZrO(MgO)固体電解質を用いた酸素濃淡電池を有する酸素プローブを溶鋼に挿入することにより測定した。還流時間は、脱酸剤としてAlを添加後からCa、Mg、REM添加までの時間、鋳造時の圧下量は、中心固化率0.2〜0.7での圧下量(mm/m)、Arは(1)式、Trexは(2)式、[Sol.Nb]は(3)式より求めた。冷却条件の欄の冷却速度(℃/s)は、実測された表面温度から、公知の差分法による熱伝導解析により求めた1/2厚部での冷却速度である。表2、3の冷却パターン欄で記載の「空冷」は、水冷(加速冷却)を行わずに空冷を行った例であり、そして、「一部水冷」は圧延後、一部水冷を行った後に空冷を行った例である。
Hereinafter, examples of the present invention will be described with reference to Tables 1 to 4.
Using the steel pieces having the chemical composition shown in Table 1, a steel plate having a plate thickness of 6 to 40 mm was experimentally manufactured under the manufacturing conditions shown in Tables 2 and 3. In addition, the dissolved oxygen amount before Ca, Mg, and REM in Tables 2 and 3 means before the addition of one or more of Ca, Mg, and REM. Dissolved oxygen was measured by inserting an oxygen probe having an oxygen concentration battery using a ZrO 2 (MgO) solid electrolyte into molten steel. The reflux time is the time from the addition of Al as a deoxidizing agent to the addition of Ca, Mg and REM, and the reduction amount during casting is the reduction amount (mm / m) at the central solidification rate of 0.2 to 0.7, Ar 3 is the equation (1), Trex is the equation (2), [Sol. Nb] was calculated from the equation (3). The cooling rate (° C./s) in the column of cooling conditions is the cooling rate in the ½ thick part obtained by the heat conduction analysis by the known difference method from the actually measured surface temperature. "Air cooling" described in the cooling pattern column of Tables 2 and 3 is an example in which air cooling was performed without water cooling (accelerated cooling), and "partial water cooling" was performed partially water cooling after rolling. This is an example of performing air cooling later.

Figure 2019176112
Figure 2019176112

Figure 2019176112
Figure 2019176112

Figure 2019176112
Figure 2019176112

表4、5に示す製造した各鋼板の組織的特徴を、以下の要領で測定した。
まず、鋼板のミクロ組織は、鋼板の圧延方向垂直断面が観察できるようにサンプルを採取し、光学顕微鏡により表面から1mm、板厚1/4、板厚中心部の金属組織を500倍の倍率で撮影した。次に、画像解析ソフトを用いて適切な条件で二値化処理を施した後、αと第二相(パーライトおよびベイナイト)の総面積を求め、撮影部の全面積で除することにより各相の分率(面積分率%)を求めた。なお、表4、5中、小数点以下は四捨五入している。
フェライト粒の平均アスペクト比は、500倍で撮影した250μm×200μm×5視野の光学顕微鏡組織写真からフェライト粒径を抽出し、その視野中の各フェライト粒を楕円近似し、その長軸と短軸の比の平均値を求めることにより算出した。一方、フェライト粒径は円相当径を単純平均で算出した、結晶粒の平均円相当直径である。
鋼板(板厚t)の表面から1/4厚部まで(表面〜t/4)、または3/4厚部から裏面まで(裏面〜3t/4)、そして、1/4厚部から3/4厚部まで(t/4〜3t/4厚部の中心部)のそれぞれのビッカース硬さ平均値は、1mmピッチのビッカース硬さの試験を、JIS Z 2244のHV10つまり試験力の98.07Nの条件で測定し、平均値を求めた。
α中の平均転位密度は、上記板厚各位置から薄膜試料を採取し、透過型電子顕微鏡(TEM)を用いて倍率を40000倍として明視野の観察撮影を行い、得られたTEM像から任意の直線(長さ:L)と転位線との交切点の数(N)を測定し、膜厚:tの値を用いて、以下の式(4)により平均転位密度(ρ)を算出した。
ρ=2N/Lt ・・・ (4)
The structural characteristics of each manufactured steel sheet shown in Tables 4 and 5 were measured in the following manner.
First, for the microstructure of a steel sheet, a sample was taken so that the vertical cross section of the steel sheet in the rolling direction could be observed, and the metallographic structure at the center of the plate thickness was 1 mm from the surface with an optical microscope at a magnification of 500 times. I took a picture. Next, after binarizing under appropriate conditions using image analysis software, obtain the total area of α and the second phase (perlite and bainite), and divide by the total area of the imaging unit to obtain each phase. Was calculated (area fraction%). In Tables 4 and 5, fractions below the decimal point are rounded off.
The average aspect ratio of ferrite grains is 500 times, and the ferrite grain size is extracted from an optical micrograph of 250 μm × 200 μm × 5 field of view, and each ferrite grain in the field of view is approximated to an ellipse. It was calculated by obtaining the average value of the ratios. On the other hand, the ferrite grain size is the average equivalent circle diameter of the crystal grains calculated by simply averaging the equivalent circle diameters.
From the front surface of the steel plate (plate thickness t) to the 1/4 thick portion (front surface to t / 4), or from the 3/4 thick portion to the back surface (back surface to 3t / 4), and from the 1/4 thick portion to 3 / Each Vickers hardness average value up to 4 thickness parts (t / 4 to 3t / 4 thickness part central part) is 1 mm pitch Vickers hardness test, HV10 of JIS Z 2244, that is, 98.07N of test force. The measurement was performed under the conditions of and the average value was obtained.
For the average dislocation density in α, thin film samples were taken from each position of the plate thickness, and a bright field observation and photographing were performed using a transmission electron microscope (TEM) at a magnification of 40,000, and the obtained TEM image was arbitrarily selected. The number (N) of intersections between the straight line (length: L) and the dislocation line is measured, and the average dislocation density (ρ) is calculated by the following equation (4) using the value of film thickness: t. did.
ρ = 2N / Lt (4)

Figure 2019176112
Figure 2019176112

Figure 2019176112
Figure 2019176112

表6に機械的性質{降伏点または耐力(YP)、引張強さ(TS)、全伸び(T.EL)}を測定した結果を示す。
機械的性質は、板厚中心部から圧延方向と直角の方向に採取したJIS Z 2241(2011)の1B号引張試験片を用いて引張強さ(TS)評価した。降伏点はJIS Z2241(2011)の上降伏応力(上降伏点)ReHとし、例外的に降伏現象がなかった場合のみオフセット法の0.2%耐力とした。全伸び(T.EL)は、JIS Z2241(2011)の破断時全伸びAtのことを意味し、試験片は、JIS1B号を用いた。
表6中にて、各鋼はYP36規格として製造されたものである。
Table 6 shows the results of measurement of mechanical properties {yield point or proof stress (YP), tensile strength (TS), total elongation (T.EL)}.
The mechanical properties were evaluated for tensile strength (TS) using a No. 1B tensile test piece of JIS Z 2241 (2011) taken from the center of the plate thickness in a direction perpendicular to the rolling direction. The yield point was the upper yield stress (upper yield point) ReH of JIS Z2241 (2011), and 0.2% proof stress of the offset method was obtained only when there was no exceptional yield phenomenon. The total elongation (T.EL) means the total elongation at break At of JIS Z2241 (2011), and the test piece used was JIS No. 1B.
In Table 6, each steel is manufactured according to the YP36 standard.

また、各鋼板から、幅が60mm、長さが100mm、厚さが3mmの試験片を採取し、全面にショットブラスト加工を施した後、一部の試験片については変性エポキシ系塗料を乾燥膜厚で200μm被覆した。被覆面のうちの片面に、カッターナイフにより幅1mm、長さ10mmにわたる傷(×印)を2箇所入れた鋼材面を露出させ、鉱石運搬船における塗膜欠陥を模擬した腐食試験片とした。   Also, from each steel plate, a test piece having a width of 60 mm, a length of 100 mm and a thickness of 3 mm was sampled, shot-blasted on the entire surface, and then some of the test pieces were dried with a modified epoxy paint. The coating was 200 μm thick. On one of the coated surfaces, a steel material surface having two scratches (marked x) with a width of 1 mm and a length of 10 mm was exposed by a cutter knife was exposed to obtain a corrosion test piece simulating a coating film defect in an ore carrier.

これら裸材および塗装材の試験片について、図1に示すとおり、湿潤、浸漬、乾燥の順に行い1サイクルとし、これを繰り返すサイクル試験を実施し、鉱石運搬船ホールド内の腐食を模擬した。ここで、100%RH、50%RHとは、各温度での飽和水蒸気量に対する%である相対湿度を意味する。また、浸漬において使用した浸漬液は、0.5質量%NaCl+0.1質量%CaCl+0.5質量%NaSO水溶液である。また、この水溶液の質量%は溶液に対する%である。As shown in FIG. 1, the test pieces of the bare material and the coated material were wetted, dipped, and dried in the order of 1 cycle, and a cycle test was repeated to simulate corrosion in the ore carrier hold. Here, 100% RH and 50% RH mean relative humidity which is% of the saturated water vapor amount at each temperature. The immersion liquid used in the immersion is 0.5% by mass NaCl + 0.1% by mass CaCl 2 + 0.5% by mass Na 2 SO 4 aqueous solution. Moreover, the mass% of this aqueous solution is% with respect to the solution.

上記試験を40サイクル(40日間)実施し、試験後の各試験片から塗膜および腐食生成物を除去した後、裸鋼については試験後の重量減量より腐食量(板厚減少)を計算した。塗装材については、腐食が認められる面積の試験面積に対する割合を腐食面積率として求めた。また、腐食部における最大腐食深さも同時に測定した。これらの耐食性に関わる評価は経年での使用における減肉の評価として妥当である。表6に上記の試験結果を示す。   The above test was carried out for 40 cycles (40 days), the coating film and the corrosion product were removed from each test piece after the test, and the bare steel was subjected to the weight loss after the test to calculate the corrosion amount (thickness reduction). . For the coating material, the ratio of the area in which corrosion was observed to the test area was determined as the corrosion area ratio. The maximum corrosion depth in the corroded part was also measured at the same time. These evaluations relating to corrosion resistance are appropriate as evaluations of thinning in use over time. Table 6 shows the above test results.

Figure 2019176112
Figure 2019176112

本発明例の番号1〜24は、化学成分、製造条件が適切なために、本発明の範囲内のミクロ組織となったため、いずれも全伸び(T.EL)24%以上、降伏点または耐力(YP)355N/mm以上、引張強さ(TS)490N/mm以上を確保できた。Nos. 1 to 24 of the examples of the present invention have a microstructure within the scope of the present invention due to appropriate chemical components and manufacturing conditions. Therefore, the total elongation (T.EL) is 24% or more, the yield point or the proof stress. (YP) 355N / mm 2 or more, was able to secure a tensile strength (TS) 490N / mm 2 or more.

また、表6からもわかるように、本発明例番号1〜24においては、圧延割れも発生せず、また裸材および塗装材いずれについても耐食性は良好である。   Further, as can be seen from Table 6, in the invention examples Nos. 1 to 24, rolling cracks did not occur, and both the bare material and the coated material had good corrosion resistance.

一方、比較例の番号25〜46は化学成分、製造条件のいずれかが本発明の範囲を逸脱していたために、本発明のミクロ組織(フェライト等)とならず、本発明が目的とする機械的性質(YP、TS、T.EL)、あるいは、耐食性のいずれかが得られなかった。   On the other hand, in Comparative Examples Nos. 25 to 46, either the chemical composition or the manufacturing conditions deviated from the scope of the present invention, and therefore the microstructure (ferrite etc.) of the present invention was not obtained, and the machine intended by the present invention was used. Property (YP, TS, T.EL) or corrosion resistance was not obtained.

すなわち、番号25は、50〜75%の仕上圧延の際の鋼片の温度が低すぎたため、1/4厚部のフェライト中の平均転位密度が高く、全伸び(T.EL)が低かった。番号26、27は2回目の加熱温度が高過ぎたため、仕上圧延でγを細粒化できず、フェライトが本発明の要件(分率、アスペクト比、粒径、平均転位密度のいずれか1以上)を満たしておらず、全伸び(T.EL)が低かった。番号28、29、30は仕上圧延の累積圧下率が不足し、フェライトが本発明の要件(分率、アスペクト比、粒径、平均転位密度のいずれか1以上)を満たしておらず、本発明の要件を満たしていないため、強度(YP、TS)、全伸び(T.EL)のいずれかが低かった。番号31、32は、仕上圧延の終了温度が高すぎたため、フェライト(粒径、平均転位密度)が本発明の要件を満たしておらず、番号31は、全伸び(T.EL)が低く、番号32は、強度(YP、TS)が低かった。   That is, in No. 25, the temperature of the steel slab during the finish rolling of 50 to 75% was too low, so that the average dislocation density in the ferrite in the 1/4 thick part was high and the total elongation (T.EL) was low. . In Nos. 26 and 27, since the second heating temperature was too high, γ could not be fine-grained by finish rolling, and ferrite was one of the requirements (fraction, aspect ratio, grain size, average dislocation density 1 or more of the present invention). ) Was not satisfied, and the total elongation (T.EL) was low. Nos. 28, 29, and 30 lacked the cumulative rolling reduction of finish rolling, and the ferrite did not satisfy the requirements (any one or more of fraction, aspect ratio, grain size, and average dislocation density) of the present invention. The strength (YP, TS) or the total elongation (T.EL) was low because the requirement of No. was not satisfied. In Nos. 31 and 32, the finish temperature of finish rolling was too high, and therefore the ferrite (grain size, average dislocation density) did not satisfy the requirements of the present invention, and in No. 31, the total elongation (T.EL) was low, No. 32 had low intensity (YP, TS).

番号33は、Si量が不足していたため、全伸び(T.EL)が低かった。番号34は、S量が過剰であったため、全伸び(T.EL)が低下していた。番号35は、P量が過剰であったため、1/2厚±(板厚の)10%範囲(中心部)でのPの最大濃度が高く、全伸び(T.EL)が低かった。番号36はNb量が過剰であったため、全伸び(T.EL)が低下していた。   In No. 33, the total elongation (T.EL) was low because the amount of Si was insufficient. In No. 34, the total elongation (T.EL) was low because the S content was excessive. In No. 35, since the amount of P was excessive, the maximum concentration of P was high and the total elongation (T.EL) was low in the ½ thickness ± (plate thickness) 10% range (central portion). In No. 36, the total elongation (T.EL) was low because the amount of Nb was excessive.

番号37は、Ca+Mg+REMの量が過剰になっていたためにフェライト粒径が大きく、平均転位密度が大きいため、伸び(T.EL)が低かった。番号38は、Ti/Nの値が高くTiCが生成し、全伸び(T.EL)が低かった。番号39はSnの含有量が低く、良好な耐食性能が得られなかった。番号40はSnの含有量が高く、圧延時に割れが発生すると共に、全伸び(T.EL)が低かった。番号41はCoの含有量が高く、全伸び(T.EL)が低かった。番号42はSP処理を行わなかったので、板厚中心部のSnの濃度が高く、全伸び(T.EL)が低かった。番号43はSnを含有しないため、機械的特性は良好であるが、耐食性に劣る結果となった。番号44はNbの含有量が低く、強度(YP、TS)と伸びが低かった。番号45はTiの含有量が低いため、全伸び(T.EL)が低かった。番号46は、Ca+Mg+REMの含有量が低いため、全伸び(T.EL)が低かった。
In No. 37, the ferrite grain size was large because the amount of Ca + Mg + REM was excessive, and the average dislocation density was large, so the elongation (T.EL) was low. No. 38 had a high Ti / N value, TiC was produced, and the total elongation (T.EL) was low. No. 39 had a low Sn content, and good corrosion resistance could not be obtained. No. 40 had a high Sn content, had cracks during rolling, and had a low total elongation (T.EL). No. 41 had a high Co content and a low total elongation (T.EL). No. 42 had no SP treatment, so the Sn concentration in the central portion of the plate thickness was high and the total elongation (T.EL) was low. Since No. 43 does not contain Sn, the mechanical properties were good, but the corrosion resistance was poor. No. 44 had a low Nb content and had low strength (YP, TS) and elongation. No. 45 had a low Ti content and thus had a low total elongation (T.EL). No. 46 had a low total content (T.EL) because the content of Ca + Mg + REM was low.

Claims (5)

質量%で、
C:0.05〜0.20%、
Si:0.2〜1.0%、
Mn:0.5〜2.0%、
Nb:0.003〜0.030%、
Ti:0.003〜0.020%、
Al:0.002〜0.050%、
Sn:0.010〜0.30%、
N:0.0010〜0.0050%、
O:0.0005〜0.0050%、
Ca:0〜0.0080%、
Mg:0〜0.0080%、
REM:0〜0.0080%、
Ca+Mg+REM:0.0005〜0.0080%、
P:0.008%以下、
S:0.003%以下、
Cu:0〜0.05%、
Ni:0〜1.0%、
Cr:0〜0.10%未満、
Mo:0〜0.5%、
V:0〜0.050%、
Co:0〜1.0%、
B:0〜0.0030%、
Ti/N:0.5〜4.0、
残部:Fe及び不純物、
であり;
圧延方向断面を観察した際にミクロ組織が、
1/4厚部のフェライト面積分率:80〜95%、
1/4厚部のパーライト面積分率:5〜20%、
1/4厚部のベイナイト面積分率:0〜10%未満、
1/4厚部のフェライト粒の平均アスペクト比:1.0〜1.5、
1/4厚部のフェライト粒の平均粒径:5〜20μm、
1/4厚部のフェライト中の平均転位密度:7×1012/m以下、
であり;
1mmピッチのビッカース硬さの試験で、
鋼板の表面から1/4厚部までおよび3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%、
板厚の厚み方向の1/2厚±(板厚の)10%範囲でSnの最大濃度が0.01〜5.0%;
であることを特徴とする石炭・鉱石運搬船ホールド用鋼板。
In mass%,
C: 0.05 to 0.20%,
Si: 0.2 to 1.0%,
Mn: 0.5-2.0%,
Nb: 0.003 to 0.030%,
Ti: 0.003 to 0.020%,
Al: 0.002-0.050%,
Sn: 0.010 to 0.30%,
N: 0.0010 to 0.0050%,
O: 0.0005 to 0.0050%,
Ca: 0 to 0.0080%,
Mg: 0 to 0.0080%,
REM: 0 to 0.0080%,
Ca + Mg + REM: 0.0005 to 0.0080%,
P: 0.008% or less,
S: 0.003% or less,
Cu: 0 to 0.05%,
Ni: 0 to 1.0%,
Cr: 0 to less than 0.10%,
Mo: 0-0.5%,
V: 0 to 0.050%,
Co: 0 to 1.0%,
B: 0 to 0.0030%,
Ti / N: 0.5-4.0,
Remainder: Fe and impurities,
And
When observing the cross section in the rolling direction, the microstructure
Ferrite area fraction of 1/4 thick part: 80 to 95%,
Perlite area fraction of 1/4 thick part: 5 to 20%,
Bainite area fraction of 1/4 thick part: 0 to less than 10%,
Average aspect ratio of 1/4 thick part ferrite grains: 1.0 to 1.5,
Average particle size of ferrite particles in 1/4 thick part: 5 to 20 μm,
Average dislocation density in 1/4 thick part of ferrite: 7 × 10 12 / m 2 or less,
And
In the Vickers hardness test of 1 mm pitch,
The average value of Vickers hardness from the front surface to the 1/4 thick portion and from the 3/4 thickness portion to the back surface of the steel sheet is 80 to 105% of the average Vickers hardness value from the 1/4 thick portion to the 3/4 thick portion. ,
The maximum Sn concentration is 0.01 to 5.0% within a range of ½ thickness ± 10% (of the plate thickness) of the plate thickness;
Steel plate for hold of coal or ore carrier.
板厚の厚み方向の1/2厚±(板厚の)10%範囲でPの最大濃度が0.02〜0.20%;
であることを特徴とする請求項1に記載の石炭・鉱石運搬船ホールド用鋼板。
The maximum concentration of P is 0.02 to 0.20% in the range of ½ thickness ± (of the plate thickness) 10% in the thickness direction of the plate thickness;
The steel sheet for holding a coal or ore carrier according to claim 1, wherein
下記式(1)で示されるArが、760〜820℃であることを特徴とする請求項1または請求項2に記載の石炭・鉱石運搬船ホールド用鋼板。
Ar=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
Ar 3 represented by the following formula (1) is 760 to 820 ° C., The steel sheet for holding a coal or ore carrier, according to claim 1 or 2.
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, the element symbol represents the content (mass%) of each element. The elements not contained are 0%.
板厚が5〜50mmであることを特徴とする請求項1〜3のいずれか一項に記載の石炭・鉱石運搬船ホールド用鋼板。   The plate thickness is 5 to 50 mm, and the steel plate for holding a coal or ore carrier according to any one of claims 1 to 3, 引張強さ(TS)が490〜620N/mmであることを特徴とする請求項1〜請求項4のいずれか一項に記載の石炭・鉱石運搬船ホールド用鋼板。
Tensile strength (TS) is 490-620 N / mm < 2 >, The steel plate for hold | maintenance vessels of a coal and ore carrier as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2018534889A 2018-03-16 2018-03-16 Steel plate for holding coal and ore carrier Active JP6418361B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010616 WO2019176112A1 (en) 2018-03-16 2018-03-16 Steel sheet for coal/ore carrier hold

Publications (2)

Publication Number Publication Date
JP6418361B1 JP6418361B1 (en) 2018-11-07
JPWO2019176112A1 true JPWO2019176112A1 (en) 2020-04-16

Family

ID=64098672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534889A Active JP6418361B1 (en) 2018-03-16 2018-03-16 Steel plate for holding coal and ore carrier

Country Status (4)

Country Link
JP (1) JP6418361B1 (en)
KR (1) KR102021815B1 (en)
CN (1) CN110536973B (en)
WO (1) WO2019176112A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879082B1 (en) * 2016-12-21 2018-07-16 주식회사 포스코 Ultra high strength steel having low yield ratio method for manufacturing the same
JP7201068B2 (en) * 2019-03-14 2023-01-10 日本製鉄株式会社 Steel plate and its manufacturing method
JP7256373B2 (en) * 2019-03-27 2023-04-12 日本製鉄株式会社 Steel material and its manufacturing method
JP7350705B2 (en) * 2020-10-05 2023-09-26 株式会社神戸製鋼所 Low-strength thick steel plate with excellent elongation properties and corrosion resistance
WO2023008163A1 (en) * 2021-07-27 2023-02-02 日本製鉄株式会社 Steel sheet and method for manufacturing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434431B2 (en) 1997-04-28 2003-08-11 新日本製鐵株式会社 Steel plate excellent in impact energy absorbing ability and method for producing the same
JP3499126B2 (en) 1998-03-03 2004-02-23 新日本製鐵株式会社 Steel plate for hull excellent in impact energy absorption capacity and method of manufacturing the same
JP3578126B2 (en) 2001-09-14 2004-10-20 Jfeスチール株式会社 Steel material excellent in collision resistance and method for producing the same
JP4476923B2 (en) 2005-12-15 2010-06-09 株式会社神戸製鋼所 Steel sheet with excellent impact absorption and base metal toughness
JP4811277B2 (en) 2007-01-16 2011-11-09 住友金属工業株式会社 Corrosion resistant steel for holding coal and ore carrier
JP5368820B2 (en) * 2008-03-27 2013-12-18 株式会社神戸製鋼所 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP5605304B2 (en) * 2011-05-26 2014-10-15 新日鐵住金株式会社 Steel materials excellent in fatigue crack growth resistance and low temperature toughness of weld heat affected zone, and manufacturing method thereof
JP5979063B2 (en) * 2012-05-23 2016-08-24 Jfeスチール株式会社 Method for producing marine steel with excellent corrosion resistance and base metal toughness
JP5862464B2 (en) * 2012-06-06 2016-02-16 Jfeスチール株式会社 Corrosion resistant steel for coal ships or coal / ore combined ships
JP5839151B1 (en) * 2014-12-18 2016-01-06 新日鐵住金株式会社 Steel, a ballast tank and a hold of a ship using this steel, and a ship provided with this ballast tank or a hold
JP6007968B2 (en) 2014-12-26 2016-10-19 新日鐵住金株式会社 High-strength and highly ductile steel plate and its manufacturing method
MX2017008622A (en) * 2015-02-20 2017-11-15 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet.
BR112017024957A2 (en) * 2015-05-26 2018-07-31 Nippon Steel & Sumitomo Metal Corporation A steel plate and a manufacturing method for the same
WO2018066017A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for holds of collier and combined use coal/ore ship, and ship

Also Published As

Publication number Publication date
KR102021815B1 (en) 2019-09-18
CN110536973A (en) 2019-12-03
JP6418361B1 (en) 2018-11-07
CN110536973B (en) 2020-08-18
WO2019176112A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7201068B2 (en) Steel plate and its manufacturing method
JP6007968B2 (en) High-strength and highly ductile steel plate and its manufacturing method
TWI606125B (en) Plated steel
JP6418361B1 (en) Steel plate for holding coal and ore carrier
JP4935578B2 (en) Corrosion resistant steel for ships
JPWO2020045219A1 (en) High-strength steel sheet and its manufacturing method
JP5353283B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP5130828B2 (en) High strength marine corrosion resistant steel and method for producing the same
JP6380712B1 (en) Low temperature nickel-containing steel and low temperature tank
WO2020045220A1 (en) High-strength steel plate and method for producing same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5375246B2 (en) Corrosion-resistant steel for crude oil tank and its manufacturing method
JP4935579B2 (en) Corrosion resistant steel for ships
JPWO2019087318A1 (en) Low temperature nickel-containing steel sheet and low temperature tank using the same
JP2010150631A (en) Shape steel for vessel having excellent corrosion resistance, and method for producing the same
JP2010202938A (en) Thick steel plate having excellent brittle crack arrest property
JP7121142B2 (en) Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement
JP2010059505A (en) Thick steel plate superior in characteristic to stop brittle crack propagation
JP2017066516A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP5454599B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP2015157969A (en) Corrosion resistant steel for holding coal ship and coal and ore ship
JP5454598B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP7277862B1 (en) Steel plate and its manufacturing method
JP7548275B2 (en) Heavy-duty steel plate, manufacturing method thereof, and structure
JP2024500725A (en) High-strength hot-dip galvanized steel sheet with excellent plating properties and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180702

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R151 Written notification of patent or utility model registration

Ref document number: 6418361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350