JP3434431B2 - Steel plate excellent in impact energy absorbing ability and method for producing the same - Google Patents

Steel plate excellent in impact energy absorbing ability and method for producing the same

Info

Publication number
JP3434431B2
JP3434431B2 JP12283997A JP12283997A JP3434431B2 JP 3434431 B2 JP3434431 B2 JP 3434431B2 JP 12283997 A JP12283997 A JP 12283997A JP 12283997 A JP12283997 A JP 12283997A JP 3434431 B2 JP3434431 B2 JP 3434431B2
Authority
JP
Japan
Prior art keywords
ferrite
hardness
less
steel
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12283997A
Other languages
Japanese (ja)
Other versions
JPH10306340A (en
Inventor
忠 石川
浩司 石田
嗣郎 今井
修一 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12283997A priority Critical patent/JP3434431B2/en
Publication of JPH10306340A publication Critical patent/JPH10306340A/en
Application granted granted Critical
Publication of JP3434431B2 publication Critical patent/JP3434431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、造船等の構造物に
使用される鋼材において、タンカーの衝突による油流出
事故に代表されるような船舶の衝突事故が万一起きた場
合でも、その破壊を最小限にくい止めることができる衝
突エネルギー吸収能の高い鋼板およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material used for a structure such as a shipbuilding, even if a collision accident of a ship, which is represented by an oil spill accident due to a collision of a tanker, should be destroyed. The present invention relates to a steel plate having a high collision energy absorption capability that can be stopped with a minimum difficulty, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、造船分野において、タンカーの油
流出事故による海洋汚染が社会的に深刻化し、万一船舶
同士が衝突事故を起こしてもその破壊を最小限にくい止
め、タンカーからの油流出や破損部からの進水等の被害
を最小限にするための造船技術及びそれに用いられる鋼
板が検討されている。
2. Description of the Related Art In recent years, in the field of shipbuilding, marine pollution caused by oil spills on tankers has become a serious social problem, and even in the unlikely event of a collision between ships, it is difficult to minimize the destruction of the oil. Shipbuilding technology and steel sheets used for it are being studied to minimize damage such as launching from damaged areas.

【0003】上記の従来技術として、船殻の二重構造化
及び法制化はその代表例であるが、大型のタンカーで
は、二重構造化しても衝突時のエネルギーが大きく完全
に油流出を抑えることが難しいとの見解もある。
A typical example of the above-mentioned prior art is the double structuring and legislation of the hull, but in a large tanker, the energy at the time of collision is large and the oil spill is completely suppressed even if the double structuring is adopted. There is also a view that it is difficult.

【0004】そこで、近年、船体に使用される鋼材自体
の特性として、衝突時におけるエネルギー吸収能の向上
が望まれている。
Therefore, in recent years, as a characteristic of the steel material itself used for the hull, improvement of energy absorption capacity at the time of collision is desired.

【0005】しかしながら、従来、船体衝突時のエネル
ギー吸収能に関する鋼材面からの検討はほとんどされて
なく、鋼材のエネルギー吸収能を向上させるためには、
鋼材の機械特性及び組織と衝突エネルギー吸収能の関係
についての検討が必要である。
However, heretofore, almost no studies have been made from the viewpoint of steel materials regarding the energy absorption capacity at the time of collision of a ship, and in order to improve the energy absorption capacity of steel materials,
It is necessary to study the relationship between the mechanical properties and structure of steel materials and the impact energy absorption capacity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、船体の衝突
時に破壊を最小限にすることができる衝突エネルギー吸
収能の優れた鋼材およびその製造方法を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention provides a steel material having excellent collision energy absorption capability and capable of minimizing damage during collision of a ship, and a method for manufacturing the steel material.

【0007】[0007]

【0008】[0008]

【課題を解決するための手段】 (1) 鋼板の成分が重
量%で、 C:0.04〜0.15% Si:0.1〜0.5% Mn:0.5〜1.8% Ti:0.01%以下 Al:0.06%以下 Nb:0.01〜0.03% かつ炭素当量Ceq(=C+Si/24+Mn/6)
(%)が0.4%以下であり、残部がFeおよび不可避
的不純物である成分からなり、かつ、鋼板の組織におい
て、フェライト分率Fが80%以上であり、かつフェラ
イトの硬さHがH≧400−2.6×Fの関係式(ただ
し、式中のHはフェライトのビッカース硬さHv、Fは
フェライト分率%を意味する)を満たすことを特徴とす
る衝突エネルギー吸収能に優れた鋼板。
Means for Solving the Problems (1) The composition of the steel sheet is wt%, C: 0.04 to 0.15% Si: 0.1 to 0.5% Mn: 0.5 to 1.8% Ti: 0.01% or less Al: 0.06% or less Nb: 0.01 to 0.03% and carbon equivalent Ceq (= C + Si / 24 + Mn / 6)
(%) Is 0.4% or less, the balance consists of Fe and inevitable impurities , and the structure of the steel sheet has an odor.
The ferrite fraction F is 80% or more, and
The hardness H of the iron is a relational expression of H ≧ 400-2.6 × F (only
Where H is the Vickers hardness Hv of ferrite and F is
A steel sheet excellent in collision energy absorption capacity, characterized by satisfying a ferrite fraction%) .

【0009】() 重量%で、 C:0.04〜0.15% Si:0.1〜0.5% Mn:0.5〜1.8% Ti:0.01%以下 Al:0.06%以下 Nb:0.01〜0.03% かつ炭素当量Ceq(=C+Si/24+Mn/6)
(%)が0.4%以下であり、残部がFeおよび不可避
的不純物からなる鋼を1100℃以上に加熱した後、熱
間圧延に供し、800℃以上で圧延を終了することを特
徴とするフェライト分率Fが80%以上であり、かつフ
ェライトの硬さHがH≧400−2.6×Fの関係式
(ただし、式中のHはフェライトのビッカース硬さH
v、Fはフェライト分率%を意味する)満たす衝突エ
ネルギー吸収能に優れた鋼板の製造方法。
( 2 ) In wt%, C: 0.04 to 0.15% Si: 0.1 to 0.5% Mn: 0.5 to 1.8% Ti: 0.01% or less Al: 0 0.06% or less Nb: 0.01 to 0.03% and carbon equivalent Ceq (= C + Si / 24 + Mn / 6)
(%) Is 0.4% or less, and the balance consists of Fe and unavoidable impurities. After heating the steel to 1100 ° C. or higher, it is subjected to hot rolling, and the rolling is finished at 800 ° C. or higher. A relational expression in which the ferrite fraction F is 80% or more, and the hardness H of the ferrite is H ≧ 400-2.6 × F.
(However, H in the formula is Vickers hardness H of ferrite.
v, F manufacturing method of steel sheet excellent in impact energy absorbing capacity to meet the mean ferrite fraction%).

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0011】船体の衝突エネルギー吸収能と鋼材の機械
的特性及び組織の関係を調査するため、図1に示すよう
な衝突エネルギー吸収能の評価試験を行った。
In order to investigate the relationship between the collision energy absorption capacity of the hull and the mechanical properties and structure of the steel material, an evaluation test of collision energy absorption capacity as shown in FIG. 1 was conducted.

【0012】試験は、大型衝撃試験機を用い、試験片端
部1を前記試験機に固定し、ハンマー2を試験片中央部
3に衝突させる。試験片中央部では試験片幅が小さくな
っており、試験片中央部から破壊する。
In the test, a large impact tester is used, the end 1 of the test piece is fixed to the tester, and the hammer 2 is made to collide with the central part 3 of the test piece. The width of the test piece is small at the center of the test piece, and the test piece breaks from the center.

【0013】衝突エネルギー吸収能(EA)は、ハンマ
ーの腕長さ:hcm、重量:wkgのハンマーを用いて
試験片中央部を破断させた時のハンマーの振り上げ角θ
と、試験片破断後のハンマーの振り戻り角γからハンマ
ーの位置エネルギーを算出し、この値を試験片中央部の
断面積で除した値とする。
The impact energy absorption capacity (EA) is the swing-up angle θ of the hammer when the center portion of the test piece is broken using a hammer having a hammer arm length: hcm and weight: wkg.
Then, the potential energy of the hammer is calculated from the swing-back angle γ of the hammer after breakage of the test piece, and this value is divided by the cross-sectional area of the central portion of the test piece.

【0014】試験は、鋼材の機械的特性及び組織のそれ
ぞれと衝突エネルギー吸収能(EA)との関係を調査す
るためC:0.04〜0.2%、Si:0.1〜1.0
%、Mn:0.5〜2.0%、Ti:0〜0.02%、
Al:0.06%以下、Nb:0〜0.03%である種
々の成分の鋼材を供試材として、同一形状の試験片を用
いて試験を実施し、その時の衝突エネルギー吸収能(E
A)と機械的特性及び鋼材組織との関係を調査した。
In the test, C: 0.04 to 0.2% and Si: 0.1 to 1.0 were investigated in order to investigate the relationship between the collision energy absorption capacity (EA) and each of the mechanical properties and structure of the steel material.
%, Mn: 0.5 to 2.0%, Ti: 0 to 0.02%,
Tests were carried out using test pieces of the same shape with steel materials having various components of Al: 0.06% or less and Nb: 0 to 0.03%, and collision energy absorption capacity (E
The relationship between A) and mechanical properties and steel structure was investigated.

【0015】その結果、衝突エネルギー吸収能(EA)
と鋼材の機械的特性の関係として、鋼材の伸び特性(E
L)と強度特性(YP、TS)の両者が優れていること
が衝突エネルギー吸収能(EA)を向上させるために必
要であることを知見し、次の相関関係を得た。
As a result, collision energy absorption capacity (EA)
And the mechanical properties of steel, the elongation properties (E
It was found that both L) and strength properties (YP, TS) are excellent in order to improve the collision energy absorption capacity (EA), and the following correlation was obtained.

【0016】 EA=α×EL×(YP+TS)/2・・・・・(1) ここで、ELは全伸び(%)、YPは降伏強度(kgf
/mm2)、TSは引張強度(kgf/mm2)であり、
αは試験片形状等により決まる定数である。
EA = α × EL × (YP + TS) / 2 (1) where EL is total elongation (%) and YP is yield strength (kgf
/ Mm 2 ), TS is the tensile strength (kgf / mm 2 ),
α is a constant determined by the shape of the test piece.

【0017】さらに、鋼材の伸び特性(EL)と組織と
の関係を調査した結果、図2に示すように伸び特性(E
L)は、フェライト分率(F)が80%以上であると良
好であることを知見した。
Further, as a result of investigating the relationship between the elongation property (EL) of the steel material and the structure, as shown in FIG.
It was found that L) was good when the ferrite fraction (F) was 80% or more.

【0018】一方、強度特性であるYP、TSは、フェ
ライト以外のベイナイト、パーライト等の第二相組織分
率が増大するほど、―般には増加する傾向があるが、伸
び特性(EL)を向上させるためには第二相組織分率を
出来るだけ小さくする必要がある。
On the other hand, the strength characteristics YP and TS tend to generally increase as the second phase structure fraction of bainite, pearlite, etc. other than ferrite increases, but the elongation characteristics (EL) In order to improve it, it is necessary to make the second phase structure fraction as small as possible.

【0019】そこで、ELを確保しつつ、YP、TSを
増大させる手段として、フェライト相の硬さ(ビッカー
ス硬さHv)(H)に注目し、同じフェライト分率
(F)の場合に、フェライト硬さHv(H)により衝突
エネルギー吸収能(EA)がどう変化するかを調査し
た。その結果を図3に示す。
Therefore, while securing EL, YP, TS
As a means of increasing the hardness of the ferrite phase(Vicker
Hardness Hv)Paying attention to (H), the same ferrite fraction%
In case of (F), ferrite hardnessHvCollision due to (H)
To investigate how energy absorption capacity (EA) changes
It was The result is shown in FIG.

【0020】従来、一般に用いられている船殻用鋼材の
衝突エネルギー吸収能(EA)は、10〜11程度であ
る。本発明の目標は、この従来の鋼板の衝突エネルギ―
吸収能(EA)より少なくとも20%程度向上させるこ
と、つまり衝突エネルギー吸収能(EA)が12以上の
鋼板を得ることである。
The collision energy absorption capacity (EA) of steel materials for hulls that have been generally used in the past is about 10 to 11. The goal of the present invention is the collision energy of this conventional steel plate.
It is to improve the absorption capacity (EA) by at least 20%, that is, to obtain a steel sheet having a collision energy absorption capacity (EA) of 12 or more.

【0021】図3の試験結果からフェライト分率(F)
が90%の場合、フェライト硬さ(H)がHv170以
上、フェライト分率(F)が95%の時、フェライト硬
さ(H)がHv154以上必要である。
From the test results of FIG. 3, the ferrite fraction (F)
Is 90%, the ferrite hardness (H) is Hv 170 or more, and the ferrite fraction (F) is 95%, the ferrite hardness (H) is Hv 154 or more.

【0022】又、フェライト分率(F)が80%の時に
は、フェライト硬さ(H)がHv192以上必要である
ことがわかる。
It is also understood that when the ferrite fraction (F) is 80%, the ferrite hardness (H) needs to be Hv 192 or more.

【0023】しかしながら、フェライト分率(F)が7
0%の時には、図2に示したように全伸び(EL)が小
さいために、フェライト硬さ(H)をHv195程度に
増大させても衝突エネルギー吸収能(EA)は12以下
であり、本発明の目標値を満足できない。
However, the ferrite fraction (F) is 7
At 0%, since the total elongation (EL) is small as shown in FIG. 2, even if the ferrite hardness (H) is increased to about Hv 195, the collision energy absorption capacity (EA) is 12 or less, The target value of the present invention cannot be satisfied.

【0024】これら衝突エネルギー吸収能(EA)とフ
ェライト分率(F)及びフェライト硬さ(H)の関係か
らEA≧12を達成するために必要な限界フェライト分
率(F)と限界フェライト硬さ(H)の関係を求めると
図4に示す通りになる。
From the relationship between the collision energy absorption capacity (EA) and the ferrite fraction (F) and the ferrite hardness (H), the critical ferrite fraction (F) and the critical ferrite hardness necessary to achieve EA ≧ 12 are obtained. The relationship (H) is obtained as shown in FIG.

【0025】ここで、限界フェライト分率(F)及び限
界フェライト硬さ(H)は、図3においてEA≧12を
満足するために必要なフェライト分率(F)及び限界フ
ェライト硬さ(H)のそれぞれの限界値とする。
Here, the limit ferrite fraction (F) and the limit ferrite hardness (H) are the ferrite fraction (F) and the limit ferrite hardness (H) required to satisfy EA ≧ 12 in FIG. And the respective limit values.

【0026】この結果より、衝突エネルギー吸収能(E
A)が12以上を達成するためには、限界要求フェライ
ト分率(F)と限界要求フェライト硬さ(H)との間に
は、H≧400−2.6×F、且つF≧80(%)(た
だし、Hはフェライトのビッカース硬さHvで、Fはフ
ェライト分率%を意味する)
From this result, the collision energy absorption capacity (E
In order to achieve A) of 12 or more, H ≧ 400−2.6 × F and F ≧ 80 () between the limit required ferrite fraction (F) and the limit required ferrite hardness (H). %) (Was
However, H is the Vickers hardness Hv of the ferrite, and F is the flux.
Elite fraction means%)

【0027】次に、本発明鋼の成分の限定理由を説明す
る。
Next, the reasons for limiting the components of the steel of the present invention will be explained.

【0028】Cは、鋼材の強度を確保するために必要で
あるが、C量が0.15%以上になると、フェライト分
率を80%以上確保することが困難になり、0.04%
以下ではフェライト硬さがHv170以上にならないた
め、0.04%〜0.15%に規定した。
C is necessary to secure the strength of the steel material, but when the C content is 0.15% or more, it becomes difficult to secure the ferrite fraction of 80% or more, and 0.04%.
In the following, the ferrite hardness does not reach Hv 170 or higher, so the content was defined as 0.04% to 0.15%.

【0029】Siは、鋼の脱酸元素として0.1%以上
必要であるが、1%を超えると溶接性に著しい問題が生
じるので、0.1〜1%に規定した。
Si is required to be 0.1% or more as a deoxidizing element of steel, but if it exceeds 1%, a serious problem occurs in weldability, so 0.1 to 1% is specified.

【0030】Mnは、鋼の靭性を確保し、かつ強度を向
上させるものであるため、0.5%を下限とし、過度の
添加はフェライト分率の確保に支障となるので、1.8
%を上限とした。
Mn secures the toughness of the steel and improves the strength. Therefore, the lower limit is 0.5%. Excessive addition of Mn hinders the securing of the ferrite fraction.
% Was set as the upper limit.

【0031】Tiは、組織を微細化して靭性を確保する
ために、添加することがあるが、Tiは析出物を形成し
やすく、特にフェライトの硬さを増大させるために添加
するNbとTi−Nb複合析出物を生成してしまうの
で、フェライト硬さの増大には有害であるため、上限を
0.01%に規制した。
Ti may be added in order to refine the structure and ensure toughness, but Ti easily forms precipitates, and in particular Nb and Ti- which are added to increase the hardness of ferrite. Since Nb composite precipitates are generated, it is harmful to increase the ferrite hardness, so the upper limit was restricted to 0.01%.

【0032】Alは、脱酸元素として添加するが、0.
06%を越えると析出物を形成し、母材の靭性を脆化さ
せ、かつ溶接継手の靭性にも有害となるため、上限を
0.06%に規定する。
Al is added as a deoxidizing element.
If it exceeds 06%, a precipitate is formed, the toughness of the base material becomes brittle, and the toughness of the welded joint is adversely affected. Therefore, the upper limit is set to 0.06%.

【0033】Nbは、フェライト地に固溶、あるいは微
細析出物による析出強化のために、0.01%以上添加
するが、過度の添加は溶接継手部の靭性に有害であるの
で、上限を0.03%に規定した。
Nb is added in an amount of 0.01% or more in order to form a solid solution in the ferrite base or to strengthen the precipitation by fine precipitates, but excessive addition is harmful to the toughness of the welded joint, so the upper limit is 0. Specified as 0.03%.

【0034】また、炭素当量Ceq(=C+Si/24
+Mn/6)(%)が、0.4%以上になると、焼入れ
性が増大し、フェライトの生成が困難になり、フェライ
ト分率の確保が難しくなるため、上限を0.4%と規定
した。
The carbon equivalent Ceq (= C + Si / 24
If + Mn / 6) (%) is 0.4% or more, the hardenability is increased, the generation of ferrite becomes difficult, and it becomes difficult to secure the ferrite fraction. Therefore, the upper limit is defined as 0.4%. .

【0035】次に本発明鋼の製造条件の限定理由を説明
する。
Next, the reasons for limiting the production conditions for the steel of the present invention will be described.

【0036】本発明の製造方法において、加熱温度は、
フェライト硬さを増大させるために添加するNbが、圧
延前に完全にオーステナイト相中に固溶させるために1
100℃以上に規定する。
In the manufacturing method of the present invention, the heating temperature is
Nb, which is added to increase the ferrite hardness, is used to completely dissolve the Nb in the austenite phase before rolling.
Specify at 100 ° C or higher.

【0037】また、圧延温度は、800℃未満で加工す
るとNbの析出の促進効果を抑制するため800℃以上
と規定する。
Further, the rolling temperature is defined as 800 ° C. or higher in order to suppress the effect of promoting the precipitation of Nb when processed at a temperature lower than 800 ° C.

【0038】[0038]

【実施例】表1に示す化学成分を有する鋼材を用いて、
表2に示す製造条件で、鋼板製造した。また、表2に
は、この条件で得られた鋼板の組織及び機械的特性を併
記した。
EXAMPLES Using steel materials having the chemical composition shown in Table 1,
Steel plates were manufactured under the manufacturing conditions shown in Table 2. In addition, Table 2 also shows the structure and mechanical properties of the steel sheet obtained under these conditions.

【0039】表1において、鋼種1〜鋼種4は、本発明
で規定する範囲の成分を含有する鋼である。一方、鋼種
5〜7は、比較例として、Ti及びNbの含有量が共に
本発明の規定範囲を満たさない例を示す。
In Table 1, Steel Grades 1 to 4 are steels containing the components in the range specified in the present invention. On the other hand, the steel types 5 to 7 show examples in which the contents of Ti and Nb both do not satisfy the specified range of the present invention as comparative examples.

【0040】表2において、番号1〜7は、本発明例で
あるが、フェライト分率(F)が80%であり、かつフ
ェライトの硬さ(H)も、400−2.6×F以上を満
たし、鋼板の衝突吸収エネルギー(EA)は本発明の目
標とする12kgf/mm2以上を有している。
In Table 2, Nos. 1 to 7 are examples of the present invention, but the ferrite fraction (F) is 80%, and the hardness (H) of ferrite is 400-2.6 × F or more. And the impact absorption energy (EA) of the steel sheet is 12 kgf / mm 2 or more, which is the target of the present invention.

【0041】一方、番号8、9は、化学成分は本発明の
範囲内であるが、製造条件において、番号8は、加熱温
度及び圧延終了温度が所定温度より低いため、フェライ
トの硬さ(H)が400−2.6×F未満であり、衝突
吸収エネルギー(EA)が12kgf/mm2未満とな
っている。また、番号9は、圧延終了温度が所定温度よ
り低く、充分な衝突吸収エネルギー(EA)が12kg
f/mm2未満となっている。
On the other hand, although the chemical compositions of Nos. 8 and 9 are within the scope of the present invention, under the manufacturing conditions, No. 8 has the hardness (H) of the ferrite because the heating temperature and the rolling end temperature are lower than the predetermined temperature. ) Is less than 400-2.6 × F, and the collision absorption energy (EA) is less than 12 kgf / mm 2 . No. 9 has a rolling end temperature lower than a predetermined temperature and a sufficient impact absorption energy (EA) of 12 kg.
It is less than f / mm 2 .

【0042】番号10〜12は、化学成分が本発明の範
囲から外れており、番号10は、フェライト硬さ(H)
が所定値に達してなく、番号11はフェライト分率
(F)が所定値を得られてなく、番号12はフェライト
硬さ(H)が所定値に達してないため、衝突吸収エネル
ギー(EA)が12kgf/mm2未満となっている。
Nos. 10 to 12 have chemical components outside the scope of the present invention, and No. 10 has ferrite hardness (H).
Has not reached a predetermined value, the number 11 has not obtained a predetermined ferrite fraction (F), and the number 12 has a ferrite hardness (H) that has not reached a predetermined value, so the collision absorption energy (EA) Is less than 12 kgf / mm 2 .

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明により、衝突吸収エネルギー(E
A)が12kgf/mm2以上の衝突エネルギー吸収能
の優れた鋼材を提供することが可能であり、本発明鋼材
を船体に使用することにより、万一船体同士の衝突事故
が起こった場合でも、船体の破断面積を従来の鋼材の場
合よりも減少することができる。
According to the present invention, the collision absorption energy (E
A) is capable of providing a steel material having an excellent impact energy absorption capacity of 12 kgf / mm 2 or more, and by using the steel material of the present invention for a hull, even if a collision accident occurs between hulls, The breaking area of the hull can be reduced as compared with the case of conventional steel materials.

【0046】そのため、タンカーの衝突事故時における
油の流出による海洋汚染、又は衝突損傷部からの進水量
を低減できる等、環境保護、安全性の点から計り知れな
い効果がある。
Therefore, there is an immeasurable effect in terms of environmental protection and safety, such as marine pollution due to oil spill at the time of a tanker collision accident, or reduction of the amount of water launched from a collision damaged part.

【図面の簡単な説明】[Brief description of drawings]

【図1】衝突エネルギー吸収能の評価試験方法の概要図
である。
FIG. 1 is a schematic diagram of a collision energy absorption capacity evaluation test method.

【図2】フェライト分率(F)と全伸び(EL)の関係
を示す図である。
FIG. 2 is a diagram showing a relationship between a ferrite fraction (F) and a total elongation (EL).

【図3】フェライト硬さ(H)と衝突エネルギー吸収能
(EA)の関係を示す図である。
FIG. 3 is a diagram showing a relationship between ferrite hardness (H) and collision energy absorption capacity (EA).

【図4】限界要求フェライト分率(F)と限界フェライ
ト硬さ(H)との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a limit required ferrite fraction (F) and a limit ferrite hardness (H).

フロントページの続き (72)発明者 地主 修一 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 平8−3679(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 Front Page Continuation (72) Inventor Shuichi Oita City, Oita City, Nishinosu 1 No. 1 Nippon Steel Corporation Oita Works (56) References JP-A-8-3679 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板の成分が重量%で、 C:0.04〜0.15% Si:0.1〜0.5% Mn:0.5〜1.8% Ti:0.01%以下 Al:0.06%以下 Nb:0.01〜0.03% かつ炭素当量Ceq(=C+Si/24+Mn/6)
(%)が0.4%以下であり、残部がFeおよび不可避
的不純物である成分からなり、かつ、 鋼板の組織におい
て、フェライト分率Fが80%以上であり、かつフェラ
イトの硬さHがH≧400−2.6×Fの関係式(ただ
し、式中のHはフェライトのビッカース硬さHv、Fは
フェライト分率%を意味する)を満たすことを特徴とす
る衝突エネルギー吸収能に優れた鋼板。
1. The composition of the steel sheet is wt%, C: 0.04 to 0.15% Si: 0.1 to 0.5% Mn: 0.5 to 1.8% Ti: 0.01% or less Al: 0.06% or less Nb: 0.01 to 0.03% and carbon equivalent Ceq (= C + Si / 24 + Mn / 6)
(%) Is 0.4% or less, the balance is Fe and unavoidable
Relational expression of the ferrite fraction F of 80% or more and the hardness H of the ferrite H ≧ 400-2.6 × F in the structure of the steel sheet (only
Where H is the Vickers hardness Hv of ferrite and F is
A steel sheet excellent in collision energy absorption capacity, characterized by satisfying a ferrite fraction%) .
【請求項2】 重量%で、 C:0.04〜0.15% Si:0.1〜0.5% Mn:0.5〜1.8% Ti:0.01%以下 Al:0.06%以下 Nb:0.01〜0.03% かつ炭素当量Ceq(=C+Si/24+Mn/6)
(%)が0.4%以下であり、残部がFeおよび不可避
的不純物からなる鋼を1100℃以上に加熱した後、熱
間圧延に供し、800℃以上で圧延を終了することを特
徴とするフェライト分率Fが80%以上であり、かつフ
ェライトの硬さHがH≧400−2.6×Fの関係式
(ただし、式中のHはフェライトのビッカース硬さH
v、Fはフェライト分率%を意味する)満たす衝突エ
ネルギー吸収能に優れた鋼板の製造方法。
2. In % by weight, C: 0.04 to 0.15% Si: 0.1 to 0.5% Mn: 0.5 to 1.8% Ti: 0.01% or less Al: 0. 06% or less Nb: 0.01 to 0.03% and carbon equivalent Ceq (= C + Si / 24 + Mn / 6)
(%) Is 0.4% or less, after the balance was heated steel consisting of Fe and unavoidable impurities than 1100 ° C., thermal
It is used for hot rolling and finished at 800 ℃ or higher.
The ferrite fraction F as a characteristic is 80% or more, and
The relational expression where the hardness H of the ellite is H ≧ 400-2.6 × F
(However, H in the formula is Vickers hardness H of ferrite.
v, F manufacturing method of steel sheet excellent in impact energy absorbing capacity to meet the mean ferrite fraction%).
JP12283997A 1997-04-28 1997-04-28 Steel plate excellent in impact energy absorbing ability and method for producing the same Expired - Fee Related JP3434431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12283997A JP3434431B2 (en) 1997-04-28 1997-04-28 Steel plate excellent in impact energy absorbing ability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12283997A JP3434431B2 (en) 1997-04-28 1997-04-28 Steel plate excellent in impact energy absorbing ability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10306340A JPH10306340A (en) 1998-11-17
JP3434431B2 true JP3434431B2 (en) 2003-08-11

Family

ID=14845914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12283997A Expired - Fee Related JP3434431B2 (en) 1997-04-28 1997-04-28 Steel plate excellent in impact energy absorbing ability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3434431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080398A1 (en) 2011-11-30 2013-06-06 Jfeスチール株式会社 Steel material with excellent crashworthiness and manufacturing process therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869094B2 (en) * 2007-02-05 2012-02-01 株式会社神戸製鋼所 Impact property prediction method for marine steel
WO2019176112A1 (en) 2018-03-16 2019-09-19 日本製鉄株式会社 Steel sheet for coal/ore carrier hold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080398A1 (en) 2011-11-30 2013-06-06 Jfeスチール株式会社 Steel material with excellent crashworthiness and manufacturing process therefor
KR20160104077A (en) 2011-11-30 2016-09-02 제이에프이 스틸 가부시키가이샤 Steel material with excellent crashworthiness and manufacturing process therefor

Also Published As

Publication number Publication date
JPH10306340A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
US20090056838A1 (en) Ferritic Stainless Steel Sheet Having Excellent Corrosion Resistance and Method of Manufacturing the Same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
US20190352749A1 (en) Steel material for high heat input welding
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JP4317499B2 (en) High tensile strength steel sheet having a low acoustic anisotropy and excellent weldability and having a tensile strength of 570 MPa or higher, and a method for producing the same
JP3434445B2 (en) Steel plate for hull with excellent shock absorption capacity
JP3499126B2 (en) Steel plate for hull excellent in impact energy absorption capacity and method of manufacturing the same
JP3434431B2 (en) Steel plate excellent in impact energy absorbing ability and method for producing the same
EP1520912B1 (en) Steel excellent in toughness of weld heat-affected zone
JP3434444B2 (en) Steel plate for hull with excellent shock absorption capacity
JP4041194B2 (en) Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding
EP0998591B1 (en) Linepipe and structural steel produced by high speed continuous casting
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3499125B2 (en) Steel plate for hull excellent in welding workability and impact energy absorption ability and method for producing the same
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
RU2269587C1 (en) Cold-resistant steel with enhanced strength
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JP2009082948A (en) Weld joint
JP3434446B2 (en) Steel plate for hull with excellent shock absorption capacity
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JPH07233438A (en) High tensile strength steel and its production
JPH05186820A (en) Production of steel having high toughness and high strength and excellent in elongation characteristic
JPH0718383A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and ductility and its production
JP2001064746A (en) High tensile strength steel product excellent in toughness, and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees